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ABSTRACT

Despite significant progress in Adverse Weather Removal (AWR), challenges
remain in applying existing methods to real-world scenarios and in generating
photo-realistic and visually compelling outcomes. The limited generalization of
current approaches can be attributed to their inability to accurately perceive complex
degradations in weather-affected images. Moreover, owing to optimization objec-
tives that prioritize distortion losses, discriminative methods often produce overly
smooth reconstructions. To address these challenges, we propose RectiWeather,
a novel AWR framework guided by zero-shot soft perceptions extracted from
pre-trained vision–language models (VLMs). Specifically, we design an AWR-
specific Question Answering (AWR-QA) module that guides VLMs to produce
soft perceptions of weather conditions and low-level attributes. These soft percep-
tions are then integrated into baseline AWR models through attribute-modulated
normalization (AMN) and weather-weighted adapters (WWA), enabling posterior
mean estimation while minimizing distortion loss. Furthermore, we map the poste-
rior output to the clean image distribution using a perception-aware rectified flow
model, where soft perceptions define the source distribution and guide the velocity
field. Extensive experiments show that RectiWeather consistently surpasses state-
of-the-art baselines in fidelity and perceptual metrics across both all-in-one and
out-of-distribution scenarios. Our code will be released upon publication.

1 INTRODUCTION

As a fundamental task in computer vision, Adverse Weather Removal (AWR) aims to restore weather-
degraded images to clean counterparts, which is essential for emerging sectors such as autonomous
driving (Zang et al., 2019). These weather degradations include, but are not limited to, rain (Li et al.,
2019; Zhang et al., 2024), snow (Chen et al., 2021; Zhang et al., 2021), haze (Li et al., 2017; Cai
et al., 2016; Li et al., 2020a; Song et al., 2023), and low light conditions (Zhou et al., 2024; 2025).
To address these weather degradations, many works focus on networks targeting a single weather
degradation (Zang et al., 2019; Li et al., 2019; Fu et al., 2017; Zhang et al., 2024; Li et al., 2017; Cai
et al., 2016; Li et al., 2020a; Song et al., 2023), while only a few works have proposed non-blind
general-purpose models designed to restore all weather conditions (Li et al., 2020b). However, these
models typically depend on predefined priors or separate task-specific models for each type of weather
degradation, making them less reliable in blind real-world scenarios. For improved efficacy, recent
studies have increasingly focused on all-in-one blind restoration models (Valanarasu et al., 2022; Ye
et al., 2023; Yang et al., 2024; Potlapalli et al., 2023; Luo et al., 2023a; Rajagopalan & Patel, 2025),
designed to adaptively handle various weather conditions within a single network.

Early blind AWR methods primarily rely on traditional Convolutional Neural Networks (CNNs) (Li
et al., 2020b; Zhu et al., 2023; Krizhevsky et al., 2012), which restore degraded images by learning
spatial patterns and fine-grained features via convolutional operations. Transformers (Vaswani, 2017)
have also been extensively studied for AWR (Potlapalli et al., 2023; Valanarasu et al., 2022; Sun et al.,
2024; Wang et al., 2024; Cui et al., 2025), often outperforming traditional CNNs with their superior
ability in capturing global dependencies. Diffusion-based approaches (Özdenizci & Legenstein, 2023;
Luo et al., 2023a; Zheng et al., 2024) have also been shown to be highly effective in AWR via their
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(a) Quantitative Comparisons

PromptIR HOGFormer GridFormer HistoFormer AdaIR RectiWeather

(b) Visual Comparisons on OOD evaluations.

Figure 1: RectiWeather significantly outperforms SOTA methods, especially on OOD data.

Figure 2: RectiWeather achieves the best performance on both fidelity and perceptual metrics.

iterative denoising process. Despite these advances, two challenges remain, hindering generalization
in real-world scenarios and the generation of photo-realistic restorations.

First, a key open question is how to reliably and accurately perceive the underlying weather condition
from degraded inputs. Essentially, such perception plays a pivotal role in the context of all-in-one
AWR, as it allows the model to tailor its computational mechanisms or structural adaptations to
produce weather-aware outputs with improved performance. To this end, several methods (Potlapalli
et al., 2023; Valanarasu et al., 2022) incorporate learnable architectures to implicitly encode weather
attributes (e.g., type and severity) for guiding the restoration process, while others opt for explicit
weather prediction by training or fine-tuning classifiers (Xu et al., 2024; Hu et al., 2025) or CLIP-
based frameworks (Jiang et al., 2024; Luo et al., 2023a; Zeng et al., 2025). While promising within
the training distribution, these methods exhibit noticeable performance drops on out-of-distribution
(OOD) data, demonstrating their limited generalization ability.

Second, distortion-centric training in discriminative frameworks often leads to excessive smoothness,
while diffusion-based methods, though perceptually compelling, commonly underperform in fidelity.
Achieving photo-realistic restorations with both minimal distortion and high perceptual quality
remains largely unresolved in AWR.

To address these limitations, we propose RectiWeather, an all-in-one AWR framework guided by
zero-shot soft weather perceptions derived from pretrained Vision–Language Models (VLMs). First,
within our developed AWR-specific Question Answering (AWR-QA) module, we craft explicit and
unambiguous definitions to refine VLM understanding of weather conditions and low-level attributes,
and then quantify their responses into soft perceptions. Second, we leverage these perceptions to
modulate AWR backbones via Attribute-Modulated Normalization (AMN) and Weather-Weighted
Adapters (WWA), enabling degradation-aware posterior estimation under distortion losses. More
importantly, we introduce a perception-aware rectified flow that approximates the optimal transport
map from a perception-dependent source distribution to the clean image distribution, enhancing
photo-realism while maintaining competitive fidelity, as demonstrated in Fig. 1.

Our main contributions are: (1) We propose RectiWeather, an all-in-one AWR framework guided by
zero-shot soft perceptions extracted from pretrained VLMs, and equipped with a perception-aware
rectified flow to enhance photo-realism. (2) We introduce the AWR-QA module for extracting
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Figure 3: The framework of RectiWeather. With zero-shot soft perceptions (Ptype and Pattr)
extracted from our developed AWR-QA, we introduce the Attribute-Modulated Normalization (AMN)
and Weather-weighted Adapters (WWA) into AWR backbones to enhance fidelity. Subsequently,
based on the posterior estimation x0, we develop a perception-aware rectified flow model fθ, in
which both the source distribution and the velocity field estimation are informed by soft perceptions,
enabling photo-realistic restoration.

quantitative weather-aware soft perceptions, and AMN and WWA as plug-and-play components for
degradation-aware posterior estimation, which improve fidelity and generalize across diverse AWR
backbones. (3) We conduct extensive experiments showing that RectiWeather achieves state-of-the-art
fidelity and perceptual performance on both in-distribution and out-of-distribution benchmarks.

2 METHOD

The key contributions of this work is to introduce zero-shot soft perceptions extracted from VLMs
into AWR backbones for fidelity improvement, and to develop a perception-aware rectified flow
model to enhance perceptual quality. The overall framework of our method is demonstrated in Fig. 3.
Specifically, we first develop the AWR-related Question Answering module to acquire quantified soft
perceptions of weather type and low-level visual attributes (Sec. 2.1). Then, we integrate extracted
soft perceptions to assist existing AWR baselines via attribute-modulated normalization and weather-
weighted adapters (Sec. 2.2). Furthermore, upon high-quality posterior estimation, we introduce a
perceptual-aware rectified flow model to achieve the photo-realistic restoration (Sec. 2.3).

2.1 AWR-SPECIFIC QUESTION ANSWERING MODULE (AWR-QA)

TransWeather PromptIR

Figure 4: Methods with implicit weather perception
present limited weather perception capability on OOD
data (R100L (Yang et al., 2017)), leading to poor restora-
tion effect.

An all-in-one AWR agent should incor-
porate dedicated mechanisms for perceiv-
ing weather variations in input images,
enabling adaptive decisions on model se-
lection (Yang et al., 2024), architecture
width (Xu et al., 2024), and computational
flow (Potlapalli et al., 2023). Such spe-
cially designed modules can generally be
divided into two categories: (1) Several ap-
proaches (e.g., PromptIR (Potlapalli et al.,
2023) and TransWeather Valanarasu et al.
(2022)) employ learnable parameters to im-
plicitly perceive weather type and severity; (2) Some recent methods (e.g., DACLIP (Luo et al.,
2023a) and DCPT (Hu et al., 2025)) pursue explicit weather classification through classifier training
or CLIP-based fine-tuning, with classification accuracy reported to demonstrate their perception
ability. Although effective on in-distribution samples, both implicit learnable modules and fine-tuned
classifiers exhibit limited generalization to out-of-distribution (OOD) data, as presented in Fig. 4
and Table. 1. Notably, CLIP-based classifiers, despite originating from VLMs with remarkable
zero-shot capacity, show reduced generalization after finetuning (see Table 1), as the adaptation
enforces near-perfect classification on comparatively small training datasets.

Accordingly, to fully inherit the zero-shot strength of pretrained VLMs, we directly exploit their
perceptual ability to acquire robust perceptions of weather conditions as well as critical visual
attributes. Trained on massive image–text corpora, VLMs inherently possess the ability to assess
input image quality. Recent studies (Wu et al., 2024; You et al., 2024) have further enhanced their
perceptual and interpretive capacity through finetuning on large-scale visual instruction–response
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Attribute = ["visibility", "contrast", "sharpness"]
For weather condition � ∈ [0, � − 1]

Raw Logits of Answering Tokens
� … no ... yes ...
��� … 0.346 ... 0.625 …

<Definition>[type[�]]
<Question>[type[�]]: 
      Is this image of type[�]? Answer yes or no.

�type
� =  1 + � ��

�� −��
��� /3 

−1

Type-Specific Dialogue

For visual attribute � ∈ [0,� − 1]

Raw Logits of Answering Tokens

<Definition>[Attr[�]]
<Question>[Attr[�]]: 
      Rate the Attr[�] of the image.

�attr
� =  1 + � ��

���� −��
���� /3 

−1

� … good ... Poor ...
��� … 0.227 ... 0.634 …

Attribute-Specific Dialogue
Type = ["Hazy", "Rainy", "Snowy", "Low Light"]

Input

Figure 5: Our developed AWR-specific Question Answering Module.

datasets. While these VLMs exhibit notable success in assessing global image quality, their direct
utilization for advancing AWR remains hindered by two critical challenges: (1) Quality perception
does not guarantee awareness of weather conditions, thus VLMs demand additional guidance and
instructional cues to perform nuanced differentiation of weather-corrupted images; (2) The reliance on
one-hot labels for weather perception imposes severe limitations on handling multiple degradations.
Yet, prevailing VLMs are trained with one-hot labels, leaving the acquisition of soft perceptions an
open challenge. To address these issues, we develop an AWR-specific question answering module as
presented in Fig. 5. Specifically, our AWR-QA involves two forms of conversation (type-specific and
attribute-specific), and possesses the following distinctive characteristics.

Table 1: The accuracy comparison of weather condition prediction on setting I and OOD data. With
our developed AWR-QA module, our pipeline demonstrates markedly improved performance. [Key:
†: training or finetuning; “Only Question”: Removing Definition from our AWR-QA].

Methods Setting I OOD Data
Hazy Rainy Snowy Average Hazy Rainy Snowy Average

Original CLIP 96.70% 97.00% 33.61% 75.68% 91.14% 84.00% 19.48% 82.48%
Finetuning CLIP† 99.40% 99.50% 99.67% 99.50% 92.06% 82.00% 90.83% 91.71%

CLIP-Adapter† 99.80% 100% 100% 99.89% 81.58% 91.00% 91.49% 82.97%
DACLIP† 100% 100% 100% 100% 92.48% 93.00% 92.31% 92.47%

Only Question 95.20% 86.50% 82.70% 90.52% 93.20% 85.00% 81.83% 91.65%
AWR-QA 99.10% 91.50% 95.51% 97.06% 97.55% 96.00% 96.56% 97.40%

Definition-Question-Answering Process VLM conversations typically adopt the query–response
pipeline: <Img> + <Question>→ <Answer>. However, this pipeline is sub-optimal for AWR
task, as evidenced by the low perception accuracy of snowy images in Table 1 (“Only Question”).
This observation demonstrates that existing VLMs, while trained to perceive visual quality and
degradation, lack explicit grounding in the causal origins of these degradations, making direct weather
identification inherently ambiguous. Consequently, the perceptual similarity between snow and haze,
both characterized by diminished contrast and visibility, results in frequent misclassification of snowy
images as hazy when explicit priors are absent. To address this limitation, we propose to insert textual
cues <Definition> for the weather condition between <Img> and <Question> to strengthen
VLMs’ ability to distinguish weather-induced degradations. By injecting <Definition> in AWR-
QA, we constrain the decision boundary that VLMs otherwise learn only from quality cues, lowering
the ambiguity among conditions sharing similar degradations and achieving higher weather condition
prediction accuracy in Table 1.

Producing Soft Perceptions via Multiple Conservations To facilitate high-quality generaliza-
tion in real-world scenarios with complex weather conditions (e.g., rain+snow), we aim to pro-
duce soft perceptions instead of one-hot label by employing N independent type-specific con-
versations. In each conversation i ∈ [0, N ], the definition and question for weather type i (
<Definition>[type[i]] and <Question>[type[i]]) are fed into VLMs and the prob-
ability corresponding to weather type i (Pi

type) is quantified based on the raw logits of answering
tokens. Specifically, the logits for token “yes” and “no” are utilized as anchors for positive and
negative responses to the Yes-or-No <Question>[type[i]], then the quantified probability
Pi
type and the soft weather perception Ptype can be calculated as:

Ptype = {Pi
type}, Pi

type = (1 + e(L
no
i −Lyes

i )/3)−1, i ∈ [0, N ]. (1)

Similarly, besides the type-specific conversations, M attribute-specific dialogues are deployed to
perceive low-level attributes for inputs. Specifically, as the the <Question>[Attr[j]] is essen-
tially a How question, we leverage the logits for token “good” and “poor” as anchors, and calculate

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Comparison with SOTA methods on all-in-one image restoration (setting I). [Key: Best;
Second-best; Third-best].

Task Metrics
CNN-based Transformer-based SDE/Diffusion-based Our

WGWS-Net DCPT-NAFNet SwinIR PromptIR TransWeather Histoformer GridFormer AdaIR HOGFormer DACLIP GPPLLIE UniRestore RectiWeather

Dehazing

PSNR↑ 25.2422 29.5123 28.1335 29.0742 28.8708 28.8753 29.7015 29.8552 26.2312 29.1248 28.9203 24.1892 31.8040
SSIM↑ 0.9198 0.9561 0.9490 0.9492 0.9449 0.9532 0.9550 0.9523 0.9446 0.9366 0.9498 0.8272 0.9595
LPIPS↓ 0.0915 0.0245 0.0351 0.0302 0.0327 0.0284 0.0249 0.0290 0.0361 0.0249 0.0336 0.1008 0.0236

FID↓ 13.9170 6.6464 10.5504 8.5657 9.6171 8.1998 5.4800 8.2878 9.7512 5.6563 9.3160 19.1667 4.1463
MUSIQ↑ 52.3578 56.1662 55.9391 55.9365 56.0669 56.1384 56.2397 55.9506 56.0219 56.871 55.8657 54.7502 57.1226

CLIPIQA↑ 0.2506 0.2580 0.2944 0.3046 0.2831 0.2591 0.2616 0.2957 0.2557 0.2623 0.3045 0.2530 0.3055
NIQE↓ 4.3388 4.0909 3.9766 3.9844 3.8393 4.0926 3.9909 4.0457 4.1116 3.8933 3.9641 4.4329 3.6223

MANIQA↑ 0.6277 0.6398 0.6390 0.6420 0.6367 0.6379 0.6416 0.6423 0.6359 0.6360 0.6408 0.6087 0.6446

Deraining

PSNR↑ 25.4435 26.6555 28.1922 28.2102 24.3043 27.2624 26.9545 28.2166 25.9042 26.8019 27.3112 21.8189 28.3725
SSIM↑ 0.8057 0.8340 0.8870 0.8881 0.8151 0.8551 0.8397 0.8868 0.8226 0.8504 0.8784 0.6732 0.8886
LPIPS↓ 0.1922 0.1536 0.0748 0.0739 0.1365 0.1331 0.1066 0.0738 0.1626 0.0776 0.0967 0.2254 0.0570

FID↓ 42.6285 54.8526 25.3864 25.9583 50.3034 44.4640 34.9925 25.4323 57.4706 29.3110 30.4662 67.9509 21.6385
MUSIQ↑ 63.9255 64.9781 70.4030 70.7116 68.8380 67.7278 68.7697 70.5658 66.0232 70.3025 70.2249 64.6621 70.8914

CLIPIQA↑ 0.6303 0.6326 0.7695 0.7827 0.6721 0.6856 0.7025 0.7871 0.6623 0.7589 0.7359 0.6585 0.7962
NIQE↓ 3.5515 3.5908 3.6381 3.6483 3.7658 3.4542 3.4429 3.5867 3.3721 3.1197 3.5928 4.5751 3.1935

MANIQA↑ 0.6208 0.6119 0.6859 0.6871 0.6253 0.6417 0.6383 0.6871 0.6149 0.6827 0.6798 0.6135 0.6941

Desnowing

PSNR↑ 26.2841 27.5454 27.4389 28.2108 26.9457 27.3890 27.5816 28.4096 26.2566 27.0387 27.6699 21.8825 28.6361
SSIM↑ 0.8330 0.8886 0.8874 0.8966 0.8769 0.8870 0.8890 0.8992 0.8794 0.8701 0.8938 0.6402 0.9005
LPIPS↓ 0.1145 0.0808 0.0705 0.0627 0.0790 0.0846 0.0734 0.0590 0.0886 0.0677 0.0668 0.1145 0.0537

FID↓ 27.2584 29.1007 25.1864 22.1090 29.7221 30.7080 23.6043 20.8006 32.8779 23.4294 25.3291 40.0907 17.2547
MUSIQ↑ 69.0165 69.7187 68.6227 69.1966 69.1384 70.1404 69.1025 69.2825 69.0672 70.6822 69.4237 68.5674 70.4982

CLIPIQA↑ 0.4787 0.4836 0.5552 0.5638 0.5362 0.4947 0.5017 0.5663 0.4864 0.4819 0.5452 0.4484 0.5784
NIQE↓ 3.1464 3.0592 2.8550 2.9555 2.9998 3.1293 2.8889 2.9380 3.0156 2.9284 3.0459 3.3874 2.6762

MANIQA↑ 0.6645 0.6611 0.6688 0.6749 0.6584 0.6651 0.6681 0.6771 0.6601 0.6829 0.6698 0.6356 0.6885

Average

PSNR↑ 25.6122 28.5387 27.9082 28.6901 27.7213 28.2002 28.6890 29.1908 26.2034 28.1707 28.3243 23.1562 30.3658
SSIM↑ 0.8782 0.9200 0.9216 0.9249 0.9078 0.9202 0.9202 0.9273 0.9093 0.9048 0.9232 0.7477 0.9319
LPIPS↓ 0.1104 0.0576 0.0513 0.0459 0.0597 0.0588 0.0502 0.0440 0.0677 0.0450 0.0517 0.1192 0.0374

FID↓ 21.5575 19.4927 17.0820 15.0166 20.8444 19.7380 14.8055 14.3673 22.7679 14.2141 17.0083 31.5666 10.4631
MUSIQ↑ 59.2015 61.6673 61.7779 62.0022 61.8471 62.0979 61.9235 62.0225 61.4858 62.9714 61.9846 60.4618 63.1151

CLIPIQA↑ 0.3689 0.3749 0.4342 0.4442 0.4108 0.3851 0.3907 0.4406 0.3778 0.3907 0.4327 0.3632 0.4511
NIQE↓ 3.8535 3.6911 3.5647 3.6037 3.5510 3.7002 3.5623 3.6251 3.6637 3.4854 3.6165 4.0998 3.2590

MANIQA↑ 0.6392 0.6438 0.6542 0.6580 0.6427 0.6474 0.6501 0.6589 0.6416 0.6568 0.6548 0.6182 0.6647

the attribute perception Pattr as:

Pattr = {Pj
attr}, Pj

attr = (1 + e(L
poor
i −Lgood

i )/3)−1, j ∈ [0,M ]. (2)

Therefore, with our soft weather and attribute perceptions, Ptype tends to produce a non-sharp
distribution under unseen weather conditions, facilitating expert mixing behavior, while Pattr directly
encodes low-level degradation intensity, alleviating error propagation from weather misclassification.

Remarkable Zero-shot Capability of AWR-QA To evaluate the effectiveness of our developed
AWR-QA, we convert soft weather perceptions into one-hot labels and compare the statistical accuracy
against existing methods in Table 1. Though training or finetuning CLIP-based approaches achieves
slightly higher performance, their performance drop heavily on OOD data while our AWR-QA is
capable of achieve consistent perceptions across various weather conditions.

2.2 ENHANCING AWR BASELINES USING WEATHER PERCEPTIONS

With robust weather and visual attribute perceptions extracted from VLMs, we aim to enhance various
baseline models using Ptype and Pattr in this section. As presented in Fig. 3, we take transformer-
based baselines as the example for illustration. Overall, two additional layers are introduced into the
Soft Perceptions guided Transformer Block (SP-TransB).

Attributed-Modulated Normalization (AMN) The attribute perception is integrated to modulate
the layer normalization. Specifically, given an input feature F or Fmid, AMN modulate its output of
standard layer normalization with the scale and bias, which are learned from Pattr via linear operation.
This design allows the adaptive modulate magnitude based on low-level attribute perception and
alleviates the error propagation when the weather perception is not accurate in extremely complex
scenarios. The calculation process of AMN can be represented as:

λ1, β1, λ2, β2 = Linear(Pattr), (3)

F̃ = λ1 ⊙ LN(F) + β1, F̃mid = λ2 ⊙ LN(Fmid) + β2. (4)

5
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Figure 6: Soft weather perceptions Ptype serve as
branch weight in our developed WW-Adapter.

Weather-Weighted Adapters (WW-Adapter)
To achieve weather-aware modeling, we incor-
porate soft weather perceptions Ptype by devel-
oping the WW-Adapter alongside the MSA and
FFN components. The details of WW-Adapter is
shown in Fig. 6. Specifically, the WW-Adapter
module contains N branches, with each corresponding to one weather type. The output of WW-
Adapter is calculated as the weighted sum of the output of each branch:

Fout =

N−1∑
i=0

Fi · Pi
type, Fi = [Conv,SiLU,Conv]i(Fin). (5)

Therefore, the calculation of SP-TransB can be formulated as:
F̃ = AMN(F), FMSA

A = WWA(F̃,Ptype), Fm = F+ MSA(F̃) + αMSA
A · FMSA

A , (6)

F̃m = AMN(Fm),FFFN
A = WWA(F̃m,Ptype), F′ = Fm + FFN(F̃m) + αFFN

A · FFFN
A , (7)

where αMSA
A and αFFN

A are two learnable coefficients for adaptively adjusting the strength of
weather-weighted adapters. Following TransWeather (Valanarasu et al., 2022), the optimization of
AWR backbones with SP-TransB is achieved by minimizing the following distortion loss Ldist:

Ldist = L1(x1,x0) + 0.04× Lpercep(x1,x0), (8)
where x1 and x0 denote the clean image and posterior output of AWR backbones with SP-TransB.

2.3 WEATHER-AWARE RECTIFIED FLOW

Using soft weather cues as conditioning, attribute-modulated normalization together with weather-
weighted adapters consistently improves fidelity metrics over the corresponding AWR backbones.
Nevertheless, the posterior estimate x0 exhibits over-smoothing and lacks photorealism. We therefore
learn a weather-aware rectified flow to map the posterior-estimate distribution to the clean-image
distribution, which differs from the original RF process (Liu et al., 2022) in the following aspects.

Parameterizing Source Distribution using Soft Perceptions RF approximates a straight-path flow
that effects a distributional transport from source to target. In our setting, the target distribution is the
clean-image distribution, from which clean images x1 are sampled. However, the choice of source
distribution and its sampling scheme merits careful investigation. The standard RF, trained from
Gaussian noise to natural images, is effective for generation yet underperforms in AWR owing to
limited data-consistency. A similar limitation arises in approaches that take the degraded observation
y as the source for flow learning (Albergo & Vanden-Eijnden, 2022). PMRF (Ohayon et al., 2024)
defines the source by perturbing posterior estimates with random noise and demonstrates efficacy on
face restoration, denoising, and super-resolution. This stochastic perturbation mitigates singularities
inherent to learning a strictly deterministic mapping between source and target. Given the adverse
impact of noise on fidelity, PMRF employs modest, task-dependent noise magnitudes, indicating
that a constant noise level is ill-suited to AWR. To this end, we propose to parameterize the source
distribution exclusively through soft perceptions extracted by our AWR-QA.

Concretely, we first compute a normalized entropy H for weather perceptions Ptype ∈ RN , and
aggregate attribute perceptions Pattr ∈ RM into a scalar degradation severity indicator. We then We
then fuse type-uncertainty and attribute-severity and calculate a scalar perturbation scale within a
prescribed range [δmin, δmax]. The overall process can be summarized as:

P̃type =
Ptype∑N−1

i=0 Pi
type

, H = −
∑N−1

i=0 Pi
typelogPi

type

logN
, sattr = 1−

∑M−1
i=0 Pi

attr

M
, (9)

u = αH+(1− α)sattr, δ = δmin + (δmax − δmin)u, (10)
where α is set to 0.5 to control the trade-off between weather uncertainty and attribute severity.δmin

and δmax are 0.025 and 0.1, respectively. Therefore, as presented in Eq. 11, the source distribution
in our weather-aware rectified flow is isotropic Gaussian centered at posterior estimate xo and
parameterized by a VLM-driven perceptions, ensuring data-consistent yet adaptive randomness.

p∗0 = N (x0, δ
2I), x∗

0 = x0 + δz, z ∼ N (0, I). (11)
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Input SwinIR PromptIR DCPT RectiWeather GT

Figure 7: Visual comparisons on setting I. Our RectiWeather is capable of preserving fine details and
maintaining perceptual quality.

Table 3: Our extracted soft degradation perceptions consistently achieves remarkable improvements
for CNN or Transformer networks on setting I.

Methods
Dehazing Deraining Desnowing Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

NAFNet 29.2794 0.9481 26.0314 0.8494 28.1914 0.8953 28.5554 0.9195
NAFNet+Prior (Ours) 31.3548 0.9572 26.5934 0.8617 28.6328 0.8982 30.0240 0.9269

TransWeather 28.8708 0.9449 24.3043 0.8151 26.9457 0.8769 27.7213 0.9078
TransWeather+Prior (Ours) 30.7832 0.9574 26.3847 0.8557 28.1937 0.8943 29.4306 0.9251

SwinIR 28.133 0.9490 28.1922 0.8870 27.4389 0.8873 27.9082 0.9216
SwinIR+Prior (Ours) 29.2637 0.9542 28.3142 0.8881 27.8045 0.8891 28.6713 0.9251

PromptIR 29.0742 0.9492 28.2102 0.8881 28.2108 0.8966 28.6901 0.9249
PromptIR+Prior (Ours) 30.1556 0.9530 27.9903 0.8863 28.6774 0.9034 29.4219 0.9291

Histoformer 28.8753 0.9532 27.2624 0.8551 27.3890 0.8870 28.2002 0.9202
Histoformer+Prior (Ours) 29.8024 0.9625 27.6263 0.8612 27.9804 0.8938 28.9527 0.9283

AdaIR 29.8552 0.9523 28.2166 0.8868 28.4096 0.8992 29.1908 0.9273
AdaIR+Prior (Ours) 31.9523 0.9614 28.5753 0.8892 28.7732 0.9009 30.5164 0.9332

Perception-aware Velocity Field Estimation Based on the source distribution p∗0 and its samples
x∗
0, we train a perception-aware rectified flow model fθ via the following optimization:

argmin
θ

∫ 1

0

E
[
|| (x1 − x∗

0)− fθ(x
∗
t , t,Ptype,Pattr)||2

]
dt, (12)

where t is sampled from a uniform distribution U(0, 1), x∗
t = tx1 + (1− t)x∗

0. More importantly,
other than learning a unified velocity path for all weather-corrupted inputs, we incorporate soft
perceptions into fθ to achieve perception-aware velocity field estimation. Overall, AdaIR (Cui
et al., 2025) is deployed as the backbone of fθ, weather perceptions Ptype is introduced via weather-
weighted adapters. Moreover, the normalization coefficients of AMN in Eq. 4 is calculated upon the
concatenation of timestep t and weather perceptions Pattr.

3 EXPERIMENTS

Experiment Settings and Datasets We evaluate RectiWeather under two all-in-one experimental
settings. Setting I involves three core weather degradation tasks, dehazing, deraining, and desnowing,
trained on a unified dataset comprising Reside-6K (Li et al., 2018), Rain100H (Yang et al., 2017),
and Snow100K-L(Liu et al., 2018). Setting II further introduces the low-light enhancement task, with
LOLv2-Real (Yang et al., 2021) included as an additional domain. To assess cross-domain robustness,

7
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Table 4: Comparison with OOD data using weights pre-trained on setting I. [Key: Best; Second-best;
Third-best].

Tasks Metrics
Baselines Ours

PromptIR TransWeather Histoformer GridFormer AdaIR HOGFormer RectiWeather

Dehazing

MUSIQ↑ 51.4000 51.9740 52.7529 54.6239 54.5125 52.8634 57.2632
CLIPIQA↑ 0.3677 0.3615 0.3642 0.3659 0.3677 0.3594 0.3921

NIQE↓ 5.3796 5.1483 4.8733 4.9918 4.9563 5.0271 4.4625
MANIQA↑ 0.2893 0.3079 0.3164 0.3209 0.3135 0.3029 0.3426

Deraining

MUSIQ↑ 71.0463 70.4322 70.6811 70.6135 71.2161 70.2886 71.6847
CLIPIQA↑ 0.7526 0.7242 0.7156 0.7388 0.7570 0.7229 0.7689

NIQE↓ 3.3537 3.4932 3.8112 3.5161 3.3245 3.4784 2.9683
MANIQA↑ 0.6978 0.6628 0.6868 0.6866 0.6984 0.6852 0.7065

Desnowing

MUSIQ↑ 70.4422 70.3448 71.1404 70.1392 70.4569 70.5921 71.3847
CLIPIQA↑ 0.5793 0.5227 0.5333 0.5336 0.5815 0.5742 0.5898

NIQE↓ 2.9182 3.1424 2.9812 3.0258 2.9156 2.9046 2.8125
MANIQA↑ 0.6897 0.6724 0.6850 0.6749 0.6915 0.6923 0.7033

Average

MUSIQ↑ 54.1020 54.5709 55.3413 56.8251 56.7800 55.3619 59.2641
CLIPIQA↑ 0.4010 0.3883 0.3917 0.3937 0.4014 0.3927 0.4236

NIQE↓ 5.0405 4.8719 4.6225 4.7238 4.6761 4.7387 4.2325
MANIQA↑ 0.3460 0.3592 0.3685 0.3711 0.3670 0.3578 0.3936

we conduct out-of-distribution evaluations by testing models trained in Setting I on RTTS (Li et al.,
2018), Rain100L(Yang et al., 2017), and Snow100K-S(Liu et al., 2018), each representing unseen
test conditions for dehazing, deraining, and desnowing respectively.

Implementations Details Using Eq. 8, we first train the AWR baseline model (AdaIR (Cui et al.,
2025)) with AMN and WWA on our combined dataset for 200 epochs. The initial learning rate is
set to 2× 10−4 and it is reduced to 10−7 by the end of training. Each training input is cropped into
192× 192, and the batch size is set to 4. We use horizontal flips and rotations for data augmentation.
We then optimize fθ using Eq. 12 for 500 epochs, while other configurations keep unchanged. As in
(Ohayon et al., 2024), we sample t uniformly from U [0, 1] using a stratified sampling strategy. In the
inference stage, the number of flow steps K is set to 5 in this work.

Compared Baselines and Metrics We benchmark our method against state-of-the-art (SOTA)
approaches in all-in-one image restoration tasks including CNN-based methods (NAFNet (Chen
et al., 2022), WGWS-Net (Zhu et al., 2023), DCPT-NAFNet (Hu et al., 2025)), Transformer-based
methods (SwinIR (Liang et al., 2021), PromptIR (Potlapalli et al., 2023), TransWeather (Valanarasu
et al., 2022), Histoformer (Sun et al., 2024), GridFormer (Wang et al., 2024), AdaIR (Cui et al.,
2025), HOGFormer ()), and SDE/Diffusion-based methods (DACLIP (Luo et al., 2023a), GPPLLIE
(Zhou et al., 2025), and UniRestore (Chen et al., 2025)). To test the efficacy of our method against
these approaches, we compare performance across dehazing, deraining, desnowing, and low-light
conditions across in and out-of-distribution settings, using fidelity (PSNR, SSIM (Wang et al., 2004))
and perceptual metrics (LPIPS (Zhang et al., 2018), FID (Heusel et al., 2017), MUSIQ (Ke et al.,
2021), CLIPIQA (Wang et al., 2023), NIQE (Mittal et al., 2012), MANIQA (Yang et al., 2022)).

Quantitative Comparisons with Baselines Tab. 2 summarizes the quantitative comparisons be-
tween our method and current SOTA methods on setting I. Our method achieves superior performance
on all three tasks, highlighting its advantage. Notably, the PSNR of our method surpasses the best
SOTA by 1.17 dB on average. Moreover, our perceptual metrics significantly outperform the CNN-
based and Transformer-based baselines, with only a few metrics slightly below DACLIP, a generative
approach that requires numerous inference steps. These fidelity results demonstrate the effectiveness
of the soft perceptions extracted from VLMs and of our designed AMN and WWA modules, while
the exceptional perceptual quality corroborates the importance of our perception-aware rectified-flow
model. See Tab. 5 for quantitative comparisons on Setting II, where RectiWeather also achieves the
best performance on both fidelity and perceptual metrics. To demonstrate the plug-and-play nature of
our perceptions, we integrate them into diverse baselines and achieve consistent gains on weather
removal tasks (Tab. 3).

Visual Comparisons with Bselines Fig. 7 provides visual comparisons between our method and
AWR baselines. For the hazy scenes (rows 1–2), SwinIR, PromptIR, and DCPT leave residual haze
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Table 5: Comparison with SOTA methods on all-in-one image restoration (setting II). [Key: Best;
Second-best; Third-best].

Tasks Metrics
CNN-based Transformer-based SDE/Diffusion-based Our

NAFNet DCPT-NAFNet SwinIR PromptIR TransWeather Histoformer GridFormer AdaIR HOGFormer DACLIP GPP-LLIE UniRestore RectiWeather

Dehazing

PSNR↑ 29.4842 29.2242 26.3268 29.3953 28.8925 27.2265 27.0659 29.6063 27.0072 28.4270 28.1868 24.1414 30.3797
SSIM↑ 0.9509 0.9604 0.9389 0.9497 0.9448 0.9418 0.9535 0.9512 0.9493 0.9365 0.9462 0.8346 0.9539
LPIPS↓ 0.0291 0.0246 0.0444 0.0294 0.0330 0.0339 0.0260 0.0296 0.0337 0.0272 0.0368 0.0952 0.0253

FID↓ 8.1313 6.9793 13.8706 8.4712 9.5456 10.1239 6.8404 8.3922 9.0061 6.2342 9.9210 18.5698 5.5366
MUSIQ↑ 55.9530 56.1014 56.3110 55.8436 55.9373 55.6795 56.1424 55.9427 55.8376 56.8943 55.6146 56.3163 56.7342

CLIPIQA↑ 0.2853 0.2598 0.2939 0.3002 0.2832 0.2561 0.2630 0.2950 0.2604 0.2700 0.2987 0.2659 0.2986
NIQE↓ 4.0587 4.0638 3.8112 3.9647 3.8340 4.0335 3.9798 4.0271 4.1015 3.8247 3.9758 4.4224 3.9401

MANIQA↑ 0.6416 0.6396 0.6386 0.6403 0.6356 0.6322 0.6392 0.6424 0.6415 0.6338 0.6394 0.6213 0.6445

Low-light

PSNR↑ 18.6269 20.2516 16.1077 20.5389 20.9644 17.4699 19.9056 21.8332 19.9568 22.2302 20.3946 19.6627 23.6634
SSIM↑ 0.8383 0.8183 0.7913 0.8575 0.8377 0.7956 0.8112 0.8669 0.8318 0.8279 0.8517 0.7387 0.8842
LPIPS↓ 0.1153 0.1887 0.1384 0.0867 0.1176 0.1995 0.1249 0.0849 0.1676 0.1151 0.1157 0.1714 0.0644

FID↓ 43.3469 68.5468 62.8596 33.1933 46.6892 73.0903 49.2181 34.4985 57.8767 47.1134 43.2211 71.6247 29.3878
MUSIQ↑ 70.4247 55.9111 69.2740 68.9156 66.8728 58.9973 65.7178 68.9272 60.1414 69.1371 68.6057 66.7391 69.5077

CLIPIQA↑ 0.5366 0.4023 0.5277 0.5571 0.4001 0.4297 0.4743 0.5162 0.3446 0.4763 0.4415 0.4795 0.6010
NIQE↓ 4.3401 3.9823 4.3985 4.5524 3.9808 3.8475 4.4756 4.5544 3.8952 4.9906 3.8835 4.6244 3.9343

MANIQA↑ 0.6575 0.5897 0.6358 0.6601 0.6236 0.5912 0.6210 0.6587 0.5984 0.6706 0.6452 0.6328 0.6687

Deraining

PSNR↑ 25.4421 26.3477 26.7710 27.9980 24.1490 25.5034 25.7722 28.1874 26.3770 26.1871 27.0394 21.6014 28.3006
SSIM↑ 0.8456 0.8253 0.8580 0.8829 0.8101 0.8069 0.8063 0.8857 0.8346 0.8360 0.8737 0.6743 0.8871
LPIPS↓ 0.1126 0.1648 0.1064 0.0755 0.1428 0.1881 0.1470 0.0733 0.1560 0.0876 0.1017 0.2255 0.0647

FID↓ 39.5993 58.2514 36.7157 27.1002 51.7666 62.6183 45.6402 25.8660 55.5853 32.7593 31.7345 69.8020 19.4836
MUSIQ↑ 70.0800 64.5522 69.4326 70.4612 68.4701 65.4731 66.8084 70.6815 65.9262 69.9443 70.0148 65.8471 71.1827

CLIPIQA↑ 0.7535 0.6158 0.7252 0.7829 0.6509 0.6393 0.6726 0.7856 0.6749 0.7466 0.7402 0.6629 0.7915
NIQE↓ 3.6333 3.6589 3.6001 3.5691 3.7411 3.2971 3.5996 3.6318 3.3972 3.1016 3.6051 3.6589 3.2237

MANIQA↑ 0.6707 0.6042 0.6650 0.6850 0.6153 0.5982 0.6150 0.6868 0.6191 0.6761 0.6767 0.6199 0.6932

Desnowing

PSNR↑ 28.2893 27.2178 26.1904 27.9105 26.7268 26.5015 26.4140 28.4000 26.7946 26.5609 27.3473 21.8470 28.6734
SSIM↑ 0.8966 0.8843 0.8697 0.8919 0.8743 0.8698 0.8739 0.8981 0.8801 0.8661 0.8895 0.6415 0.9019
LPIPS↓ 0.0625 0.0857 0.0935 0.0665 0.0813 0.1057 0.0945 0.0608 0.0897 0.0731 0.0705 0.1819 0.0527

FID↓ 21.4393 30.7876 34.3009 22.9940 30.7250 36.8774 29.5384 21.1764 33.3173 25.8008 26.4275 45.5577 18.0723
MUSIQ↑ 69.5727 69.5594 67.9504 68.8747 69.1820 69.3072 68.2443 69.1902 69.1780 70.3695 69.0375 68.8181 70.6482

CLIPIQA↑ 0.5652 0.4776 0.5423 0.5621 0.5379 0.4762 0.4991 0.5655 0.4839 0.5082 0.5383 0.4556 0.5711
NIQE↓ 2.9698 3.0606 2.9673 2.8967 2.9637 3.2416 2.9067 2.9322 3.0508 2.8812 3.0507 3.0606 2.8239

MANIQA↑ 0.6760 0.6583 0.6568 0.6726 0.6580 0.6568 0.6595 0.6767 0.6581 0.6758 0.6658 0.6382 0.6826

Average

PSNR↑ 28.1100 27.8153 25.7928 28.3130 27.2917 26.3028 26.3470 28.6668 26.5028 27.2754 27.3908 22.9132 29.2682
SSIM↑ 0.9167 0.9147 0.9007 0.9195 0.9027 0.8972 0.9054 0.9231 0.9092 0.8980 0.9157 0.7516 0.9268
LPIPS↓ 0.0530 0.0673 0.0714 0.0490 0.0643 0.0815 0.0656 0.0470 0.0713 0.0527 0.0584 0.1403 0.0402

FID↓ 17.5018 23.1392 25.3101 16.3230 22.6373 27.4171 24.1633 15.6456 26.3276 17.3612 19.1862 35.2829 12.2218
MUSIQ↑ 62.5064 61.2352 62.0532 62.1889 62.0184 61.1928 61.3430 62.3646 61.1712 63.1715 62.0566 61.8197 63.3251

CLIPIQA↑ 0.4363 0.3736 0.4301 0.4473 0.4086 0.3751 0.3919 0.4438 0.3791 0.4063 0.4284 0.3789 0.4525
NIQE↓ 3.6845 3.6998 3.5531 3.6163 3.5568 3.6959 3.6266 3.6671 3.6844 3.5117 3.6395 3.9222 3.5115

MANIQA↑ 0.6564 0.6392 0.6470 0.6563 0.6399 0.6342 0.6421 0.6588 0.6429 0.6535 0.6520 0.6271 0.6629

or introduce color distortion, as indicated by the red arrows. In contrast, our RectiWeather produces
clearer and more natural results, closely resembling the ground truth. For the deraining case (row
3), competing methods fail to fully remove rain streaks or generate noticeable artifacts (orange
arrows), whereas RectiWeather removes rain effectively while preserving fine structural details. In the
desnowing case (row 4), other baselines fail to eliminate snowy particles and tend to blur background
structures (black arrows). By comparison, RectiWeather yields sharper contours and more faithful
textures, demonstrating its robustness across diverse weather degradations.

4 CONCLUSIONS

In this work, We introduce RectiWeather for adverse weather removal. By leveraging VLM-guided
soft perceptions for restoration models, RectiWeather enhances the AWR baselines’ awareness and
adaptability to complex weather degradations without requiring additional supervision. Furthermore,
with improved posterior estimation through perception-aware rectified flow, our method achieves
significant performance in both all-in-one and out-of-distribution scenarios. Extensive experiments
demonstrate RectiWeather’s state-of-the-art performance in fidelity and perceptual quality.

Limitations Although RectiWeather handles complex weather conditions better than baseline
models, its performance remains limited when image degradation (e.g., the haze pattern) differs
substantially from those seen during training. In addition, while our method is more efficient than full
diffusion-based approaches such as DACLIP, the incorporation of VLM perception in the adverse-
weather removal (AWR) backbone and rectified-flow procedure introduce a modest runtime overhead;
for a 1024×1024 image, processing typically requires 0.4 s of additional time on a single 5090 GPU.
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5 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The main text provides
complete details of the proposed framework (Sections 3 and 4), experimental setup and evaluation
protocols (Section 5), and quantitative/qualitative comparisons (Tables 1–4). Additional implementa-
tion details and ablation studies are included in the Appendix to further support reproducibility. While
our source code and pretrained models will be released publicly upon acceptance, the information
provided in the manuscript and appendix should enable independent researchers to reproduce our
findings.
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A APPENDIX

A.1 RELATED WORKS

Learning-based Adverse Weather Removal While single-weather removal excels in precision, it
lacks versatility needed to handle real-world situations with multiple and complex weather conditions.
To address this, blind or non-blind all-in-one models for adverse weather removal emerged. All-in-one
(Li et al., 2020b), one of the earliest non-blind networks, adopts a CNN with task-specific encoders
found via NAS. Zhu et al. (Zhu et al., 2023) then use a two-stage strategy that learns weather-
general and weather-specific priors with a UNet backbone for blind weather removal. Adopting
the Transformer (Vaswani, 2017), TransWeather (Valanarasu et al., 2022) matches weather-type
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queries to feature keys/values, while AWRCP (Ye et al., 2023) operates in latent space with codebook
priors. PromptIR (Potlapalli et al., 2023) introduces plug-in prompt blocks, which use prompts to
encode degradation-specific information and a prompt interaction module that dynamically guide the
transformer-based restoration network. Adopting the prompt mechanism, Prompt-in-Prompt (PIP)
(Li et al., 2023) learns a degradation-aware prompt and a basic restoration prompt, combining them
via prompt-to-prompt and selective prompt-to-feature interactions as a plug-in module that improves
multi-weather robustness. MiOIR (Kong et al., 2024) learns tasks sequentially, using prompts to
reduce interference between them and to stabilize training across diverse weather conditions. U-
WADN (Xu et al., 2024) adds a unified-width, nested backbone with an automatic width selector so
the model focus on key points, improving efficiency in all-in-one weather removal. UtilityIR (Chen
& Pei, 2024) purposes an aware of degradation type and severity model, pairing a marginal quality
ranking loss with adaptive normalization/attention to tune restoration strength and handle unseen
mixes. OneRestore (Guo et al., 2024) targets composite degradations by fusing scene descriptors with
image features, enabling controllable restoration without assuming a single weather type. AWRaCLe
Rajagopalan & Patel (2025) uses a degraded-clean context pair as a visual prompt, extracting and
fusing weather and type semantics and degradation appearance cues, thus the model perceives the
before–after contrast and performs targeted correction.

VLM-informed Image Restoration Language-driven image restoration models aim to use natural
language to remove the effects of degradation to output a clean high-quality image. In recent years,
VLM architectures achieve significant breakthroughs in language-driven image restoration tasks to
guide deep learning-based models. TextIR (Bai et al., 2023) leverages CLIP (Radford et al., 2021) to
guide restoration by aligning text-based description with features of the restored image. DACLIP
(Luo et al., 2023a) presents a degradation-aware VLM trained on text descriptions that guides a
SDE-based restoration model to learn high-quality image features. InstructPix2Pix (Brooks et al.,
2023) introduces a novel diffusion-based image editing method that can modify specific features in
an image based on text-based instructions. InstructIR (Conde et al., 2025) deploys human-written
instructions to guide an all-in-one restoration model by feature masking. Co-Instruct (Wu et al., 2025)
designs a Large multi-modality model trained on a instruction-based dataset, capable of providing
detailed reasoning and answer open ended questions. VLU-Net (Zeng et al., 2025) aims at an
interpretable unfolding solver whose gradient step is steered by VLM to auto-select degradation
transformers, and with hierarchical feature unfolding, it delivers all-in-one restoration. LDR (Yang
et al., 2024) derives a pixel-wise degradation map from natural-language queries to a VLM and uses
it to route MoE experts, enabling adaptive restoration without explicit weather labels. InstructRestore
(Liu et al., 2025) introduces instruction-guided, region-customized image restoration by building a
dataset and a ControlNet-style model which turns natural language region descriptions into masks
and per-region feature modulation.

Diffusion and Flow-based Image Restoration Modern restoration methods often base their
models as stochastic differential equations (SDEs), where the forward process gradually corrupts
an image with continuous time-steps of random noise. Reverse-time SDE can also be done to
recover the original image. Pioneering SDE-based image restoration, Song et al. (Song et al., 2020)
proposes a trainable neural network to approximate the score function used for correcting restoration
in reverse-time SDE. IR-SDE (Luo et al., 2023b) extends prior works by replacing the standard
SDE-based corruption with a mean-reverting process, providing a more true representation of image
degradation types. Adopting from these works, denoising diffusion probabilistic models (Ho et al.,
2020) introduce a discretized version of the SDE built on Markov chains, leading to a more simplistic
and practical framework for image restoration. While SDE-based models are performant in image
restoration, their inherent randomness is inefficient, requiring large number of small time-steps for
accurate results. To address this, Song et al. (Song et al., 2020) further show that reverse-time SDE
can be expressed as a probability flow ordinary differential equation (ODE), an efficient alternative
that deterministically generates transport mappings via velocity fields to reverse noise. However,
ODE-based models are often expensive and slow in practice as most solutions relied on simulating
ODE trajectories. Flow matching (FM) (Lipman et al., 2022) is introduced as a simulation-free
method that learns transport mappings with a trained neural network. To further build upon FM,
Rectified flow (RF) (Liu et al., 2022) is proposed as a more simplistic solution using linear transport
paths for noise-data pairs, achieving similar performance at reduced computational cost. Extending
from RF, FlowIE (Zhu et al., 2024) uses linear many-to-one transport mappings instead of one-to-one
noise-data pairs for strong performance across different restoration tasks. PMRF (Ohayon et al., 2024)
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Input SwinIR PromptIR DCPT RectiWeather GT

Figure 8: Visual comparisons on setting II. Previous methods often leave residual degradations
or introduce artifacts (red, orange, and black arrows), whereas our RectiWeather restores clearer
structures, sharper details, and more natural colors, closely matching the ground truth.

Table 6: Ablations on AWR-QA, AMN, and WWA on setting I.
Configurations PSNR SSIM FID MUSIQ

Full RectiWeather 30.37 0.932 10.46 63.12
Variant 1 28.48 0.920 13.78 62.49
Variant 2 29.53 0.928 11.78 62.77
Variant 3 29.74 0.930 11.31 62.92

uses rectified flow to approximate the optimal transport map, moving posterior mean predictions
towards the ground-truth for high-quality image restoration.

A.2 ABLATION STUDY

To analyze the contribution of each component in our method, we conduct extensive ablation studies
on setting I.

AWR-specific Question Answering, Attribute-Modulated Normalization, and Weather-weighted
Adapters To study the importance of our proposed AWR-specific QA and LPP-Attn, we remove
these components from RectiWeather and denote the remaining network as Variant 1. Essentially,
vanilla AdaIR serves as the posterior estimator in this setting, and Tab. 6 reports the average quan-
titative performance of Variant 1 on Setting I. Compared with Variant 1, the full RectiWeather
shows significantly improved PSNR and FID by integrating soft VLM perceptions via our Attribute-
Modulated Normalization and Weather-Weighted Adapters. In addition, we introduce Variant 2,
which employs only the attribute perceptions, and Variant 3, which employs only the weather percep-
tions. These comparisons demonstrate that the two types of perceptions work complementarily to
yield enhanced performance

Perception-aware Rectified Flow As reported in Tab. 7, we implement several adaptations to
illustrate the importance of the source distribution built upon soft perceptions and the perception-
aware velocity estimation. We observe that, if no noise is added to x0, RF tends to learn a deterministic
flow path, while the perceptual metrics do not increase much. When the noise level is fixed, fidelity
drops markedly, as evidenced by a heavy decrease in PSNR and SSIM. We observe similar behavior
when a vanilla transformer backbone, without the guidance of VLM perceptions, also struggles to
find the optimal flow map.
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Table 7: Ablations on perception-aware rectified flow on setting I.
Configurations PSNR SSIM FID MUSIQ

Full RectiWeather 30.37 0.932 10.46 63.12
No Noise 29.24 0.927 14.27 61.88

Fix Noise Level (0.1) 28.27 0.920 14.55 61.75
w/o perceptions in fθ 28.58 0.922 14.44 61.87

A.3 LLM USAGE

Large Language Models (LLMs) were exclusively used for language refinement such as improving
grammar, clarity, and flow of the manuscript. Ideas, methodologies, experiments, and analysis were
fully carried out by the authors.
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