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Abstract
Understanding the decision-making process of
machine learning models provides valuable in-
sights into the task, the data, and the reasons be-
hind a model’s failures. In this work, we propose
a method that performs inherently interpretable
predictions through the instance-wise sparsifica-
tion of input images. To align the sparsification
with human perception, we learn the masking in
the space of semantically meaningful pixel re-
gions rather than on pixel-level. Additionally, we
introduce an explicit way to dynamically deter-
mine the required level of sparsity for each in-
stance. We show empirically on semi-synthetic
and natural image datasets that our inherently in-
terpretable classifier produces more meaningful,
human-understandable predictions than state-of-
the-art benchmarks.

1. Introduction
Knowledge is power (Bacon, 1597). Knowing how ma-
chine learning models make their predictions empowers
users to understand the underlying patterns in the data, iden-
tify potential biases, reason about their safety, and build
trust in the models’ decisions. In high-stakes domains,
where model decisions can have significant consequences,
the field of interpretability is crucial to provide this under-
standing (Doshi-Velez & Kim, 2017). In this work, we focus
on providing inherent interpretability – a subfield where the
explanations are necessarily faithful to what the model com-
putes (Rudin, 2019) – through the lens of sparsity in the
input features (Lipton, 2016; Marcinkevičs & Vogt, 2023).
This constraint makes it easier to understand which specific
inputs contribute to an output (Miller, 1956), leading to
more human-understandable predictions.
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The LASSO by Tibshirani (1996) pioneered the learned se-
lection of features. While LASSO’s global selection is fixed
across the dataset, Chen et al. (2018) argue that the subset of
relevant features can differ for each data point and formally
introduce instance-wise feature selection. Since then, there
has been a growing interest in using instance-wise feature
selection for the image modality (Jethani et al., 2021; Bhalla
et al., 2024; Zhang et al., 2025). As methods adapt from
tabular to image data, they need to define the feature space
over which to carry out the selection. An intuitive choice is
to directly sparsify on pixel-level, generally aiming to mini-
mize the number of active pixels while retaining as much
predictive performance as possible. In this work, we ques-
tion this choice and argue that for human-understandable
predictions, the sparsification of features must occur in the
space of perceptually meaningful regions.

Humans perceive an object not as individual pixels, but as
a function of its parts: structural units that are perceptu-
ally meaningful atomic regions (Palmer, 1977; Biederman,
1987). As these parts differ for each instance, the selec-
tion should not rely on fixed pixels or patches, but rather on
instance-wise regions of semantic meaning. We show in Fig-
ure 1 that masking directly in pixel space allows for simple,
undesired solutions of high sparsity but low informativeness.
That is, an uninformative, evenly spaced mask can cover
most of the pixels while leaving the predictive performance
unaffected; a behavior that does not provide any insights
into the model behavior. Thus, we argue that, similar to
how Group Lasso (Yuan & Lin, 2006) jointly sparsifies all
components that make up a feature, one should jointly mask
all pixels that make up a perceptually meaningful region.
Similarly, we advocate for binary instead of continuous-
valued masks such as those in COMET (Zhang et al., 2025),
as dimming pixels may obscure information to the human
eye, but it does not meaningfully affect classifiers.

In this work, we propose P2P, a novel method that learns
a mask in the space of semantically meaningful regions2.
This unit of interpretation is already prominent in the field
of explainability (Ribeiro et al., 2016; Lundberg, 2017),
but to the best of our knowledge, we are the first work to
consider this input-dependent definition of a feature within

2The code is here: www.github.com/mvandenhi/P2P
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Original Pixel Mask Dark Mask P2P

Figure 1. Masking 80% of input under different constraints. All 3
masks lead to similar predictive performance but only P2P provides
interpretability by sparsity.

the context of instance-wise feature selection. Moreover,
the proposed approach is equipped to model the relationship
across parts to capture part-object relations. Lastly, we
address the limitation of a fixed level of sparsity and propose
a dynamic thresholding that adapts to the required amount
of information needed to make an informed prediction. The
proposed approach achieves high predictive performance
while relying on a sparse set of perception-adhering regions,
thereby enabling human-understandable predictions.

Main Contributions This work contributes to the line of
research on instance-wise feature selection in multiple ways.
(i) We propose a novel, semantic region-based approach
to sparsify input images for inherently interpretable predic-
tions. (ii) We propose a dynamic thresholding that adjusts
the sparsity depending on the required amount of informa-
tion. (iii) We conduct a thorough empirical assessment on
semi-synthetic and natural image datasets. In particular,
we show that P2P (a) retains the predictive performance
of black-box models, (b) identifies instance-specific rele-
vant regions along with their relationships, and (c) faithfully
leverages these regions to perform its prediction. Together,
these results highlight that our method represents a signifi-
cant advancement in the field of inherent interpretability.

2. Related Work
Interpretability Interpretability is useful in situations
where a single metric is an incomplete description of the
task at hand (Doshi-Velez & Kim, 2017). The field can
be broadly divided into inherent interpretability and post-
hoc explanations (Lipton, 2016; Rudin, 2019; Marcinkevičs
& Vogt, 2023). Post-hoc explainability methods try to ex-
plain the outputs of black-box models by attributing each
input feature with an importance score. The most common
approaches for measuring feature attribution are approx-
imations via locally linear models (Ribeiro et al., 2016;
Lundberg, 2017), or aggregating gradients with respect to
the input (Springenberg et al., 2014; Selvaraju et al., 2017;
Shrikumar et al., 2017; Sundararajan et al., 2017). However,
an issue of such methods is that they explain a complex
black-box model by simplifying approximations. As such,
it is unclear whether the model that is being explained be-
haves similarly to its approximation (Adebayo et al., 2018;
Hooker et al., 2019; Fryer et al., 2021; Laguna et al., 2023).

Inherent Interpretability In this work, we focus on in-
herently interpretable models. Here, by design, the expla-
nations faithfully capture a model’s behavior (Rudin, 2019).
These explanations can come in many forms, as they rely on
the chosen model class. An established class of inherently
interpretable methods are prototypes-based models (Kim
et al., 2014; Chen et al., 2019; Fanconi et al., 2023; Ma et al.,
2024) that make a prediction based on the similarity of an
input sample to prototypical data points of each class. An-
other line of work utilizes intermediate, human-interpretable
concepts upon which the final prediction is based (Koh et al.,
2020; Espinosa Zarlenga et al., 2022; Marcinkevičs et al.,
2024; Vandenhirtz et al., 2024; LCM team et al., 2024).
Also, Carballo-Castro et al. (2024) and Huang et al. (2024)
show that these concepts and prototypes can be combined.
Another notable approach is B-cos networks (Böhle et al.,
2022; 2024; Arya et al., 2024), which achieve inherent inter-
pretability by constraining the model’s dynamical weights
to align with relevant structures.

Instance-wise Feature Selection This work operates in
the subfield of instance-wise feature selection. Based on
classical statistics (Tibshirani, 1996; Yuan & Lin, 2006), se-
lecting a subset of important features has been a paramount
problem with many applications (Saeys et al., 2007; Reme-
seiro & Bolon-Canedo, 2019; Tadist et al., 2019). Due
to the vast amount of data available nowadays, methods
are so complex that they select a sparse set of features on
an instance-level, upon which a prediction is made. Chen
et al. (2018) introduced this instance-wise feature selection
and select a feature subset by maximizing the mutual infor-
mation of the subset and the target. Others take a similar
approach and minimize the KL divergence of predicting
with the full set versus the subset (Yoon et al., 2018; Covert
et al., 2023). A commonality of all presented methods is
that a forward pass consists of (i) a selector that determines
the masking, and (ii) a classifier whose predictions are based
on the masked input. REAL-X (Jethani et al., 2021) argue
that the selector can encode predictions within its mask
and train the classifier with random masking to avoid this
shortcut (Geirhos et al., 2020). With a similar goal in mind,
Oosterhuis et al. (2024) define the selector as an iterative
process that only sees the previously selected features. RB-
AEM, the feature selection stage of ISP (Ganjdanesh et al.,
2022), expands upon REAL-X by introducing a geometric
prior that avoids independent pixel selection. More recently,
DiET (Bhalla et al., 2024) find a mask by ensuring a robust,
distilled model’s predictions align with a pre-trained model.
Lastly, COMET by Zhang et al. (2025) learns a mask such
that the discarded pixels are uninformative for a pre-trained
classifier. Notably, COMET’s masking is not binary but
continuous-valued – a design choice that boosts predictive
performance but raises questions about the contribution of
supposedly unimportant, dimmed pixels on the prediction.
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3. Method
Formally, instance-wise feature selection in image classifi-
cation seeks

argmin
m∈{0,1}H×W

∥m∥ s.t. p(y|xm) = p(y|x), (1)

where m denotes the mask that is defined over pixel space
with dimensionality (H,W ) and xm = m⊙ x. An excep-
tion is COMET (Zhang et al., 2025) that defines m ∈ (0, 1).
As outlined in Section 1 and supported by Figure 1, there
exist many meaningless m that appear to be good solutions
to Equation (1). This is because the masking of a pixel does
not meaningfully alter the content of an image. To allevi-
ate this problem, we propose to optimize over the space
of semantically meaningful atomic regions such that each
selectable feature is a perceptually meaningful part. We de-
note this partition by Ω = {R1, . . . , RD}. Note also that the
use of patches to reduce the masking space dimensionality
does not fulfill these considerations, as they do not depend
on the content of an instance. In line with most related work
mentioned in Section 2, we believe the selection must be
binary, as a continuous-valued mask does not remove any
information on the numerical level in which machine learn-
ing models operate. Lastly, we reformulate the optimization
problem to avoid the overhead of estimating p(y|x) and to
allow for a more explicit control over the sparsity regularizer.
The reformulation is similar in spirit to Chen et al. (2018)’s
motivation and will prove useful when introducing dynamic
thresholding. Our method P2P optimizes

argmax
m∈{0,1}D

p(y|xm) s.t.
1

HW

D∑
j=1

mj |Rj | ≤ τ, (2)

where |Rj | denotes the number of pixels in region Rj and
the masked input xm is defined elementwise as (xm)hw =
xhw if it’s corresponding region Rj is activated (i.e. mj =
1), and 0 otherwise. In summary, P2P maximizes the like-
lihood while constraining the number of active regions,
weighted by their pixel count.

From Pixels to Perception In Figure 2, we present a
schematic of our method From Pixels to Perception (P2P).
To obtain instance-wise perceptually meaningful atomic re-
gions Ω, we use the SLIC Superpixels algorithm (Achanta
et al., 2012), designed to quickly generate such regions.
An ablation study in Appendix B shows that the specific
choice of algorithm is not important. With additional do-
main knowledge, a more informed selection could be made,
provided the proposed regions are sufficiently fine-grained
and computationally efficient. To address the challenge that
regions vary per-instance, we perform masking by predict-
ing the selection parameters at the pixel-level and aggre-
gating them within each region. We leave the exploration

of architectures that can directly adapt to different input
shapes for future work. Upon having obtained a selection
probability for each region, we employ the Gumbel-Softmax
trick (Jang et al., 2017; Maddison et al., 2017) to sample a
mask from D(x) while preserving differentiability.

Recall the optimization problem in Equation (2). Apart from
maximizing the predictive performance given the masked
input, we require a sparsity loss that regularizes the active
number of pixels. Note that we regularize the number of
pixels, not the number of regions, to avoid introducing an
inductive bias toward selecting larger regions. We denote
the expected number of selected pixels as

p̄ =
1

HW

D∑
j=1

pmj
|Rj |.

To fulfill the thresholding inequality, we define the following
masking loss

Lm =

{
− log(1− p̄) if p̄ > τ

0 otherwise,
(3)

where the non-zero component can be interpreted as
KL(p0∥p̄) with p0 acting as a prior that encourages p̄ to
go towards zero. The formulation with a threshold alleviates
the need to perform an extensive hyperparameter search to
obtain a desired masking level, as p̄ is no longer regularized
as soon as it is below τ . That is, the regularization loss
allows for explicit control over the desired sparsity strength.

Relationships of Parts Aristotle said, “the whole is not
the same as the sum of its parts” (Ross, 2016), but so far,
each region is treated separately by our selector. Modeling
the part relationships can enhance the selector’s learning
and selection capabilities. It can be used to steer which re-
gions should be selected together, thereby highlighting their
complementary value. As such, modeling the relationships
of parts can inform which parts form a whole and identify
object-context relationships. Such an analysis can provide
additional insights into the model’s understanding of the
input, thereby enhancing its inherent interpretability.

We equip P2P with part-relationship modeling capabilities
by parameterizing the part selection probabilities pm as a
non-diagonal logit-normal distribution3 (Atchison & Shen,
1980):

pm ∼ LogitNormal(µ,Σ)

Modeling probabilities with a logit-normal distribution has
previously proven effective in the context of segmenta-
tion (Monteiro et al., 2020), rectified flow (Esser et al.,
2024), and concept-based models (Vandenhirtz et al., 2024).

3A logit-normal distribution is a probability distribution of a
random variable whose logits are normally distributed.
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Figure 2. Schematic overview of P2P. A frozen region proposer partitions the input x into perceptually meaningful parts R1:D , which are
assigned a learned selection probability. The mask is then binarized by sampling, leading to xm that serves as the input to the classifier.

As described in the previous paragraph, the region-wise
parameters are predicted at pixel-level and then aggregated
within each region. To ensure that the covariance matrix is
positive semi-definite, we do not directly predict its entries,
but characterize each entry as a dot product of learnable
part-specific embeddings Ej =

1
|Rj |

∑
(h,w)∈Rj

(E(x))hw
Thus, the parameters of the logit-normal distribution are
computed as follows:

µj =
1

|Rj |
∑

(h,w)∈Rj

(µ(x))hw

Σjk = Ej ·Ek

By specifying the covariance this way, we ensure the pos-
itive semi-definiteness of the covariance; see Appendix A
for the simple proof. To avoid floating point issues and
overfitting, we add a small regularizer to the norm ∥Σ∥1.
An additional advantage of learning the mask over regions
instead of pixels is that it becomes computationally and
memory-efficient to compute the covariance matrix for cap-
turing these feature relationships. At inference time, the
relationships captured in the learnable, region-wise embed-
dings Ej can be interpreted, for example, by clustering. In
this work, for ease of visualization, we set the dimension-
ality of the embeddings to 3 and directly visualize them by
interpreting them as an RGB-colored image.

Dynamic Thresholding Fixing the masking threshold τ
to a constant overlooks the fact that the information required
to make a prediction can vary across instances. Previous
methods have largely bypassed this issue by relying on the
regularization strength hyperparameter, which leaves some
leeway in the masking amount across images. In contrast,
P2P addresses this problem explicitly by determining an
appropriate masking threshold for each instance at inference

time. The masking threshold is found by observing the
certainty of the classifier:

τ = inf{τ ′ | max
c∈C

p̂(yc | xm) ≥ δ}, (4)

where p̂(·|xm) denotes the classifiers predicted probabilities
for a given class and δ is the certainty that the user wants
to obtain. Importantly, P2P only looks at the certainty, but
not the actual prediction, until having made a choice of τ .
This is important because if we replaced the formulation by
a fixed predicted class ŷ | xm′ (or even ŷ | x) to then be
inf{τ ′ | p̂(ŷ | xm) ≥ δ}, it would not be truthful anymore
to say that the prediction was made with the threshold τ .

One difficulty is that this dynamic thresholding only works
as long as the model adheres to p̄ ≤ τ ′ for all possible
values of τ ′. Thus, if τ was fixed during training, this would
not work. As such, P2P is trained to be adaptable to any
value by randomly sampling τ ∼ U [0.05, 1] during training
for each instance. Additionally, we provide the sampled τ
as input to the model such that it can adapt its masking to
the desired level of sparsity. At inference time, we find the
desired τ by increasing its value stepwise until the condition
in Equation (4) is fulfilled. A natural interpretation of this
procedure is that the classifier queries for more information
until it is certain enough to make a prediction.

Loss Function To summarize, P2P learns a masking over
perceptually meaningful regions. Embedded within this
procedure is the capability of capturing the relationship of
these regions via a learnable embedding. At inference time,
the proposed approach performs a dynamic selection of the
sparsity level by querying more features until it is certain
enough to make a prediction. The final loss function that is
being optimized during training is as follows:

− log p(y|xm)− λ11[p̄ > τ ] log(1− p̄) + λ2∥Σ∥1 (5)

4



From Pixels to Perception

4. Experimental Setup
Metrics Evaluating inherent interpretability is famously
difficult (Lipton, 2016; 2017), especially in ensuring the
faithfulness of explanations to the underlying model compu-
tations, implied by the term “inherently” (Rudin, 2019).
That being said, we believe an inherently interpretable
model is supposed to demonstrate the following statement:

I find good explanations︸ ︷︷ ︸
(2)

that lead to︸ ︷︷ ︸
(3)

good performance︸ ︷︷ ︸
(1)

.

(1) Performance: To evaluate performance in the context
of classification problems, we look at the test accuracy of
the classifier given the masked input. We use this metric
because all test sets in our evaluation are class-balanced.
(2) Localization: Evaluating the goodness of explanations
depends on the type of interpretability. In our context, we
compare the selected mask m with the ground-truth segmen-
tation of the target object m⋆. While various metrics have
been proposed for evaluating segmentations (Zhang, 1996;
Russakovsky et al., 2015; Choe et al., 2020), the objective in
instance-wise feature selection, as outlined in Equations (1)
and (2), is to obtain a minimal mask. Therefore, achieving
a perfect segmentation of the ground-truth object is neither
necessary nor desirable. To this end, we evaluate a sim-
ple overlap metric, defined as |m∩m⋆|

|m| where a score of
0 indicates no overlap, and a score of 1 signifies that the
mask successfully captured a minimal mask of the object
of interest. To ensure comparability, we set the sparsity
level τ of all baselines to match that of P2P. For real-world
datasets, treating object localization as ground-truth ignores
the presence of other cooccurring, predictive features. Con-
sequently, we complement our quantitative evaluation with
the semi-synthetic BAM datasets in Appendix B that are
designed to not have any such shortcuts, as well as a visual
inspection of xm to assess their meaningfulness.
(3) Faithfulness: Jacovi & Goldberg (2020) state that “In-
herent interpretability is a claim until proven otherwise.” To
validate this claim, we compute the fidelity of explanations
using insertion and deletion (Petsiuk, 2018). For deletion,
the most important pixels in xm, determined by selection
probabilities, are iteratively set to black. Insertion starts
with a dark image, iteratively adding the most important
pixels of xm. In both metrics, we compute the fidelity of
the predictions with respect to the original prediction on
xm, i.e. using ŷ as target rather than y. This is because
the faithfulness metric evaluates how well the explanation
aligns with the model’s prediction, not its accuracy. Hooker
et al. (2019) suggest retraining classifiers to address distri-
bution shifts from pixel masking, but as all methods here
are trained on masked pixels, this is not necessary. To save
space, we present deletion results and insertion for select
datasets in Appendix B, which reinforce our conclusions
and confirm that retraining the classifiers is unnecessary.

Datasets We evaluate performance and faithfulness on
the natural image datasets CIFAR-10 (Krizhevsky et al.,
2009) with 10 classes, and ImageNet (Russakovsky et al.,
2015) with 1000 classes. To additionally compute local-
ization, we use Imagenet-9 (Xiao et al., 2021), a subset of
ImageNet with 9 coarse-grained classes where object seg-
mentations have been made available. Furthermore, we in-
troduce COCO-10, a subset of MS COCO (Lin et al., 2014),
with the classes {Bed, Car, Cat, Clock, Dog, Person, Sink,
Train, TV, Vase}. Classes C were chosen by maximizing the
class-unique number of images.

C = argmax
C∈C

min
c∈C

N∑
i=1

1[y(i)c = 1∧y
(i)
k = 0 ∀k ∈ C \{c}]

Thus, we obtain 1000 training and 100 test images per class
and use the object segmentations of MS COCO. Lastly,
we use the semi-synthetic BAM from Yang & Kim (2019)
whose results are shown in Appendix B to save space, and
they support the same conclusions.

Baselines and Implementation Details We compare the
performance of P2P to multiple state-of-the-art models
and insightful baselines. Blackbox predicts directly on x,
thereby providing an upper bound for performance and in-
dicating random performance for localization. Blackbox
Pixel takes xm as input, where m is an evenly-spaced mask
that adheres to τ , critiquing Equation (1) by showcasing
that uninformed masking in pixel space can lead to highly
predictive solutions. The existing works that we use as base-
lines are DiET (Bhalla et al., 2024), REAL-X (Jethani et al.,
2021), RB-AEM (Ganjdanesh et al., 2022), B-cos (Böhle
et al., 2022), and COMET (Zhang et al., 2025), all described
in Section 2. Notably, COMET learns a continuous-valued
mask. We use the loss from their code repository, not the
manuscript, as the latter significantly reduced performance.
As faithfulness ablation, we also introduce COMET−1,
which inverts m before passing it to the classifier.

For all methods, we use a pre-trained LR-ASPP Mo-
bileNetV3 (Howard et al., 2019) as the selector and a pre-
trained ViT-Tiny (Touvron et al., 2021) as the classifier
backbone. Images are preprocessed to 224 resolution. All
models are trained using Adam (Kingma & Ba, 2015) with
β1 = 0.9, β2 = 0.999, and learning rate 1e-4. We train
for 20 epochs on ImageNet and 100 epochs on all other
datasets with a batch size of 64. To get superpixels, we
use FastSLIC (Kim, 2021) with m = 20 and 100 segments,
determined by visual inspection. As described in Section 3,
any large λ1 leads to p̄ ≈ τ , so we set it to 10, and λ2 = 0.01
against overfitting. During training, P2P anneals the sparsity
loss and Gumbel-Softmax temperature to prevent degenerate
cases. At inference, we set the certainty threshold δ to 0.8
for ImageNet and 0.99 for all other datasets, and determine
active regions by thresholding probabilities at 0.5 instead of
sampling. We provide an ablation for δ in Appendix B.
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Table 1. Accuracy reported across ten seeds. The best-performing
method for each dataset is bolded, and the runner-up is underlined.

Dataset (τ ) Model Accuracy (%)

CIFAR-10 (20%)

Blackbox 95.79 ± 0.28
Blackbox Pixel 94.56 ± 0.33
COMET−1 95.07 ± 0.49
DiET 55.97 ± 13.94
RB-AEM 78.04 ± 23.44
REAL-X 90.44 ± 0.21
B-cos 93.80 ± 0.18
COMET 94.35 ± 0.49
P2P 94.45 ± 0.29

COCO-10 (40%)

Blackbox 89.36 ± 0.64
Blackbox Pixel 86.79 ± 0.81
COMET−1 87.98 ± 0.49
DiET 27.38 ± 2.41
RB-AEM 72.96 ± 3.03
REAL-X 83.98 ± 1.05
B-cos 84.54 ± 0.73
COMET 88.43 ± 0.71
P2P 89.53 ± 0.89

ImageNet (50%)

Blackbox 71.22 ± 0.15
Blackbox Pixel 70.66 ± 0.14
COMET−1 69.70 ± 0.06
DiET 5.08 ± 0.88
RB-AEM 57.76 ± 1.65
REAL-X 69.08 ± 0.25
B-cos 58.34 ± 0.14
COMET 70.90 ± 0.21
P2P 68.70 ± 0.19

ImageNet-9 (30%)

Blackbox 94.45 ± 0.42
Blackbox Pixel 93.89 ± 0.50
COMET−1 94.27 ± 0.54
DiET 30.62 ± 3.99
RB-AEM 81.67 ± 2.12
REAL-X 89.31 ± 0.73
B-cos 92.18 ± 0.21
COMET 94.12 ± 0.44
P2P 94.42 ± 0.30

5. Results
In the following paragraphs, we showcase that P2P produces
meaningful explanations that lead to good performance.

Test Performance In Table 1, we report the accuracy of
the proposed approach, P2P, compared to the baselines. Re-
markably, P2P achieves performance comparable to the
upper-bounding Blackbox while, on average, removing up
to 80% of the image content. Only COMET matches this
performance, but we argue that its predictions are not based
on the highlighted regions. Observe that COMET−1, which

highlights the least important pixels by inverting masks
at sparsity level τ , performs equally well. This suggests
COMET’s predictions are mask-independent, failing the
faithfulness criterion. It is also noteworthy that Blackbox
Pixel performs close to Blackbox despite masking a signifi-
cant portion of the image. This shows that non-informative
masks in pixel-space do not impair a predictor’s capabilities.
Thus, if random masking already approaches optimal perfor-
mance, we can presume that the pixel-level feature selection
problem in Equation (1) fails to enforce the learning of
meaningful pixels. Further, we observe that DiET struggles
with real-world datasets, as its gradient-based mask conver-
gence algorithm is both computationally slow and unstable
for high-dimensional data. Similarly, while REAL-X has
desirable theoretical properties, it struggles with real-world
data. This is likely due to its reliance on a frozen classifier
pre-trained with random masking, which is unable to adapt
to the structured masks output by the selector.

Localization In Table 2, we show the localization of
all methods. Clearly, P2P’s region-based mask locates the
object of interest better than the baselines. The runner-up is
the recently proposed COMET (Zhang et al., 2025). This
indicates that our parts-focused selection mask, as well as
the modeling of their relationships, helps the model to learn
masks that adhere to the object of interest. In Appendix C,
we visualize the embeddings that capture the relationships.
Notice that COMET−1’s poor localization does not affect
accuracy, indicating it does not rely solely on these regions.
That said, real-world datasets may contain co-occurring
features missed by this metric. Thus, in Appendix B, we use
the semi-synthetic BAM to confirm our conclusions. Also,
we provide visualizations of xm at the end of this section.

Table 2. Localization across ten seeds. The best-performing
method for each dataset is bolded, and the runner-up is underlined.

Dataset (τ ) Model Localization (%)

COCO-10 (40%)

Random 25.47 ± 0.01
COMET−1 22.69 ± 1.66
DiET 26.24 ± 0.51
RB-AEM 24.58 ± 3.76
REAL-X 33.28 ± 1.59
B-cos 34.57 ± 0.44
COMET 36.43 ± 1.70
P2P 47.01 ± 1.16

ImageNet-9 (30%)

Random 38.52 ± 0.01
COMET−1 24.23 ± 3.59
DiET 38.54 ± 1.46
RB-AEM 32.52 ± 1.96
REAL-X 56.13 ± 2.80
B-cos 53.26 ± 0.50
COMET 63.73 ± 2.00
P2P 69.25 ± 1.06
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(c) ImageNet-9

Figure 3. Insertion Fidelity, where the most important pixels of the explanation xm are iteratively added to a black image, measuring
how much information is required until the original prediction is recovered. The faster, i.e. the steeper the curve, the better. Results are
reported as averages and standard deviations across ten seeds.

Ablation Study: Fixing τ A key contribution of P2P is
its dynamic thresholding based on the classifier’s certainty.
However, P2P also supports a fixed threshold across all
samples in case an application requires a specific level of
sparsity. In Figure 4, we present an ablation using a fixed τ
set either to the average sparsity determined by the dynamic
thresholding or to 20% to encourage stronger masking.

The fixed variant clearly performs worse in accuracy, which
is expected since it lacks the flexibility to adapt to the
instance-wise required amount of information. This high-
lights the advantage of dynamic thresholding in P2P, as it
enables the model to selectively query more information
when necessary, leading to more informed predictions. At
the same time, higher sparsity levels lead to improved lo-
calization, suggesting that the restrictively selected regions
are the most informative. As such, if a user prioritizes the
interpretability and correctness of the mask over accuracy,
enforcing a stricter sparsity constraint may be beneficial.
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Figure 4. Ablation study of P2P with a constant τ . In “Matched”,
we set τ to the average value of the dynamic P2P, which is
20%, 20%, 40%, 30%, for each dataset, respectively.

Faithfulness From these previous results, we can deduce
that P2P provides both meaningful explanations and strong
performance. The final step to demonstrate that P2P is an
inherently interpretable feature selection method is to show
that its predictions are faithfully based on the explanations.
For this, we present the insertion fidelity in Figure 3. Recall
that fidelity measures the importance of highlighted pixels
with respect to the original prediction, not with respect
to the ground-truth, thereby measuring the faithfulness of
explanations. We exclude B-cos and Blackbox, as they lack
masked training, making this metric unable to distinguish
fidelity from out-of-distribution behavior (Hooker et al.,
2019). In Appendix B, we additionally present the insertion
fidelity for the remaining datasets and deletion fidelity for
all datasets, confirming our conclusions.

The curves show that P2P is superior in the fidelity of its
explanations, as evidenced by the significantly steeper inser-
tion curves compared to the baselines. This indicates that the
explanations output by P2P are the actual reasons for the pre-
diction that the classifier makes. In contrast, this highlights
the weakness of COMET’s continuous-valued masking that
was already discussed in the context of COMET−1. For in-
stance for COCO-10 Insertion Fidelity with τ = 40%, when
the top 40% most important pixels are retained, COMET
recovers the original prediction only 60% of the time. This
calls into question the faithfulness of its masks, as the high-
lighted pixels alone do not faithfully capture the model’s
decision-making – darker regions still significantly influence
the outcome. It also explains COMET and COMET−1’s
strong predictive performance, as it does not limit its input
to only 100× τ% of the content but continues utilizing the
full image, merely adjusting for brightness. On the other
hand, we find that P2P benefits from parts-based masking,
as its predictions depend strongly on the highlighted regions.
This indicates that P2P has learned to extract and utilize the
important regions of each image.
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Figure 5. Masked inputs xm of COCO-10 for selected methods.

We also see that the P2P variant with a fixed τ is worse than
the dynamic P2P for low insertion percentages p but better
when p > τ . This is expected, as dynamic thresholding
results in varying levels of masking across images. Some
images receive strong masking, where even p = 10% of pix-
els may be sufficient to reconstruct the prediction, leading
to high fidelity. Conversely, images with weaker masking
require a larger fraction of pixels to faithfully explain the
prediction. Additionally, we find that while DiET does
not achieve the highest predictive accuracy, its selection
probabilities effectively capture the rationale behind its pre-
dictions. In contrast, RB-AEM, which predicts the mask’s
mean and expansion parameters, seems heavily reliant on
the randomness inherent in the distributions’ sampling pro-
cess. That is, for sufficiently high variance, this approach
behaves similarly to Blackbox Pixel, relying more on ran-
dom sampling than meaningful feature selection.

Visualizations To round off the analysis, we provide vi-
sualizations of xm in Figure 5, and a set of randomly se-
lected xm for each dataset in Appendix C. Quantitatively
measuring the perceptual benefit of masking semantically
meaningful regions instead of individual pixels is challeng-
ing, as it enhances the alignment of the masks with human
visual perception. While difficult to express numerically,
the visualizations clearly illustrate that P2P’s masks result
in highly interpretable selections. Crucially, all methods
learn their masks without any access to ground-truth seg-
mentations. Yet, P2P clearly identifies and focuses on the
object of interest. For example, for the clock, the model con-
fidently makes a prediction without needing to see the entire

object. Conversely, Blackbox Pixel, despite masking 60%
of pixels, removes little actual information, suggesting that
Equation (1) is misspecified. In contrast, P2P’s region-based
formulation enforces perceptual sparsity while maintaining
strong performance. Consistent with the quantitative results,
COMET highlights important regions, but its non-binary
mask fails to remove other information. Darkened pixels
may appear less informative to humans, but they retain their
numerical differences that the model leverages, therefore us-
ing information from both highlighted and dimmed regions.

6. Conclusion
We introduced P2P, a new instance-wise feature selection
method for inherently interpretable classification. P2P
learns masks that adhere to human perception by enforcing
sparsity in the space of semantically meaningful regions.
Additionally, we proposed a dynamic thresholding mecha-
nism that adjusts the sparsity for each image based on the
prediction difficulty. Empirically, we showed that P2P satis-
fies the key properties of inherent interpretability: it selects
meaningful features that faithfully lead to a strong predic-
tive performance. Our qualitative results further showed
that by masking perception-adhering regions instead of indi-
vidual pixels, P2P effectively captures the relevant informa-
tion in the image, making it significantly easier to interpret
the model’s decisions and gain insights into the task, data,
and model reliability. Our findings highlight the versatility
of P2P, which we believe to hold significant potential for
instance-wise feature selection, paving the way for exciting
advancements in the field of inherent interpretability.
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A. Positive Semi-Definiteness of Covariance Matrix
Here, we present a short proof that shows the positive semi-definiteness of a covariance matrix whose entries are defined as
dot products of embeddings. The covariance matrix Σ ∈ RD×D is defined such that each entry is computed as a dot product
of learnable part-specific embeddings:

Σjk = Ej ·Ek,

Step 1: Symmetry of Σ The dot product operation ensures that Σjk = Σkj for all j, k, since:

Σjk = Ej ·Ek = Ek ·Ej = Σkj .

Thus, Σ is symmetric.

Step 2: Positive Semi-Definiteness To show that Σ is positive semi-definite, consider an arbitrary vector z ∈ RD. The
quadratic form of Σ is given by:

z⊤Σz =

D∑
j=1

D∑
k=1

zjzkΣjk.

Substituting Σjk = Ej ·Ek, this becomes:

z⊤Σz =

D∑
j=1

D∑
k=1

zjzk(Ej ·Ek).

Rewriting using vector notation:

z⊤Σz =

 D∑
j=1

zjEj

 ·

(
D∑

k=1

zkEk

)
.

Let u =
∑D

j=1 zjEj . Then:
z⊤Σz = u · u = ∥u∥2 ≥ 0.

Since the quadratic form is non-negative for all z ∈ RD, Σ is positive semi-definite.
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Table 3. Test Accuracy and Localization reported as averages and standard deviations across ten seeds. The best-performing method for
each dataset is bolded, and the runner-up is underlined.

Dataset (τ ) Model Accuracy (%) Localization (%)

BAM Object (20%)

Blackbox 89.55 ± 0.48 22.94 ± 0.00
Blackbox Pixel 87.56 ± 0.54 22.94 ± 0.00
COMET−1 89.58 ± 0.34 28.32 ± 10.98
DiET 31.27 ± 14.46 37.78 ± 11.36
RB-AEM 75.93 ± 1.87 18.68 ± 1.71
REAL-X 82.62 ± 0.84 71.19 ± 1.52
B-cos 86.47 ± 0.18 48.23 ± 0.72
COMET 89.33 ± 0.47 82.88 ± 0.32
P2P 88.92 ± 0.50 83.02 ± 0.75

BAM Scene (20%)

Blackbox 93.12 ± 0.27 77.06 ± 0.00
Blackbox Pixel 92.18 ± 0.42 77.06 ± 0.00
COMET−1 92.07 ± 0.47 77.85 ± 10.56
DiET 55.79 ± 20.41 76.63 ± 16.98
RB-AEM 80.03 ± 1.37 82.02 ± 0.93
REAL-X 85.49 ± 1.02 95.15 ± 1.32
B-cos 91.67 ± 0.39 92.99 ± 0.19
COMET 90.94 ± 0.74 98.49 ± 0.63
P2P 91.93 ± 0.45 98.18 ± 0.27

B. Additional Results
BAM Datasets Beyond the datasets in Section 5, we also evaluate all methods on the semi-synthetic BAM Scene and
BAM Object (Yang & Kim, 2019). These two datasets are creating by cropping an object from MS COCO (Lin et al., 2014)
and inserting it in scenes from Places (Zhou et al., 2017). The two datasets differ by the choice of whether the object or the
scene is the target. Notably, with this setup, there are no other predictive features, apart from the object or scene of interest.
As such, in contrast to the results in Section 5, the localization metric perfectly captures the ground-truth pixels m⋆ that can
be useful for the prediction. In Table 3, we provide the accuracy and localization of all methods on these datasets. Clearly,
P2P also excels in this controlled setup, showcasing that it reliably determines the object or scene of interest.

Insertion Fidelity In addition to the visualizations in Section 5, we present the insertion fidelity of the remaining datasets
in Figure 6. These results support the conclusions from Figure 3 by again showcasing that P2P’s performance highly depends
on the pixels that are deemed important by the selector. In contrast, other methods, such as COMET, have a much less steep
curve, indicating that they rely on the full image to make their prediction.

Deletion Fidelity In this paragraph, we show the deletion fidelity of all methods. With a similar idea to insertion fidelity,
this metric starts from xm and iteratively masks the most important pixels. The stronger the decline, the better, as it indicates
that the removal of the most important pixels makes the model change its prediction, thereby showing that its prediction is
based on these pixels. Similar to the insertion fidelity, the metric measures how often the model changes its predictions,
rather than computing the accuracy with respect to the ground truth. In Figure 7, we present the deletion fidelity. Similar to
the results in Figure 3, we see that P2P has a very steep curve, indicating that the removal of its most important pixels do
have an strong effect on its prediction. This supports the conclusions that P2P is a faithful, inherently interpretable classifier.

These results also justify the direct use of the insertion and deletion fidelity as faithfulness evaluation. That is, ROAR (Hooker
et al., 2019) cautions against directly computing insertion and deletion fidelity due to potential distribution shifts when
removing pixels. However, since all models in our study are trained with masking, they remain within distribution even
when pixels are removed. P2P’s strong performance in both insertion and deletion fidelity further confirms that its fidelity
scores are due to faithfulness rather than out-of-distribution effects. If out-of-distribution issues were responsible for a sharp
drop, we would expect strong deletion fidelity but poor insertion fidelity. Likewise, if poor-performing baselines in insertion
fidelity suffered from distribution shifts, they should perform well in deletion fidelity – yet this is not the case for RB-AEM
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and COMET. These results allow the conclusion that the observed fidelity results genuinely reflect the faithfulness of the
methods rather than being skewed by distribution shifts.
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Figure 6. Insertion Fidelity, where the most important pixels of the explanation xm are iteratively added to a black image, measuring
how much information is required until the original prediction is recovered. The faster, i.e. the steeper the curve, the better. Results are
reported as averages and standard deviations across ten seeds.
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(b) COCO-10
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(c) ImageNet-9
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(d) ImageNet
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(e) BAM Object
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(f) BAM Scene

Figure 7. Deletion Fidelity, where the most important pixels of the explanation xm are iteratively removed, measuring how much
information needs to be removed until the prediction changes. The steeper the curve, the better. Results are reported as averages and
standard deviations across ten seeds.

Ablation Study: Certainty Threshold δ In Table 4, we present an ablation of different certainty thresholds for P2P. We
see that the dynamic thresholding adjusts based on the chosen certainty of the prediction. The less certainty is required, the
sparser the mask will be. As such, it makes sense that the accuracy decreases with a lower δ. Simultaneously, localization
improves, as the most important pixels are more likely to be part of the object of interest. Notably, even for extremely
strong masking, P2P’s predictive performance does not drop to an extremely low level, but it seems even with very little
information, the model can perform meaningful predictions.
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Table 4. Ablation study of P2P for varying certainty thresholds δ. We measure accuracy and localization, as well as the average number of
masked pixels p̄.

Dataset δ Accuracy (%) Localization (%) p̄ (%)

BAM Object

0.80 84.82 92.23 10.16
0.90 86.70 90.30 12.31
0.95 87.83 88.13 14.69
0.99 88.92 83.02 20.19

BAM Scene

0.80 85.18 99.45 12.19
0.90 88.23 99.25 14.77
0.95 90.08 98.97 17.42
0.99 91.93 98.18 23.46

CIFAR-10

0.80 85.66 - 13.20
0.90 89.69 - 15.56
0.95 92.05 - 17.97
0.99 94.45 - 23.51

COCO-10

0.80 82.91 54.99 21.44
0.90 86.61 52.91 26.51
0.95 88.15 51.19 31.26
0.99 89.53 47.01 41.71

ImageNet

0.80 68.70 - 48.31
0.90 69.82 - 56.85
0.95 70.12 - 63.04
0.99 70.23 - 72.99

ImageNet-9

0.80 87.13 77.97 15.22
0.90 91.02 75.77 18.91
0.95 92.79 73.73 22.42
0.99 94.42 69.25 30.19
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Ablation Study: Superpixel Algorithm Superpixels are a central part of our method. Thus, we provide an ablation study
for the choice of algorithm. In preliminary experiments, we observed that the choice of SLIC’s hyperparameters do not have
a strong effect on performance, as long as the number of segments chosen is reasonable (i.e. >20). In Table 5, we explore
the effect of the specific superpixel algorithm on P2P’s performance by replacing the SLIC superpixel algorithm with the
Watershed superpixel algorithm (Neubert & Protzel, 2014), choosing the hyperparameters by ensuring similar number of
segments. We see that there are no strong dependencies on the specific choice of superpixel algorithm, further strengthening
the generality of P2P.

Table 5. Accuracy and localization performance of P2P using different region proposal algorithms.

Dataset Method Accuracy (%) Localization (%)

ImageNet-9 P2P (Watershed) 93.95 67.70
P2P (SLIC) 94.42 69.25

COCO-10 P2P (Watershed) 90.05 46.95
P2P (SLIC) 89.53 47.01

Ablation Study: InfoMask Here, we additionally compare P2P to InfoMask (Taghanaki et al., 2019) on a subset of
datasets. This method is a information bottleneck-inspired approach that learns a masking on pixel level, regularized by a
kl-divergence. Some notable differences are that InfoMask operates directly on pixel level and uses ’semi-hard’ masking,
where each masking probability is either 0, or in (0,1). We present the results of applying InfoMask in the same setup as
P2P in Table 6. The mask of InfoMask is learned on pixel-basis, which encourages it to behave similarly to Blackbox Pixel.
That is, in these complex datasets, InfoMask selects pixels nearly randomly, relying on the fact that a reduction in resolution
does not effectively reduce information from the image. On the other hand, P2P selects only a sparse subset of features that
are relevant for the prediction.

Table 6. Comparison of P2P and InfoMask in terms of accuracy and localization performance.

Dataset Method Accuracy (%) Localization (%)

ImageNet-9 InfoMask 94.69 38.55
P2P 94.42 69.25

COCO-10 InfoMask 89.20 26.02
P2P 89.53 47.01
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C. Further Qualitative Examples
Covariance Learning The learned, part-relationship capturing covariance is not only useful for the learning process, it
can also provide interpretability into the model’s internal understanding of the image. In Figure 8, we show examples of the
3-dimensional embedding used to compute the pairwise covariances. These embeddings characterize each part, and due to
the design choice of a 3-dimensional embedding, we can visualize them as colors. Note that one could use more dimensions
and visualize part similarities by preprocessing them with a clustering algorithm similar to Löwe et al. (2024). Note that the
colors themselves do not contain any meaning, as the embedding is not constraint in such a way, however, one can interpret
the similarity in color between two parts, as their relationship. In the provided examples, we see that P2P learns that the
background buildings are two separate entities, while the street is also different. In the right picture, we show that P2P does
not only rely on color cues for its similarities, as it can correctly separate the foreground leaf from the rest of the leaves in
the background.

Figure 8. Visualization of the part-wise embeddings, used to compute the covariance, as colors. Left is the partitioned input, middle is the
masked input, and on the right, we show the part embeddings.

Randomly Sampled Masks We believe that one of the best ways to assess and understand the goodness of an inter-
pretability method is by looking at its visualizations. In order to give the reader an unbiased picture, we visualize randomly
selected xm on the test set of each dataset. We urge the reader while analyzing these figures, to remember that, in contrast to
almost all figures that are presented in the main parts of any publication, these images are not cherry-picked but randomly
selected. In order to emphasize the masking aspect of P2P, we show the pictures for the low certainty threshold δ = 0.8.

In Figures 9 to 14, we present the randomly sampled images. It is evident that P2P consistently captures the objects of
interest. We argue that images where the model applies weak masking often correspond to cases where the object of interest
is difficult to identify. This supports the use of dynamic thresholding, as it makes sense to visualize big parts of the image in
these challenging examples. Note that for BAM Scene, the background is what determines the label. Also, note that for
ImageNet, the masking amount is significantly less, as the certainty threshold of 0.8 is harder to obtain for this dataset with
1000 potential classes. From an interpretability standpoint, these visualizations help identify potential shortcuts the model
may have learned. This is a significant advantage of our inherently interpretable method. Unlike standard black-box models,
the provided visualizations enable us to detect these correlations, assess whether they are spurious or meaningful, and refine
the model iteratively to enhance its robustness. Some examples of possible correlations that could be investigated would
be the following: In COCO-10, teddy bears and pillows might be an indicator for the class bed. Flowers might be used to
classify vases. Street lights and signs might indicate the label car. For ImageNet-9, a frontal-facing human might imply the
class fish. We argue that for pixel-based instance-wise feature selectors it would be much harder to arrive at such hypotheses,
as the pixelated nature of the masks make it more unclear, what exactly the classifier uses for its prediction.
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Figure 9. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for BAM Object.
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Figure 10. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for BAM Scene.
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Figure 11. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for CIFAR-10.
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Figure 12. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for COCO-10.
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Figure 13. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for ImageNet-9.
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African Grey Parrot Brittany Spaniel Eskimo Dog Macaw Rock Python

Agama Caldron Fire Salamander Malamute Samoyed
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American Alligator Clumber Frilled Lizard Mousetrap Sorrel
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Figure 14. Visualization of randomly sampled images overlayed with their partitions, as well as the masked input xm for ImageNet.
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