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ABSTRACT

Typically in machine learning, training and tuning are done in an alternating
manner: for a fixed set of hyperparameters y, we apply gradient descent to our
objective f(x, y) over trainable variables x until convergence; then, we apply a
tuning step over y to find another promising setting of hyperparameters. Because
the full training cycle is completed before a tuning step is applied, the optimization
procedure greatly emphasizes the gradient step, which seems justified as first-
order methods provides a faster convergence rate. In this paper, we argue that an
equal emphasis on training and tuning lead to faster convergence both theoretically
and empirically. We present Joint Descent (JD) and a novel theoretical analysis
of acceleration via an unbiased gradient estimate to give an optimal iteration
complexity of O(

√
κny log(n/ε)), where κ is the condition number and ny is the

dimension of y. This provably improves upon the naive classical bound and implies
that we essentially train for free if we apply equal emphasis on training and tuning
steps. Empirically, we observe that an unbiased gradient estimate achieves the best
convergence results, supporting our theory.

1 INTRODUCTION

For many practical machine learning tasks, the importance of efficient hyperparameter tuning in order
to achieve state-of-the-art performance is often overlooked. Because modern neural network architec-
tures and learning models have become increasingly complicated, the need to precisely and efficiently
tune the growing number of hyperparameters has also increased in traditional supervised learning
(Snoek et al., 2012), as well as diverse applications such as reinforcement learning (Choromanski
et al., 2018), neural network attacks (Papernot et al., 2017), and generative adversarial networks
(Goodfellow et al., 2014). Traditionally, hyperparameter tuning has been done in the alternating
regime where the learner alternates between choosing the hyperparameters and optimizing the model
with that set of hyperparameters. The main difficulty that arises is the computational cost of such an
approach, which incurs the full computational cost of model training for every attempted configuration
of hyperparameters. Parallelism has alleviated some of the computational burden (Falkner et al.,
2018), but does not change the total computational cost and has its own drawbacks since sequential
optimization will in general provide the best solutions.

Even in academic literature, the understanding of optimization algorithms and convergence has been
divided into two camps: first-order vs zeroth-order optimization. Classical first-order optimization
assumes that the gradient of the objective function can be efficiently computed and the intuitive idea
of applying vanilla gradient descent gives a O(κ log(R2/ε)) iteration complexity for converging
to within ε of the optimum of an L-Lipschitz convex function with condition number κ and R =
‖x0−x∗‖ (Nesterov, 2013). Acceleration, in the form of momentum, was then applied successfully to
achieve aO(

√
κ log(R2/ε)) iteration complexity and this convergence bound is optimal. Furthermore,

many variants of gradient descent have arose in different settings, such as stochastic gradient descent
(SGD) (Bottou, 2010), mirror descent (Beck & Teboulle, 2003), coordinate gradient descent (Tseng
& Yun, 2009), or proximal gradient descent (Nitanda, 2014).

Zeroth-order optimization, on the other hand, assumes that the learner only has access to function
evaluations as opposed to gradient evaluations. Not surprisingly, the classical approach to zeroth-
order optimization is to simply estimate the gradients from function values and essentially reduce to
first-order optimization (Flaxman et al., 2005). Nesterov & Spokoiny (2011) analyze this class of
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algorithms as gradient descent on a Gaussian smoothing of the objective and gives an accelerated
O(n
√
κ log(LR2/ε)) iteration complexity where n is the input dimension. This approach was

extended by (Duchi et al., 2015) for stochastic settings, by (Ghadimi & Lan, 2013) for nonconvex
settings, and by (Shamir, 2017) for non-smooth and general `p norm settings. Also, first-order
techniques such as variance reduction (Liu et al., 2018b), conditional gradients (Balasubramanian &
Ghadimi, 2018), and diagonal preconditioning (Mania et al., 2018) have been successfully transfered
to the zeroth-order setting.

However, estimating gradients can lead to bad optima when optimizing non-convex, noisy, or discrete
functions. To go beyond simply mimicking first-order techniques, researchers have proposed two
alternate directions of tackling zeroth order optimization. The first approach is a local randomized
descent based approach that relies only on the ranking of function evaluations. These approaches tend
to be more robust when gradients suffer from high variance due to non-robust local minima or highly
non-smooth objectives, which are common in the fields of deep learning and reinforcement learning
(Mania et al., 2018). Examples include direct search via deterministic positive spanning sets (Brooks,
1958), evolutionary or genetic strategies such as CMA-ES (Auger & Hansen, 2005), and stochastic
gradientless descent (Golovin et al., 2019; Gorbunov et al., 2019). While these methods usually have
worse theoretical bounds of O(nκ log(LR2/ε)) with a linear dependence on κ, it is noted that these
methods are invariant under monotone transforms and affine projections of the objective, a property
that might explain their robustness in practice, especially in high-variance, high-dimensional settings
(Golovin et al., 2019). Furthermore, these rank-based approaches do not suffer from the numerical
instability of approximating gradients, both in practice and in the analysis.

The second approach is a model based approach that first builds a model of the objective from the
data, and then optimizes an acquisition that is a function of the outputs of the model. The model is
often probabilistic and the setting is thus referred to as as Bayesian optimization. In general, these
methods attempt to solve a broader more global non-convex optimization with multiple optima and
usually have have weaker theoretical regret bounds (Frazier, 2018). Furthermore, the computational
cost is significant; for example, Bayesian optimization generally has theoretical regret bounds that
grow exponentially in dimension and each iteration assumes the success of an inner optimization
loop of the acquisition function (Srinivas et al., 2009). However, they often do well empirically on a
variety of blackbox optimization problems and have become a staple in zeroth-order optimization in
the recent years (Hansen et al., 2009).

Because of the relative division of first-order and zeroth-order optimization in literature, as well as
in practical software implementation, training and tuning has been traditionally done separately in
an alternating, thereby computationally expensive, manner. Thus, there has been a recent push to
speed up optimization via joint training and tuning, such as automatic updating of learning rate and
momentum for SGD during training (Lancewicki & Kopru, 2019), tuning of both hyperparameter and
parameters for SVMs (Liao & Jia, 2007), or self-tuning networks that simultaneously learn the net-
work weights as well as the best hyperparameter response function (MacKay et al., 2019), activation
function (Hou et al., 2017), or architecture (Cortes et al., 2017; Liu et al., 2018a). Furthermore, a tech-
nique to compute hyperparameter gradient during the course of training was proposed in (Maclaurin
et al., 2015) and there are gradient-based approaches to simultaneously train and tune optimization
hyperparameters (Andrychowicz et al., 2016) and regularization hyperparameters (Luketina et al.,
2016). Lastly, Population-based Training (PBT) was recently proposed to jointly train variables via
gradients and hyperparameters via evolutionary strategies (Jaderberg et al., 2017). Although these
papers provide a good overview on the empirical benefits of applying joint optimization, especially in
computational savings, across a diverse array of settings, they provide little theoretical understanding
or justifications.

1.1 OUR SETUP

In this paper, we consider the problem of jointly minimizing a bivariate function of the form f(x, y),
where x denotes the trainable variables and y are the hyperparameters. Specifically, let nx, ny denote
the dimension of x, y respectively and let n = nx + ny . Our goal is to solve

min
x,y

f(x, y) (1)

with as few iterations as possible, where each iteration allows either:
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1. Evaluation of a partial derivative with respect to x: ∇xf(x, y)

2. Evaluation of function value at (x, y): f(x, y)

It may seem inpractical that an zeroth-order evaluation costs the same as a first-order derivative
evaluation, but this occurs in many settings where the derivatives are cheap to evaluate, most
notable in backpropagation for neural networks (Hecht-Nielsen, 1992), where the gradient evaluation
computation cost is only a constant factor more expensive than that of evaluating the network.
Furthermore, modern auto-differentiation software and hardware often optimize for the speed of
gradient computations, which has become extremely fast and cheap.

However, it is equally important to note that there are instances in machine learning where the gradient
evaluation is significantly more expensive than a function evaluation. For example, in meta-learning
or multi-task learning, objective functions are often of the form f(x− η∇f(x)), which requires a
full Hessian vector product if a full gradient is computed (Finn et al., 2017). By converting some of
the expensive gradient computation into cheap function evaluation computation, one can benefit from
joint optimization in this setting to improve runtime.

Classically, problem 1 is solved by first minimizing over variables x and reducing to a zeroth
order problem over hyperparameters y on the optimized function g(y) = minx f(x, y). Note that
this naive alternating minimization approach with optimal accelerated rates only gives a iteration
complexity bound of O(

√
κ log(nx/ε)) gradient steps per hyperparameter evaluation step, and would

requireO(ny
√
κ log(ny/ε)) hyperparameter evaluations (Nesterov, 2013). This gives a total iteration

complexity of O(nyκ log(n/ε)2). Note that we may also solve 1 by simply running zeroth order
optimization only on (x, y) jointly, without any gradient access. However, this gives a runtime of
O(n
√
κ log(1/ε)), which is worse when κ is small.

1.2 OUR CONTRIBUTIONS

In this paper, we develop the theoretical foundations for explaining the empirical success of jointly
optimizing a bivariate function of the form f(x, y) and show theoretically that joint optimization
should be done with an unbiased gradient estimate, implying runtime savings when equal emphasis
on training and tuning is applied. To our knowledge, these are the first theoretical results for general
joint optimization. For theory, we assume that f is convex and let κ be its condition number; however,
from experimental evidence, we note this assumption seems unnecessary for fast convergence in
practice.

Improving on the classical bound, we present a novel analysis of our Joint Descent (JD) algorithms
that uses a careful balance of first order and zeroth order steps to show that we may achieve an
accelerated iteration complexity of O(ny

√
κ log(ny/ε)), which is a factor of

√
κ log(n/ε) better

than our classical bound. Note that it was apriori unclear if acceleration was even possible due to
lack of symmetry in x, y. Furthermore, our bound is essentially the same iteration complexity of
optimization f(x, y) over y only, meaning that our bound is optimal and we achieve training for free.
We present an informal version of our theorem below.

Theorem 1 (Informal Restatement of Theorem 4). Let zk be the iterates of running Accelerated Joint
Descent (Algorithm 2) with stochastic gradient gη . Then,

E [f(zk)]− f(z∗) ≤ (1− γ)kξ0 +O(η2β2
√
κ(ny)2)

with γ = Ω((
√
κny)−1) and ξ0 = O(poly(n)). Therefore, running k = O(ny

√
κpoly log(n/ε))

iterations of AJD guarantees E [f(zk)]− f(x∗) ≤ ε with η sufficiently small.

Intuitively, our proposed JD algorithms will take a gradient step with probability p (training) and a
zeroth-order step with probability 1− p (tuning). In the case of hyperparameter tuning of models
in practice, note that if the training and tuning datasets are the same, we recover the standard
hyperparameter tuning approaches by setting p ≈ 1 and taking a zeroth-order step sparingly. However,
our theory seems to imply that p = 1/2 might lead to faster convergence, as our analysis of
acceleration requires an unbiased gradient.

Although this may seem like an artifact of our analysis, we empirically observe that setting p = 1/2
is the most effective for function optimization, even when the number of hyperparameters is large and
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equal to the number of training variables. This is especially surprising because this goes against the
intuition that the gradient step probability p should be decreasing when the number of hyperparameters
increase, especially since the convergence rate for tuning hyperparameters is slower than that of
training. This perhaps demonstrates the importance of an unbiased gradient estimates when applying
acceleration methods and underscores the utility of veering away from traditional hyperparameter
tuning strategies, which has p very close to 1.

2 PRELIMINARIES

We first define a few notations for the rest of the paper. The full gradient is denoted as ∇f(x, y) ∈
Rnx+ny and we let the partial gradients ∇xf(x, y) ∈ Rnx ,∇yf(x, y) ∈ Rny be the vectors such
that [∇xf(x, y),∇yf(x, y)] = ∇f(x, y) where [v, w] denotes the concatenation of the two vectors
v, w. We often let z = [x, y]. Let ‖ · ‖ denote the Euclidean norm, unless otherwise specified, and
〈x, y〉 be the Euclidean inner product. Note that we always assume that x, y are within the domain of
f and that the optimization is done over a compact region with diameter O(poly(n)).
Definition 2. We say that f is α-strongly convex for α > 0 if f(y) ≥ f(x)+〈∇f(x), y−x〉+ α

2 ‖y−
x‖2 for all x, y. We say that f is β-smooth for β > 0 if f(y) ≤ f(x) + 〈∇f(x), y−x〉+ β

2 ‖y−x‖
2

for all x, y.

In this paper, we focus on the case where f is β-smooth and α-strongly convex for the theoretical
guarantees. If f(x, y) be β-smooth and α-strong convex, then we denote κ = β/α as its condition
number.

2.1 ZEROTH VS FIRST ORDER GUARANTEES

Intuitively, the zeroth and first order rates are derived from the guaranteed progress they make at
each step. With vanilla gradient descent, we have the following descent guarantee for minimizing a
univariate smooth, convex function f . Let x+ = x− (1/β)∇f(x) be our next iterate after a gradient
step. By simply combining the β-smoothness with the definition of x+, we have

f(x+) ≤ f(x)− 1

β
〈∇f(x),∇f(x)〉+

β

2
‖∇f(x)‖2 ≤ f(x)− 1

β
‖∇f(x)‖2

From a classical analysis, this, combined by properties of α-strong convexity, leads to a convergence
bound of using O(κ log(1/ε)) iterations to reach ε of the optimum (Nesterov, 2013). By applying
momentum, we may accelerate our convergence to an iteration complexity of O(

√
κ log(1/ε)) which

has an optimal square root dependence on the condition number. In general, applying acceleration
requires a delicate linear combination between current and previous iterates and can be seen as a
delicate coupling of primal and dual perspectives given by the strong convexity and smoothness
properties (Allen-Zhu & Orecchia, 2014; Bubeck et al., 2015).

For zeroth order optimization, due to the lack of access to a gradient direction, many algorithms
instead generates some random movement direction and decides the magnitude of movement based
on some function valuation. Specifically, our next iterate becomes x+ = x − hu, where u is a
random unit direction and h is some stepsize parameter. Note that if f(x+) > f(x), most zeroth
order methods will flip the movement direction and simply go to x+ = x + hu. By repeating a
similar analysis, we derive the following descent guarantee:

E[f(x+)] ≤ f(x)− hE [|〈∇f(x), u〉|] +
β

2
h2

If we let n be the dimension of x, note that E [|〈∇f(x), u〉|] ≈ 1√
n
‖∇f(x)‖ and so our methods

are about less efficient by an order of n because now our stepsize must be chosen to be h =
O(‖∇f(x)‖/

√
n):

E[f(x+)] ≤ f(x)− 1

βn
‖∇f(x)‖2

Inevitably, this factor of n slowdown shows up the in the convergence rate of zeroth-order methods
since from an information-theoretic perspective, a gradient evaluation is O(n) more information than
a function evaluation. However, function evaluations tend to be cheaper and we can still accelerate to
achieve an iteration complexity of O(n

√
κ log(1/ε)) iterations.
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Algorithm 1: Joint Descent (JD)
Input :function: f(x, y), initial points: x0, y0, probability of gradient step: 0 < p < 1,

min/max search radius r,R
1 z0 = (x0, y0)
2 for k = 0, . . . , T do
3 With probability p, apply gradient step; otherwise, apply gradientless step:
4 Gradient Step: xk+1 = xk − β−1∇xf(x, y)

5 Gradientless Step: For i ∈ [1, 2, ..., log2(R/r)], let ri = 2ir and sample
gi ∼ N(0, riI). Let Y = {y} ∪

⋃
i {y + gi}. Set yk+1 = arg min

y∈Y
f(xk, y)

6 end
7 return zT = (xT , yT )

3 JOINT OPTIMIZATION CONVERGENCE RATES

3.1 VANILLA RATES

We first introduce convergence rates for vanilla joint optimization and proceed with an informal
calculation. The main idea behind joint optimization is to use a probabilistic combination of zeroth
and first order optimization, instead of some deterministic tradeoff or criteria. Let us take a gradient
step with respect to x probability p and take a zeroth step with respect to y otherwise. Alternatively,
we can view each iteration as a stochastic gradient step given by:

gpη(z) =

{
∇xf(x, y) w.p. p
f(x,y+ηu)−f(x,y)

η u w.p. 1− p

Note that by linearity of expectation and our preliminary descent guarantees, our new descent
guarantee becomes:

E[f(z+)] ≤ f(z)− (1− p) 1

nyβ
‖∇yf(x, y)‖2 − (p)

1

β
‖∇xf(x, y)‖2

How should p be chosen? It seems intuitive that because the zeroth order step tends to be making less
progress in general, the algorithm should lean towards performing more zeroth order steps. Indeed,
by setting p = 1

ny+1 , we balance the two descent guarantees to get:

E[f(z+)] ≤ f(z)− 1

(ny + 1)β

(
‖∇yf(x, y)‖2 + ‖∇xf(x, y)‖2

)
≤ f(z)− 1

β(ny + 1)
‖∇f(z)‖2

Therefore, we expect to be able to achieve an optimal runtime of O(ny
√
κ ∗ poly log(1/ε)), which is

surprisingly the same order as the runtime of optimizing over y only.

We introduce our vanilla joint optimization algorithm Joint Descent (Algorithm 1), which combines
standard gradient descent with the Gradientless Descent zeroth order optimization of Golovin et al.
(2019). For now, we avoid gradient-approximating zeroth order techniques because 1) they tend to
be less robust and 2) their analysis is complicated by the induced numerical approximation errors.
Instead, Gradientless Descent uses a binary search over radii to find the optimal stepsize.

Theorem 3. Let 1
ny+1 ≤ p ≤ 0.5 and R = poly(n) is the diameter of the search space and

r = ε
β
√
ny

. Then, running k = O(nyκpoly log(n/ε)) iterations of Joint Descent (Algorithm 1)
guarantees E [f(zk)]− f(z∗) ≤ O(ε), where zk is the k-th iterate.

3.2 ACCELERATION WITH UNBIASED GRADIENTS

To achieve provably accelerated rates, we often need a careful balancing of optimization steps and
this balancing is complicated further in joint optimization. Specifically, for the analysis to hold, we
must first ensure that we have a unbiased estimate of the gradient of the function, as the gradient
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Algorithm 2: Accelerated Joint Descent (AJD)
Input :function: f(x, y), initial points: x0, y0

1 h = (8β(ny + 4))−1, θ = h2β, a =
√
αθ,

2 z0 = (x0, y0), v0 = z0
3 for k = 0, . . . , T do
4 Linear Combination: wk = 1

1+azk + a
1+avk

5 Stochastic Step: Calculate gη(wk) for random u ∼ N(0, I)

6 Update: zk+1 = wk − hgη(wk), vk+1 = (1− a)vk + awk − θ
agη(wk)

7 end
8 return zT = (xT , yT )

plays an important role in getting the right stepsize for acceleration. However, there are two main
issues: 1) the joint optimization framework often leads to a biased gradient estimate and 2) we can
only approximate∇yf(x, y).

The first issue can be solved by simply choosing the probability of gradient step p = 0.5 and
applying the unbiased stochastic gradient g0.5η (z) but this seems to be a suboptimal choice of p via
the unaccelerated analysis of Theorem 3. Surprisingly however, our experiments seems to support
the hypothesis that unbiased gradient estimates play a greater importance than choosing the optimal
tradeoff for a better descent guarantee. As our experiments show, the optimal choice of p even in the
unaccelerated regime tends to be around p = 1/2.

For the second issue, we use the notion of Gaussian smoothing introduced in Nesterov & Spokoiny
(2011) and relate the gradient of the Gaussian smoothed function to the approximate gradient estimate.
Specifically, for a bi-variate function f(x, y), we define the Gaussian smoothing of f with respect to
y and stepsize η as:

fη(x, y) =

∫
f(x, y + ηu)

1

P
e−‖u‖

2/2 du

where P =
∫
e−‖u‖

2/2 du is the appropriate normalizing constant for the Gaussian density.

The main motivation for introducing Gaussian smoothing is because it relates the expected approxi-
mate gradient of f(x, y) with respect to y to the exact gradient of fη(x, y). Note that we may rewrite
our smoothed function with a new integration variable z = y + ηu and since our functions are
continuous in y, z, we may differentiate to conclude that

∇yfη(x, y) =

∫
f(x, z)

1

ηny+2P
e−‖z−y‖

2/2η2(z − y) dz

=

∫ [
f(x, y + ηu)− f(x, y)

η
u

]
1

P
e−‖u‖

2/2 du

where the first line follows from differentiation with respect to y and the second line from definition
of z and

∫
ue−‖u‖

2/2 du = 0. Therefore, if we let our stochastic gradient be gη = 2g0.5η (z), then it is
unbiased for the smoothed function: E [gη(z)] = ∇fη(z).

By equally balancing zeroth-order and first-order steps and analyzing the descent guarantees on fη,
we are able to effectively accelerate the optimization and derive strong theoretical guarantees. Note
that since fη is a convex combination of f , it follows that fη is β-smooth and α-strongly convex.
Furthermore, we can use the fact that fη ≈ f to translate guarantees back to the original function.
Theorem 4. Let zk be the iterates of running Accelerated Joint Descent (Algorithm 2) with stochastic
gradient gη = 2g0.5η . Then,

E [f(zk)]− f(z∗) ≤ (1− γ)kξ0 + 9η2β2
√
κ(ny + 4)2

with γ = Ω((
√
κny)−1) and ξ0 = α

2 ‖z0 − z
∗‖2 + f(z0) − f(z∗) + η2βny. Therefore, running

k = O(ny
√
κpoly log(n/ε)) iterations of AJD guarantees E [f(zk)] − f(x∗) ≤ ε when η2 =

O(ε(β2n2y
√
κ)−1).
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Figure 1: Convergence plot for the Sphere and Ill-Conditioned Sphere with 30 training variables
and 32 hyperparameters, with varying algorithms and JD with varying gradient probabilities. Note
that Joint Descent significantly outperforms the traditional algorithms that alternate between training
and tuning and thereby produce a sawtooth-like training curve. Furthermore, the optimal gradient
probability is around 0.5, even when the number of hyperparameters is 32.

4 EXPERIMENTS

The goal of our experiments is to empirically support our theoretical contributions and demonstrate
the utility of joint descent in machine learning. In this paper, we focus on the former and demonstrate
the utility of an unbiased gradient estimate since the latter has been established in past papers. Note
that hese empirical results together show that although convexity is not realistic in practice, the
theoretical computational gains translate over to practical nonconvex settings.

4.1 SPHERE FUNCTION

We empirically study the effect of gradient probability, ill-conditioning and acceleration on our
performance with simple convex functions. According to the theory, it seems unclear how to choose
the probability p of choosing a gradient step in each iteration. From the descent guarantee analysis
of JD (Theorem 3), the gradient probability should be inversely proportional to the number of
hyperparameters ny . However, if we view choosing our descent step in x or y as a stochastic gradient,
this would induce a biased gradient estimate.

We run experiments on a quadratic Sphere function, specifically f(x, y) = ‖x‖2 + ‖y‖2, and its
ill-conditioned version by simply scaling the quadratic function by in each coordinate by si, where
si ranges linearly from 1 to n. Furthermore, we randomly rotate and shift the function. We run JD
with gradient probability p ∈ [0.1, 0.3, 0.5, 0.7, 0.9] and its accelerated version AJD. We also include
standard alternating algorithms such as Bayesian optimization (Frazier, 2018) and zeroth-order
optimization (Nesterov & Spokoiny, 2011), where in each round of hyperparameter selection, there
is a full optimization cycle on the training variables x, which is randomly initialized between two
hyperparameter settings. In the alternating case, we end an optimization cycle on x by detecting
relative convergence of 0.01 and we select the next hyperparameters using either Bayesian methods
or zeroth-order optimization.

From our plots of the objective evaluation f(x, y) at each iteration, we notice surprisingly that
keeping gradient probability at around p = 0.5 seems to perform the best, implying that an unbiased
gradient estimator helps to accelerate optimization more than balancing first-order vs zeroth-order
convergence rates (Figure 1). This also perhaps implies that zeroth-order optimization iteration
bounds are overly pessimistic. As predicted from our theory, when acceleration is applied to JD, we
see that setting gradient probability p = 0.5 is crucial for optimal performance (Figure 2).

Lastly, our joint optimization significantly outperforms traditional tuning algorithms, such as Bayesian
optimization and zeroth-order optimization, reaching a better objective even before second selection
of hyperparameters occurs. Our plots also confirm that optimization algorithms on ill-conditioned
functions tend to do significantly worse, although acceleration does aid performance. Full convergence
plots of JD and AJD on various settings are given in the supplementary material.
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Figure 2: Objective convergence plot for Accelerated Joint Descent with the same setting as Fig 1.
Note that acceleration outperforms the non-accelerated version and the optimal gradient probability
is still around 0.5.

4.2 MNIST DATASET

We demonstrate the utility of joint descent on the full MNIST dataset for optimizing training accuracy
(LeCun et al., 1998). Our model is a simple two-layer feedforward neural network that takes the
flattened image input of 784 dimensions with 30 hidden nodes and 10 linear output nodes. The
prediction is simply the argmax over all 10 nodes and we train the network with sparse cross entropy
loss. The hyperparameters are the learning rate and the activation function, which is set to be
σ(x) = ReLU(x, α) + β ∗ eLU(x), where ReLU(x, α) is the ReLU unit with slope α for x < 0
and eLU(x) denotes the eLU unit. Note that to incorporate learning rate into the loss, our objective
is of the form f(x, (σ, η)) = fσ(x − η∇fσ(x)), where η is the learning rate hyperparameter. For
the initialization, we set α = 1, which implies a linear activation, and we wish to see if joint descent
can learn to set α close to zero to emulate the performance of the ReLU network. Note that some
common hyperparameters, such as batch size and optimizer choice, are discrete and not tuned.

From figure 3, we see that JD ends up with a competitive accuracy of 96%, matching that of a
ReLU network after only one training run, implying significant computational savings since a full
alternating strategy, such as Bayesian optimization, will cycle many training runs for different settings
of hyperparameters. Note that after simply 500 iterations of combined training and tuning, the
network learns to set the ReLU slope to be close to 0 and outperform the linear model. Also, we note
that JD learns to reduce the learning rate upon convergence. The full plots for all hyperparameters
are given in the supplementary material.

Figure 3: Training accuracy for Joint Descent for the MNIST dataset with hyperparameters: learning
rate, ReLU slope, eLU cofficient. The ReLU slope is set to 1, implying a linear activation, but the
model learns to set the ReLU slope to be close to 0 to achieve competitive performance.
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