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ABSTRACT

We study neural-linear bandits for solving problems where both exploration and
representation learning play an important role. Neural-linear bandits leverage the
representation power of deep neural networks and combine it with efficient explo-
ration mechanisms, designed for linear contextual bandits, on top of the last hidden
layer. Since the representation is optimized during learning, information regarding
exploration with “old” features is lost. We propose the first limited memory neural-
linear bandit that is resilient to this catastrophic forgetting phenomenon by solving
a semi-definite program. We then approximate the semi-definite program using
stochastic gradient descent to make the algorithm practical and adjusted for online
usage. We perform simulations on a variety of data sets, including regression,
classification, and sentiment analysis. We observe that our algorithm achieves
superior performance and shows resilience to catastrophic forgetting.

1 INTRODUCTION

Deep neural networks (DNNs) can learn representations of data with multiple levels of abstraction
and have dramatically improved the state-of-the-art in speech recognition, visual object recognition,
object detection, and many other domains such as drug discovery and genomics (LeCun et al., 2015;
Goodfellow et al., 2016). Using DNNs for function approximation in reinforcement learning (RL)
enables the agent to generalize across states without domain-specific knowledge, and learn rich
domain representations from raw, high-dimensional inputs (Mnih et al., 2015; Silver et al., 2016).

Nevertheless, the question of how to perform efficient exploration during the representation learning
phase is still an open problem. The ε-greedy policy (Langford & Zhang, 2008) is simple to implement
and widely used in practice (Mnih et al., 2015). However, it is statistically suboptimal. Optimism in
the Face of Uncertainty (Abbasi-Yadkori et al., 2011; Auer, 2002, OFU), and Thompson Sampling
(Thompson, 1933; Agrawal & Goyal, 2013, TS) use confidence sets to balance exploitation and
exploration. For DNNs, such confidence sets may not be accurate enough to allow efficient exploration.
For example, using dropout as a posterior approximation for exploration does not concentrate on
observed data (Osband et al., 2018) and was shown empirically to be insufficient (Riquelme et al.,
2018). Alternatively, pseudo-counts, a generalization of the number of visits, were used as an
exploration bonus (Bellemare et al., 2016; Pathak et al., 2017). Inspired by tabular RL, these ideas
ignore the uncertainty in the value function approximation in each context. As a result, they may lead
to inefficient confidence sets (Osband et al., 2018).

Linear models, on the other hand, are considered more stable and provide accurate uncertainty
estimates but require substantial feature engineering to achieve good results. Additionally, they are
known to work in practice only with ”medium-sized” inputs (with around 1, 000 features) due to
numerical issues. A natural attempt at getting the best of both worlds is to learn a linear exploration
policy on top of the last hidden layer of a DNN, which we term the neural-linear approach. In
RL, this approach was shown to refine the performance of DQNs (Levine et al., 2017) and improve
exploration when combined with TS (Azizzadenesheli et al., 2018) and OFU (O’Donoghue et al.,
2018; Zahavy et al., 2018a). For contextual bandits, Riquelme et al. (2018) showed that neural-linear
TS achieves superior performance on multiple data sets.

A practical challenge for neural-linear bandits is that the representation (the activations of the last
hidden layer) change after every optimization step, while the features are assumed to be fixed over
time when used by linear contextual bandits. Zhou et al. (2019) recently suggested to analyze deep
contextual bandits with an ”infinite width” via the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
Under the NTK assumptions, the optimal solution (and its features) are guaranteed to be close to
the initialization point, so that the deep bandit can be viewed as a kernel method. Riquelme et al.
(2018), on the other hand, observed that with standard DNN architectures, the features do change
from the initialization point and a mechanism to adapt for that change is required. They tackled this
problem by storing the entire data set in a memory buffer and computing new features for all the data
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after each DNN learning phase. The authors also experimented with a bounded memory buffer but
observed a significant decrease in performance due to catastrophic forgetting (Kirkpatrick et al.,
2017), i.e., a loss of information from previous experience.

In this work, we propose a neural-linear bandit that uses TS on top of the last layer of a DNN. Key to
our approach is a novel method to compute priors whenever the DNN features change that makes our
algorithm resilient to catastrophic forgetting. Specifically, we adjust the moments of the likelihood
of the reward estimation conditioned on new features to match the likelihood conditioned on old
features. We achieve this by solving a semi-definite program (Vandenberghe & Boyd, 1996, SDP) to
approximate the covariance and using the weights of the last layer as prior to the mean. To make
the algorithm more appealing for real-time usage, we implement it in an online manner, in which
updates of the DNN weights and the priors are done simultaneously every step by using stochastic
gradient descent (SGD) followed by projection of the priors. This obviates the need to process the
whole memory buffer after each DNN learning phase and keeps the computational burden of our
algorithm small.

We performed experiments on several real-world and simulated data sets, including classification
and regression, using Multi-Layered Perceptrons (MLPs). These experiments suggest that our prior
approximation scheme improves performance significantly when memory is limited. We demonstrate
that our neural-linear bandit performs well in a sentiment analysis data set where the input is given
in natural language (there are 8k features), and we use a Convolution Neural Network (CNNs). In
this regime, it is not feasible to use a linear method due to computational problems. In addition, we
evaluate our algorithm in a stochastic simulation of an uplink video-transmission application. In
this application, the length of the simulation is so long that it is not possible to use the unlimited
memory neural-linear approach of Riquelme et al. (2018). To the best of our knowledge, this is the
first neural-linear algorithm that is resilient to catastrophic forgetting due to limited memory. In
addition, unlike Riquelme et al. (2018), which use a patch-based approach, our algorithm can be
configured to work in an online manner, in which the DNN and statistics are efficiently updated each
step. Thus, this is also the first neural-linear online algorithm.

2 BACKGROUND

The stochastic, contextual (linear) multi-armed bandit problem. At every time t, a contextual
bandit algorithm observes a context b(t) and chooses an arm a(t) ∈ [1, . . . , N ]. The bandit can use
the history Ht−1 to make its decisions, where Ht−1 = {b(τ), a(τ), ra(τ)(τ), τ = 1, ..., t− 1}, and
a(τ) denotes the arm played at time τ . Most existing works typically make the following realizability
assumption (Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013).
Assumption 1. The reward for arm i at time t is generated from an (unknown) distribution s.t.
E [ri(t)|b(t), Ht−1] = E [ri(t)|b(t)] = b(t)Tµi, where {µi ∈ Rd}Ni=1 are fixed but unknown.

Let a∗(t) denote the optimal arm at time t, i.e. a∗(t) = arg maxib(t)
Tµi, and let ∆i(t) the difference

between the mean rewards of the optimal arm and of arm i at time t, i.e., ∆i(t) = b(t)Tµa∗(t) −
b(t)Tµi. The objective is to minimize the total regret R(T ) =

∑T
t=1 ∆a(t), where T is finite.

Algorithm 1 TS for linear contextual bandits
∀i ∈ [1.., N ], set Φi = Id, µ̂i = 0d, fi = 0d
for t = 1, 2, . . . , do
∀i ∈ [1.., N ], sample µ̃i from N(µ̂i, v

2Φ−1
i )

Play arm a(t) := arg maxi b(t)
T µ̃i

Observe reward rt
Update: Φa(t) = Φa(t) + b(t)b(t)T

fa(t) = fa(t) + b(t)rt, µ̂a(t) = Φ−1
a(t)fa(t)

end for

TS for linear contextual bandits. Thompson
sampling is an algorithm for online decision
problems where actions are taken sequentially in
a manner that must balance between exploiting
what is known to maximize immediate perfor-
mance and investing to accumulate new infor-
mation that may improve future performance
(Russo et al., 2018; Lattimore & Szepesvári,
2018). For linear contextual bandits, TS was
introduced in (Agrawal & Goyal, 2013, Alg. 1).

Suppose that the likelihood of reward ri(t),
given context b(t) and parameter µi, were given
by the pdf of Gaussian distribution N(b(t)Tµi, ν

2), and let Φi(t) = Φ0
i +

∑t−1
τ=1 b(τ)b(τ)T1i=a(τ),

µ̂i(t) = Φ−1
i (t)

∑t−1
τ=1 b(τ)ra(τ)(τ)1i=a(τ), where 1 is the indicator function and Φ0

i is the precision
prior. Given a Gaussian prior for arm i at time t, N(µ̂i(t), v

2Φ−1
i (t)), the posterior distribution at

time t+ 1 is given by,

Pr(µ̃i|ri(t)) ∝ Pr(ri(t)|µ̃i)Pr(µ̃i) ∝ N(µ̂i(t+ 1), v2Φ−1
i (t+ 1)).
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At each time step t, the algorithm generates samples {µ̃i(t)}Ni=1 from the posterior distribution
N(µ̂i(t), v

2Φ−1
i (t)), plays the arm i that maximizes b(t)T µ̃i(t) and updates the posterior. TS is

guaranteed to have a total regret at time T that is not larger than O(d3/2
√
T ), which is within a factor

of
√
d of the information-theoretic lower bound for this problem. It is also known to achieve excellent

empirical results (Lattimore & Szepesvári, 2018). Although that TS is a Bayesian approach, the
description of the algorithm and its analysis are prior-free, i.e., the regret bounds will hold irrespective
of whether or not the actual reward distribution matches the Gaussian likelihood function used to
derive this method (Agrawal & Goyal, 2013).

3 LIMITED MEMORY NEURAL-LINEAR TS

Algorithm. Our algorithm is composed of four main components: (1) Representation: A DNN
takes the raw context as an input and is trained to predict the reward of each arm; (2) Exploration: a
mechanism that uses the last layer activations of the DNN as features and performs linear TS on top of
them; (3) Memory a buffer that stores previous experience; (4) Likelihood matching: a mechanism
that uses the memory buffer and the DNN to account for changes in representation.

To derive our algorithm, we make a realizability assumption, which is similar to Assumption 1. The
difference is that we assume that all the representations that are produced by the DNN are realizable.
Assumption 2. For any representation φ that is produced by the DNN, the reward for arm i at time
t is generated from an (unknown) distribution s.t. E [ri(t)|φ(t), Ht−1] = E [ri(t)|φ(t)] = φ(t)Tµi,
where {µi ∈ Rd}Ni=1 are fixed but unknown parameters.

That is, for each representation there exist a different linear coefficients vector (e.g. µ for φ, β for ψ,)
such that the expected reward is linear in the features. While this assumption may be too strong to
hold in practice, it allows us to derive our algorithm as a good approximation that performs extremely
well on many problems. We now explain how each of these components works; code can be found in
(link), and pseudo code in the supplementary (Algorithm 2).

1. Representation. Our algorithm uses a DNN, denoted by Dω , where ω denotes the DNN’s weights
(for convenience, we exclude the weight notation for the rest of the paper). The DNN takes the raw
context b(t) ∈ Rd as its input. The network has N outputs that correspond to the estimation of the
reward of each arm, given context b(t) ∈ Rd, D(b(t))i denotes the estimation of the reward of the
i-th arm.

Using a DNN to predict each arm’s reward allows our algorithm to learn a nonlinear representation
of the context. This representation is later used for exploration by performing linear TS on top of the
last hidden layer activations. We denote the activations of the last hidden layer of D applied to this
context as φ(t) = LastLayerActivations(D(b(t))), where φ(t) ∈ Rg. The context b(t) represents
raw measurements that can be high dimensional (e.g., image or text), where the size of φ(t) is a
design parameter that we choose to be smaller (g < d). This makes contextual bandit algorithms
practical for such data sets. Moreover, φ(t) can potentially be linearly realizable (even if b(t) is not)
since a DNN is a global function approximator (Barron, 1993) and the last layer is linear.

1.1 Training. Every L iterations, we train D for P mini-batches. Training is performed by sampling
experience tuples {b(τ), a(τ), ra(τ)(τ)} from the replay buffer E (details below) and minimizing the
mean squared error (MSE),

LNN = ||D(b(τ))a(τ) − ra(τ)(τ)||22, (1)

where ra(τ) is the reward that was received at time τ after playing arm a(τ) and observing context
b(τ). Notice that only the output of arm a(τ) is differentiated, and that the DNN (including the last
layer) is trained end-to-end to minimize Eq. (1).

2. Exploration. Since our algorithm is performing training in phases (every L steps), exploration is
performed using a fixed representation φ (D has fixed weights between training phases). At each time
step t, the agent observes a raw context b(t) and uses the DNN D to produces a feature vector φ(t).
The features φ(t) are used to perform linear TS, similar to Algorithm 1, but with two key differences:
(1) We introduce a likelihood matching mechanism that accounts for changes in representation (2)
Instead of using a Gaussian posterior, we use the Bayesian Linear Regression (BLR) formulation that
was suggested in Riquelme et al. (2018). Empirically, this update scheme was shown to convergence
to the true posterior and demonstrated excellent empirical performance (Riquelme et al., 2018).

In BLR, the noise parameter ν (Alg. 1) is replaced with a prior belief that is being updated over time.
The prior for arm i at time t is given by Pr(µ̃i, ν̃2

i ) = Pr(ν̃2
i )Pr(µ̃i|ν̃2

i ),where Pr(ν̃2
i ) is an inverse-

gamma distribution Inv-Gamma(ai(t), bi(t)), and the conditional prior density Pr(µ̃i|ν̃2
i ) is a normal
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distribution, Pr(µ̃i|ν̃2
i ) ∝ N

(
µ̂i(t), ν̃

2
i Φi(t)

−1
)
. Combining this prior with a Gaussian likelihood

guarantees that the the posterior distribution at time τ = t+ 1 is given in the same form (a conjugate
prior), i.e., Pr(ν̃i) = Inv-Gamma (Ai(τ), Bi(τ)) and Pr(µ̃i|ν̃i) = N

(
µ̂i(τ), ν̃2

i Φi(τ)−1
)
.

In each step and for each arm i ∈ 1..N,, we sample a noise parameter ν̃2
i from Pr(ν̃2

i ) and then
sample a weight vector µ̃i from the posterior N

(
µ̂i, ν̃

2
i (Φ0

i + Φi)
−1
)
. Once we sampled a weight

vector for each arm, we choose to play arm a(t) = arg maxiφ(t)T µ̃i, and observe reward ra(t)(t).
This is followed by a posterior update step:

Φa(t) = Φ0
a(t) + Φa(t) + φ(t)φ(t)T , fa(t) = fa(t) + φ(t)T rt,

µ̂a(t) = (Φa(t))
−1
(
Φ0
a(t)µ

0
a(t) + fa(t)

)
, R2

i (t) = R2
i (t− 1) + r2

i

Ai(t) = A0
a(t) +

t

2
, Bi(t) = B0

a(t) +
1

2

(
R2
i (t) + (µ0

a(t))
TΦ0

a(t)µ
0
a(t) − µ̂a(t)(t)

TΦa(t)(t)µ̂a(t)(t)
)

(2)

We note that the exploration mechanism only chooses actions; it does not change the DNN’s weights.

3. Memory. After an action a(t) is played at time t, we store the experience tuple
{b(t), a(t), ra(t)(t)} in a finite memory buffer of size n that we denote by E. Once E is full,
we remove tuples from E in a round robin manner, i.e., we remove the first tuple in E with a = a(t).

4. Likelihood matching. Before each learning phase, we evaluate the features of D on the replay
buffer. Let Ei be a subset of memory tuples in E at which arm i was played, and let ni be its size.
We denote by Eiφold ∈ Rni×g a matrix whose rows are feature vectors that were played by arm i.
After a learning phase is complete, we evaluate the new activations on the same replay buffer and
denote the equivalent set by Eiφ ∈ Rni×g. Our approach is to summarize the knowledge that the
algorithm has gained from exploring with the features φold into priors on the new features Φ0

i , µ
0
i .

Once these priors are computed, we restart the linear TS algorithm using the data that is currently
available in the replay buffer. For each arm i, let φij = (Eiφ)j be the j-th row in Eiφ and let rj be the
corresponding reward, we set Φi =

∑ni

j=1 φ
i
j(φ

i
j)
T , fi =

∑ni

j=1(φij)
T rj .

We now explain how we compute Φ0
i , µ

0
i . Recall that under the realizability assumption we have

that E[ri(t)|φ(t)] = φ(t)Tµi = φold(t)Tµoldi = E[ri(t)|ψ(t)]. Thus, the likelihood of the reward
is invariant to the choice of representation , i.e. N(φ(t)Tµi, ν

2) ∼ N(φold(t)Tµoldi , ν2). For
all i, define the estimator of the reward as θi(t) = φ(t)T µ̃i(t), and its standard deviation st,i =√
φ(t)TΦi(t)−1φ(t) (see Agrawal & Goyal (2013) for derivation). By definition of µ̃i(t), marginal

distribution of each θi(t) is Gaussian with mean φi(t)T µ̂i(t) and standard deviation νist,i. The goal
is to match the likelihood of the reward estimation θi(t) given the new features to be the same as with
the old features.

4.1 Approximation of the mean µ0
i : The DNN is trained to minimize the MSE (Eq. (1)). Given

the new features φ, the current weights of the last layer of the DNN already make a good prior for
µ0
i . In Levine et al. (2017), this approach was shown empirically to improve the performance of a

neural linear DQN. The main advantage is that the DNN is optimized online by observing all the data
and is therefore not limited to the current replay buffer. Thus, the weights of the current DNN hold
information on more data and make a strong prior.

4.2 Approximation of the correlation matrix Φ0
i :. For each arm i, our algorithm receives as input

the sets of new and old features Eiφ, E
i
φold with elements {φoldj , φj}ni

j=1. In addition, the algorithm
receives the correlation matrix Φoldi . Notice that due to our algorithm’s nature, Φoldi holds information
on contexts that are not available in the replay buffer. The goal is to find a correlation matrix,Φ0

i , for
the new features that will have the same variance on past contexts as Φoldi . I.e., we want to find Φ0

i such
that ∀i ∈ [1..N ], j ∈ [1..ni] s

2
j,i

.
= (φoldj )T (Φoldi )−1φoldj = φTj (Φ0

i )
−1φj = Trace

(
(Φ0

i )
−1φjφ

T
j

)
,

where the last equality follows from the cyclic property of the trace.

We denote byXi a vector of size ni in the vector space of d×d symetric matrices, with its j-th element
Xj,i to be the matrix φjφTj . Using this notation, we have that Note that Trace

(
(Φ0

i )
−1φjφ

T
j

)
=

Trace(XT
j,i(Φ

0
i )

−1) is an inner product over the vector space of symmetric matrices, known as the
Frobenius inner product. Finally, as (Φ0

i )
−1 is an inverse correlation matrix, we constrain the solution

to be a semi positive definite. Thus, the optimization problem is equivalent to a linear regression
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problem in the vector space of positive semi definite (PSD) matrices for all actions i ∈ [1..N ] :

minimize
(Φ0

i )−1

∑ni

j=1
||Trace(XT

j,i(Φ
0
i )

−1)− s2
j,i||2 subject to (Φ0

i )
−1 � 0. (3)

In practice, we solve the SDP by applying SGD using sampled batches fromEiφold andEiφ. Each SGD
iteration is followed by eigenvalues thresholding (denoted by EigenValueThresholding((Φ0

i )
−1)) in

order to project (Φ0
i )

−1 back to PSD matrices space. To avoid evaluating Eiφ each time the DNN
is updated, we take advantage of the iterative learning phase of the DNN and the iterative nature of
the SGD by using the same batch to update the DNN weights and (Φ0

i )
−1 simultaneously. In each

iteration, we treat the inverse correlation matrix from the previous iteration as (Φoldi )−1 and also as
the initial guess for the current gradient decent step. For each action a ∈ A, we use a subset of the
batch, in which action a was used.
Lemma 1. The rank of a stochastic gradient of

∑ni

j=1 ||Trace(XT
j,i(Φ

0
i )

−1)− s2
j,i||2, given a batch

size B is at most min{B, g}.

The proof can be found in the supplementary.

Computational complexity. We consider the time and memory complexity of the algorithm and
their dependence on different parameters of the problem. Recall that the last layer’s dimension is
g < d where d is the dimension of the raw features, the size of the replay buffer is n and the batch
size is B. Therefore, each gradient step is Bg2 (matrix-vector multiplications) plus the thresholding
operator, which has a time complexity of O(g3) due to the matrix eigendecomposition. This can be
improved in the case of low-rank stochastic gradients (B < g) into O(g2) as suggested in Chen et al.
(2014).

Let T be the number of contexts seen by the algorithm. The computational complexity of the full
memory approach results is, therefore, O(T 2), and the memory complexity is O(T ). This is because
it is estimating the TS posterior using the complete data every time the representation changes. On the
other hand, the limited memory approach uses only the memory buffer to estimate the posterior and
training the network/updating the priors in a batch manner. This gives a memory complexity of O(1)
and computational complexity of O(T ); Due to the stochastic behavior of our SGD modification, the
computational complexity is linear in the batch size and not in |A|.
To summarize, our method is more efficient than the full memory baseline in problems with a lot
of data (large T ). Instead of solving an SDP after each update phase (which is computationally
prohibitive in general), we apply efficient SGD in parallel to the DNN updates. This is also sample
efficient due to the reuse of the same batch for both tasks. By setting the update frequency to 1
(L = 1) and the number of iterations to 1 (P = 1), our algorithm becomes fully online in the sense it
updates the DNN and the statistics each step. We use the fully online configuration in our experiments
to show that even under extreme configuration, our algorithm produces competitive results.

4 EXPERIMENTS

In this section, we empirically investigate the performance of the proposed algorithm to address the
following questions:

1. Can Neural-linear bandits explore efficiently while learning representations under finite
memory constraints?

2. Does the moment matching mechanism allows neural-linear bandits to avoid catastrophic
forgetting?

3. Can the method be applied in a wide range of problems and across different DNN architec-
tures?

We address these questions by performing experiments on ten real-world data sets, including a high
dimensional natural language data on a task of sentiment analysis (all of these data sets are publicly
available through the UCI Machine Learning Repository). In the supplementary, we include an
additional experiments: synthetic data, where we observe that our algorithm can learn nonlinear
representations during exploration and sentiment analysis from text, in which we evaluate our
algorithm on a text-based dataset using CNNs.

Methods and setup. We experimented with different ablations of our approach, as well as a few
baselines: (1) Linear TS (Agrawal & Goyal, 2013, Algorithm 1) using the raw context as a feature,
with an additional uncertainty in the variance (Riquelme et al., 2018). (2) Neural-Linear TS (Riquelme
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et al., 2018). (3) Our neural-linear TS algorithm with limited memory. (4) An ablative version of (3)
that calculates the prior only for the mean, similar to Levine et al. (2017). (5) An ablative version
of (3) that does not use prior calculations. Algorithms 3-5 make an ablative analysis for the limited
memory neural-linear approach. As we will see, adding each one of the priors improves learning and
exploration. In all versions of our algorithm, we set P = 1, L = 1, which makes it work in an online
manner. In all the experiments, we used the same hyperparameters as in Riquelme et al. (2018). E.g.,
the network architecture is an MLP with a single hidden layer of size 50. The only exception is with
the text CNN (details below). The size of the memory buffer is set to be 100 per action.

4.1 CATASTROPHIC FORGETTING.

We begin with an illustrative example on the Shuttle Statlog dataset (Newman et al., 2008). Each
context is composed of 9 features describing the space shuttle flight. The goal is to predict the state
of the radiator of the shuttle (the reward). There are k = 7 possible actions; for correct predictions
the reward is r = 1 and r = 0 otherwise.

Fig. 1 shows the performance of each of the algorithms in this setup. We let each algorithm run
for 4000 steps (contexts) and average each algorithm over 10 runs. The x-axis corresponds to the
number of contexts seen so far, while the y-axis measures the instantaneous regret (lower is better).
For this experiment, all Neural-Linear methods retrained the DNN every L = 400 steps for P = 800
mini-batches. The cumulative reward achieved by each algorithm averaged over seeds (mean and std)
can be found in Table 5 (Statlog); in Fig. 1 we focus on the qualitative behavior, as described below.

Figure 1: Catastrophic forgetting

First, we can see that the neural linear method
(green) outperforms the linear one (magenta),
suggesting that this data set requires a nonlinear
function approximation. We can also see that
our approach to computing the priors allows
the limited memory algorithm (red) to perform
almost as good as the neural linear algorithm
without memory constraints (green).

We can also see that the two limited memory
neural linear algorithms that do not calculate
the prior for the covariance matrix (blue and
teal) suffer from ”catastrophic forgetting” due
to limited memory. Intuitively, the covariance
matrix holds information regarding the number of contexts seen by the agent and used by the algorithm
for exploration. When no such prior is available, the agent explores sub-optimal arms from scratch
every time the features are modified (every L = 400 steps, marked by the x-ticks on the graph).
Indeed, we observe ”peaks” in the regret curve for these algorithms (blue and teal); this is significantly
reduced when we compute the prior on the covariance matrix (red), making the limited memory
neural-linear bandit resilient to catastrophic forgetting.

4.2 REAL WORLD DATA.

We evaluate our approach on ten real-world data sets; for each data set, we present the cumulative
reward achieved by each algorithm, averaged over 50 runs. Each run was performed for 5000
steps. The results are divided into two groups, linear, and nonlinear data sets. The separation
was performed post hoc, based on the results achieved by the full memory methods, i.e., the first
group consists of five data sets on which Linear TS (Algorithm 1) outperformed Neural-Linear TS
(Algorithm 2), and vice versa. We observed that most of the linear datasets consisted of a small
number of features that were mostly categorical (e.g., the mushroom data set has 22 categorical
features that become 117 binary features). The DNN based methods performed better when the
features were dense and high dimensional.

Since there is no apriori reason to believe that real-world data sets should be linear, we were
surprised that the linear method made a competitive baseline to DNNs. To investigate this further, we
experimented with the best reported MLP architecture for the covertype data set (taken from Kaggle).
Linear methods were reported (link) to achieve around 60% test accuracy. This number is consistent
with our reported cumulative reward (3000 out of 5000). Similarly, DNNs achieved around 60%
accuracy, which indicates that the Covertype data set is relatively linear. However, when we measure
the cumulative reward, the deep methods take initial time to learn, which can explain the slightly
worst score. One particular architecture (MLP with layers 54-500-800-7) was reported to achieve
68%; however, we didn’t find this architecture to yield a better cumulative reward. Similarly, for
the Adult data set, linear and deep classifiers were reported to achieve similar results (link) (around
84%), which is again equivalent to our cumulative reward of 4000 out of 5000. A specific DNN
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Full memory Limited memory, Neural-Linear

Name d A Linear (1) Neural-Linear (2) Both Priors (3) No prior (4) NeuralUCB (5)

Linear Datasets
Mushroom 117 2 11022 ± 774 10880 ± 853 11030 ± 810 7613 ± 1670 -102 ± 84

Jester 32 8 14080 ± 2240 12819± 2135 11880 ± 283 11114 ± 2050 5373 ± 7

Adult 88 2 4066.1 ± 11.03 4010.0 ± 22.19 4027± 27 3608 ± 34 3751± 6

Covertype 54 7 3054 ± 557 2898 ± 545 2622 ± 166 2334 ± 603 1840.0 ± 34.62

Nonlinear Datasets
Census 377 9 1791.5 ± 39.47 2135.5 ± 51.47 2733.6 ± 76.15 1195 ± 67 2103.2 ± 12.76

Statlog 9 7 4483 ± 353 4781 ± 274 4797.7 ± 48.21 3416 ± 42 4190 ± 13

Epileptic 178 5 1202.9 ± 34.68 1706.9 ± 41.26 1458.3 ± 76 1411 ± 33.43 1011 ± 2

Smartphones 561 6 3085.8 ± 24.64 3643.5 ± 64.89 4328.5 ± 87.75 1117 ± 28 2733 ± 713

Scania Trucks 170 2 4691.8 ± 7.23 4784 ± 6 4817.5 ± 541.89 4470.4 ± 37 4919.8 ± 193

Table 1: Cumulative reward of TS algorithms on 10 real world data sets. The context dim d and the
size of the action space A are reported for each data set. The mean result and standard deviation of
each algorithm is reported for 50 runs.

was reported to achieve 90% test accuracy but did not yield improvement in cumulative reward.
These observations can be explained by the different loss functions that we optimize or by the partial
observably of the bandit problem (bandit feedback). Alternatively, competitions tend to suffer from
overfitting in model selection (see the ”reusable holdout” paper for more details (Dwork et al., 2015)).
Regret, on the other hand, is less prone to model overfitting because it is evaluated at each iteration
and shuffles the data at each run.

Inspecting Table 5, we can also see that on all datasets using our memory limited algorithm with
prior computations (Algorithm 3), improved the performance of the limited memory Neural-Linear,
in which the priors are not updated (Algorithm 4). Furthermore, on six datasets (Mushroom, Adult,
Census, Statlog, Smartphones, Scania Trucks), Algorithm 3 even outperformed the unlimited Neural-
Linear algorithm (Algorithm 2). We can also see that in five (out of five) of the nonlinear data sets,
the limited memory TS (Algorithm 3) outperformed Linear TS (Algorithm 1, which online as well).
Our findings suggest that when the data is not linear, neural-linear bandits beat the linear method,
even if they must perform with limited memory. In this case, computing priors improve performance
and make the algorithm resilient to catastrophic forgetting.

We also compare our algorithm against NeuralUCB (Algorithm 5 Zhou et al. (2019)) with limited
memory based on their offical code provided here . To make a fair comparison, we used the same
network architecture. Also, NeuralUCB perform multiple network training iteration each step, while
our online algorithm performs only one followed by a SGD step. We can see that NeuralUCB is
outperformed by our algorithm on almost all datasets (except one) and poorly perform on the linear
datasets. We attribute this results to the fact that NeuralUCB is based on NTK assumptions, which
are not necessarily holds. Our likelihood matching technique can be seen as a fix between the NTK
theory and applying it in practical problems.

5 RATE CONTROL FOR VIDEO TRANSMISSION OVER CELLULAR LINKS

The goal in this application is to control the sending rate of data segments sent over a cellular link,
where the frequency of the changes to the sending rate should be low. In uplink video transmission the
video encoder compresses the raw video into a stream of data to be transported. The encoder could
adapt the video quality for near future throughput predictions, without inducing additional latency
into the system. In this section, we show that both representation and exploration are advantageous
on a simulated cellular link, as well as showing resilience to catastrophic forgetting.

We model the transmission rate control as a contextual bandit problem. At step t, a context b (t) ∈ Rd
is revealed, which represents the current state of the link, and an action a(t) ∈ A that controls the
sending rate over the link is chosen by a policy. The action takes place for a fixed duration ρ (seconds),
and a reward rt is presented afterward. Let (xi,t)

k(t)
i=1 be the sequence of acknowledged (ACKed)

packets observed during step t, where k(t) is the number of ACKed packets during that step. Let
σ(x) be the size (in MB) of packet x, and δ(x) be the latency of packet x in ms.

Context Vectors: Each context b(t) is a vector that contains information about the state of the link
during the last h steps. After each step, we compute a vector of three features u(t) that should
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represents the state of the link at time t. Then, we construct the context b(t+ 1) by concatenating
(u(τ))tτ=t−h+1. Specifically, for each u(t) we measure the mean and variance of the latency values
of the packets, and an approximation of the round-trip-time (RTT) by storing the minimal latency
value observed over the last 100 steps. The values are normalized to keep the contexts bounded. The
first context is generated by running the simulation for one step with a predefined initial action and
using u(t) = 0 ∈ R3, ∀t < 0. Actions: The set of actions (arms) A = {ai}Ni=1 , N = 70 is a set of
evenly distributed values in the interval [λlow, λhigh] ⊂ R such that a1 = λlow, aN = λhigh, and
∀1 ≤ i < N : ai < ai+1. Each action value corresponds to a sending rate (in MBps).

Rewards: The reward signal is the total amount of data (in MB) that was transferred over the link
with latency under η ms minus the total amount of data with latency over η ms during step t. Formally,
rt =

∑k(t)
i=1 σ (xi,t) · gη (xi,t), where gη(xi,t) = 1 when δ (xi,t) < η, and −1 otherwise.

Figure 2: Cumulative rewards of the vari-
ous algorithms. The results are averaged
over 15 seeds. Shaded area corresponds
to a 95% Gaussian confidence interval.

Cellular Link Simulation: Many existing network simu-
lators require significant resources (compute, time, human
knowledge, etc.) to configure even just a single simulation
setup, limiting the ability to obtain a diverse set of links
quickly. We developed a queue-based simulation that re-
quires only a few parameters and can model links with
a wide range of behaviors. The simulation was designed
to empirically fit patterns observed in data collected from
uplink video transmission applications operating over real-
world LTE networks. To make our agents more robust,
during the training, we randomly sample links every c
steps given some boundary constraints on the parameters
domain.

We compared our algorithm to the following baselines: lin-
ear TS, linear ε-greedy, DNN ε-greedy, unlimited memory
neural-linear TS and a variant of the Additive-Increase-
Multiplicative-Decrease (AIMD) control scheme, which
is one of the dominant algorithms for congestion control.
In our version of the algorithm, we control the sending rate at each step instead of controlling a
congestion window size. Our AIMD will increase the sending rate by 0.1 MBps if the mean value of
the latency was under RTT+50ms, otherwise, the sending rate would be cut in half. We used the same
DNN architecture for both the neural linear and DNN ε-greedy bandits. The architecture consists of
two fully connected hidden layers with ReLU activations and sizes 128 and 32, respectively. For our
algorithm, we used a memory buffer of size 2048. The other hyperparameters can be found in the
supplementary material (Table 4).

Fig. 2 shows that the neural linear bandit benefits from both the nonlinear representations of the
DNN, which allow it to improve over the linear TS bandit and from the efficient exploration, which
allow it to improve over the DNN ε-greedy bandit. Both DNN bandits improved over their linear
counterparts, which shows that nonlinear approximations yield better predictions in this problem.
Also, both TS bandits improved over their ε-greedy counterparts, due to their efficient exploration
mechanisms. It can also be seen that the AIMD baseline was competitive and surpassed all but our
neural linear bandit in terms of cumulative rewards

6 SUMMARY

We presented a neural-linear contextual bandit algorithm that is resilient to catastrophic forgetting
and demonstrated its performance on several real-world data sets. Our algorithm showed comparable
results to previous methods that store all the data in a replay buffer. The algorithm approximately
solves an SDP using SGD, which enables it to efficiently operates online. Our algorithm demonstrated
excellent performance on multiple real-world data sets and especially on a challenging uplink
transmission control problem. Moreover, its performance did not deteriorate due to the changes
in the representation and limited memory. We believe that our findings make an important step
towards solving contextual bandit problems where both exploration and representation learning play
important roles. A main avenue for future work is to extend the ideas presented in this paper to
Bayesian RL , where the immediate reward is replaced by the return, perhaps focusing on Markov
decision processes with fast mixing time. An interesting future work would be to examine the effect
of the network architecture on the performance of contextual bandits DNN-based algorithms such
as ours and perhaps consider ways to choose the DNN architecture for contextual bandits problems
as opposed to this work where the network’s architecture is built for supervised learning, which in
general may not be optimal for bandit problems.
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7 PSEUDO CODE

Algorithm 2 Limited Memory Neural-linear TS
Set ∀i ∈ [1, .., N ] : Φ0

i = Id, µ̂i = µ0
i = 0d,Φi = 0dxd, fi = 0d

Initialize Replay Buffer E, and DNN D
Define φ(t)← LastLayerActivations(D(b(t)))
for t = 1, 2, . . . , do

Observe b(t), evaluate φ(t)
Posterior sampling: ∀i ∈ [1, .., N ], sample:
µ̃i(t) ∼ N

(
µ̂i, ν

2(Φ0
i + Φi)

−1
)

Play arm a(t) := arg maxi φ(t)T µ̃i(t)
Observe reward rt
Store {b(t), a(t), rt} in E
if E is full then

Remove the first tuple in E with a = a(t) (round robin)
end if
Posterior update:
Φa(t) = Φa(t) + φ(t)φ(t)T , fa(t) = fa(t) + φ(t)T rt

µ̂a(t) = (Φ0
a(t) + Φa(t))

−1
(

Φ0
a(t)µ

0
a(t) + fa(t)

)
Update phase:
if (t mod L) = 0 then

for P steps do
Sample batch {bj , aj , rj}Bj=1 from E

Compute old features {φoldj }Bj=1

Optimize ω on∇ωLNN (Eq.1) and compute new features {φj}Bj=1

(Φ0
i )

−1 ← (Φ0
i + Φi)

−1 {Initial guess for SGD}
for ∀i ∈ [1, .., N ] do
eoldi ← {φoldj |aj = i}, ei ← {φj |aj = i}
(Φ0

i )
−1 ← ProjectedGradientDecent((Φ0

i )
−1, eoldi , ei, α)

end for
end for
update using buffer:
for ∀i ∈ [1, .., N ] do

Use the current weights of the last layer of the DNN as a prior for µ0
i

Φi =
∑ni

j=1 φ
i
j(φ

i
j)
T , fi =

∑ni

j=1(φij)
T rj .

end for
end if

end for

Algorithm 3 ProjectedGradientDecent
Inputs: A− PSD matrix,Bold,B, α
for φoldj ∈ Bold and φj ∈ B do

Gradient step:
s2
j ← (φoldj )TAφoldj
Xj ← φj(φj)

T

A← A− α∇A||Trace(XT
j A)− s2

j ||2
Projection step:
A← EigenValueThresholding(A)

end for

11
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Algorithm 4 Naive Limited Memory Neural-linear TS
Set ∀i ∈ [1, .., N ] : Φ0

i = Id, µ̂i = µ0
i = 0d,Φi = 0dxd, fi = 0d

Initialize Replay Buffer E, and DNN D
Define φ(t)← LastLayerActivations(D(b(t)))
for t = 1, 2, . . . , do

Observe b(t), evaluate φ(t)
Posterior sampling: ∀i ∈ [1, .., N ], sample:
µ̃i(t) ∼ N

(
µ̂i, ν

2(Φ0
i + Φi)

−1
)

Play arm a(t) := arg maxi φ(t)T µ̃i(t)
Observe reward rt
Store {b(t), a(t), rt} in E
if E is full then

Remove the first tuple in E with a = a(t) (round robin)
end if
Posterior update:
Φa(t) = Φa(t) + φ(t)φ(t)T , fa(t) = fa(t) + φ(t)T rt

µ̂a(t) = (Φ0
a(t) + Φa(t))

−1
(

Φ0
a(t)µ

0
a(t) + fa(t)

)
if (t mod L) = 0 then

for ∀i ∈ [1, .., N ] do
Evaluate old features on the replay buffer: Eiφold

end for
Train DNN for P steps
Compute priors for new features:
for ∀i ∈ [1, .., N ] do

Evaluate new features on the replay buffer: Eiφ
Solve for Φ0

i using Eq. (3) with Eiφ, E
i
φold ,Φ

old
i

Use the current weights of the last layer of the DNN as a prior for µ0
i

Φi =
∑ni

j=1 φ
i
j(φ

i
j)
T , fi =

∑ni

j=1(φij)
T rj .

end for
end if

end for

8 PROOF FOR LEMMA 1

Proof. We note that Xj,i = φij(φ
i
j)
T is a 1-rank matrix. The stochastic gradient with re-

spect to (Φ0
i )

−1, computed from a mini-batch of size B taken from Eiφ, of the loss term is
2
∑B
j=1Xj,i(Trace(XT

j,i(Φ
0
i )

−1) − s2
j,i). By marking γj,i = 2(Trace(XT

j,i(Φ
0
i )

−1) − s2
j,i), the

gradient can be presented as a weighted sum of 1-rank matrices:
∑B
j=1 γj,iXj,i. Therefore, the rank

of the stochastic gradient is at most min{B, g}.

9 SENTIMENT ANALYSIS FROM TEXT USING CNNS

This is an experiment on the ”Amazon Reviews: Unlocked Mobile Phones” data set. This data set
contains reviews of unlocked mobile phones sold on ”Amazon.com”. The goal is to find out the rating
(1 to 5 stars) of each review using only the text itself. We use our model with a Convolutional Neural
Network (CNN) that is suited to NLP tasks (Kim, 2014; Zahavy et al., 2018b). Specifically, the
architecture is a shallow word-level CNN that was demonstrated to provide state-of-the-art results on a
variety of classification tasks by using word embeddings, while not being sensitive to hyperparameters
(Zhang & Wallace, 2015). We use the architecture with its default hyper-parameters (Github) and
standard pre-processing (e.g., we use random embeddings of size 128, and we trim and pad each
sentence to a length of 60). The only modification we made was to add a linear layer of size 50 to
make the size of the last hidden layer consistent with previous experiments.

ε−greedy Neural-Linear Neural-Linear
Limited Memory

2963.9 ± 68.5 3155.6 ± 34.9 3143.9 ± 33.5

Table 2: Cumulative reward on Amazon review’s

In this experiment, the input dimension is so
large (R7k), so we could not run a linear baseline
since it is impractical to do linear algebra (e.g.,
calculate an inverse) in this dimension. Instead,
we compare the proposed method – neural-linear
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Figure 3: Representations learned on the wheel data set with δ = 0.5. Reward samples (top), linear
predictions (middle) and neural-linear predictions (bottom). Columns correspond to arms.

with finite memory – with the neural linear TS
baseline and with an additional baseline that uses an ε−greedy exploration scheme (which is also not
limited by memory). We experimented with 10 values of ε, ε ∈ [0.1, 0.2, ..., 1] and report the results
for the value that performed the best (0.1). Looking at Table 2, we can see that the limited memory
version performs almost as good as the full memory, and better than the ε−greedy baseline.

10 NON LINEAR REPRESENTATION LEARNING ON A SYNTHETIC DATA SET

Setup: we adapted a synthetic data set, known as the ”wheel bandit” (Riquelme et al., 2018), to
investigate the exploration properties of bandit algorithms when the reward is a nonlinear function of
the context. Specifically, contexts x ∈ R2 are sampled uniformly at random in the unit circle, and
there are k = 5 possible actions.

One action , a5, always offers reward r5 ∼ N(µ5, σ), independently of the context. The reward of
the other actions depend on the context and a parameter δ, that defines a δ−circle ‖x‖ ≤ δ.

For contexts that are outside the circle, actions a1, .., a4 are equally distributed and sub-optimal, with
ri ∼ N(µ, σ) for µ < µ5, i ∈ [1..4].

For contexts that are inside a circle, the reward of each action depends on the respective quadrant.
Each action achieves ri ∼ N(µi, σ), where µ5 < µi = µ̇ in exactly one quadrant, and µi = µ < µ5

in all the other quadrants. For example, µ1 = µ̇ in the first quadrant {x : ‖x‖ ≤ δ, x1, x2 > 0}
and µ1 = µ elsewhere. We set µ = 0.1, µ5 = 0.2, µ̇ = 0.4, σ = 0.1. Note that the probability
of a context randomly falling in the high-reward region is proportional to δ. For lower values of
δ, observing high rewards for arms a1, .., a4 becomes more scarce, and the role of the nonlinear
representation is less significant.

We train our model on n = 4000 contexts, where we optimize the network every L = 200 steps for
P = 400 mini batches. The results can be seen in Table 3.

Not surprisingly, the neural-linear approaches, even with limited memory, achieved better reward
than the linear method (Table 3).

Fig. 3 presents the reward of each arm as a function of the context. In the top row, we can see
empirical samples from the reward distribution. In the middle row, we see the predictions of the linear
bandit. Since it is limited to linear predictions, the predictions become a function of the distance from
the learned hyper-plane. This representation is not able to separate the data well, and also makes
mistakes due to the distance from the hyperplane. For the neural linear method (bottom row), we
can see that the DNN was able to learn good predictions successfully. Each of the first four arms
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learns to make high predictions in the relevant quadrant of the inner circle, while arm 5 makes higher
predictions in the outer circle.

Linear Neural-Linear Lim-
ited Memory

δ=0.5 737.44 ± 3.04 899.72 ± 12.79

δ=0.3 735.37 ± 2.58 781.09 ± 11.34

δ=0.1 735.51 ± 2.59 751.75 ± 3.6

Table 3: Cumulative reward on the wheel bandit

11 PARAMETERS FOR THE TRANSMISSION RATE CONTROL EXPERIMENT

Parameter Value
η 120
c 16
ρ 2
N 70
λlow 0.01
λhigh 7
T 105

h 5
P 256
L 512
ε 0.05

Learning rate 3e-4
Memory buffer size 2048

Table 4: Hyper-parameters values for the experiment in section 5

12 OLD RESULTS

Full memory Limited memory, Neural-Linear

Name d A Linear Neural-Linear Both Priors µ Prior No Prior

Linear Datasets
Mushroom 117 2 11022 ± 774 10880 ± 853 10923 ± 839 9442 ± 1351 7613 ± 1670

Financial 21 8 4588 ± 587 4389 ± 584 4597 ± 597 4311 ± 598 4225 ± 594

Jester 32 8 14080 ± 2240 12819± 2135 9624 ± 2186 10996 ± 2013 11114 ± 2050

Adult 88 2 4066.1 ± 11.03 4010.0 ± 22.19 3943.0 ± 54.29 3839.5 ± 17.63 3608.2 ± 34.94

Covertype 54 7 3054 ± 557 2898 ± 545 2828 ± 593 2347 ± 615 2334 ± 603

Nonlinear Datasets
Census 377 9 1791.5 ± 39.47 2135.5 ± 51.47 2023.16 ± 37.3 1873 ± 757 1943.83 ± 84.2

Statlog 9 7 4483 ± 353 4781 ± 274 4825 ± 305 4681 ± 285 4623 ± 276

Epileptic 178 5 1202.9 ± 34.68 1706.9 ± 41.26 1716.8 ± 60.44 1572.9 ± 48.66 1411.0 ± 33.43

Smartphones 561 6 3085.8 ± 24.64 3643.5 ± 64.89 2660.4 ± 84.72 3064.5 ± 55.06 2851.6 ± 58.77

Scania Trucks 170 2 4691.8 ± 7.23 4784.7 ± 6.05 4742.0 ± 33.0 4698.0 ± 13.06 4470.4 ± 37.9

Table 5: Cumulative reward of TS algorithms on 10 real world data sets. The context dim d and the
size of the action space A are reported for each data set. The mean result and standard deviation of
each algorithm is reported for 50 runs.

14


	Introduction
	Background
	Limited memory neural-linear TS
	Experiments
	Catastrophic forgetting.
	Real world data.

	Rate Control For Video Transmission Over Cellular Links
	Summary
	Pseudo code
	Proof for Lemma 1
	Sentiment analysis from text using CNNs
	Non linear representation learning on a synthetic data set
	Parameters For The Transmission Rate Control Experiment
	Old results

