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Abstract

The response generation for TableQA aims to
automatically generate a response to end-users
from a SQL query and its corresponding exe-
cution result (in the form of table). It is an es-
sential and practical task. However, there has
been little work on it in recent years. We con-
sider this may be blamed on the lack of large-
scale and high-quality datasets in this area.
In this paper, we present ResponseNLG, a
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large-scale and high-quality Chinese dataset
for TableQA response generation, to advance
the field in both academic and industrial com-
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Pinduoduo, with a market value of
4.5 trillion yuan, 4.07 trillion
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munities. Further, to bridge the structural gap
between the input SQL and table and establish
better semantic alignments, we propose a Het-
erogeneous Graph Transformation approach.
In this way, we establish a joint encoding space
for the two heterogeneous input data and con-
vert this task to a Graph-to-Text problem. We
further introduce the Node Segment Embed-
ding to better preserve the original graph struc-
ture upon PLMs based models.

1 Introduction

Table Question Answering (TableQA) aims to an-
swer a question over the given tables, and it has
been widely applied in many real-life applications,
e.g., chatbot and business intelligence (Stent et al.,
1999; Litman and Silliman, 2004; Budzianowski
et al., 2018). One common solution is converting
it to a Text-to-SQL problem (Warren and Pereira,
1982; Zettlemoyer and Collins, 2005; Mrksic et al.,
2015), which maps the natural language question
to meaning representations in SQL. Once a natural
language question has been mapped to a formal
SQL query, the result can be retrieved from the
table database based on it. In a real-world setting,
the consequent problem is how to convert the exe-
cution result, which usually can be organized as a
table, to a natural language text to the asker, i.e., the
response generation for TableQA (Yu et al., 2019a).
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Figure 1: An example for Text-to-SQL and TableQA
Response Generation. The red dotted lines denote the
input data (a SQL query and its execution result) for
TableQA Response Generation.

The response generation for TableQA takes a
SQL query and its corresponding execution result
(in the form of a table) as input and aims to gener-
ate a natural language description as the response
(as shown in Figure 1). Intuitively, it plays a vital
and indispensable role in constructing a real-life
TableQA application and building a human-like di-
alog system. Meanwhile, this task is challenging.
The first challenge is that the model needs to un-
derstand the two heterogeneous input data: SQL
and table. Moreover, both input data are structured
and have less semantic information than natural
language sentences, which also exists in Table-to-
Text generation (Lebret et al., 2016; Wiseman et al.,
2017) but is more challenging. Additionally, the
generated response must be absolutely faithful to
the input data, which means the response should
contain all the content in the input table while being
logically consistent with the SQL.

To our knowledge, template-based models are

widely applied in dialogue response generation
modules (Jordan et al., 2006; Ultes et al., 2017).



The experts, who have abundant linguistic and do-
main knowledge, write different kinds of templates
with slots which are then filled with the execu-
tion results(Ritter et al., 2011; Kale and Rastogi,
2020). Obviously, to cover more data from dif-
ferent domains, this system needs numerous tem-
plates, which typically require a lot of human effort
and costs. Meanwhile, it is not easy to guaran-
tee the fluency of the generated results. Over the
past several years, automatic neural network-based
methods have achieved significant progress in the
text generation domain (Liu et al., 2016; Lubis
et al., 2018). However, we notice that there is little
work on response generation for TableQA. We con-
sider this may be blamed on the lack of large-scale
and high-quality datasets in this field. CoSQL (Yu
et al., 2019a) is the only dataset for this task with
7,845 generation examples, and it is in English.
It is a dataset with SQL-grounded dialogue state
tracking as the core, and the generation annotations
are very rough.

In this paper, we propose ResponseNLG, a
large-scale and high-quality Chinese dataset for
TableQA Response Generation. We introduce a
dataset construction process where annotators only
need to directly revise the provided template re-
sponse, and yield 29, 366 response generation ex-
amples. It is an order of magnitude larger than
CoSQL. A strict screening procedure is imple-
mented to ensure data quality. ResponseNLG
has a wider distribution than CoSQL, which is
more in line with real TableQA scenarios. Mean-
while, to bridge the structural gap between the in-
put SQL and table and establish better semantic
alignments, we propose a Heterogeneous Graph
Transformation approach (HGT). HGT first con-
verts the two sources to two undirected graphs and
then builds the connection between the nodes in dif-
ferent graphs to obtain a heterogeneous joint graph.
In this way, we convert this task to a Graph-to-Text
problem. Previous Graph-to-Text methods (Ribeiro
et al., 2020, 2021) transform the input graph into a
new token graph to introduce pretrained language
models (PLMs). We consider that this transfor-
mation breaks the input graph structure and may
bring in extra noises into graph encoding. To pre-
serve original structure information, we introduce
the Node Segment Embedding, which assigns the
same symbol to the nodes in the token graph which
belong to the same node in the original heteroge-
neous graph. Our contributions include the follow-

ing three aspects:

* We present a large-scale and high-quality Chi-
nese dataset for TableQA response generation,
ResponseNLG, with a series of strong base-
lines and metrics. To the best of our knowl-
edge, it is also the first Chinese dataset for this
task.

* We propose a Heterogeneous Graph Trans-
formation method to bridge the structural gap
between the SQL and table. We also introduce
Node Segment Embedding to better preserve
the original graph structure upon PLMs based
models.

* Experiments and analysis on ResponseNLG
attest to both the high quality and challenges
of the dataset. The results also demonstrate
the effectiveness of our proposed method. We
will make our data and code publicly available
upon the acceptance of this paper.

2 Related Works
2.1 Table Question Answering

A TableQA system comprises a table semantic pars-
ing (Text-to-SQL) component and a response gen-
eration component (Yu et al., 2019a). The semantic
parsing component converts NL question into SQL
query (Text-to-SQL) (Finegan-Dollak et al., 2018;
Guo et al., 2019; Wang et al., 2020a; Hui et al.,
2021) and the response generation component gen-
erate NL response given the SQL query and SQL
execution table. Notice that the SQL query can
represent the context state in multi turn TableQA
scenarios (Yu et al., 2019a,b). Several datasets have
been proposed to apply semantic parsing on tables,
including WikiTableQuestions (Pasupat and Liang,
2015), Sequential QA (Iyyer et al., 2017), WikiSQL
(Zhong et al., 2017), Spider (Yu et al., 2018), SparC
(Yu et al., 2019b) and CHASE (Guo et al., 2021).
But these works only focus on the semantic parsing
task and return the SQL execution result as sim-
ple short form answer. FeTaQA (Nan et al., 2021)
yields a more challenging TableQA setting because
it requires generating free-form text answers. Hy-
bridQA (Chen et al., 2020b) and OTT-QA (Chen
et al., 2020a) build question answering tasks with
context of both structured tables and unstructured
text.

2.2 Data-to-Text Generation

Data-to-Text aims to generate a natural language
description from structural or semi-structural data
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Figure 2: Construction workflow of ResponseNLG.

(Liang et al., 2009; Banik et al., 2012; Gardent
et al., 2017; Parikh et al., 2020). It helps people
get the key points of the input data and makes the
stored information accessible to a broader audi-
ence of end-users. In the academic community,
Data-to-Text is usually divided into Graph-to-Text
(Song et al., 2018; Wang et al., 2020c) and Table-
to-Text (Lebret et al., 2016; Wiseman et al., 2017),
according to whether input data is a graph (e.g.,
Knowledge or Abstract Meaning Representation
Graph) or table (Ribeiro et al., 2019; Agarwal et al.,
2021). To better model the structure of a graph,
early works (Song et al., 2018; Koncel-Kedziorski
et al., 2019; Damonte and Cohen, 2019) introduce
Graph Neural Networks (GNN5s) as the structure en-
coder, which only considers the relations between
neighbor nodes. Unlike the local encoding strate-
gies, Zhu et al.; Cai and Lam propose the Graph
Transformer that uses explicit relation encoding
and allows direct communication between two dis-
tant nodes. In order to learn better contextualized
node embeddings, Ribeiro et al. gather the above
two encoding strategies, proposing novel neural
models which encode an input graph combining
both global and local node contexts. To better lever-
age the structure of tables, some studies (Bao et al.,
2018; Nema et al., 2018; Jain et al., 2018; Liu et al.,
2019; Li et al., 2021) propose to utilize the hier-
archal encoder to model the table’s representation
from the row and column levels.

The response generation for TableQA can also
be regarded as a Data-to-Text task, and it is similar
to Table-to-Text but more challenging because its
input data contains not only a structural table but
also a SQL, which are both essential for the gener-
ation. Moreover, it requires the model to generate
an utterly faithful response to the input data, which
means the response should contain all the content
in the table and be logically consistent with the
SQL.

Manufacture

Finance .
Media

Public Security

3%
Technology 7% o
3% 24%
7%
2%

Medical Treatment

2% Electricity
o

19% 1%
b
Public Service
o
Insurance ]
4% 18%
Traffic

Resource
Bank
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Figure 4: The comparison of data complexity distribu-
tion between CoSQL and ResponseNLG.

3 Dataset Construction

3.1 Data Synthetic and Annotation

Different from previous works (Yu et al., 2019a),
which usually rely on humans to create natural
Language (NL) questions, SQL queries and corre-
sponding response, we introduce a dataset construc-
tion process where annotators only need to directly
revise the provided template response as illustrated
in Figure 2. We first collect tables from the Inter-
net and utilize production rules to generate SQL
queries automatically. And then, we execute the
SQL on the collected tables. After that, we generate
a pseudo response based on predefined templates.
Finally, pseudo responses are paraphrased to NL re-
sponses by humans. Additionally, to guarantee data
quality, low-confidence instances are detected ac-
cording to their overlapping and similarity metrics
and are further checked by humans.

Table Collection We build a search engine based
table collection pipeline to collect high quality
tables. Firstly, 100,000 frequently used words
are summarized from the CLUE (Xu et al., 2020)
corpus. Then these words are queried in Google
and filtered spreadsheet files are downloaded.
Useful tables are extracted from these files through
a parser, which could identify potential table in a
worksheet. Sensitive values in the tables, such as



Passwords, Identification IDs and
Credit Card IDs are replaced with special
tokens. We also build a table cleaning pipeline as
shown in Appendix A.1 to guarantee table quality.

Pseudo Data Generation Data syntactic for
semantic parsing has gained increasing attention
in recent years (Zhong et al., 2017; Wang et al.,
2020b, 2021). Differently, we apply syntactic
method to build response generation dataset.
We firstly utilize production rules from the
SQL grammar to automatically generate SQL
queries. The SQL query can be represented
as an abstract syntax trees (ASTs) using the
rules such as SQLs = SQL, SQL = Select
Where, Select = SELECT A, Where =
WHERE Conditions..., all of which are
production rules of the SQL grammar. Please refer
to Appendix A.2 for more details. By exploiting
every rule of the grammar, we can generate SQL
queries covering patterns of different complexity
along with corresponding tables. SQL querys
which cannot execute or have not execution results
are filtered. We then build two template-based
generation pipelines. The one is to convert the
syntactic SQL query into pseudo NL question. The
other is to generate template NL response based on
SQL query and the SQL execution result table.

Data Annotation and Review We employ 20
well-educated crowd workers to paraphrase the tem-
plate questions and template response into natural
language, and filter incomprehensible ones which
are semantically unclear. To guarantee data quality,
another 4 workers are asked to review the anno-
tated data. Data with poor annotation quality will
be required to be relabeled. We also automatically
detect low-quality data. If the response does not
contain important information about SQL and Ta-
ble, we will filter it out.

3.2 Dataset Statistics

Our final ResponseNLG dataset contains
29,358 examples, with a average length of
46.7. Each example contains a {NL question,
SQL query, SQL execution table, NL response}
pair. We split the training/development/test set by
23,488/2,935/2, 935 randomly.

Topics We build a topic categorization model
(Asthana and Halfaker, 2018) for tables in
ResponseNLG to investigate the topics distribu-
tion. Figure 3 presents an aggregated topic anal-
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Figure 5: An example of token graph transformation.

ysis of our dataset. We find that the Media,
Insurance and Bank topics together com-
prise 61% of our dataset, but the other 39% is
composed of broader topics such as Public
Service, Technology, Finance. Our
dataset is limited to topics that are present in
CLUE.

Data Complexity We evaluate the data com-
plexity by the row number and column num-
ber of the input tables. Figure 4 shows the
training set distribution comparison between
CoSQL and ResponseNLG. We can see that
the ResponseNLG has a wider distribution than
CoSQL, which is more in line with real TableQA
scenarios. Please refer to Appendix A.3 for more
details.

4 Structure-Aware Approach

Given an input SQL s and a Table ¢, the model
aims to generate a response y. To bridge the
gap between the two sources of information, we
first propose a Heterogeneous Graph Transfor-
mation approach (HGT), which explicitly connects
the input SQL and table in a heterogeneous graph
structure. In this way, we can obtain a joint graph
representation of the two sources and convert the re-
sponse generation task to a Graph-to-Text problem.
And then, we utilize a varietal transformer architec-
ture (Ribeiro et al., 2020) that employs the original
transformer encoder as the Global Node Encoder
(G-NE) and introduces a GNN based layer into
each transformer encoder layer as the Local Node
Encoder (L-NE). G-NE allows explicit communi-
cation between two distant nodes, taking advantage
of a large node context range. And L-NE has an ad-
vantage in modeling the graph topology. As shown
in Figure 6 (b), this architecture cascaded performs
global and local node aggregation, which gathers
the benefits from both strategies. In the rest of
this section, we will describe the proposed Hetero-
geneous Graph Transformation approach and the
Local Node Encoder in detail.



Graph Attention ] - [ Transformer Decoder Block }

T [cormaagmumitioozma .. |

mEdZTT)
@ it Coriatmion

@@ @
&3] &3] @ 2]
D o @ |[F
&3] &3] 5] ]
e @

Token Hidden State

Node Segment Embedding

Layer Normalization ) Add Operation

Transformer Encoder Block

SQL Node

Jhow

Table Header Node

f J

(a) Heterogeneous Graph

i
EOOE O

()
()
() Node Type Embedding
@
@
@
()

Table Cell Node

(b) Overview of Architecture
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geneous Graph Transformation. (b) is an overview of our model. L-NE and G-NE denote Local Node Encoder

and Global Node Encoder, respectively.

4.1 Heterogeneous Graph Transformation

Given a SQL s and its execution result (in the form
of a table) ¢ as input (shown in Figure 1), the Het-
erogeneous Graph Transformation approach takes
two steps to transform the input two sources of
data into a heterogeneous graph (shown in Figure
6a). First, it converts the SQL and table into two
undirected graphs: SQL graph G, and table graph
G:. In particular, for a SQL, we follow the previous
method (Xu et al., 2018) and convert it to a tree.
We refer the readers to the paper for more details.
For a table, we treat each column name and table
cell as a node and divide the nodes in the table
into two categories: table header node and table
cell node. And then, we connect each header node
with the cell node in the same column. We also
build the connections between the cell nodes in the
same row. Second, we add connections between
the nodes that indicate the same column in G, and
G; to build the unified heterogeneous graph. we
also add a self-loop connection for each node. The
transformed heterogeneous graph is formulated as
Gn = (Vn, &), where V represents the nodes set
and &, = {(n,v)|n,v € V}. Figure 6a shows an
example of the transformed heterogeneous graph.

We expect that developing generation model
should benefit from the recent advance on pre-
trained language models (PLMs) (Peters et al.,
2018; Devlin et al., 2019; Radford et al., 2019). We
represent each Gy, using subword tokens, and con-
vert it into a new token graph G = (V, £). Specifi-
cally, each token of a node in V}, becomes a node v
in \V. For each edge (n,v) € &, we connect each
token between n and v to obtain the new edges
set £ (as shown in Figure 5). However, we notice
that the new token graph G breaks the structure of

the original graph G; and may make the encoder
pay too much attention to the feature of nodes at
the token level instead of the original node level.
This may bring extra noises into graph encoding.
To preserve the original structural information, we
introduce the Node Segment Embedding (NSE),
which assigns the same symbol to the nodes in the
token graph G which belong to the same node in
the original heterogeneous graph Gy,.

4.2 Local Node Encoder

Given {hy|v € V} as the outputs of the Global
Node Encoder at the L-th encoder layer, we next
describe how the Local Node Encoder works. As
shown in Figure 6b, the Local Node Encoder con-
sists of two main modules: Node Embedding Layer
and Graph Attention Network Layer. The former
enriches the features of the nodes, and the latter
explicitly models the graph structure. For Node
Embedding Layer, in addition to the above Node
Segment Embedding, we also introduce Node Type
Embedding (NTE) to preserve the graph hetero-
geneity. Formally, given h,, we obtain the feature-
enhanced node representation by:

he = LayerNorm(hy) + €5 +el, (1)

where Layer N orm represents layer normalization
(Baet al., 2016). ef, el denote the node segment
embedding and node type embedding for node v
respectively.

After the Node Embedding Layer, we utilize
Graph Neural Networks (GNNs) to model the
graph structure explicitly. For simplicity, we em-
ploy one Graph Attention Network Layer (GAT).
Formally, it aggregates the representations of node
v in a multi-head self-attention layer (Vaswani



Model BLEU BLEU-2 BLEU-4 CHRF++ PARENT-P PARENT-R PARENT
Development
Pointer-Generator 50.30 54.40 37.30 59.46 53.22 80.95 6291
Finetune 53.62 58.88 39.60 62.67 56.58 84.35 66.63
Finetune-FNN 54.32 59.53 40.25 63.06 56.67 84.49 66.73
Finetune-Graph 52.42 57.85 38.30 60.78 56.57 83.76 66.42
Finetune-Graph-FNN  53.03 58.45 38.63 60.97 56.79 83.98 66.64
Ours 55.88*  60.88* 42.15* 63.94* 56.75 84.81 66.91
Test
Pointer-Generator 50.12 55.35 37.15 58.67 54.13 80.36 63.22
Finetune 53.78 58.98 39.78 62.81 56.63 84.25 66.65
Finetune-FNN 54.18 59.45 40.08 62.95 56.82 84.41 66.85
Finetune-Graph 52.77 58.18 38.43 61.07 56.52 83.63 66.37
Finetune-Graph-FNN  53.34 58.75 39.00 61.41 56.63 84.08 66.60
Ours 55.80*  60.78* 42.08* 64.02* 56.58 84.63 66.73

Table 1: Main results of models on ResponseNLG development set. * denotes the value is significantly different
from other models at a p < 0.05 level, according to an independent sample t-test.

et al., 2017) as follows:
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where 1 < h < H, and Wj, W, Wi €
R(4/H)  Af(v) denotes the immediate neighbor-
hood of node v in graph G. We also tried the RGAT
(Shaw et al., 2018). It performed comparable with
GAT but introduced more parameters.

4.3 Training Objective

The transformer parameters are initialized with the
pretrained TS (Raffel et al., 2020), and the others
are randomly initialized. Given each gold instance
(s,t,y), we fine-tune the model to optimize the
following cross-entropy objective:
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5 Experiment

5.1 Experiment Settings

Baselines We conduct experiments on
ResponseNLG and compare our method
with several baselines, including:

¢ Pointer-Generator is an RNN-based
Seq2Seq model with attention and copy
mechanism. We concatenate the SQL and
linearized table as input.

* Finetune denotes a Transformer encoder-
decoder method which is initialized by T5.
It takes the same strategy with Pointer-
Generator to preprocess the input SQL and
table. Moreover, we replace our local graph
encoder with an FNN layer. And we change
the hidden dimension of FNN and make its
parameters equal with the local graph encoder
to make a fair comparison. We denote this
method as Finetune-FNN.

* Finetune-Graph is also a T5 initialized
method. Different from Finetune, it uses
the same graph linearization as input with
our method. Additionally, we add FNN to
make a fair comparison, which is denoted as
Finetune-Graph-FNN.

Evaluation Metrics We evaluate our models by
applying both automatic and human evaluations.
For automatic evaluation, we first employ two
widely used metrics: BLEU (Papineni et al., 2002)
and CHRF++ (Popovié, 2015). We also report
the results of BLEU-2 and BLUE-4. All above
scores are calculated by SacreBLEU (Post, 2018).
Then we employ PARENT (Dhingra et al., 2019)
to evaluate the faithfulness for the generated text.
PARENT is a metric proposed specifically for data-
to-text evaluation that takes the table into account.
We modify it to make it suitable for our dataset, de-
scribed in Appendix A.4. We conduct experiments
over 4 different seeds and report the average scores
on them. Please refer to Section 5.4 for human
evaluation details.

Implement Details Our implementation is based
on Hugging Face Transformer models (Wolf et al.,
2020). We utilize TS5y for all experiments.



Model BLEU CHRF++ PAR
Finetune-Graph-FNN 53.03 60.97 66.64
Finetune-Graph-L-NE ~ 55.18 62.94 67.18
+ NTE 55.54 63.32 67.06
+ NSE 55.82 63.73 66.82
+ NTE & NSE 55.88 63.94 66.91

Table 2: Ablation study on ResponseNLG develop-
ment set. PAR denotes PARENT.

For T5-based methods, we use AdamW optimizer
(Loshchilov and Hutter, 2018) and employ a lin-
early decreasing learning rate schedule without
warm-up. Moreover, the learning rate is fixed as
3e — 5, and batch size is set as 4 for all experi-
ments. We train the parameters from TS and the
added parameters together. During decoding, we
employ beam search with a beam size 5. All exper-
iments are implemented with Pytorch and trained
on Nvidia Telsa V100 32GP GPUs.

5.2 Main Result

The results on ResponseNLG development and
test sets are summarized in Table 1. First, we ob-
serve that after adding new parameters, Finetune-
FNN and Finetune-Graph-FNN achieve better per-
formance than their baselines. And then, we notice
that Finetune-FNN performs better than Finetune-
Graph-FNN, though their parameters are equal. We
consider the reason is that the input of the former
is more similar to natural language. This indicates
that the representation of input data affects the
model performance. Our method significantly out-
performs Finetune-Graph-FNN on BLEU (+2.85)
and CHRF++ (+2.97) and also obtains a higher
PARENT score. It demonstrates that the improve-
ment of our method not only comes from more
parameters. Our approach also performs better
than Finetune-FNN on BLEU (+1.56) and CHRF++
(+0.8) and achieves competitive results on PAR-
ENT. The results on the test set follow a pattern sim-
ilar to the development set and our method achieves
the start-of-the-art results on BLEU and CHRF++.
It demonstrates the effectiveness of our proposed
method.

5.3 Analysis and Discussion

Ablation Study To examine the impact of each
module in our method, we conduct the ablation
study on ResponseNLG development set, and the
results are shown in Table 2. Finetune-Graph-L-NE
denotes the method that replaces each FNN module
in Finetune-Graph-FNN with a GAT layer. As can

Model BLEU CHRF++ PARENT

Finetune-FNN 54.32 64.06 66.73
-w/o SQL 41.24 46.38 50.52
-w/o TABLE ~ 16.69 29.81 43.00

Ours 55.88 63.94 66.91
-w/o SQL 46.28 4991 51.51
-w/o TABLE  15.53 29.20 42.98

Table 3: Effect of input SQL and Table.

be seen, the most improvement comes from the ex-
plicitly modeling of the graph structure. Moreover,
both Node Type Embedding (NTE) and Node Seg-
ment Embedding (NSE) can improve the model’s
performance. However, they reduce the model’s
performance on PARENT. We think that it may be
due to fluctuation of the PARENT metric.

Effects of input SQL and Table In order to ex-
amine the effects of different input data, we con-
duct further experiments by removing the input
SQL and Table. The results are summarized in Ta-
ble 3. We first remove the SQL and only utilize the
Table as input. As we can see, both Finetune-FNN
and our methods perform poorly on all metrics.
And then, we only employ SQL as the model in-
put. The performance degrades even more. The
results demonstrate that both input SQL and table
are essential for the response generation. It worth
noting that Finetune-FNN and our method still ob-
tain high PARENT scores after removing the Table
input. It is unreasonable because each ground-truth
response must contain all content in the input ta-
ble (high coverage rate) to achieve a high faithful-
ness (refer to Section 5.4). Therefore, we think
PARENT may not accurately measure the faithful-
ness of the text in ResponseNLG. We also notice
that, after removing the input SQL, our method
still performs better than Fintune-FNN. The result
indicates that, in addition to using a hierarchical en-
coder, it may be a good choice to transform a table
into a graph representation to model its structure in
Table-to-Text. We leave this for future work.

Impact on the Table Complexity In order to
have a deeper understanding of the model’s perfor-
mance, we further explore the mode performance
under various numbers of rows and columns of the
input table on the ResponseNLG development
set. Figure 7 shows the BLEU comparison between
our model and baselines. The BLEU scores of all
the models decrease as the number of table rows
or columns increases. Intuitively, the more rows or
columns the table contains, the more complex the
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Figure 7: Experiment results on different complexity
data on ResponseNLG development set.

table will be. The results show that all these models
are better at handling simple rather than complex
tables. We observe that the improvement of our
model increases as the number of rows or columns
increases. In other words, our model is better at
handling complex tables than other methods.

5.4 Human Evaluation

We conduct human evaluation following Parikh
et al. (2020). We compare our method with Pointer-
Generator, Finetune-FNN and Ortacel. Specifically,
we first randomly select 100 examples from the
ResponseNLG test set and the corresponding out-
puts generated by each model. And then, four an-
notators are asked to evaluate the quality from the
following four axes:

* Fluency: a sentence is fluent if it is gram-
matical and natural. And it is scored from 1
to 10, where 1 represents not Fluent, and 10
represents Mostly Fluent.

* Faithfulness: a sentence is considered faith-
ful if it is logically consistent with the input
SQL and all pieces of information are sup-
ported by the table. The score ranges from 1
to 10.

* Coverage: percentage of cells in the input
table the candidate sentence covers. It is cal-
culated by Z—j, where n! denotes all cells in
the input table, and n° represents the number
of cells covered by the sentence.

Model Fluft FaitT Cov(%)! Repl
Oracel 8.71 9.47 95.98 0.13
Pointer-Generator ~ 6.24 6.82 85.78 0.42
Finetune-FNN 7.17 7.61 91.87 0.15
Ours 7.39 7.83 93.15 0.17

Table 4: Human evaluation over references (denoted as
Oracle) and model outputs. Flu, Fai, Cov, Rep denote
Fluency, Faithfulness, Coverage and Repetition. 1 indi-
cates higher is better and | denotes lower is better.

* Repetition number of cells the candidate sen-
tence repeats. If a cell is repeated n times, it
will be recorded n times.

We also introduce the reference as one candidate.
And its results can be regarded as the upper bound
(denoted as Oracle). For each sample, the annota-
tors need to evaluate four sentences based on the
input data. And they do not know which model
generates these sentences. The final score for each
criterion is the average from all annotators.

The results summarized in Table 4 show that
the Oracle consistently achieves high performance
than generation methods. It attests to the high qual-
ity of our human annotations. Our method out-
performs baselines on almost all axes. It demon-
strates the effectiveness of our proposed method.
Although our model achieves a high coverage rate
(93.15%), its Faithfulness score is relatively low
(only 7.83), and there is a considerable gap com-
pared with the Oracle. It indicates simply copying
content from the input table can not guarantee the
faithfulness of the generated response. It may be
necessary for the model to understand the input
SQL and table deeper, which is the biggest chal-
lenge in this dataset.

6 Conclusion

We present ResponseNLG, a large-scale and
high-quality Chinese dataset for TableQA response
generation, along with a series of baselines and
metrics. We build a Heterogeneous Graph Trans-
formation method to bridge the structural gap be-
tween the SQL and table. Meanwhile, to better
use PLMs, we introduce the Node Segment Em-
bedding to solve the problem that transforming
the input graph to a new token graph breaks the
original graph’s structure. Experiments on our
ResponseNLG dataset show that our proposed
model outperforms existing baseline models. We
will make our data and code publicly available upon
the acceptance of this paper.
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A Appendix
A.1 Table Data Cleaning

We build a rule-based table cleaning pipeline to
guarantee table quality. We filter out noise tables
via rules as follows. There are 24K tables in our
dataset.

* Blacklist Filtering We first builds a blacklist
including special chars, dirty words, emojis,
and HTML words. And filter tables if the
headers or the values include any word in the
blacklist.

Header Type Filtering We recognize all
of the header types in each table including
Text, Number, Time, and Bool.If
the proportion of Text type is less than 30%,
we filter out the table.

Complexity Filtering We will filter out tables
with less than 2 columns or rows.

Repetition Filtering If a value repeats more
than 50% in a table, we will filter out the table.

A.2 SQL Query Generation

We utilize production rules from the SQL grammar
to automatically generate SQL queries inspired by
Zhong et al. (2017); Wang et al. (2020b). As illus-
trated in Table 5, the SQL query can be represented
as a tree using the rule sequence. All of which are
production rules of the SQL grammar. By exploit-
ing every rule of the grammar, we can generate
SQL queries covering patterns of different com-
plexity.

A.3 Example Data

The response of more than 2 rows of table in
CoSQL will degenerate into a template response as
shown in Figure 8a. Differently, we ask the annota-
tor to write all the input information in the response.
As shown in Figure 8b, the execution result table is
fully described in ResponseNLG. Which is more
in line with real TableQA scenarios.

A.4 PARENT Metric

PARENT (Dhingra et al., 2019) is a metric pro-
posed specifically for Data-to-Text generation to
evaluate the faithfulness of the generated texts. It
takes the input graph or table into account. How-
ever, it cannot be directly applied to TableQA Re-
sponse Generation because it does not consider

13

SQL Production Rules
SQLs ::= SQL | SQL interaction SQLs |
SQL union SQLs |
SQL ::= Select | Select Where |

Select Order | Select Order Filter

Select ::= Select A | Select AA |

Where ::

Where Conditions

Conditions ::= A op value | A op SQL

A ::=C | MINC | MAX C | AVG C |

COUNT C | SUM C

table.column

= | > | >= | < | <=

Table 5: SQL generation grammar rules.

SQL Query

SELECT Name, age FROM teacher

Execution Result

Name

Joseph Huts

Gustaaf Deloor

Viccente Carretero

Response

Here are the names and the ages of all the teachers

(a) Example from CoSQL

SQL Query
SELECT AS#F5, MH(Z5T) WHERE Wl (1Z5%) > 10,000 AND B = &

SELECT Company NAME, Market Capitalization WHERE Market Capitalization > 10,
0000 AND Country = China

Execution Result
AFER Wil (fZ5T)

Company Name Market Capit
I (Tencent) 45,530
P2 EE (Alibaba)

%@ (Meituan)
£ £ (Pinduoduo)
Response

PEFIRHEBT 10000ZHEHKMAS, HHRER FEEE, XAHHES, EN
BYTHIES 51545530122, 40738fZ5E, 14589{ZTTANI4216Z5E.

There are four more than 1 trillion yuan,
value of 4.55 trillion yuan, 4.07

40,738

14,589

14216

(b) Example from ResponseNLG

Figure 8: Example data from CoSQL and Respon-
seNLG.

the input SQL. To solve this problem, we convert
each condition in the SQL into a <attribute,
value> pair. Similarly, we also convert each cell
in the input table into a <atrribute, value>
where attribute is the column name and
value is the cell value. Figure 9 shows an exam-
ple. However, according to our human evaluation,
this metric is imperfect and does not consider the
relation between attribute and value in each pair,
especially the pair from the SQL. The modified
code will be released with our dataset.

A.5 Case Study

Figure 10 shows an example case generated by
FINETUNE and our final model. The result table
has four rows and two columns, and the FINE-



SQL SELECT Company NAME, Market Capitalization WHERE <Market Capitalization, 10,0000>

Market Capitalization > 10, 0000 AND Country = China <Country, China>

Convert +
Company Name Market
Capitalization
<Company Name, Tencent>
Table Tencent 45,530 <Company Name, Alibaba>
Alibaba 40,738
y <Market Capitalization, 14,589>
Meituan 14,589 <Market Capitalization14,2160>
Pinduoduo 14,216

Figure 9: Example case of PARTENT metric.

SQL Query

SELECT W &R 8] , %y WHERE {8 &5 = ‘8@ w0l
SELECT Date of Purchase, Unit Price, WHERE Instrument Name = 'ultracentrifuge’
Execution Result

WERE B
Date of Purchase Unit Price
2000307 4755001
200510 557489
200912 543000
200409 512400
Finetune

BEBONMEFAMENFIA, SR 1. WEFHR200107, 2427550015 ; 2. MWEFHR2005100,5 412557489
7T 3. MEFAR200912,8412200107T
The purchase date and unit price of ULTRACENTRIFUGES are 4 groups: 1. The purchase date is 200107 and the unit price is 755001

yuan; 2. The purchase date is 2005100, and the unit price is 557489 yuan; 3. The purchase date is 200912, and the unit price is 20010
yuan.

Ours

BEBUONNMESAMBNFAR, HFIR1. WEFFZ200307,B4 27550017 ; 2, MEFHR200510, 542
5574897C ; 3. MEEH 200912, 5425430007 ; 4. MELE A 2200409, 841 25124007T

The purchase date and unit price of ULTRACENTRIFUGES are 4 groups, which are 1. The purchase date and unit price are
200307 and 755001 yuan respectively; 2. The purchase date is 200510, and the unit price is 557489 yuan; 3. The purchase date is
200912, and the unit price is 543000 yuan; 4. The purchase date is 200409, and the unit price is 512400 yuan.

Figure 10: Example case of different generation models

TUNE model only describe three rows of the re-
sults. Differently, our model can be completely
faithful to a given SQL query and table, even for
relatively large data.
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