SongBloom: Coherent Song Generation via
Interleaved Autoregressive Sketching and Diffusion
Refinement

Chenyu Yang'# Shuai Wang>*~ Hangting Chen’ Wei Tan?
Jianwei Yu Haizhou Li'*"

!'The Chinese University of Hong Kong, Shenzhen 2Tencent Al Lab
3Nanjing University ~ *Shenzhen Research Institution of Big Data

Abstract

Generating music with coherent structure, harmonious instrumental and vocal
elements remains a significant challenge in song generation. Existing language
models and diffusion-based methods often struggle to balance global coherence
with local fidelity, resulting in outputs that lack musicality or suffer from incoherent
progression and mismatched lyrics. This paper introduces SongBloo a novel
framework for full-length song generation that leverages an interleaved paradigm of
autoregressive sketching and diffusion-based refinement. SongBloom employs an
autoregressive diffusion model that combines the high fidelity of diffusion models
with the scalability of language models. Specifically, it gradually extends a musical
sketch from short to long and refines the details from coarse to fine-grained. The
interleaved generation paradigm effectively integrates prior semantic and acoustic
context to guide the generation process. Experimental results demonstrate that
SongBloom outperforms existing methods across both subjective and objective
metrics and achieves performance comparable to the state-of-the-art commercial
music generation platforms. Audio samples are available on our demo page:
https://cypress-yang.github.io/SongBloom_demo.

1 Introduction

Music, as one of the most expressive forms of human art, serves as a universal language that transcends
cultural and linguistic boundaries. Lyric-to-song generation, which involves producing both vocals
and accompaniment from given lyrics, requires comprehensive modeling of diverse musical elements,
including instrumentation, vocal expressiveness, structural arrangement, and emotional dynamics.
These complexities pose significant challenges for existing generative approaches [} [2]. In particular,
end-to-end models that directly synthesize music face considerable challenges in maintaining sound
quality, as music’s wide frequency range and complex temporal dynamics impose stringent demands
on generative fidelity and model capacity.

Advanced approaches to long-form generation typically adopt either a unified non-autoregressive
(NAR) architecture [3]] that models the entire process with a diffusion transformer, or an autoregressive
(AR) framework [4} |5] that employs language models (LMs) and separates the generation into
semantic and acoustic stages. However, NAR models often struggle to capture precise alignments
between phonemes and audio frames, whereas AR approaches typically predict quantized tokens that
suffer from low bitrates, resulting in weak musicality and degraded audio quality.

*Corresponding authors.
!Code: https://github.com/Cypress-Yang/SongBloom

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://cypress-yang.github.io/SongBloom_demo
https://github.com/Cypress-Yang/SongBloom

System | Architecture Size Max Length Sample Rate (kHz) Structure

SongGen [9] LM 1.1B 30s 16 X
SongEditor [5] LM + Diff. 0.7B+ 1B 120s 44.1 v
DiffRhythm-base [3] Diff. 1.1B 95s 44.1 X
DiffRhythm-full [3] Diff. 1.1B 285s 441 X
YuE [4] LM+ LM 7B + 1B 300s 44.1 v
SongBloom-tiny LM & Diff. 1.3B 60s 48 v
SongBloom-full LM & Diff. 2B 150s 48 v

Table 1: Comparison of existing song generation models. “+” indicates two cascaded models, while
“&” indicates one unified model with jointly optimized objectives.

To address these challenges, we propose SongBloom, a novel lyric-to-song generation approach that
combines the strengths of both AR and NAR approaches. SongBloom is built upon an autoregressive
diffusion architecture 6], which is well-suited for continuous-valued modalities such as music and
speech, and has shown strong scalability and robust long-range generation capabilities [[7] comparable
to that of audio language models. Given structured lyrics and a 10-second reference audio clip,
SongBloom can generate full-length songs with diverse sections up to 150 seconds long.

To further improve the semantic alignment in long-form song generation, we decouple high-level
sketch planning from low-level acoustic synthesis, and integrate both within the unified autoregressive
framework that supports joint modeling in the style of Chain-of-Thought (CoT) prompting [8]. No-
tably, we observe that the entire sketch sequence is not always necessary for predicting each acoustic
frame. Instead, the acoustic context itself can provide valuable guidance for shaping subsequent
sketch planning. Based on this insight, we partition both semantic and acoustic sequences into
patches and generate them in an interleaved manner. This paradigm not only facilitates bidirectional
contextual exchange between sketching and refinement stages but also significantly reduces the
sequence length needed during acoustic synthesis.

Both subjective and objective evaluations are conducted in our experiments. The assessment employs
a comprehensive suite of metrics covering multiple dimensions, including musicality, audio quality,
structural coherence, and overall musical aesthetics. The results show that SongBloom consistently
outperforms all open-source baselines and surpasses most commercial systems, achieving state-of-
the-art performance across several key metrics.

The main contributions of this paper can be concluded as:

* We propose SongBloom, the first autoregressive diffusion-based model for full-length song
generation, which is capable of producing high-quality and expressive songs with coherent
structure and rich acoustic details.

* We design a unified framework that combines coarse and fine stages into a single, jointly optimized
model, and treats sketch tokens as CoT-like prompts for acoustic generation directly. Additionally,
we introduce a novel interleaved generation paradigm that alternates between sketch and acoustic
patches, effectively utilizing both semantic and acoustic contexts.

» Experiments demonstrate that SongBloom surpasses all non-commercial baselines and achieves
competitive performance with the state-of-the-art Suno-v4.5 in terms of both subjective and
objective metrics. Additionally, our approach achieves a relatively low real-time factor (RTF)
compared to other LM-based methods, indicating a favorable trade-off between generation quality
and computational efficiency.

2 Related work

2.1 Song Generation

Song generation models aim to produce both singing voice and accompanying music. Previous
studies, such as Melodist [[10]], SongGen [9], and MelodyLM [11], have shown promising results in
generating sentence-level singing and accompaniment. However, generating long-form song pieces
that encompass diverse musical structures, such as verses, choruses, and instrumental-only sections,

remains a significant challenge. JukeBox [12] was one of the earliest attempts at generating long-
form songs, though it suffers from limited genre and timbre control. SongComposer [13]] supports
long-form lyric-to-melody generation but struggles to preserve certain aspects such as timbre.

Recent research has increasingly focused on long-form and structure-guided song generation.
DiffRhythm [3]] introduces a single diffusion model capable of generating songs up to 285 sec-
onds in length while maintaining a low real-time factor. YuE [4] employs a coarse-to-fine generation
strategy, leveraging two large-scale language models to produce acoustic tokens with improved
fidelity and structure. SongEditor [5] proposes a two-stage framework that supports both full song
generation and infilling-based editing tailored to specific lyrics, offering greater flexibility for user-
driven customization. In addition, commercial platforms such as Suncﬂ and Udiﬂ have demonstrated
promising capabilities in complete song generation. However, due to the lack of publicly available
technical details, these systems cannot be thoroughly evaluated or compared.

2.2 Autoregressive Diffusion Models

While language models predominantly operate in discrete-valued space, this paradigm might be
suboptimal for inherently continuous audio signals. A common workaround involves transforming
waveforms into discrete token sequences through vector quantization (VQ)[14}15] or residual vector
quantization (RVQ)[16]. Recent work, however, challenges the necessity of discretization. For
instance, Li et al. [6] demonstrates that discrete tokens may not be essential for autoregressive
language models in image generation. Some research has also explored autoregressive diffusion
techniques for text [[17]] and speech [[18] generation. ARDIT [19] introduces a decoder-only diffusion
transformer for zero-shot text-to-speech generation, achieving impressive results without relying on
discrete tokens. DiTAR [7]] further simplifies the architecture through a divide-and-conquer strategy,
making the model more adaptable for large-scale deployment.

However, the approaches mentioned above remain restricted to the speech domain, and direct
migration faces some limitations. First, songs are typically longer than spoken utterances, imposing
stricter requirements on contextual consistency across extended durations. Second, the presence of
musical accompaniment leads to a higher semantic density of each frame, making generation more
difficult. Recent works [20} 21]] introduce a shared transformer architecture capable of handling both
discrete and continuous tokens across different modalities. Inspired by this design, we propose a
unified autoregressive framework that integrates both sketch prediction and audio synthesis with
distinct training objectives.

3 Preliminary

Next-Token Prediction Given a sequence of tokens x = (z1,Za,...,Z¢—1), the objective is to
model the conditional probability of the next token P(x; | 1, 2, ...,z;—1). For an entire sequence
(21,9, ...,2T), the joint probability is factorized as:
T
P(zy,z2,...,z7|C) = H P(zy | z1,22,...,00-1;C), €))
t=1

where C' represents the conditions.

Rectified Flow Matching Rectified flow-matching [22] defines a linear interpolation between a
source point zo and a target point z; over time ¢ € [0, 1]:
2zt = (1 —t)zg +tz1 (2)
dz; = (21 — 2z0)dt = v(z¢, t)dt 3)
where zg denotes the original data and z; ~ N(0,1) is a random noise. v(z,t) represents the
velocity field guiding the transformation from 2, to z;. The reverse process enables the generation by
inverting this transformation:
Zt—At = 2t — 'U(Zt,t) . At (4)
This formulation allows the model to sample from the data distribution by iteratively denoising from
the noise distribution.

“https://suno.com
*https://udio.com

https://suno.com
https://udio.com

Oo—— latent

295999999 [Faml-

Transformer Decoder

bh L STATNN . be TR

Lyrics Reference Audio
Y Encoder
O : sketch token O : (compressed) acoustic token :

D : condition token O : hidden vector

Figure 1: Overall architecture of SongBloom.

4 SongBloom

4.1 Task Formulation

MusicLM [23]] proposes a two-stage framework that leverages semantic tokens, referred to as
sketch, extracted from self-supervised learning (SSL) models such as MERT [24] as intermediate
representations. In the first stage, an LM is employed to generate the sketch sequence from scratch,
as its variable length and discrete nature make it well-suited for language modeling approaches,
which have demonstrated strong scalability. In the second stage, either diffusion or LM subsequently
generates acoustic tokens in a coarse-to-fine manner. The overall generation process can be formulated
as:

p(a(O:T]vs(O:T] | C) = p@(a(O:T] | 5(0:T}7C) 'pd)(S(O:T] ‘ C)a (5

where s; denotes the sketch token at frame ¢, and a; denotes the acoustic token. 7' is the total length
of the frame sequence. The parameters ¢ and 6 represent the models responsible for generating
semantic and acoustic tokens, respectively. This two-stage architecture has been widely adopted in
previous long-form music generation approaches such as [} 14} 25].

However, the aforementioned formulation faces several limitations: 1) Future sketch tokens contribute
little to the prediction of current acoustic tokens due to the strict token-level alignment between the
two representations. As noted in Yang et al. [S]], Xu et al. [26], using chunk-level semantic-to-acoustic
reconstruction introduces minimal degradation in fluency, suggesting that generating the complete
semantic sequence in advance may be unnecessary. 2) Given the rich and expressive nature of music,
prior acoustic latents can provide valuable contextual cues for sketch token generation. However,
existing approaches typically condition only on the semantic history, thereby overlooking potentially
useful acoustic information.

To address the aforementioned challenges, we propose a novel generation paradigm that interleaves
the generation of sketch and acoustic sequences. Both types of tokens are first segmented into
fixed-size patches. The modified generation process is formulated as:

N

p(a(O:T]ys(O:T] | C) = Hp@(s(iP:(i+l)P]‘S(O:iP]va(O:inC) 'p¢(a(¢P:(i+1)P]|S(0:(¢+1)P]7a(o:z‘P],C)a (6)
i=0

where P denotes the patch size, N = [T'/P] — 1 denotes the number of patches. 6 and ¢ corre-
spond to the parameters responsible for generating sketch tokens and acoustic features, respectively.
Although a sequential dependency between the two stages still exists, the interleaved generation
paradigm enables bidirectional information exchange between the semantic and acoustic representa-
tions. The two stages share a subset of model parameters and are jointly optimized within a unified
framework, facilitating coherent and high-fidelity song generation.

4.2 Data Representation

Lyric preprocessing To incorporate structural information, we introduce two categories of structure
flags into the lyric sequence. Vocal-based flags, which indicate the structure of vocal sections (e.g.,
verse, chorus), are prepended to the beginning of each paragraph. Accompaniment-based flags, which
represent non-vocal regions such as intros and outros, are inserted between paragraphs and expanded
proportionally according to their exact durations. All lyric text is normalized and then transformed
into a phoneme sequence to serve as input for the subsequent sketch generation stage.

Sketch tokens In this paper, we adopt the embeddings extracted from MuQ [27] as our sketch
representation. A single vector quantization layer is attached to discretize the sketch embeddings
into flattened tokens. Additionally, we have explored various sketch alternatives including musical
signals, which are further discussed in Appendix

Acoustic latents Due to the broader frequency spectrum of music compared to speech, modeling and
reconstruction become significantly more challenging. Codec-based discretization methods [28}, [29]]
inherently suffer from a trade-off between reconstruction fidelity and the depth of codebooks, often
increasing generation complexity. To tackle this issue, we substitute the discrete acoustic tokens with
continuous latents derived from an autoencoder, which compresses 2-channel 48 kHz music into
continuous-valued acoustic latent sequences at a reduced frame rate. This continuous representation
preserves high-frequency detail while simplifying the generation process, making it more suitable for
high-fidelity music synthesis.

4.3 Architecture

4.3.1 Overview

The overall model architecture is illustrated in Figure [T} which consists of three main modules:
an autoregressive transformer decoder, a non-autoregressive diffusion transformer, and an acoustic
encoder. Both semantic and acoustic sequences are first segmented into fixed-length patches and then
generated in an interleaved manner, enabling the model to maintain consistency between high-level
structure and fine-grained acoustic detail.

4.3.2 Autoregressive Sketch Generation

The autoregressive sketch generation stage is designed to generate both sketch tokens
Po(5(ip:(i+1)P)|-) and a corresponding hidden vector pg(h;|-) per patch, which serve as conditioning
inputs for the downstream diffusion stage. The architecture is composed of a stack of transformer
decoders with causal masks, enabling left-to-right autoregressive prediction over the sketch tokens.
Conditions, including lyric text and style prompt, are prepended to the semantic stream. Each
semantic patch is generated based on all previously generated sketch tokens, as well as the acoustic
latent features from preceding patches. Specifically, the acoustic features of the current patch are
compressed via an acoustic encoder and then inserted as the next token at the position of the hidden
vector. This design eliminates the need for custom attention masks, thereby facilitating compatibility
with acceleration techniques such as FlashAttention2 [30].

The training objective for the autoregressive sketch generation is formulated as a cross-entropy loss:

N-1 P
1

Liv = “~NP ZIOgPO(SiPJrj | s<ipyj,a<ip, C), @)

i=0 j=1
where s; denotes the sketch token at timestep .

4.3.3 Non-Autoregressive Latent Diffusion

The non-autoregressive diffusion module predicts acoustic latents within each patch in parallel using
a full-attention DiT [31]] architecture. The model is trained with the Rectified Flow-Matching (RFM)
objective [22], which aims to predict the velocity field v, (-) governing the dynamics of the latent
trajectories:

dzi . i—
cTtt = v6(t,2; | hi, spsienp) 20) ®

Here, t denotes the diffusion time step. In our experiments, we sample ¢ from a logit-normal
distribution 7 following Esser et al. [32]. z; represents the latent variables at time ¢ for the i-th patch,
where z{, = a(;p.(i+1)p] and zj ~ N(0,I) . The variable h; is the hidden vector inherited from

the first stage. s(;p.(;+1)p) refers to the sketch tokens for the current patch, and szl refers to the
acoustic latents from the preceding patch.

The loss function for training is defined as:
£ﬂow = EtNTrf,,li [||’U¢(t,li |) - (le - Z6)||2]) ©)

where m; denotes the distribution over diffusion steps. The total training objective combines the
sketch generation loss and the diffusion loss:

L=Lim~+ X Laow, (10)
where A = 0.1 is an empirically chosen weighting factor.

Gradients are backpropagated from the diffusion stage to the sketch generation stage via the hidden
vector h;. Additionally, the sketch tokens share the same embedding layer across both stages, which
improves training efficiency and accelerates convergence.

Jia et al. [7] introduced a classifier-free guidance (CFG) mechanism for autoregressive diffusion
models, which is applied only to the hidden vector. In our work, we treat the hidden vector and sketch
tokens as a unified conditioning signal, and jointly mask them during training. Additional masks are
applied solely to the sketch tokens to further encourage the hidden vector to carry more semantic
information.

5 Experimental Setup

5.1 Dataset

We use a large-scale song dataset totaling 100K hours, including both Chinese and English songs, to
train our model. The original lyrics are of relatively low quality, prompting the use of a dedicated data
cleaning pipeline. First, we separate the vocal and instrumental tracks using the Demucs model [33].
Then we use the WhisperX toolkit [34] to filter out mismatched lyric sentences and recover missing
words. The time boundaries of lyrics are also refined based on the results of automatic speech
recognition (ASR). Additionally, structural information is extracted from the original tracks using the
structure analyzer proposed by Kim and Nam [35].

For inference, considering that most current song generation models are trained on large-scale but
closed-source datasets, it is crucial to ensure that the test samples are not seen during training. To this
end, the lyrics are generated using GPT-40, and the reference audio is randomly clipped from unseen
real songs with diverse genres, followed by random shuffling to prevent potential data leakage. A
subset comprising 20 samples is used for subsequent human evaluation.

5.2 Configuration & Training Setup

In our experiments, the codebook size for semantic tokens is set to 16384, at a frame rate of 25.
The stable-audio-vae [36] is adopted as the implementation of our waveform autoencoder. Minor
modifications are made to its hyperparameters to ensure they have the same frame rate, thereby
facilitating synchronized sketches and latents.

The core component of SongBloom is based on the LLaMA-2 decoder architecture [37], utilizing
causal attention as the backbone of the autoregressive LM. This architecture is further modified to
support bidirectional attention, forming our diffusion transformer. Rotary Positional Embeddings
(RoPE) [38]] are employed in both autoregressive and non-autoregressive transformers to encode
positional information. The acoustic encoder is a simple two-layer convolutional network. All
conditioning inputs are prepended to the input sequence. Attention modules in each layer use 24
heads with a hidden dimension of 1536, consistent across both autoregressive and non-autoregressive
components. The patch size is set to 16, spanning 0.64 seconds. We evaluate two model configurations
in our experiments: (1) SongBloom-tiny, comprising 16 layers for the autoregressive LM and 8
layers for the non-autoregressive diffusion transformer, capable of generating songs up to 60 seconds
in length; and (2) SongBloom-full, comprising 24 autoregressive layers and 12 non-autoregressive

Table 2: Objective evaluation results across all models. The upper section reports the performance
of commercial platforms (valid until June 23, 2025), while the lower section presents results for
open-source baselines as well as our proposed models.

Models Prompt PER(%)| MCCt FAD| SER(%)| gy Aecsg‘ft‘csgfe por~ RTFL
Suno-vd5 7 text 2467 069 339 1043 777 193 603 840 -
Udio-v1.5 10s wav 20.04 0.79 4.04 1792 747 763 629 820 -
Haimian text 10.03 0.63 545 1339 755 787 575 8.28 -
Mureka-O1 10s wav 7.79 0.86 3.39 31.37 769 7.84 641 8.45 -
ACE-step [46] text 54.34 062 8.02 1227 737 752 626 7.85 -
YuE-7B [4] text + 30s wav 27.30 0.62 5.99 13.93 725 7.59 596 8.03 13.724
DiffRhythm-full [3]# 10s wav 15.77 070 504 4662 581 729 452 773 0.034
SongEditor [3] 10s wav 16.20 0.77 485 18.06 744 780 6.06 827 1717
SongBloom-full 10s wav 6.75 0.88 343 1767 771 788 586 843 1.649
SongBloom-full-ft 10s wav 5.49 0.86 3.20 1450 7779 796 5838 847 1.649

TDiffRhythm requires additional sentence-level timestamps. We first extract paragraph-level timestamps from
ASR results of generated samples, then employ GPT-40 to predict the start time of each sentence.

layers, enabling song generation up to 150 seconds. The former is used for analysis and ablation
studies, while the latter is included to enable fair comparisons with other baselines. The model is
trained with 16 A100 GPUs for approximately one week.

All models are trained using the AdamW optimizer [39] with a learning rate of le-4. A cosine
learning rate scheduler [40]] with 2000 warm-up steps is employed to stabilize early training. Each
model is trained for approximately 150K steps with a batch size of 128. The DeepSpeed strategy [41]
is adopted to support efficient training. For inference, both stages share a classifier-free guidance
coefficient of 1.5. Next-token prediction is performed using top-k sampling with k£ = 200 and a
temperature of 0.9. The diffusion process employs the Euler ODE solver with 36 diffusion steps.

5.3 Evaluation Metrics

We evaluate the proposed models using the following objective metrics: (1) Phoneme Error Rate
(PER), computed based on the separated vocal tracks and the corresponding lyrics; (2) MuLan Cycle
Consistency (MCC), which measures the cosine similarity of MuLan [42]] embeddings between
generated samples and reference audio or textual descriptions; (3) Fréchet Audio Distance (FAD)[43]],
which quantifies the distributional similarity between generated samples and real songs from which
the clips are intercepted; and (4) Structural Error Rate (SER), which measures the mismatch between
detected structural patterns and the target lyric structure. The Dynamic Time Warping (DTW)
algorithm [44] is first employed to obtain the optimal temporal alignment, and then we calculate the
proportion of error duration. Additionally, we leverage the Audiobox-Aesthetic [45] to assess musical
aesthetics, including content enjoyment (CE), content usefulness (CU), production complexity (PC),
and production quality (PQ).

For subjective evaluation, we conduct a Mean Opinion Score (MOS) listening test. A group of at
least 10 participants with musical expertise are invited to rate each sample on a scale from 1 to 5. The
evaluation focuses on several aspects: musicality (MUS) and audio quality (QLT) assessed separately
for both the vocal and accompaniment components, correctness (CRR) of lyrics, and consistency
(CST) between samples and prompts.

6 Results

6.1 Full-Length Lyric-to-Song Generation

Based on the SongBloom-full model, we fine-tuned it for 1,000 additional steps on synthesized
data with a clear alternating structure of verses and choruses, denoted as SongBloom-full-ft. This
fine-tuning process enhances the model’s ability to emulate synthesized lyric compositions, leading
to improved performance on lyrics with similar stylistic patterns.

Comparison of objective metrics As shown in Table |2} SongBloom demonstrates superior perfor-
mance across various metrics and is competitive with Suno-v4.5, the state-of-the-art commercial song

Table 3: Subjective evaluation results. Consistency (CST) is reported only for models that accept a
10-second reference audio as the style prompt.

Models | MUSyt MUS 41 QLT+ QLT At CRR? CSTt
Suno-v4.5 3874028 404018 3.83+0.12 3.96+006 2.95+0.14 -
Udio-v1.5 328+£027 3.55+025 3.62+023 3744021 257+0.19 2.76+031
Haimian 3394026 3.65+024 3.86+0.17 3.90+£0.11 3.09+0.20 -
Mureka-O1 3914026 3934014 385+£0.18 3.89+0.12 338+0.16 3.41+0.39
ACE-step [46] 2054029 293+032 2.66+027 2684025 2.11+0.16 -
YuE-7B [4] 2934027 3.15+024 3.16+027 3284023 2.54+0.19 -
DiffRhythm-full [3] | 2.99 £ 0.27 348 +027 297+021 3334+026 2.51+023 2454028
SongEditor [5] 2004032 3.11+027 3.03+032 3244028 2.89+0.16 2444028
SongBloom-full 3.59+£025 3.60+£023 3.83+£009 3.81+008 327+0.17 3.62+027
SongBloom-full-ft | 3.91+024 392+0.12 3.95+0.04 3.93+0.10 342+0.18 3.45+031

generation platform. After fine-tuning on downstream data, SongBloom-full-ft even outperforms
Suno-v4.5 in several metrics.

During our evaluation, we observed that Suno tends to follow rigid structural patterns, such as
redundantly repeating the chorus at the end, which leads to structural hallucinations and degraded
PER performance. In contrast, SongBloom adheres more faithfully to the structure of the input lyrics,
enabling flexible and structurally coherent song generation that significantly reduces the PER. In
terms of the MCC metric, waveform-based style prompts generally possess a natural advantage over
text descriptions, as they always provide a comprehensive and unbiased representation of all musical
components. Among these approaches, SongBloom-full achieves the highest MCC score. In terms of
the automated-evaluated aesthetic scores, SongBloom-full-ft outperforms all other baselines in three
out of the four metrics, further demonstrating its ability to generate high-quality, musically coherent,
and aesthetically pleasing songs.

Apart from generation performance, we also assessed the inference speed of SongBloom compared
to other open-source models. The integrated design of SongBloom enables outstanding inference
efficiency, yielding a lower RTF than all other autoregressive baselines. Compared to SongEditor,
our model achieves a similar RTF despite having a larger size, since SongEditor takes the entire
semantic sequence as input during the diffusion stage, leading to unnecessary computational overhead.
Meanwhile, YuE utilizes two LMs and generates multi-layer codec tokens in a flattened pattern,
significantly extending the generation sequence. While autoregressive models are naturally slower
than their non-autoregressive counterparts, SongBloom achieves an excellent trade-off between
efficiency and performance.

Comparison of subjective metrics Table[3]shows that SongBloom and Suno-v4.5 dominate the
human evaluation results, outperforming all other models by a clear margin. Suno-v4.5 demonstrates
particular strength in accompaniment generation, whereas SongBloom excels in metrics related to
vocal tracks. Notably, SongBloom achieves the highest correctness score, indicating a stronger adher-
ence to the provided lyrics compared to other systems. This suggests that its interleaved generation
paradigm effectively preserves semantic intent throughout the song. Furthermore, SongBloom’s
superior performance in consistency is corroborated by its high MCC score, reflecting its ability to
maintain thematic coherence over every section of songs.

6.2 Ablation Study on Diffusion Conditions

Table [] compares the performance of SongBloom-tiny under different combinations of diffusion
conditions. In the absence of sketch tokens, the LM stage produces only a sequence of hidden vectors,
and the diffusion stage reconstructs the audio solely based on them. As shown in the table, the sketch
plays a critical role in generation. Without it as a coarse-grained CoT, the model fails to learn proper
alignment between phoneme sequences and audio, resulting in extremely high PER. In contrast, when
the sketch is provided, even without additional conditions, the diffusion transformer can generate
intelligible vocals solely based on the hidden vector from the LM stage. Meanwhile, incorporating
both the acoustic context and sketch tokens as input conditions during the diffusion stage further
enhances both objective and subjective performance, leading to higher-quality generation results.

Table 4: Ablation study of SongBloom-tiny under different diffusion conditions. "H" represents the
hidden vector, "C" represents the acoustic context from the previous patch, and "S" represents the
sketch tokens of the current patch.

w/ sketch Conditions Objective Aesthetic Score Subjective
PER(%)] FAD/] CET CUtT PCt PQtT MUST QLTYT
H+C+S 9.44 5.60 7.57 7.66 6.00 8.25 3.55 3.77
v H+C 10.49 5.16 743 757 642 8.15 343 3.46
H 11.35 7.58 746 750 580 8.09 3.14 3.41
X H+C 109.76 8.86 7.06 740 592 7.71 - -
83 F25.50 = L3
84 1.4
8.0 | t25.25
t 25.00 -3
7.5 71 r1.2
t24.75
7.04 | 24.50 6l -t
t1.0
65| t24.25
to.g
t 24.00 51
6.0 | | 5375 t0.8
5.5 }23.50 4l o7
4 8 16 24 +oo 0 10 20 30 40 50
Patch size # steps
CE Ccu PC PQ Token Acc. (%) — CE cu — PC — PQ --—- RTF

Figure 2: Aesthetic scores and sketch token accuracy Figure 3: Aesthetic scores of SongBloom-tiny
of SongBloom-tiny with various patch sizes. with increasing diffusion steps.

6.3 Effect of Hyper-Parameters

Figure 2 illustrates the impact of various patch sizes, where "+o00" denotes separating the generation
of sketch and acoustic sequence. For speech-oriented autoregressive diffusion models [7,[19]], a small
patch size is essential, as larger patch sizes make the model difficult to converge. For SongBloom,
since the sketch tokens have served as the CoT of hidden vectors and guide the diffusion directly, a
small patch size is no longer the optimal choice. Although smaller patch sizes provide more acoustic
information for sketch generation, thereby improving sketch token accuracy, they also hinder the
fluency of acoustic latents during the diffusion stage, as the window for preceding contexts becomes
smaller. Figure[3|illustrates the relationship between performance and diffusion steps during inference.
The RTF increases proportionally with the number of diffusion steps, while near-optimal generation
performance is achieved in as few as 10 steps, indicating that the inference process can be further
accelerated.

7 Discussions and Limitations

In this paper, we propose SongBloom, a novel approach for full-song generation that produces
expressive, high-quality songs and achieves state-of-the-art performance across multiple metrics.
Nevertheless, several open challenges remain. First, the current sketch representation is derived from
SSL models, which lack interpretability. Replacing these with some symbolic formats could enable
more fine-grained control and user customization, which will be our future work. Second, we believe
that some reinforcement learning-based techniques, such as DPO [47] or PPO [48]], can be applied to
SongBloom, which aligns the generation process with user preferences, thereby enabling outputs that
better match human aesthetic judgments.

We fully acknowledge the potential ethical risks associated with music generation models. We ensure
that both our models and training data are strictly used for academic research purposes only. We
respect the intellectual property rights of all original artists and content creators. Every effort has
been made to avoid the use of copyrighted material without proper authorization.

8 Acknowledgement

This work is supported by National Natural Science Foundation of China (Grant No. 62401377 and
No. 62271432), Shenzhen Science and Technology Program (Shenzhen Key Laboratory, Grant No.
ZDSYS20230626091302006), Program for Guangdong Introducing Innovative and Entrepreneurial
Teams, Grant No. 2023ZT10X044.

References

[1] J.-P. Briot and F. Pachet, “Deep learning for music generation: challenges and directions,”
Neural Computing and Applications, vol. 32, no. 4, pp. 981-993, 2020.

[2] C. Hernandez-Olivan and J. R. Beltran, “Music composition with deep learning: A review,’
Advances in speech and music technology: computational aspects and applications, pp. 25-50,

2022.

[3] Z.Ning, H. Chen, Y. Jiang, C. Hao, G. Ma, S. Wang, J. Yao, and L. Xie, “Diffrhythm: Blazingly
fast and embarrassingly simple end-to-end full-length song generation with latent diffusion,”
arXiv preprint arXiv:2503.01183, 2025.

[4] R. Yuan, H. Lin, S. Guo, G. Zhang, J. Pan, Y. Zang, H. Liu, Y. Liang, W. Ma, X. Du, X. Du,
Z. Ye, T. Zheng, Y. Ma, M. Liu, Z. Tian, Z. Zhou, L. Xue, X. Qu, Y. Li, S. Wu, T. Shen, Z. Ma,
J. Zhan, C. Wang, Y. Wang, X. Chi, X. Zhang, Z. Yang, X. Wang, S. Liu, L. Mei, P. Li, J. Wang,
J. Yu, G. Pang, X. Li, Z. Wang, X. Zhou, L. Yu, E. Benetos, Y. Chen, C. Lin, X. Chen, G. Xia,
Z. Zhang, C. Zhang, W. Chen, X. Zhou, X. Qiu, R. Dannenberg, J. Liu, J. Yang, W. Huang,
W. Xue, X. Tan, and Y. Guo, “Yue: Scaling open foundation models for long-form music
generation,” 2025. [Online]. Available: https://arxiv.org/abs/2503.08638

[5] C. Yang, S. Wang, H. Chen, J. Yu, W. Tan, R. Gu, Y. Xu, Y. Zhou, H. Zhu, and H. Li, “Songeditor:
Adapting zero-shot song generation language model as a multi-task editor,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 25 597-25 605.

[6] T.Li, Y. Tian, H. Li, M. Deng, and K. He, “Autoregressive image generation without vector
quantization,” NeurIPS, vol. 37, pp. 56 424-56 445, 2024.

[7] D. Jia, Z. Chen, J. Chen, C. Du, J. Wu, J. Cong, X. Zhuang, C. Li, Z. Wei, Y. Wang et al.,
“Ditar: Diffusion transformer autoregressive modeling for speech generation,” arXiv preprint
arXiv:2502.03930, 2025.

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou ef al., “Chain-of-
thought prompting elicits reasoning in large language models,” NeurIPS, vol. 35, pp. 24 824—
24 837, 2022.

[9] Z. Liu, S. Ding, Z. Zhang, X. Dong, P. Zhang, Y. Zang, Y. Cao, D. Lin, and J. Wang,
“Songgen: A single stage auto-regressive transformer for text-to-song generation,” arXiv preprint
arXiv:2502.13128, 2025.

[10] Z. Hong, R. Huang, X. Cheng, Y. Wang, R. Li, F. You, Z. Zhao, and Z. Zhang, “Text-to-song:
Towards controllable music generation incorporating vocal and accompaniment,” in ACL, 2024,
pp. 6248-6261.

[11] R. Li, Z. Hong, Y. Wang, L. Zhang, R. Huang, S. Zheng, and Z. Zhao, “Accompanied singing
voice synthesis with fully text-controlled melody,” arXiv preprint arXiv:2407.02049, 2024.

[12] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox: A generative
model for music,” arXiv preprint arXiv:2005.00341, 2020.

[13] S. Ding, Z. Liu, X. Dong, P. Zhang, R. Qian, C. He, D. Lin, and J. Wang, “Songcomposer: A
large language model for lyric and melody composition in song generation,” arXiv preprint
arXiv:2402.17645, 2024.

[14] A. Vasuki and P. Vanathi, “A review of vector quantization techniques,” IEEE Potentials, vol. 25,
no. 4, pp. 39-47, 2006.

10

https://arxiv.org/abs/2503.08638

[15] R. Gray, “Vector quantization,” IEEE Assp Magazine, vol. 1, no. 2, pp. 4-29, 1984.

[16] C.F. Barnes, S. A. Rizvi, and N. M. Nasrabadi, “Advances in residual vector quantization: A
review,” IEEE transactions on image processing, vol. 5, no. 2, pp. 226-262, 1996.

[17] T. Wu, Z. Fan, X. Liu, H.-T. Zheng, Y. Gong, J. Jiao, J. Li, J. Guo, N. Duan, W. Chen
et al., “Ar-diffusion: Auto-regressive diffusion model for text generation,” NeurIPS, vol. 36, pp.
39957-39974, 2023.

[18] R. Benita, M. Elad, and J. Keshet, “Diffar: Denoising diffusion autoregressive model for raw
speech waveform generation,” in /CLR, 2024.

[19] Z. Liu, S. Wang, S. Inoue, Q. Bai, and H. Li, “Autoregressive diffusion transformer for text-to-
speech synthesis,” arXiv preprint arXiv:2406.05551, 2024.

[20] C.Zhou, L. Yu, A. Babu, K. Tirumala, M. Yasunaga, L. Shamis, J. Kahn, X. Ma, L. Zettlemoyer,
and O. Levy, “Transfusion: Predict the next token and diffuse images with one multi-modal
model,” arXiv preprint arXiv:2408.11039, 2024.

[21] Y. Sun, H. Bao, W. Wang, Z. Peng, L. Dong, S. Huang, J. Wang, and F. Wei, “Multimodal latent
language modeling with next-token diffusion,” arXiv preprint arXiv:2412.08635, 2024.

[22] X. Liu, C. Gong et al., “Flow straight and fast: Learning to generate and transfer data with
rectified flow,” in ICLR, 2023.

[23] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen,
A. Roberts, M. Tagliasacchi et al., “Musiclm: Generating music from text,” arXiv preprint
arXiv:2301.11325, 2023.

[24] Y. Li, R. Yuan, G. Zhang, Y. Ma, X. Chen, H. Yin, C. Xiao, C. Lin, A. Ragni, E. Benetos et al.,
“Mert: Acoustic music understanding model with large-scale self-supervised training,” ICLR,
2024.

[25] M. W. Y. Lam, Q. Tian, T. Li, Z. Yin, S. Feng, M. Tu, Y. Ji, R. Xia, M. Ma, X. Song, J. Chen,
W. Yuping, and Y. Wang, “Efficient neural music generation,” in NeurIPS, vol. 36, 2023, pp.
17450-17463.

[26] Y. Xu, H. Chen, J. Yu, W. Tan, R. Gu, S. Lei, Z. Lin, and Z. Wu, “Mucodec: Ultra low-bitrate
music codec,” arXiv preprint arXiv:2409.13216, 2024.

[27] H. Zhu, Y. Zhou, H. Chen, J. Yu, Z. Ma, R. Gu, Y. Luo, W. Tan, and X. Chen, “Muq: Self-
supervised music representation learning with mel residual vector quantization,” arXiv preprint
arXiv:2501.01108, 2025.

[28] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi, “Soundstream: An
end-to-end neural audio codec,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 30, pp. 495-507, 2021.

[29] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu, H. Wang, J. Li et al.,
“Neural codec language models are zero-shot text to speech synthesizers,” arXiv preprint
arXiv:2301.02111, 2023.

[30] T. Dao, “FlashAttention-2: Faster attention with better parallelism and work partitioning,” in
ICLR, 2024.

[31] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2023, pp. 4195-4205.

[32] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Miiller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
F. Boesel et al., “Scaling rectified flow transformers for high-resolution image synthesis,” in
ICML, 2024.

[33] S. Rouard, F. Massa, and A. Défossez, “Hybrid transformers for music source separation,” in
ICASSP, 2023, pp. 1-5.

11

[34] M. Bain, J. Huh, T. Han, and A. Zisserman, “Whisperx: Time-accurate speech transcription of
long-form audio,” INTERSPEECH, 2023.

[35] T. Kim and J. Nam, “All-in-one metrical and functional structure analysis with neighborhood
attentions on demixed audio,” in IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), 2023.

[36] Z. Evans, J. D. Parker, C. Carr, Z. Zukowski, J. Taylor, and J. Pons, “Stable audio open,” in
ICASSP, 2025, pp. 1-5.

[37] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale ef al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

[38] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: Enhanced transformer with
rotary position embedding,” Neurocomputing, vol. 568, p. 127063, 2024.

[39] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint
arXiv:1711.05101, 2017.

[40] ——, “Sgdr: Stochastic gradient descent with warm restarts,” in /CLR, 2022.

[41] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward training
trillion parameter models,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1-16.

[42] Q. Huang, A. Jansen, J. Lee, R. Ganti, J. Y. Li, and D. P. Ellis, “Mulan: A joint embedding of
music audio and natural language,” ISMIR, 2022.

[43] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi, “Fréchet audio distance: A reference-free
metric for evaluating music enhancement algorithms,” in Interspeech, 2019, pp. 2350-2354.

[44] P. Senin, “Dynamic time warping algorithm review,” Information and Computer Science De-
partment University of Hawaii at Manoa Honolulu, USA, vol. 855, no. 1-23, p. 40, 2008.

[45] A.Tjandra, Y.-C. Wu, B. Guo, J. Hoffman, B. Ellis, A. Vyas, B. Shi, S. Chen, M. Le, N. Zacharov
et al., “Meta audiobox aesthetics: Unified automatic quality assessment for speech, music, and
sound,” arXiv preprint arXiv:2502.05139, 2025.

[46] J. Gong, S. Zhao, S. Wang, S. Xu, and J. Guo, “Ace-step: A step towards music generation
foundation model,” arXiv preprint arXiv:2506.00045, 2025.

[47] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct preference
optimization: Your language model is secretly a reward model,” NeurIPS, vol. 36, pp. 53 728-
53741, 2023.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

12

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe our method in the abstract and conclude the contributions in the
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations at the end of this paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: This paper does not include many theoretical results that need proof. For the
task formulation, we have explained the reason.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In both methodology and experiment actions, we disclose the information of
our experiments as much as possible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Some training data is sensitive and cannot be made public. We are collecting
other desensitized data to train an open-source version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the experimental setup section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: For subjective evaluation results, we have given the variance of scores.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide it in the experimental setup section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the NeurIPS Code of Ethics carefully and strictly adhere to it.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it at the end of the paper.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There will be a potential misuse if we release the model weights and training
data. However, currently we do not do that.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We describe the source of code and the websites of commercial platforms used
in our experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[Yes]

Justification: We provide the translated version of the scoring criteria in the appendix. All
raters have been paid.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There are no potential risks during scoring.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

18

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used in very few text processing steps.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Ablation Study on Different Sketch Choices

Table 5|demonstrates our early efforts at decomposing the semantic information of sketches. We com-
pare different sketch representations, including pitch, pitch + chromagram, and semantic embeddings.
As shown in the table, simple pitch-based sketches offer limited alignment capability, resulting in
high PER and suboptimal performance in other metrics. The inclusion of chroma features slightly
improves alignment, but still falls short of fully capturing the rich semantics needed for coherent vocal
generation. These results validate the importance of incorporating abstract, semantically meaningful
information into the sketch stage, and lay the groundwork for future exploration of interpretable yet
powerful sketch formats.

Type | PER(%), FAD| | CEf CUt PCt PQ?t
no sketch 109.76 8.86 | 7.06 740 592 7.71
pitch 10322 543 | 734 758 603 8.04

pitch + chroma 68.47 547 | 737 757 598 8.06
SSL embedding 9.44 560 | 755 7.66 6.00 825

Table 5: Impact of sketch types on SongBloom’s performance.

B Time Complexity of SongBloom Inference

We analyze the inference time complexity of SongBloom compared to a decoupled two-stage model,
assuming both have the same number of layers.

Let L; denote the number of layers in the language model stage, and L, the number of layers in the
diffusion stage. Let 7" be the total number of frames for both semantic and acoustic sequences (eg.
30 s x 25 fps = 600), P the patch size, N = T'/ P the number of patches, and .S the number of
diffusion steps.

Assuming key-value caching is used during inference, we analyze the leading-order time complexity:
Decoupled 2-stage model:

1+1D)T

Og=1L- +Ly-(27)%- S

SongBloom:

(1+ T+ N)(T+ N)
2

O1=1L;- +Ly-(2P)*-N-S

Substituting N = T'/ P, we compute the difference:

Ly Ly 2 Ly
O1—-0p= | +—=—4L5|T — +4LyPS | T
1 0 (2P2 + P 2) + 5P +4Lo
When T is sufficiently large, the 7 term dominates. In most practical cases, where:

2P
2P +1

L, < 4SP- 2

the coefficient of 72 is negative. Therefore, we conclude that SongBloom is asymptotically more

efficient than the decoupled two-stage models, owing to its patch-wise diffusion mechanism and
reduced per-step input length during inference.

C Criteria of the Subjective Listening Test

1. Musicality of vocal: (1-5 points) Does the main melody of the generated vocal match the
subjective expectation?

20

* 5 points: The melody is pleasant and emotionally expressive, with strong musical
phrasing. It aligns well with expectations.

* 4 points: The melody generally meets expectations and conveys the song’s theme and
emotion, but lacks standout features.

* 3 points: The melody mostly aligns with expectations and conveys the theme and
emotion, though some notes feel abrupt.

* 2 points: Only parts of the melody are coherent; most notes are scattered, and the

theme and emotion are vaguely presented.

1 point: The melody significantly deviates from expectations, lacks coherent musical

phrasing, and fails to convey the song’s theme and emotion.

2. Musicality of accompaniment: (1-5 points) Does the accompaniment of the generated
song sound harmonious?

* 5 points: The accompaniment is richly colored and features diverse instrumentation.
The melody is beautiful and complements the main melody harmoniously.

* 4 points: The accompaniment supports the main melody, but uses limited instrumenta-
tion or has a generally average melodic performance.

* 3 points: The accompaniment mostly supports the main melody, with only minor
discord. However, it sometimes clashes with the main melody and lacks variety and
color in instrumentation.

* 2 points: Some segments show disorganized instrumentation and monotonous melody,
barely supporting the main melody.

* 1 point: The instrumentation is chaotic and the melody is discordant. There is a clear
conflict with the main melody, failing to provide support.

3. Quality of vocal: (1-5 points) Is the vocal in the generated music clear and bright, with a
full high-frequency range? Are there any noises or distortions present?

e 5 points: The vocal quality is rich and clear, with no noise, approaching studio-
recording quality.

* 4 points: The vocal quality is relatively clear, with slight noise that is either impercep-
tible or barely noticeable.

* 3 points: The vocal quality contains some noise or distortion, but it does not signifi-
cantly affect the listening experience.

* 2 points: The vocal quality is unclear and unstable, resulting in a poor listening
experience. Noticeable noise or distortion is present.

* 1 point: The vocal quality is extremely poor, with an unpleasant listening experience,
and the vocal characteristics are barely recognizable.

4. Quality of accompaniment: (1-5 points) Is the high-frequency range of the generated
music’s accompaniment full? Are there any noises or instrumental distortions?

* 5 points: The accompaniment has a full and clear sound quality with no flaws. The
characteristics and melodies of different instruments are clearly distinguishable.

* 4 points: The accompaniment has good sound quality with slight noise. Only a few
instruments in certain segments are hard to distinguish or slightly distorted, but this
does not affect the overall listening experience.

* 3 points: The accompaniment has average sound quality. Some instruments are unclear
or unidentifiable in certain segments. There is noticeable noise, distortion, or a lack of
clarity.

* 2 points: The accompaniment has poor sound quality. In most parts of the piece, most
instruments are unrecognizable. There is clear noise, distortion, or lack of clarity.

* 1 point: The accompaniment has extremely poor sound quality, with severe distortion,
making it nearly impossible to identify any instrumental characteristics.

5. Correctness of lyrics: (1-4 points) Does the song content match the lyrics? Are there any
errors such as extra words, missing words, or mechanical repetition?

* 4 points: The song content fully matches the lyrics, with no missing or extra words,
and no mechanical repetition of musical segments.

21

* 3 points: The generated song contains a small number (within 5 words) of unclear,
repeated, or missing lyrics.

* 2 points: The generated song contains multiple segments with unclear, repeated, or
missing lyrics.

* 1 point: The generated song does not match the lyrics at all.

6. Consistency of prompt: (1-5 points) Does the musical style of the generated song match
the style of the reference audio prompt?

* 5 points: The musical style of the generated song fully matches the style specified in
the prompt.

* 4 points: The musical style of the generated song is similar to the specified prompt,
with only slight differences in some segments.

* 3 points: The musical style is somewhat similar to the specified style, but only vaguely
reflects its characteristics.

* 2 points: The musical style does not resemble the specified style, with only faint traces
of the intended musical elements.

* 1 point: The musical style has no relation to the specified style, making it difficult to
connect the prompt with the resulting music.

22

	Introduction
	Related work
	Song Generation
	Autoregressive Diffusion Models

	Preliminary
	SongBloom
	Task Formulation
	Data Representation
	Architecture
	Overview
	Autoregressive Sketch Generation
	Non-Autoregressive Latent Diffusion

	Experimental Setup
	Dataset
	Configuration & Training Setup
	Evaluation Metrics

	Results
	Full-Length Lyric-to-Song Generation
	Ablation Study on Diffusion Conditions
	Effect of Hyper-Parameters

	Discussions and Limitations
	Acknowledgement
	Ablation Study on Different Sketch Choices
	Time Complexity of SongBloom Inference
	Criteria of the Subjective Listening Test

