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Abstract

Evaluations of Deep Reinforcement Learning (DRL) methods are an integral part
of scientific progress of the field. Beyond designing DRL methods for general in-
telligence, designing task-specific methods is becoming increasingly prominent for
real-world applications. In these settings, the standard evaluation practice involves
using a few instances of Markov Decision Processes (MDPs) to represent the task.
However, many tasks induce a large family of MDPs owing to variations in the
underlying environment, particularly in real-world contexts. For example, in traffic
signal control, variations may stem from intersection geometries and traffic flow
levels. The select MDP instances may thus inadvertently cause overfitting, lacking
the statistical power to draw conclusions about the method’s true performance
across the family. In this article, we augment DRL evaluations to consider parame-
terized families of MDPs. We show that in comparison to evaluating DRL methods
on select MDP instances, evaluating the MDP family often yields a substantially
different relative ranking of methods, casting doubt on what methods should be
considered state-of-the-art. We validate this phenomenon in standard control bench-
marks and the real-world application of traffic signal control. At the same time, we
show that accurately evaluating on an MDP family is nontrivial. Overall, this work
identifies new challenges for empirical rigor in reinforcement learning, especially
as the outcomes of DRL trickle into downstream decision-making.

1 Introduction

Deep reinforcement learning research has progressed rapidly in recent years, achieving super-human
level performance in many applications. At the core of DRL research lies the need to engage in
rigorous experimental design for conducting evaluations. The lack of rigorous experimental design
could lead to profound implications. Researchers may inadvertently mislead themselves and draw
incorrect conclusions about DRL including what factors contribute to the success of a method [[17,122],
what factors make the results of a method reproducible [21]], or whether a method successfully solves
one task [45] or multiple tasks [1, 26]. As evidenced by these findings, strong empirical rigor is
crucial for research progress as it allows the research community to confidently assess the current
state of the field.

The real world induces many complexities for control tasks, and one major complexity is the existence
of multiple instances of the same task. Consider the case of a traffic signal control task where the
goal is to design a signal control strategy for an intersection. To reliably claim a DRL method solves
the traffic signal control problem, one needs to show that the proposed method sufficiently works
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for a considerable majority of the signalized intersection instances [34]. We see this requirement of
evaluating on a family of instances as an emerging requirement in general, not just limited to traffic
signal control, specifically as DRL trickles into real-world applications. We refer to such evaluations
as assessing the algorithmic generalization of DRL methods within a task.

However, many studies that evaluate algorithmic generalization of DRL methods within a task ignore
this requirement. In traffic signal control, the use of a few select intersection instances is popular
for evaluations [4} 43| 3| 24, 144]. Similar discrepancies can also be seen in other application areas
such as in autonomous driving [42, 23], healthcare [46]], and in chemistry [48]]. Such practices may
fail to guard against evaluation overfitting [45]), in which the DRL method under evaluation records
misleadingly high performance by overspecializing to the evaluation instance. As DRL trickles
into real-world implementations and critical use cases, not having such practices can have serious
implications, ranging from the opportunity cost of employing lower quality methods to hurting
confidence in the field.

(a) Default MDP (b) MDP Family

Figure 1: An illustrative example of a). a default point MDP vs b). a family of point MDPs specified
using some environment parameters ¢ for evaluations of traffic signal control.

To formalize, consider the traffic signal control task, which is typically represented as a single MDP
(Figure[Ta). At the same time, the task is underspecified and could easily be represented by a family
of MDPs (Figure |Lb), each specified using some environment parameters ¢ such as the number
of lanes, turn configurations, and traffic inflow levels. Standard evaluation practice for assessing
algorithmic generalization of DRL methods within the task of traffic signal control is to train and
evaluate DRL methods on a point MDP (or a subset of MDPs) chosen from an implicit family of
MDPs (e.g., selecting a specific ¢). We refer to such evaluation approaches as point MDP-based
evaluation Unfortunately, such point MDPs often appear to be selected arbitrarily or in a way
that inadvertently simplifies the task. It is well known that the performance of a DRL method is
sensitive to the underlying MDP [36} 21} 2]]. In this work, we hypothesize that the coupling of an
arbitrary selection of point MDPs for evaluation and the general sensitivity of DRL methods
can result in a substantial error in the true performance of DRL methods over the implicit MDP
family of a task. This, in turn, harms empirical rigor in DRL. We refer this phenomenon as the task
underspecification problem in DRL evaluations.

In this work, we take a deep dive into this matter. Our main contribution is identifying an emerging
problem motivated by the real-world application of RL: when a point MDP is used in evaluating
DRL methods within a task, the point MDP does not exhibit adequate statistical power to draw
conclusions about the corresponding MDP family. We demonstrate that this phenomenon exists not
only in real-world applications such as traffic signal control but also in standard control benchmarks,
which indicates that it may be prevalent across the field. Our methodology consists of augmenting
DRL evaluations with appropriately parameterized families of MDPs. We show that in comparison to
applying DRL methods to the point MDP, evaluating the MDP family often yields a substantially
different relative ranking of methods, which could lead researchers to draw incorrect conclusions
about the performance of some methods over others. We demonstrate this phenomenon experimentally
in a case study of traffic signal control. We show that DRL. methods which were originally reported
as outperforming traditional traffic signal control methods, significantly underperform when a family
of MDPs is used for evaluation, causing a substantial change in the ranking of methods.

Unlike standard DRL benchmark suites, in which the suite designer has full control over how many
MDP instances are included in the suite [27,|39], in real-world applications, the domain dictates how

"We note that point MDP-based evaluations are not just limited to MDPs but applicable to all variants of
MDP like partially observable MDPs. We use point MDP as a general terminology to refer to all such cases.



many point MDPs are in a task. Whereas benchmark suites often have dozens of MDP instances, we
estimate that a task can easily have hundreds or thousands of point MDPs. This thus illuminates new
computational and reporting obstacles for evaluating DRL methods within a task. We provide some
initial studies on the statistical power of evaluating DRL methods by sampling from the MDP family
and use of performance profiles for reporting and conclude that it is a nontrivial problem owing to the
sensitivity of today’s DRL methods.

Important distinctions: To put our contributions into the context of standard DRL practices, in this
work we neither address the evaluations of algorithmic generalization across task families (standard
DRL evaluations using task suites) nor evaluations of policy generalization within a task family (as
addressed in multi-task, robust RL). Second, we focus on problems where a separate individual DRL
model can be trained for each MDP (i.e., to achieve overall better performance). Another parallel
line is in which a single agent is designed to perform well on all MDPs of the family (e.g., multi-task
learning in robotics). However, in the scope of this work, we do not consider such problems.

In the following sections, unless otherwise stated, by evaluation, we mean evaluations in DRL when
evaluating algorithmic generalization of DRL methods within a task.

2 Shortcomings of Point MDP-based Evaluations

We illustrate the shortcomings of point MDP-based evaluation by considering an experiment derived
from popular DRL benchmarks. We use three popular control tasks (Pendulum, Quad [23], and
Swimmer) as example underspecified tasks. For each task, we augment the nominal task to induce a
family of MDPs. A summary of the tasks is given in Table[I, along with their augmentations. For
each task family, we then specify five point MDPs. More details of the tasks and their corresponding
modifications are given in the Appendix [B.T. We consider three popular DRL algorithms (PPO [38],
TRPO [37]] and TD3 [[19]]) for evaluation on the tasks. We have verified that each modified point
MBDP is not under-actuated and that given actuator limits, all are solvable.

Table 1: Control task and the MDP families.

Task Task description MDP family
Quad 2D quadcopter in an obstacle course. *MDPs with varying obstacle
*Goal: maneuver a 2D quadcopter through an course lengths (upper obsta-
obstacle course using its vertical acceleration as cle length and lower obstacle
the control action. length).
Pendulum ¢ A pendulum that can swing. * MDPs with varying masses and
* Goal: swing the pendulum upright. lengths of the pendulum.

Swimmer *MuJoCo 3-link swimming robot in a viscous fluid. *MDPs with varying capsule
* Goal: make the robot swim forward as fast as  sizes for the segments compris-
possible by actuating the two joints. ing the robot swimmer.

Observation 1: Reporting evaluations based on point MDPs can be misleading.

Previous works commonly use three criteria for selecting a point MDPs for evaluations. 1) random
MDP: a random MDP is used to model a somewhat arbitrary selection of an MDPs from the family
(e.g., arandom selection of a signalized intersection for training a traffic signal control agent [4]) 2)
generic MDP: an MDP that represents the key characteristics of the MDPs in the family (e.g., the
use of a generic cancer progression model for training a chemotherapy designing agent [46]) and 3)
simplified MDP: an MDP that simplifies the modeling (e.g., zero-error instrument modeling when
training an agent for chemical reaction optimization [48])).

In Figure[2] we report the evaluations of the DRL methods on each point MDP described in Table|[T]
for the three control tasks. That is, each method is trained and evaluated on each individual point
MDP. Given an MDP family, all child MDPs are considered possible random MDPs. For each task,
denotes the generic MDP, and t represents the simplified MDP. The simplified MDP is chosen as
the “easiest” MDP, i.e., simplifies the transition dynamics. The generic MDP is the parametric mean
MDP of the other four MDPs in the family.
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Figure 2: Performance comparison of point MDP-based evaluations of the three control tasks. The
x-axis represents the five point MDPs. For Quad, performance is a normalized score of the distance
the quadcopter traveled before crashing or reaching the goal with respect to the total distance required
to travel (higher the better). For the pendulum, it is the time to swing the pendulum upright (lower
the better), and for the swimmer, it is the time to reach the goal (lower the better).

We observe a few interesting phenomena (1) the same method yield significant differences in
performance under different point MDPs for all three tasks, (2) simplified MDPs generally achieve
better performance than other point MDPs in the family, and (3) comparing DRL methods based
on point MDPs can provide conflicting conclusions (e.g., conflicting relative performance benefits)
based on which point MDP is used for evaluations. For example, for Quad, point MDP (0,6) indicates
both PPO and TRPO are equally well-performing. However, under point MDP (0.5,3), we see that
PPO outperforms TRPO with approximately 0.75 point difference. These observations highlight the
variability of point MDP-based evaluations and the uncertainties involved. Such evaluations could
mislead the community to incorrectly conclude that one method is better than another and thereby
hinder the scientific progress of the field.

Observation 2: DRL training can be sensitive to the selected point MDP properties. It is
generally known that DRL training is sensitive to the underlying MDP. Therefore, selecting a point
MDP from a family can demonstrate a training impact that does not generalize to other MDPs in the
family. Subsequently, the performance of the DRL method could be overestimated or underestimated.
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Figure 3: Training progress of each task for different point MDPs. For Quad, performance is a
normalized score that indicates the distance the quadcopter traveled before crashing or reaching the
goal with respect to the total distance required to travel (higher the better). In the pendulum, the
training performance is measured as the time to swing the pendulum upright (lower the better). For
the swimmer, the training performance is measured as the time to reach the goal (lower the better).

We demonstrate this phenomenon using our three control tasks in Figure [3 when using the PPO
algorithm for training?| First, in Quad (Figure , reaching the goal means achieving a normalized

Under some point MDPs, not all parallel runs succeed. For point MDPs where some runs succeed, we only
plot the runs that succeed. For point MDPs where all runs fail, we plot them as it is. We fix the number of total
training steps to SM for swimmer and 2M for quad and pendulum. Curves are truncated for better visibility.



score of 1. However, only under a few of the point MDPs, the agent reaches the goal during training.
Specifically, 2 out of 5 settings converge to a local minimum (crashing on the same obstacle as
training progress). Similarly, in Figure [3b|for the pendulum, under one of the MDPs the agent does
not achieve the goal (stuck at the 200 steps mark) while under the other four, the agent achieves the
goal. Finally, we see similar behavior in Swimmer task in Figure 3¢ where under one point MDP the
agent fails to achieve the goal (stuck at the 5000 steps) during training and succeeds under others.
Further examples of training complications under other DRL algorithms are given in Appendix [B.3.

We hypothesize one of the root causes of this phenomenon is the complexity differences in point
MDPs. For example, in Quad, making the obstacle-free course narrower requires the DRL agent to
explore some specific actions different from what it would otherwise need to explore when the course
is wider. This effectively makes the training process harder for point MDPs with narrower paths.
Another potential cause is MDP designers’ over-fitting MDP design to point MDPs. For example, in
the pendulum, the default reward function penalizes higher torque values while encouraging reaching
the goal with a weighted composite reward. MDP designers may over-fit the weighting values to a
selected point MDP which does not generalize to the entire family. This can result in point MDPs
with higher pendulum mass failing if the weight on the torque limits is higher.

3 Notation and Formalism

Given a sequential decision-making task 7" and a reinforcement learning method R to be evaluated,
we consider the setting where there are M possible point MDPs in the family of MDPs. In general,
despite the illustrative examples in the previous section, M can be quite large. Let N denote a
computational budget in terms of the number of models that can be traine We assume that

M > Nj; that is, we cannot evaluate the given RL method on all MDPs in the family.

As we demonstrated in Section 2] the performance of a DRL method R can significantly depend on
the choice of the point MDP. As suggested by previous work [[1]], it is therefore warranted to model
the performance of R as a real-valued random variable X . This means a normalized performance
score sg; for a given I? and a point MDP 1 is a realization of the random variable X r. We normalize
point MDP performance scores by linearly rescaling scores based on a given baseline. For example,
scores in Atari games are typically normalized with respect to an average human [32} [1]].

Given a family of MDPs, a point MDP ¢ may be more important or common than another point MDP
7. This is a common requirement in the real world where practitioners have predefined performance
requirements, such as the performance of a signalized intersection in an urban area may be more
important than a signalized intersection in a sub urban area in traffic signal control [11]]. This
importance score pr; of a point MDP ¢ on task T' can be considered as a realization of a real-
valued random variable Y7. This means depending on the importance scores of each point MDP, a
distribution can be generated for the MDP family. For 7 € R™ where 7 represents the point MDP
context, we therefore define the point MDP distribution as F'(7) = P(Yr).

Assumption: For a given task 7', we assume pr ; is given for each MDP .

Definition 1 The overall performance of a DRL method R on task T is defined as E, = E[Xg] =
Z!Z‘l SR,ipT,; where U is the set of point MDPs.

However, obtaining E}; is not always possible because of the budget constraint M >> N. Therefore, a
potential solution is to select a subset V' of point MDPs from the MDP family to perform an evaluation.

Accordingly, the estimated performance of the method R on task 7' is E}; =3 LZ'I SR,ipT,i- Clearly,
if not careful, selecting different subsets can greatly affect the accuracy of the evaluations.

An intuitive approach to selecting a subset of point MDPs is to assess the contribution c; of each
point MDP ¢ to overall evaluation. Contribution depends both on the importance score, which is
given, and performance score, which incurs a computational cost to evaluate, and can be defined as
¢i = SR,ipr,i- Thus, we seek to find the set of point MDPs that has the highest contributions to the
overall evaluation. Given that we wish to estimate the contribution of individual point MDPs without

3Most cloud service providers charge users based on the time they use the services. Therefore, approximating
the average number of models that can be trained given a pricing budget can be done with rough estimates of
how long it takes to train one model on a single point MDP.



assessing the overall performance E7, this poses a chicken-and-egg problem. In the subsequent
sections, we propose approximation techniques that one can employ to identify a subset V' based on
the approximated contributions.

4 Case Study: Traffic Signal Control

To validate the shortcomings of point MDP-based evaluations, we consider an established benchmark
that exhibits a large implicit family of MDPs describing a single task and wherein there could be
significant real-world implications. In particular, we consider the evaluations of DRL methods on the
traffic signal control task, leveraging the RESCO benchmark [4]. We use six algorithms from RESCO
in our case study, namely: IDON, IPPO [3|, MPLight [10], MPLight*, Fine-tuned Fixed time and
Max pressure [41]]. Further details can be found in Appendix[C.T.

Naturally, traffic signal control should be considered on multiple intersection geometries and vehicle
flow levels, hence a family of MDPs. We base our importance score pr ; of each intersection on the
frequency of occurrence within a geographic region and the performance score sp ; as the normalized
per vehicle average delay. Scores are normalized based on an untuned yet sufficiently performant
fixed time controller baseline. The importance scores and the intersections used to build the point
MDP distribution of the intersections are taken from Salt Lake City in Utah. We use 164 unique
intersections and refer the reader to Appendix [C.2]for more details on building this distribution.
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Figure 4: Performance vs the number of point MDPs that demonstrate the performance for all traffic
signal control methods in RESCO. 164 unique point MDPs were considered for each method.

In Figure [, we report the performance of each of six methods on 164 unique point MDPs and the
reported performance as per [4ﬂ First, we observe significant variations in the performance based on
the point MDP used for evaluations. Specifically, all DRL methods demonstrate a significant variation
while non-DRL methods demonstrate comparatively low yet considerable variations. Second, we
observe that the reported performances in related literature can be significantly biased. As an example,
IDQN, IPPO and MPLight performances are clearly overestimated. To quantitatively analyze the
potential shortcomings, we denote the performance of each method over the entire MDP family in

Figure[3]

“Reported performances are based on re-evaluations of the methods on Ingolstadt single intersection.
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outperform an untuned fixed time controller). It is thus clear that point MDP-based evaluations can
be misleading and may pose performance benefits that do not generalize to the MDP family.

5 Further Evidence on Shortcomings of Point MDP-based Evaluations

To further validate the shortcomings of point MDP-based evaluations and the impact, we look at
three popular DRL control tasks: cartpole (discrete actions), pendulum (continuous actions), and
half-cheetah (continuous actions). For each task, we devise a family of MDPs as described in
Table[5 in Appendix [D.T} Our MDP families consist of 576, 180, and 120 point MDPs for cartpole,
pendulum, and half cheetah, respectively. Due to space limitations, we provide an in-depth analysis
of performance variations in Appendix [D.2] and only provide a summary of the analysis in this
section. In Figure[6, we show the significant discrepancies in overall performance and the reported
performances. The reported performance of each task is measured by training and evaluating DRL
methods on commonly used single point-MDP given in common benchmark suites.

We see significant result changes when evaluated on the point MDP family. For example, in cartpole
(Figure [6a), all reported performances achieve the best score of 1.0 while we see a significantly
different overall performance. Although under reported performance, all four DRL methods for
cartpole are ranked as equally well-performing, we see an interesting rank change as some methods
underperform when considering their overall performance. Similar insights can be seen in Pendulum
(Figure[6b) and in half cheetah (Figure [6¢c).
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Figure 6: Discrepancies between reported vs. overall performance of popular DRL methods in
cartpole, pendulum and half cheetah when evaluated for algorithmic generalization within the task.

6 Reliable Evaluations Within a Task

In Section [2, [ and [5, we demonstrate the shortcomings of point MDP-based evaluations. In this
section, we discuss the challenges that arise as a result of conducting MDP family-based evaluations.
We present three main challenges and an initial set of recommendations to the research community as
summarized in Table

Results reported in this work should not be illustrated as evidence against using DRL for traffic signal
control and should only be used as evidence of shortcomings in point MDP-based evaluations. Further studies
are encouraged to study the benefits of DRL for traffic signal control without the point MDP-based assumptions.



Table 2: Summary of challenges and initial recommendations

Challenge Our recommendation

Lack of benchmarks * Create benchmarks that depict MDP families.
* Publish datasets of MDP families of control tasks including
point-MDP distributions.
* Incentivize publication of such datasets and control task at
leading conferences.

Large families of MDPs with * Adopt performance approximations using clustering and ran-
limited computational budgets dom sampling under a computational budget.
« Standardize the evaluations by making the selected point-
MDPs public.
Lack of emphasize on all * Use performance profiles to show a detailed view of how overall
point-MDP performances performance changes with point MDPs

6.1 Create data sets of MDP families to benchmark RL methods in evaluations

The use of benchmark datasets for evaluations is well-established in supervised learning. From
computer vision [12]] and biological data [29] to natural language processing [35], standard datasets
are being used for evaluations of deep learning methods. In DRL, the practice is different. In assessing
algorithmic generalization of DRL methods within a task, instead of published datasets, researchers
use standardized benchmark suites like RESCO for traffic signal control [4], and Vinitsky et al. [42]]
for mixed autonomy traffic.

However, we recognize that current state-of-the-art benchmarks alone are not sufficient to standardize
the evaluations in DRL. The main limitation is that they only provide select point MDPs and do not
consider the family of possible MDPs. As many real-world applications inherently demonstrate a
family of MDPs, the current DRL standardization of evaluations may steer the research community
in a vacuum, while realistically useful DRL methods may get rejected or not even developed.

Therefore, our first recommendation is to create DRL benchmark suites which inherently demonstrate
a requirement to incorporate a family of MDPs. However, which MDPs to include in a given family
is task-dependent, and the expertise of domain experts may be needed. Second, we also encourage
the research community to actively create MDP families for existing control tasks (e.g., different
signalized intersections as traffic signal control MDP family) and publish them publically. Finally,
we also encourage main artificial intelligence conferences with datasets and benchmark tracks like
NeurIPS to encourage the community to publish such datasets and tasks and to include necessary
check-ins in the paper submission checklists.

6.2 Evaluate DRL methods on a family of MDPs instead of point MDPs

In Section and 5] we demonstrated the shortcomings of point MDP-based evaluations. Therefore,
our next recommendation is to encourage researchers to use families of MDPs instead of point MDPs
in DRL evaluations. However, evaluating performance over an entire family of MDPs can often
be computationally expensive to carry out in practice due to the large cardinality of the family. A
solution is to conduct performance approximations. While more sophisticated methods like active
learning approaches are possible, we resort to effective yet straightforward techniques to bolster the
adoptability of the techniques within a wider community.

We present three techniques: (1) M1: random sampling with replacements from the point MDP
distribution, (2) M2: random sampling without replacements, and (3) M3: clustering point MDPs
using k-means and assigning probability mass of all point MDPs that belong to same cluster to its
centroid. More details of each method and more analysis can be found in Appendix [E.T}

In Figure [7, we denote the approximate evaluations of IDQN, IPPO and Fixed time methods in
traffic signal control in comparison to the ground-truth performance while varying the budget size.
In general, k-means clustering-based approximation produces better estimates than the other two
techniques with smaller standard deviations. Specifically, if the budget size is half the total MDP
family size, k-means clustering demonstrates reasonably accurate performance estimates. Also,
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publishing the selection of point MDPs as data sets can enable reproducibility and standardization of
the evaluations of the tasks. A sensitivity analysis of the proposed techniques to the underlying point
MDP distribution is also given in Appendix [E.2]

Remarks. We acknowledge that there are other factors to consider for a computational budget,
including hyperparameter tuning [26] and training using multiple random seeds within each point
MBDP [1]]. Here, we focus on the computational budget allotted for the task underspecification issue.

6.3 Use performance profile of the MDP family instead of point MDP performance

Inspired by the idea of performance profiling for DRL evaluations [1]] and in optimization soft-
ware [[13]], our final recommendation is to report the performance of a DRL method over a family of
MDPs as a performance profile. Although the overall performance of a DRL method over a family
of MDPs can yield more reliable evaluations than evaluating on a point MDP, it may encapsulate
further insights into the method’s performance. By representing the performance of a method as a
performance profile, a more detailed visualization of the performance over the point MDPs can be
illustrated.

In Figure[8, we present an example performance profile for k-means clustering-based performance
approximation with a budget size of 80 models in the traffic signal control task.

Point MDP probabilities «- IDQN MPLight +- Fixed Time .
Cumulative probabilities - IPPO -+ MPLight* +- Max Pressure A performance prOﬁle llluStrates What

point MDPs are most probable in the
distribution and how each of the point
MDP contributes to the final estimate
of the performance. It enables direct
comparison of methods. In particular,
if the cumulative performance curve of
method A is strictly below method B,
method A is said to stochastically dom-
inate method B (lower the score the
better) [1]]. Furthermore, point MDPs
in which a method seemingly under-
performs is easily visible, giving a clear
overview of where the limitations and
strengths are originating from.
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Figure 8: Performance profile of k-means clustering
based performance approximation with budget size
of 80 models in traffic signal control task.

7 Related Work

Deep reinforcement learning algorithms have notoriously high variance, resulting in reliability and
reproducibility issues when applying them to real-world applications [[1} 26} 9| |8]]. Designing sound
methodologies for conducting performance evaluations is, therefore, critical. To our knowledge,
Falkenauer [[18] first identified overfitting a design to a selected problem instance as a cause for
concern. Whiteson et al. [45] later used the same motivation to argue similar overfitting can happen,



particularly in reinforcement learning. We look at the algorithmic generalization of DRL methods
within a task, which poses different requirements and properties compared to previous works.

The use of a family of problem instances is not new. It has been used in combinatorial auctions [30]]
and in reinforcement learning [7, [28]]. Recently, MDP families have been used to achieve better
generalization in DRL. Benjamins et al. [6] argue that generalization in DRL is held back by factors
stemming in part from a lack of problem formalization. Benchmarks suites such as CARL [3]] are
proposed to use MDP families to study generalization. Eimer et al. [16] further show that such DRL
problems demonstrate challenges that the DRL community has not looked at carefully.

The family of MDPs has been formally modeled in multiple ways in the literature. The most recent
and general method is to model the problem as a Contextual Markov Decision Processes (cMDP) [6]]
where all MDPs in the family share the same MDP configuration except for the transition function
and the reward function. In Hidden Parameter MDPs [14], only the transition function changes but
keep the reward function fixed over the family of MDPs. Epistemic POMDPs introduced by Ghosh et
al. [20] are a special case of a cMDP where the context is assumed to be unobservable. They show
that there is implicit partial observability under generalization to unseen test conditions from a limited
number of training conditions. This phenomenon translates even a fully observed MDP into POMDP.
In comparison to these formulations, we do not restrict what components of an MDP can or should
change in evaluations. We let that be defined by the domain of the task.

8 Conclusion and Future Work

In this work, we identify an important yet overlooked issue of task underspecification in DRL
evaluations—the reliance of reporting outcomes on select point MDPs. We experimentally demon-
strate that evaluating the MDP family often yields a substantially different relative ranking of methods
compared to evaluating on select MDPs. Moreover, evaluating on a family of MDPs is not trivial
and is faced with multiple challenges. One exciting avenue for future work is to explore if similar
shortcomings occur when evaluating the algorithmic generalization of DRL methods across tasks.
Furthermore, our recommendations for the related challenges when conducting reliable evaluations
with a family of MDPs are only a starting point for more focused research. Future research can shed
light on these directions, including designing efficient yet effective methods that can produce good
approximate performance estimates. Overall, we intend for our findings to raise awareness of task
underspecification that impacts the empirical rigor of DRL and aim to help move the needle toward a
more disciplined science overall.

9 Broader Impact

Although there is not a single definition of responsible machine learning, the Institute for Ethical Al
& Machine Learning has developed a series of eight principles to guide the responsible development
of machine learning systems. Practical accuracy is one of the principles, which emphasizes that
accuracy and cost metric functions are aligned to the domain-specific applications. This article
contributes to bolstering the practical accuracy of RL, when employed for a complex downstream
decision (e.g. whether to adopt an RL method for a societal system), by highlighting some limitations
of current standard RL research practices and proposing to explicitly consider a family of MDPs
that constitutes the complex decision. On the other hand, even with more empirically rigorous ML
practices, there are still subjective aspects of the task distribution (analogous to the family of MDPs
in RL), so it remains important to not over-index on RL-based evaluations.
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