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Abstract

Multi-class classification is one of the most common tasks in machine learning
applications, where data is labeled by one of many class labels. Many loss functions
have been proposed for multi-class classification including two well-known ones,
namely the cross-entropy (CE) loss and the crammer-singer (CS) loss (aka. the
SVM loss). While CS loss has been used widely for traditional machine learning
tasks, CE loss is usually a default choice for multi-class deep learning tasks. There
are also top-k variants of CS loss and CE loss that are proposed to promote the
learning of a classifier for achieving better top-k accuracy. Nevertheless, it still
remains unclear the relationship between these different losses, which hinders our
understanding of their expectations in different scenarios. In this paper, we present
a unified view of the CS/CE losses and their smoothed top-k variants by proposing
a new family of loss functions, which are arguably better than the CS/CE losses
when the given label information is incomplete and noisy. The new family of
smooth loss functions named label-distributionally robust (LDR) loss is defined by
leveraging the distributionally robust optimization (DRO) framework to model the
uncertainty in the given label information, where the uncertainty over true class
labels is captured by using distributional weights for each label regularized by a
function.

1 Introduction
Multi-class classification is one of the fundamental tasks in machine learning (ML), where data is
labeled by one of many class labels. In the past decades, multi-class classification has been used
in a variety of areas, including image recognition [1, 2, 3], handwritten recognition [4, 5], natural
language processing [6], etc. More training data could always be a possible solution to improve the
model performance. However, labeling efforts could be more expensive as the machine learning task
becomes more complicated. Furthermore, for multi-class classification, the labels of data could form
a hierarchical tree structure, which leads to multi-label or ambiguity issue. As a consequence, for
computer vision task or natural language processing task, one image or text could contain multiple
objects or concepts, which raises challenges not only for human labeling jobs but also model learning
consistency [7, 8, 9]. On the other hand, a loss function plays a central role that can be researched
for learning a model to achieve the learning consistency. As we cannot directly optimize the non-
continuous 0-1 loss, optizming some surrogate loss functions such as the cross entropy (CE) and the
SVM loss becomes the main-stream machine learning solution for multi-class classification task.

In this paper, we consider a machine learning solution based on optimizing a novel loss function
and its top-k simplex constrained variant for improving the performance of the standard CE loss
and the SVM loss. The motivation of our work springs from an interesting observation and its
explanation: we have seen a lot of studies in traditional ML literature using the SVM losses (e.g.,
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the Crammer-Singer (CS) loss [10]), but almost all studies of deep learning (DL) on ImageNet uses
the CE loss. What is the underlying reason for this? One could explain this from two perspectives:
(i) the CE loss is smooth while the CS loss is non-smooth, which is not favorable for optimization;
(ii) the CE loss is consistent for multi-class classification (i.e., yielding Bayes optimal classifier with
infinite number of samples), while the CS loss is generally not consistent unless in an exceptional
condition that the maximum conditional probability of a class label given the input is larger than
0.5 [11, 12]. The exceptional condition means that the data is associated with a single label with high
probability. However, such condition usually does not hold for real-world multi-class classification
tasks in DL applications where data in inherently associated with multiple class labels. Although
each image in ImageNet is labeled by only one class, the recent studies [7, 8] show that these images
inherently belong to multiple class labels. In particular, they observed that a significant fraction of
images—more than a fifth—contains at least two objects from the 1000 classes.

2 Related Work
Multi-class Loss functions. Multi-class loss functions have been studied extensively in conventional
machine learning (ML) literature [13, 14, 11, 10]. Many loss functions are shown to be consistent
(producing Bayes optimal classifier for minimizing zero-one loss, i.e., top-1 error) (e.g., CE loss),
while others are shown to be inconsistent (e.g., CS loss, WW loss). Variants of these standard losses
have been developed for minimizing top-k error (k > 1), such as (smoothed) top-k SVM loss, top-k
entropy loss [15, 16, 17, 18]. However, the relationship between these losses and the CE loss is still
unclear, which hinders the understanding of their performance in different scenarios. Hence, it is
important to provide a unified view of these different losses, which could not only help us understand
the existing losses but also bring new loss functions. In particular, the proposed LDR-KL loss has
arguably more advantages than the CE loss and our methods based on the LDR-KL loss yields
consistently better performance than the CE loss on benchmark datasets.

Distributional robust optimization (DRO) Objective. It is interesting to connect the proposed LDR
loss to the DRO objective in previous works for handling noisy and imbalanced data [19, 20, 21, 22].
Different from the proposed LDR loss that assocaite the DW variables to class labels, the existing
DRO objective assigns DW variables to instances and defines an aggregate objective by maximizing
over the DW variables in an uncertainty set. But it is interesting to make the analogy between the LDR
loss and the DRO objective for arguing the benefit of the LDR loss on handling the incomplete and
noisy label information (cf. the discussion in section Label-Distributionally Robust (LDR) Losses).

3 The Proposed Method
Notations. Let x ∈ Rd denote an input data, y ∈ [K] := {1, . . . ,K} denote its class label,
and let f(x) ∈ RK denote the prediction scores of a model. Without causing any confusion, we
simply use the notation f = (f1, . . . , fK) = f(x) ∈ RK to denote the prediction for any data x.
Interchangeably, we also use one-hot encoding vector y ∈ RK to denote the label information of a
data. For any vector q ∈ RK , let q[k] denote the k-largest entry of q with ties breaking arbitrarily.
Let ∆K = {p ∈ RK :

∑K
k=1 pk = 1, pk ≥ 0} denote a K-dimensional simplex.

3.1 Label-Distributionally Robust (LDR) Losses

The motivation of the proposed LDR losses is that the given label y for a given data x is usually
incomplete. Hence, the label information encoded in y that is used to define a loss function is
noisy, meaning that the zero entries in y are not necessarily true zero. In addition, the given label y
itself could be wrong due to the labeling error, meaning that the entry in y that is equal to 1 is not
necessarily true one. A straightforward idea for learning a good prediction function is to enforce that
fy to be larger than any other coordinates of f with possibly a large margin. However, this approach
could mis-guide the learning process due to that the label information y is often noisy. To handle
such uncertainty in the label information, we propose to use a regularized DRO framework to capture
the inherent uncertainty in the label information. Specifically, the proposed family of LDR losses is
defined by:

ψλ(f , y) = max
p∈Ω

K∑
k=1

pk(fk − fy + c(y, k))− λR(p) (1)
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where p is referred to as distributional weight (DW) vector, Ω ⊆ {p ∈ RK : pk ≥ 0,
∑
k pk ≤ 1} is

a convex constraint set for the DW vector p, c(y, k) = cyI(y 6= k) denotes the margin parameter,
λ > 0 is the DW regularization parameter, and R(p) is is a regularization term of p which is set by
a strongly convex function. The strong convexity of R(p) makes ψλ(f , y) a smooth function of f
due to the duality between strong convexity and smoothness [23].

The LDR-KL Loss . A special loss in the family of LDR losses is called the LDR-KL loss defined
by specifying Ω = ∆K , and R(p) as the KL divergence between p and the uniform probabilities
(1/K, . . . , 1/K), i.e., R(p) =

∑K
k=1 pk log(pkK). In this case, we can derive a closed-form

expression of ψλ(f , y), denoted by ψKL
λ (f , y),

ψKL
λ (f , y) = λ log

(
K∑
k=1

exp

(
fk + c(y, k)− fy

λ

))
.

It is notable that the DW regularization parameter λ is a key feature of this loss. It is interesting to
see that the LDR-KL loss covers several existing losses as special case or extreme cases by varying
the value of λ. We include the proof in the appendix.

Extreme Case I. λ = 0. The loss function becomes: ψCS
λ (f , y) = max(0,maxk 6=y fk + cy − fy)

which is known as Crammer-Singer loss (an extension of hinge loss) for multi-class SVM [10] .

Extreme Case II. λ = ∞. The loss function becomes: ψ+
λ (f , y) = 1

K

∑K
k=1(fk − fy + c(y, k)).

This loss is similar to the Weston-Watkins (WW) loss [13] for multi-class SVM, which is given by∑
k 6=y max(0, fk − fy + 1).

Special Case. With λ = 1, the LDR-KL loss becomes the CE loss: ψCE
λ (f , y) =

log (
∑
k exp (fk + c(y, k)− fy)).

Note that in standard CE loss, the margin parameter cy is set to be zero. Adding a margin parameter
makes the above CE loss enjoys the large-margin benefit. This also recovers the label-distribution-
aware margin loss proposed by [24] for imbalanced data classification with different margin values
cy for different classes.

3.2 Top-N Consistency

The LDR-KL loss: the top-N error is defined as errN (f , y) = I(y 6∈ rN (f)), where rN is a top-N
selector that selects the N indices of the largest entries of the input by breaking ties arbitrarily.
According to previous studies [18], a necessary condition for a multi-class loss function is top-N
consistent is that the loss function is top-N calibrated define below. Hence, we will only present the
result of top-N calibration of the LDR-KL loss, and its implication on consistency can be found in
previous studies (cf. [18]). Let PN (f ,q) denotes that f is top-N preserving with respect to q, i.e., if
for all l ∈ [K], ql > q[N+1] =⇒ fl > f[N+1], and ql < q[N ] =⇒ fl < f[N ]. For anys q ∈ ∆K , let
Lψ(f ,q) = Ey∼qψy(f) =

∑
l qlψ(f , l).

Definition 1. [18] A loss function ψ(f , y) : RK × [K] → R is called top-N calibrated for all
q ∈ ∆K it holds that: inff∈RK :¬PN (f ,q) Lψ(f ,q) > inff∈RK Lψ(f ,q).

Lemma 1. For any q ∈ ∆K , if f∗ = arg minf∈RK Lψ(f ,q) is rank consistent with respect to q, i.e.,
satisfying that for any pair qi < qj it holds that f∗i < f∗j , then ψy(f) is top-N calibrated for any
N ≥ 1.
Theorem 1. If cy = c, ∀y ∈ [K], then f∗ = arg minf∈RK LψKL

λ
(f ,q) is rank consistent for any

λ > 0 and hence the LDR-KL loss ψKL
λ (f , y) with any λ > 0 is top-N calibrated for any N ≥ 1.

We include the proof of the above lemma and theorem in the appendix.

Consistency of the general LDR losses: we present a sufficient condition on the DW regularization
function R such that the resulting LDR loss ψλ(f , y) is consistent. The result derived below will
address an open problem in [17] regarding the consistency of smoothed top-k SVM loss.
Definition 2. A functionR(p) is symmetric if its value is the same no matter the order of its arguments.
A set Ω is symmetric if a point p is in the set then so is any point obtained by interchanging any two
coordinates of p.
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Table 1: Top-1 Accuracy on six datasets with different loss functions

Loss aloi news20 letter CIFAR-10 CIFAR-100 ImageNet
CE 0.9052(2.3e-4) 0.6353(1.7e-3) 0.7459(8.8e-4) 0.8950(1.2e-4) 0.6664(7.5e-5) 0.7471(3.5e-4)
CS 0.9031(6.7e-4) 0.6579(1.5e-3) 0.7589(3.3e-4) 0.8944(1.4e-4) 0.6652(2.7e-4) 0.7534(4.1e-4)
WW 0.8355(1.4e-3) 0.6403(3.1e-3) 0.7141(1.4e-3) 0.8943(1.5e-4) 0.6671(3.6e-4) 0.7170(8.9e-5)
LDR-KL 0.9099(6.8e-4) 0.6501(1.3e-4) 0.7603(2.7e-4) 0.8961(0) 0.6683(7.5e-5) 0.7575(1.8e-4)

Theorem 2. If cy = c,∀y ∈ [K], R and Ω are symmetric, R is strongly convex satisfying ∂R(0) < 0
and [∂R(p)]i > 0 =⇒ pi 6= 0, then ψλ(f , y) is top-N classification calibrated for any N ≥ 1.

Remark: Examples of R that satisfy the above conditions include R(p) =
∑
i pi log(Kpi) and

R(p) = ‖p− 1/K‖2.

Consistency of LDR-k loss. As an application of our result above, we consider the LDR-k loss for a
given value k ∈ [K]. In particular, by specifying top-k simplex Ω = Ω(k) = {p ∈ RK :

∑K
l=1 pl ≤

1, pl ≤ 1/k,∀l} and λ = 0, the LDR-k loss becomes the top-k SVM loss [17] , i.e.,

ψkλ=0(f , y) = max
p∈Ω(k)

∑
l

pl(fl − fy + c(y, l)) =
1

k

k∑
i=1

max(0, f − fy + cy)[i],

where cy = (c(y, 1), . . . , c(y,K)). This top-k SVM loss is not consistent [17]. But, we can make it
consistent by adding a strongly convex regularizer R(p) satisfying the conditions in Theorem 2. In
particular, we define a LDR-k loss by

ψkλ(f , y) = max
p∈Ω(k)

∑
l

pl(fl − fy + c(y, l))− λR(p) (2)

Theorem 2 implies ψky (f) is classification calibrated and hence consistent. This addresses the
open problem raised in [17] regarding the consistency of smoothed top-k SVM loss for multi-class
classification.

3.3 Efficient Computation of LDR-k-KL loss

As an interesting application of our general LDR-k loss, we restrict our attention to the use of KL
divergence for the regularization term R(p) =

∑
i=1 pi log(Kpi) in the definition of (2), to which

we refer as LDR-k-KL loss. In particular, we consider how to efficiently compute the LDR-k-KL
loss. We present an efficient solution with O(K logK) complexity. Due to the limited space, we
include the details of the Theorem 3 and the proof in the appendix.

4 Experiments

In this section, we first show the effectiveness of the proposed LDR approach on a synthetic dataset
and then verify the effectiveness of our proposed LDR and LDR-k methods on some well studied
benchmark datasets for multiclass classification tasks. We also conduct experiments on image datasets
using pretrained deep learning based features for learning a linear model with details described at
the appendix. We compare our LDR-KL and LDR-k-KL losses with the CE loss (with margin
parameters), the CS loss, the WW loss, the top-k focused hinge loss (SVM-k) [18] , the top-k
truncated CE loss (CE-k) [25]. Among of them, CE, SVM-k, LDR-KL and LDR-k-KL are calibrated
for top-k consistency. We present partial results in Table 1 for top-1 accuracy; more details and full
results are included in the appendix.

5 Conclusion and Future Work

In this paper, we have proposed a novel family of label distributional robust losses that covers the
cross entropy and the SVM loss as special cases and also induces new smoothed losses. We proved
the consistency of the proposed losses. Our empirical studies also demonstrate the usefulness of the
proposed loss functions. For future work, we will consider to learn individual λ for each example in
order to capture the difference between different examples in the given label information.
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A Proof for The LDR-KL Loss Formulation

Proof. Let q = f − fy + cy , we want to solve:

max
p∈∆

p>q− λ
∑
i

pi logKpi

It is not difficult to show that p∗i = exp(qi/λ)∑
i exp(qi/λ) . By plugging this back we obtain the formulation of

LDR-KL loss, i.e,

ψKL
λ (f , y) = λ log

(
K∑
k=1

exp

(
fk + c(y, k)− fy

λ

))
.

B Proof for Theorem 1

Proof. For simplicity, we consider λ = 1. The extension to λ > 0 is trivial. Let us consider the
optimization problem:

min
f∈RK

F (f) :=
∑
k

qkψ
λ
k (f) =

∑
k

qk log

(∑
l

exp(fl − fk + c(k, l))

)
By the first-order optimality condition ∂F (f)/∂fj = 0, we have:

−qj

∑
l 6=j exp(fl − fj + c(j, l))∑
l exp(fl − fj + c(j, l))

+
∑
k 6=j

qk
exp(fj − fk + c(k, j))∑
l exp(fl − fk + c(k, l))

= 0

Move the negative term to the right and add qj∑
l exp(fl−fj+c(j,l)) to both sides:

qj

∑
l exp(fl − fj + c(j, l))∑
l exp(fl − fj + c(j, l))

=
∑
k 6=j

qk exp(fj − fk + c(k, j))∑
l exp(fl − fk + c(k, l))

+
qj∑

l exp(fl − fj + c(j, l))

=
∑
k

qk exp(fj − fk + c(k, j))∑
l exp(fl − fk + c(k, l))

= exp(fj)
∑
k

qk∑
l exp(fl + c(k, l)− c(k, j))

Moreover: ∑
k

qk∑
l exp(fl + c(k, l)− c(k, j))

=
qj

exp(fj) +
∑
l 6=j exp(fl + cj)

+
∑
k 6=j

qk
exp(fk − ck) +

∑
l 6=k exp(fl)

=
qj

exp(fj) +
∑
l 6=j exp(fl + cj)

+
∑
k 6=j

qk exp(ck)

exp(fk) +
∑
l 6=k exp(fl + ck)

=
∑
k

qk exp(c(k, j))

exp(fk) +
∑
l 6=k exp(fl + ck)

=

∑
k qk exp(c(k, j))

Z

where Z > 0 is independent of j. Then

exp(f∗j ) =
qjZ∑

k qk exp(c(k, j))
=

qjZ

qj +
∑
k 6=j qk exp(ck)
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If ck = c, we have

exp(f∗j ) =
qjZ∑

k qk exp(c(k, j))

=
qjZ

qj +
∑
k qk exp(ck)− qj exp(cj)

=
qjZ∑

k qk exp(ck)− qj(exp(cj)− 1)

Hence the larger qj , the larger f∗j . For qi < qj , we have

1/ exp(f∗i )− 1/ exp(f∗j )

=
exp(c)

qiZ
− exp(c)− 1

Z
− exp(c)

qjZ
+

exp(c)− 1

Z
> 0

It implies that f∗i < f∗j .

C Proof of Theorem 2

Definition 3. For a function R : Ω→ R ∩ {−∞,∞} taking values on extended real number line,
its convex conjugate is defined as

R∗(u) = max
p∈Ω

p>u−R(p)

Lemma 2. If R(·) and Ω are symmetric, then R∗ is also symmetric.

Proof.

R∗(u) = max
p∈Ω

p>u−R(p)

For any i, j, let û be a shuffled version of u such that ûi = uj , ûj = ui, ûk = uk,∀k 6= i, j. Then

R∗(û) = max
p∈Ω

p>û−R(p) = max
p∈Ω

∑
k

pkûk −R(p)

= max
p∈Ω

piuj + pjui +
∑
k 6=i,j

pkuk −R(p)

= max
p∈Ω

p̂>u−R(p) = max
p̂∈Ω

p̂>u−R(p̂)

= R∗(u)

where p̂ is a shuffled version of p.

Proof. Proof of Theorem 2 , without loss of generalization, we assume λ = 1.

ψy(f) = max
p∈Ω

∑
k

pk(fk − fy + cyk)−R(p)

= R∗(f − fy1 + cy)

where cy = c(1 − ey), ey is the y-th column of identity matrix. Let us consider the optimization
problem:

f∗ = arg min
f∈RK

F (f) :=
∑
k

qkψk(f)

=
∑
k

qkR
∗(f − fk1 + ck)
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Consider q such that q1 < q2, we prove that f∗ is order preserving. We prove by contradiction.
Assume f∗1 > f∗2 . Define f̂ as f̂1 = f∗2 and f̂2 = f∗1 and f̂k = f∗k , k > 2. Then

F (f̂) =
∑
k

qkR
∗(f̂ − f̂k1 + ck)

= q1R
∗(f̂ − f̂11 + c1) + q2R

∗(f̂ − f̂21 + c2) +
∑
k>2

qkR
∗(f̂ − f̂k1 + ck)

= q1R
∗(f̂ − f21 + c1) + q2R

∗(f̂ − f11 + c2) +
∑
k>2

qkR
∗(f − fk1 + ck)

Then

F (f̂)− F (f) = q1(R∗(f̂ − f21 + c1)−R∗(f − f11 + c1)) + q2(R∗(f̂ − f11 + c2)−R∗(f − f21 + c2))

Since [̂f − f21 + c1]1 = 0, [̂f − f21 + c1]2 = f1 − f2 + c, [̂f − f21 + c1]k = fk − f2 + c, k > 2,
similarly [f − f21+ c2]1 = f1− f2 + c, [f − f21+ c2]2 = 0, [f − f21+ c2]k = fk− f2 + c, k > 2,
hence R∗(f̂ − f21 + c1) = R∗(f − f21 + c2). Similarly R∗(f − f11 + c1) = R∗(f̂ − f11 + c2).
Hence, we have

F (f̂)− F (f) = (q2 − q1)(R∗(f − f11 + c1)−R∗(f − f21 + c2))

Define f ] = f − f11 + c1 with [f ]]1 = 0, [f ]]k = fk − f1 + c, k > 1, and f† = f − f21 + c2 with
[f†]2 = 0, [f†]k = fk − f2 + c, k 6= 2. Let f‡ be a shuffled version of f† with [f‡]1 = 0, [f‡]k =
f1− f2 + c, k = 2, [f‡]k = fk− f2 + c, k > 2. Under the assumption that f1 > f2, we have f ] ≤ f‡.
Then

F (f̂)− F (f) = (q2 − q1)(R∗(f ])−R∗(f‡))

Note that
R∗(f) = max

p∈Ω
p>f −R(p)

Below, we proveR∗(f ])−R∗(f‡) < 0. We will consider two scenarios. First, consider f2−f1+c > 0.
Let p∗ = arg maxp∈Ω

∑
k>1 pk[f ]]k − R(p). We have f ] ∈ ∂R(p∗). Since [f ]]2 > 0, we

have p∗2 > 0. Hence R∗(f ]) = maxp∈Ω

∑
k>1 pk[f ]]k − R(p) =

∑
k>1 p

∗
k[f ]]k − R(p∗) <∑

k>1 p
∗
k[f‡]k−R(p∗) ≤ R∗(f‡). Next, consider f2− f1 + c ≤ 0. By the convexity of R∗, we have

R∗(f ]) − R∗(f†) ≤ ∇R∗(f ])(f ] − f†) = [∇R∗(f ])]1(f2 − f1 − c) + [∇R∗(f ])]2(f2 − f1 + c) +∑
k>2[∇R∗(f ])]k(f2− f1) ≤ c([∇R∗(f ])]2− [∇R∗(f ])]1) +

∑
k[∇R∗(f ])]k(f2− f1) < 0 due to

that (i) [∇R∗(f ])]2 ≤ [∇R∗(f ])]1 due to [f ]]2 ≤ [f ]]1; (ii) and
∑
k[∇R∗(f ])]k =

∑
k p
∗
k > 0. This

is because p∗ cannot be all zeros otherwise increasing the first coordinate of p∗ will decrease the
value of R(p) and therefore increase the value of Q. However, such a solution p∗ is impossible since
for the function Q(p) = p>f ] − R(p), which has a unique maximizer due to strong concavity of
Q(p). This will prove that R∗(f ])−R∗(f‡) < 0.

Next, we prove that f1 < f2. Assume f1 = f2, we establish a contradiction. By the first-order
optimality condition, we have

∂F (f)

∂fk
= qk

ψk(f)

∂fk
+
∑
l 6=k

ql
∂ψl(f)

∂fk

= qk(ek − 1)>∇R∗(f − fk1− ck) +
∑
l 6=k

qle
>
k∇R∗(f − fl1− cl) = 0

Hence

qk1
>∇R∗(f − fk1− ck) = e>k

∑
l

ql∇R∗(f − fl1− cl)

Next, we prove that for any f such that [f ]1 = [f ]2, then [∇R∗(f)]1 = [∇R∗(f)]2. To this end,
we consider the equation, R(p) + R∗(f) = p>f , where p = arg maxp∈ΩQ(p) := p>f − R(p)
satisfying p = ∇R∗(f) ∈ Ω. If [∇R∗(f)]1 6= [∇R∗(f)]2, which means p1 6= p2. We can define
another vector p′ = (p2, p1, p3, . . . , pK) ∈ Ω,p′ 6= p, which satisfies Q(p′) = p′>f − R(p′) =
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Q(p), which contradicts to the fact that Q(·) has a unique maximizer. Then for any f with [f ]1 = [f ]2,
we have [f − fl1− cl]1 = [f − fl1− cl]2. As a result,

q11
>∇R∗(f − f11− c1) = q21

>∇R∗(f − f21− c2)

It is clear that the above equation is impossible since 1>∇R∗(f) 6= 0,∀f with [f ]1 = 0 and
q1 < q2.

D Theorem 3

Theorem 3. Consider the problem maxp∈Ω(k)

∑
i piqi − λ

∑
i=1 pi log(Kpi). To compute the

optimal solution, let the q to be sorted and π(i) denote the index for its i-th largest value. Given
a ∈ [K] define a vector p(a) as

[p(a)]π(i) =
1

k
, i < a,

[p(a)]π(i) = exp(
qπ(i)

λ
− 1)×min(

1

K
,

1− a−1
k∑K

j=a exp(
qπ(j)

λ − 1)
), i ≥ a

The optimal solution p∗ is given by p(a) such that a is the smallest number in {1, . . . ,K} satisfying
[p(a)]π(a) ≤ 1

k . The overall time complexity is O(K log(K)).

Given that the algorithm would be simple with the presented theorem 3, we do not present a formal
algorithm box here. Instead, we simply describe it as follows: i) scan (from largest to smallest)
through vector q to get cumulative summation

∑K
j=a exp(

qπ(j)

λ − 1) for all possible values of a. ii)
apply the theorem 3 to calculate [p(a)]π(a) for all possible values of a. It is obvious that the cost is
linear with K.

It is worth noting that the bottleneck for computing the analytical solution is sorting for q, which
usually costs O(K logK). Hence, the computation of the LDR-k-KL loss can be efficient conducted.

Proof. Apply Lagrangian multiplier:

max
p≥0

min
β≥0,γ≥0

p>
q

λ
−
∑
i

pi logKpi + β(1−
∑
i

pi) +
∑
i

γi(
1

k
− pi)

Stationary condition of p:

Kp∗i = exp(
qi
λ
− β − γi − 1)

Dual form:

min
β≥0,γ≥0

∑
i

1

K
exp(

qi
λ
− β − γi − 1) + β +

∑
i

γi
k

Stationary condition for β and γ:

γ∗i = max
(

log
k

K
exp(

qi
λ
− β∗ − 1), 0

)
β∗ = max

(
log
∑
i

1

K
exp(

qi
λ
− γ∗i − 1), 0

)
Checkpoint I: for the π(a) that γ∗π(a) = 0 and γ∗π(a−1) > 0, where 2 ≤ a ≤ k + 1, (or a = 1,
γ∗π(a−1) is undefined):

• We first consider the case when β∗ = 0, then the [p(a)]∗π(i) = 1
k for i < a, and [p(a)]∗π(i) =

1
K exp(

qπ(i)

λ − 1) for i ≥ a.

10



• Otherwise, if β∗ > 0:

[p(a)]∗π(a) =
1

K
exp(

qπ(a)

λ
− β∗ − 1) =

exp(
qπ(a)

λ − 1)∑
j exp(

qj
λ − γ

∗
j − 1)

=
exp(

qπ(a)

λ − 1)∑K
j=a exp(

qπ(j)

λ − γ∗π(j) − 1)
×
∑K
j=a exp(

qπ(j)

λ − γ∗π(j) − 1)∑K
j=1 exp(

qj
λ − γ

∗
j − 1)

=
exp(

qπ(a)

λ − 1)∑K
j=a exp(

qπ(j)

λ − 1)
(1− a− 1

k
)

It is similar to show for any i that i > a:

[p(a)]∗π(i) =
exp(

qπ(i)

λ − 1)∑K
j=a exp(

qπ(j)

λ − 1)
(1− a− 1

k
)

For those i < a that γ∗π(i) > 0:

[p(a)]∗π(i) =
1

K
exp(

qi
λ
− β∗ − γ∗i − 1)

=
exp(q‘i

λ − γ
∗
i − 1)

K exp(β∗)

=
K
k exp(β∗ − qi

λ + 1) exp(qi
λ − 1)

K exp(β∗)
=

1

k

So we can get the analytical solution as far as we know a subject to γ∗π(a) = 0 and

γ∗π(a−1) > 0. The [p(a)]∗π(i) = 1
k for i < a, and [p(a)]∗π(i) =

exp(
qπ(i)
λ −1)∑K

j=a exp(
qπ(j)
λ −1)

(1− a−1
k )

for i ≥ a.

Checkpoint II: next, we show that as far as we find the smallest a such that γ∗π(a) = 0 and
γ∗π(a−1) > 0, then it is the optimal solution.

• Suppose a′ < a: because ∀a′ s.t. k + 1 ≥ a > a′ ≥ 1, assume [p(a′)]π(a′) ≤ 1
k =⇒ a′

is another smaller valid a, which violates the pre-condition; therefore, [p(a′)]π(a′) >

[p(a)]π(a′) = 1
k , the a∗ must lead to a p∗ that violate the Ωk constrain, hence can’t be the

optimal solution, contradiction.

• Suppose a′ > a:

i) if β∗(a) = 0, then by pre-condition [γ(a)]∗π(a) = 0 and [γ(a′)]∗π(a) >

0, consequently β∗(a′) = 0, which deviates from the optimality of the objective func-
tion:

min
β≥0,γ≥0

∑
i

1

K
exp(

qi
λ
− β − γi − 1) + β +

∑
i

γi
k

(notice that [γ(a)]∗π(i) = [γ(a′)]∗π(i) > 0,∀i < a in order to hold the Ω(k) constrain).

ii) if β∗(a) > 0, then [γ(a)]∗π(a) = 0 and [γ(a′)]∗π(a) > 0 =⇒ β∗(a′) < β∗(a) =⇒
∀i ≥ a′, [p(a′)]π(i) > [p(a)]π(i).

On the other hand, ∀j < a′, [p(a′)]π(j) = 1
k ≥ [p(a)]π(j) =⇒

∑K
i=a′ [p(a′)]π(i) ≤

1−
∑a′−1
i=1 [p(a′)]π(i) ≤ 1−

∑a′−1
i=1 [p(a)]π(i) =

∑K
i=a′ [p(a)]π(i), which is contradictory

with ∀i ≥ a′, [p(a′)]π(i) > [p(a)]π(i).
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E Experiments Details

E.1 Synthetic Data
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(e) w/ LDR loss

Figure 1: The CE loss is vulnerable to the imbalanced classes case, as we can see the major class
(blue circle) occupying the majority of the space on the plane, which disagrees the boundaries of
underlying distributions. The CS loss is also sensitive to the imbalanced classes in a sense that the
intersection of the hyper-planes is pushed away from the major class. On the other hand, WW loss is
sensitive to outliers, where the boundary between ‘×’ and ‘�’ is highly misled and closer to vertical
direction because WW loss wants to turn up the probability that the outliers are classified to the given
label against the other classes equally. LDR loss, in contrast, provides more reasonable boundaries
in this example, which benefits from the uncertainty capturing by the distributional weight (DW)
regularization.
For multi-class classification, all the loss functions are defined in a sense to predict the data closer to
the labeled class than other classes. However, one interesting but rarely considered question would
be: how uncertain could another unlabeled class possibly be a potential ground truth for the data? On
the one hand, CS loss is defined in a way that all other unlabeled classes should have equally chance
to be a potential true class because only the most wrongly classified class is penalized by CS loss. On
the other hand, WW loss is defined in a way that all other unlabeled classes are penalized equally;
therefore, the model is spun up to infer the potential unlabeled true class by utilizing all the labeled
training data. LDR loss takes a trade off between CS and WW loss from the potential unlabeled true
classes discovering perspective because the DW regularization controls whether LDR loss is closer to
CS loss or WW loss. CE loss is a specific form of LDR loss. With DW regularization, LDR loss is
closer to CE loss with adjustable temperature parameter. DW regularization also could be treated as a
uncertainty capturing module for potential unlabeled true labels.

We justify the effectiveness of the proposed DW regularization for LDR loss on a synthetic data shown
in Figure 1. We first define 3 bi-variate normal distributions, whose centers are (10, 0)>, (−10, 0)>,

(0, 10)> and co-variances are
[
8 0
0 8

]
. They are used to mimic the underlying distributions for 3

different classes. For training, we first sample 100 data samples for one class and 5 data samples for
the other two classes, which is used to simulate imbalanced classes scenario. Next, we manually
impose 4 outliers, which are either denoted as black ‘×’ and ‘◦’ as an analogy to similar images
mislabeled as different classes for image classification task. They are either sitting on the different
classes comparing to their underlying, or on the middle of two classes. For the purpose of justification
for DW regularization, we only compare CE, CS, WW and LDR in this subsection and leave out their
top-k variants. The DW regularization is tuned in the range {1e-1,1,1e1}, and `2 regularization is
tuned in {1e-4,1e-3,1e-2,0} for all the methods. Margin is fixed as 1 for all the methods. The final
model are selected by 5-fold cross-validation. The classification boundaries are drawn in Figure 1.
As we can observe from the results, DW regularization improves robustness for LDR loss.

E.2 Benchmark Datasets

In this section, we conduct experiments on some benchmark datasets for multi-class classification.
The statistics for the datasets are summarized in Table 2. The evaluation metrics include top-k
accuracy (k = {1, ..., 5}).
Structured Data: We first compare different losses on the three structured datastesm, namely aloi,
news20 and letter for learning a linear model [3, 6, 4]1. We split 10% data samples for testing, the

1Data is available here: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2: statistics for the benchmark datasets (imagenet does not have fixed features number; we
manually crop/resize the images to make them consistent.)

Dataset # of samples # of features # of classes
aloi 108000 128 1,000

news20 15935 62060 20
letter 15000 16 26

cifar10 60000 32x32x3 10
cifar100 60000 32x32x3 100
imagenet 1331167 224x224x3 1000

Table 3: Top Accuracy on six datasets with different loss functions
Data Loss top-1 top-2 top-3 top-4 top-5

CE 0.9052(2.3e-4) 0.9449(3.1e-4) 0.9586(2.0e-4) 0.9650(1.5e-4) 0.9711(1.5e-4)
CS 0.9031(6.7e-4) 0.9450(7.3e-4) 0.9584(4.1e-4) 0.9661(3.4e-4) 0.9709(5.3e-4)
WW 0.8355(1.4e-3) 0.9136(4.5e-4) 0.9394(8.2e-4) 0.9544(3.2e-4) 0.9634(6.6e-4)

aloi SVM-k 0.9031(6.7e-4) 0.9455(7.5e-4) 0.9610(8.7e-4) 0.9690(6.7e-4) 0.9742(6.1e-4)
CE-k 0.9052(2.3e-4) 0.9412(4.0e-4) 0.9554(1.9e-4) 0.9632(1.8e-4) 0.9690(2.1e-4)
LDR-KL 0.9099(6.8e-4) 0.9466(6.1e-4) 0.9595(4.1e-4) 0.9669(2.4e-4) 0.9714(1.9e-4)
LDR-k-KL 0.9099(6.8e-4) 0.9489(5.1e-4) 0.9664(4.0e-4) 0.9747(2.4e-4) 0.9784(2.4e-4)
CE 0.6353(1.7e-3) 0.7909(1.6e-3) 0.8633(7.3e-4) 0.9000(1.8e-3) 0.9331(5.3e-4)
CS 0.6579(1.5e-3) 0.7960(1.3e-3) 0.8569(1.8e-4) 0.8905(8.8e-4) 0.9122(3.2e-4)
WW 0.6403(3.1e-3) 0.7980(8.4e-4) 0.8663(1.5e-3) 0.9091(1.6e-3) 0.9358(6.5e-4)

news20 SVM-k 0.6579(1.5e-3) 0.7957(1.9e-3) 0.8673(4.0e-3) 0.9097(3.6e-3) 0.9321(1.8e-3)
CE-k 0.6353(1.7e-3) 0.7942(3.2e-3) 0.8631(2.9e-3) 0.8948(1.3e-3) 0.9213(4.0e-3)
LDR-KL 0.6501(1.3e-4) 0.7983(2.0e-3) 0.8632(1.3e-3) 0.9004(1.3e-3) 0.9284(8.7e-4)
LDR-k-KL 0.6501(1.3e-4) 0.8004(5.2e-4) 0.8680(0) 0.9080(7.0e-4) 0.9328(4.9e-4)

CE 0.7459(8.8e-4) 0.8485(2.7e-4) 0.8873(0) 0.9100(0) 0.9269(9.0e-4)
CS 0.7589(3.3e-4) 0.8487(7.8e-4) 0.8812(2.7e-4) 0.8987(2.7e-4) 0.9153(0)
WW 0.7141(1.4e-3) 0.8429(3.3e-4) 0.8920(0) 0.9182(3.3e-4) 0.9418(2.7e-4)

letter SVM-k 0.7589(3.3e-4) 0.8669(1.1e-3) 0.9073(1.4e-4) 0.9326(1.4e-3) 0.9649(2.9e-3)
CE-k 0.7459(8.8e-4) 0.8586(7.3e-4) 0.8913(1.5e-3) 0.9191(6.5e-4) 0.9423(1.2e-3)
LDR-KL 0.7603(2.7e-4) 0.8580(0) 0.8887(0) 0.9073(0) 0.9260(0)
LDR-k-KL 0.7603(2.7e-4) 0.8581(2.7e-4) 0.9008(4.2e-4) 0.9265(4.9e-4) 0.9453(5.9e-4)

CE 0.8950(1.2e-4) 0.9644(1.0e-4) 0.9847(0) 0.9915(4.0e-5) 0.9965(7.5e-5)
CS 0.8944(1.4e-4) 0.9635(1.7e-4) 0.9845(1.5e-4) 0.9919(4.4e-5) 0.9965(4.9e-5)
WW 0.8943(1.5e-4) 0.9644(1.8e-4) 0.9834(0) 0.9909(0) 0.9963(4.0e-5)

CIFAR-10 SVM-k 0.8944(1.4e-4) 0.9641(3.0e-4) 0.9841(2.2e-4) 0.9913(4.3e-4) 0.9964(1.6e-4)
CE-k 0.8950(1.2e-4) 0.9635(3.6e-4) 0.9842(1.1e-4) 0.9915(8.0e-5) 0.9962(4.9e-5)
LDR-KL 0.8961(0) 0.9648(0) 0.9843(1.3e-4) 0.9918(5.5e-5) 0.9964(8.9e-5)
LDR-k-KL 0.8961(0) 0.9651(0) 0.9851(1.9e-4) 0.9922(2.5e-4) 0.9967(1.3e-4)
CE 0.6664(7.5e-5) 0.7855(4.9e-5) 0.8401(1e-4) 0.8721(1.1e-4) 0.8917(0)
CS 0.6652(2.7e-4) 0.7833(2.2e-4) 0.8381(4.8e-4) 0.8695(4.8e-4) 0.8895(1.5e-4)
WW 0.6671(3.6e-4) 0.7868(4.7e-4) 0.8393(4.8e-4) 0.8725(4e-4) 0.8916(5.8e-4)

CIFAR-100 SVM-k 0.6652(2.7e-4) 0.7849(6.0e-4) 0.8361(1.2e-3) 0.8710(1.1e-3) 0.8950(7.0e-4)
CE-k 0.6664(7.5e-5) 0.7861(8e-4) 0.8409(4.3e-4) 0.8736(2.3e-4) 0.8957(3e-4)
LDR-KL 0.6683(7.5e-5) 0.7883(4.9e-5) 0.8430(7.5e-5) 0.8730(8e-5) 0.8953(4.9e-5)
LDR-k-KL 0.6683(7.5e-5) 0.7885(2.7e-4) 0.8424(3.2e-4) 0.8783(2e-4) 0.8999(3e-4)
CE 0.7471(3.5e-4) 0.8489(2.1e-4) 0.8872(2.6e-4) 0.9075(3.9e-4) 0.9205(3.3e-4)
CS 0.7534(4.1e-4) 0.8506(5.6e-4) 0.8886(4.3e-4) 0.9077(2.7e-4) 0.9207(3.1e-4)
WW 0.7170(8.9e-5) 0.8326(4.5e-5) 0.8771(4.6e-5) 0.9016(3.5e-5) 0.9179(5.7e-5)

ImageNet SVM-k 0.7534(4.1e-4) 0.8527(5.7e-4) 0.8915(4.7e-4) 0.9111(5.3e-4) 0.9248(3.9e-4)
CE-k 0.7471(3.5e-4) 0.8499(3.6e-4) 0.8896(3.9e-4) 0.9111(6.8e-4) 0.9248(3.2e-4)
LDR-KL 0.7575(1.8e-4) 0.8568(1.3e-4) 0.8939(1.5e-4) 0.9138(9.8e-5) 0.9270(6.2e-5)
LDR-k-KL 0.7575(1.8e-4) 0.8551(2.2e-4) 0.8932(1.5e-4) 0.9145(7.4e-05) 0.9273(6.2e-5)

remaining for training and validation. It is worth noting that we utilize PCA for news20 dataset to
keep 128 principle components, to avoid the high dimensionality issue.

We grid-tune the hyper-parameters for all the baseline models by 5-fold cross validation. The
`2−regularization hyper-parameters are tuned in the range {1e-4,1e-3,1e-2,0} for all the loss functions.
The margin hyper-parameters c(y, k) are tuned in the range {1e-1,1,1e1} for all the margin-based loss
functions. To avoid heavily tuning cost, we first grid-tune LDR-KL and LDR-k-KL with c(y, k) and
distributional weight (DW) in the range {1e-1,1,1e1} with fixed `2−regularization hyper-parameter
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as 1e-4. After that, tune them with `2−regularization hyper-parameters in the same range as other
baselines.

It is worth noting that the top-k losses for k = 1 (SVM-k, CE-k and LDR-k-KL) would be reduced to
their classical top-1 version losses (CS, CE and LDR-KL). Hence, they have the same top-1 precision
values as their top-1 version losses. We run each method on each dataset independently 5 times
and report the averaged top-k (k=1,2,3,4,5) accuracy together with their standard deviations in the
Table 3.

As we can see from the results, LDR-KL and LDR-k-KL performs better comparing to other
existing loss functions. For aloi dataset with a large number of classes, LDR-KL and LDR-k-KL are
consistently better than other methods, which means the proposed LDR loss could benefit from the
data with a large class number. It is consistent with our assumption because it is more possible that
such data could have more potential unlabeled true class. For news20 and letter datasets, the proposed
LDR-KL loss is generally better than CE loss for top-1 precision; and the proposed LDR-k-KL loss
is generally better than CE-k loss. The non-smooth SVM losses are better for some cases thanks to
the large margin classifier effect.

Image Datasets: To eliminate the effect of different losses on feature learning (wich is not the focus
of this paper), we conduct experiments by using a pre-trained network for extracting the feature vector
of an image. We first pre-train deep neural networks on the benchmark datasets (Resnet-32 on cifar
and Resnet-50 on imagenet by optimizing the CE loss) for extracting a feature representation [26];
then based on the pre-trained hidden features we learn linear models by optimizing different loss
functions. For the pre-training process, we use momentum SGD with stage-wised decreasing step size
to optimize 50 epochs for cifar-10, 150 epochs for cifar-100 and 90 epochs for Imagenet. The hidden
feature dimension for CIFAR-(10 and 100) is 64; and the hidden feature dimension for Imagenet
is 2048. For learning the linear model based on the extract feature representations, we also utilize
momentum SGD with stage-wised decreasing step size (10000 iterations as one stage; initial learning
rate is 0.1 and decreasing factor is 0.1) for optimizing different loss functions, with a total of 20000
and 50000 iterations for CIFAR-(10 and 100) and Imagenet, respectively. The batch size is 128 for
all the experiments in this work. We keep the same protocol for model validation and evaluation as
for the structured data, except that we keep the default testing splitting. The results are summarized
in the Tables 3. From the results, LDR-KL and LDR-k-KL losses generally outperform the other loss
functions. The advantages are more obvious for cifar100 and Imagenet, who have a large number
of classes. For cifar10, the classes should be more clearly separated and easier for both human and
machine learning model to recognize.
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