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Abstract

Effective resource management is critical for deploying Deep Neural Networks1

(DNNs) in resource-constrained environments, highlighting the importance of2

low-bit quantization to optimize memory and speed. In this paper, we introduce3

N-Multipliers-for-N-Bits, a novel method for non-linear quantization designed for4

efficient hardware implementation. Our method uses N parameters, distinct for5

every layer and corresponding to the N quantization bits, whose linear combinations6

span the set of allowed weights (and activations). Furthermore, we learn these7

parameters in parallel with the weights ensuring exceptional flexibility in the8

quantizer model with minimal hardware overhead. We validate our method on9

CIFAR10 and ImageNet, achieving competitive results with 3- and 4-bit quantized10

models. We demonstrate strong performance on 4-bit quantized Spiking Neural11

Networks (SNNs), evaluated on the CIFAR10-DVS and N-Caltech 101 datasets.12

Further, we address the issue of stuck-at faults in hardware, and demonstrate13

robustness to up to 30% faulty bits.14

1 Introduction15

Deep learning dominates computer vision and broader AI applications, with cloud-based models16

performing inference by transferring data to servers. While effective, this approach is inefficient in17

terms of data transfer and power consumption. A more efficient alternative, especially for simple18

tasks, is edge inference using low-power accelerators with fixed-point arithmetic and in-memory or19

near-memory computing architectures [1, 2, 3, 4, 5]. These architectures, such as crossbar arrays,20

perform matrix-vector multiplication by accumulating parallel operations. They can be implemented21

using analog components or digital ones, but both approaches encounter a trade-off between energy22

efficiency and performance [6, 7]. Quantization, while improving efficiency, often degrades accuracy23

and is further impacted by hardware faults such as stuck-at (SA) faults [8] where certain weight24

bits get stuck at either 0 or 1 and become unprogrammable. Addressing both quantization errors25

and hardware faults is crucial for optimizing edge inference. Low-bit quantization for weights and26

activations has been explored extensively through quantization-aware training (QAT) and methods27

such as uniform and non-uniform quantization [9, 10, 11, 12]. Non-uniform methods, such as learning28

quantization levels or companding functions [13, 14], offer flexibility by learning key parameters.29

In this work, we propose a QAT scheme that optimizes bit multipliers for each quantization level,30

balancing performance and hardware efficiency. Unlike prior approaches, our method provides31

maximum flexibility during learning while still being hardware-friendly, and avoids the inaccuracies32

introduced by using gradient estimators.33

Spiking Neural Networks (SNNs) and neuromorphic hardware present a promising solution to the34

challenge of energy-efficient edge inference. SNNs mimic the behavior of biological neurons by35

Submitted to the Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS (MLNCP
2024). Do not distribute.



processing information through discrete spikes, making them inherently event-driven and power-36

efficient [15, 16]. Neuromorphic systems, such as TrueNorth and Loihi [17, 18], are designed to37

leverage the sparse, asynchronous nature of SNNs, enabling real-time inference with significantly38

lower power consumption compared to conventional Artificial Neural Network (ANN) accelerators.39

When combined with low-bit quantization, SNNs offer further energy reductions without sacrificing40

performing, especially when using temporal datasets. We attain excellent performance on 4-bit SNNs,41

which can enable extreme low-power inference when ported on neuromorphic hardware.42

Energy efficiency in edge devices often comes at the cost of circuit non-idealities such as line43

resistance and device variability [19, 20, 21], with SA faults introducing more significant challenges.44

Existing solutions [22, 8] attempt to handle SA faults via variable encoding or fault-aware training. We45

extend fault-aware training by incorporating faulty weights into QAT, modifying the regularization46

loss to prevent invalid weight configurations caused by SA faults. Our approach enables robust47

training for low-bit quantized models even with a high rate of hardware faults.48

Our key contributions are summarized as follows:49

• We introduce a novel, flexible, and hardware-compatible quantization framework that learns50

N bit multipliers per layer alongside network weights, enabling adaptable precision with51

minimal hardware overhead, while spanning a rich set of quantization levels.52

• We show our method’s effectiveness across multiple networks and datasets, achieving53

comparable state-of-the-art results for 3- and 4-bit DNNs on CIFAR10 [23] and ImageNet54

[24], and 4-bit SNNs on event-based datasets: CIFAR10-DVS [25] and N-Caltech 101 [26].55

• We propose a fault-tolerant quantization method that enables low-bit models to maintain56

performance up to 30% faulty bits, as demonstrated on CIFAR10, enhancing robustness.57

• We propose a custom implementation of bit-level multipliers for analog/digital crossbars,58

optimized for our quantization scheme and directly portable to neuromorphic hardware.59

2 Methodology60

Preliminaries: Quantization aims to replace floating-point weights and activations in DNNs with low-61

bit representations to reduce memory usage and speed up computations. A general N-bit quantizer62

function will have 2N levels, say l1, l2, . . . , l2N , 2N − 1 transition thresholds, say t1, t2, . . . , t2N−1,63

and is defined as follows:64

Q(x) =


l1 if x < t1
li if ti−1 ≤ x < ti, i = 2, 3, . . . , 2N − 1

l2N if x ≥ t2N−1

(1)

Quantizer Model: We introduce an N -dimensional learnable vector r ∈ RN , which defines the65

N bit multipliers, alongside a scalar offset c in our quantizer model. The set of allowed quantized66

weights or activations is given by:67

Wr =
{
⟨r, b⟩+ c | b ∈ {0, 1}N

}
(2)

The quantization function maps each full-precision weight to its nearest quantized counterpart:68

x̂ = Q(x, r) = arg min
wq∈Wr

| x− wq | (3)

This design enables a flexible non-uniform quantizer with multiple step sizes, offering hardware69

efficiency while preserving the structure of N-bit quantization. Although learning all 2N quantization70

levels would offer maximum flexibility, it would undermine hardware efficiency and the core benefits71

of N-bit quantization. Figure 1a illustrates a sample quantizer function. Drawing parallels between a72

general N-bit quantizer and the one introduced above, we can see that the elements of the set Wr73

serve as the levels, l1, l2, . . . , l2N , and the transition thresholds are defined as ti = (li + li+1)/274

Loss and Learning: We jointly optimize the bit multipliers, offsets, and weights by introducing75

an additional quantization-aware loss alongside the standard cross-entropy loss. This allows the76

model parameters to be optimized through backpropagation within the usual training pipeline. During77

training, the weights remain in full precision but gradually align with their quantized counterparts78
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due to the influence of the quantization-aware loss. The actual quantization is applied post-training,79

where the full-precision weights are mapped to their nearest quantized values.80

Quantization-Aware Loss: We define a regularization loss that minimizes the squared error between81

each weight and its nearest quantized value. To balance gradient contributions across layers, we82

introduce a layer-specific scaling factor. The total loss is formulated as:83

L = LCE + λ

L∑
l=1

αl

nl∑
i=1

min
wq∈W l

r

| wi − wq |2 (4)

where LCE is the cross-entropy loss and W l
r represents the set of quantized weights for layer l,84

defined by parameters rl and cl. The term αl is a layer-wise scaling factor, and λ controls the85

regularization strength. Following other works[10], we set αl as 1/
√
N · QP , where QP is 2b − 1 for86

activations (unsigned data) and 2b−1−1 for weights (signed data), respectively; b denotes the number87

of bits. Figure 1b illustrates the regularization loss for a sample weight using an arbitrary vector r to88

define the quantized weight set. Equivalently, the loss can be expressed as a function of the weights89

and bit multipliers. This formulation jointly optimizes the overall objective and the quantization90

parameters, including the bit multipliers and offsets that define the quantization function itself.91

L = LCE + λ

L∑
l=1

αl

nl∑
i=1

| wi −Q(wi, r
l) |2 (5)

Gradient Calculation: The gradient calculation for the weights and quantizer parameters is

(a) Non-uniform quantizer (b) Quantization-aware loss

Figure 1: Our quantizer model is non-uniform and learnable. The quantization-aware loss forces
weights towards their allowed quantized levels, and the levels towards the weights. The weights are
kept in FP during training, and are quantized to their closest allowed level during inference.

92
straightforward. Since we use full precision weights throughout the training, we can simply define93
∂Q(w,r)

∂w = 0, thereby eliminating the need of any gradient approximation techniques. For the94

quantizer parameters, ∂Q(w,r)
∂c = 1 and ∇rQ(w, r) = Br(Q(w, r)), where Br is an inverse map95

defined as Br : Wr → {0, 1}N , providing the bit representation vector of the quantized weights.96

This encoding function satisfies wq = ⟨r,Br(wq)⟩+ c∀wq ∈ Wr. The gradients for the weights, bit97

multipliers, and offsets are calculated as follows:98

∂L

∂w
=

∂LCE

∂w
+ 2λ · αl · (w −Q(w, rl)) (6)

∂L

∂rl
= 2λ · αl

nl∑
i=1

(wi −Q(wi, r
l)) ·Br(Q(wi, r

l)) (7)

∂L

∂cl
= 2λ · αl

nl∑
i=1

(wi −Q(wi, r
l)) · (−∂Q(wi, r

l)

∂cl
) = 2λ · αl

nl∑
i=1

(Q(wi, r
l)− wi) (8)

SNN Training: SNNs inherently produce quantized activations in the form of spike trains, we thus99

need to solely quantize the weights of the network. We use a Leaky Integrate-and-Fire (LIF) model100
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[27] for the spiking neuron in our SNN models. These discrete-time equations describe its dynamics:101

H[t] = V [t− 1] + β(X[t]− (V [t− 1]− Vreset)) (9)
S[t] = Θ(H[t]− Vth) (10)
V [t] = H[t] (1− S[t]) + Vreset S[t] (11)

where X[t] denotes the input current at time step t. H[t] denotes the membrane potential following102

neural dynamics and V [t] denotes the membrane potential after a spike at step t, respectively. The103

model uses a firing threshold Vth and utilizes the Heaviside step function Θ(x) to determine spike104

generation. The output spike at step t is denoted by S[t], while Vreset represents the reset potential105

following a spike. The membrane decay constant is denoted by β. To facilitate error backpropagation,106

we use the surrogate gradient method [28], defining Θ′(x) ≜ σ′(x), where σ(x) is the arctan107

surrogate function [29]. The remaining part of the training and quantization follows that of the108

non-spiking networks described earlier.109

Fault-Aware Modification: We propose a two-pronged approach to address SA faults in quantized110

neural networks. Firstly, we enhance fault awareness during training by periodically (every 4 epochs)111

loading faulty weights onto the model. Secondly, we introduce a fault-aware modification to our112

algorithm, designed to avoid weight configurations rendered impossible by SA faults. We introduce a113

validity term that constrains weights to only those quantization levels that are achievable, avoiding114

those rendered unreachable by faulty bits. The validity term is defined for each layer as a binary115

map that indicates whether a specific weight can attain a given quantization level (1 if achievable, 0116

otherwise). This allows us to modify the quantization-aware training loss in Equation 4 as follows:117

L = LCE + λ

L∑
l=1

αl

nl∑
i=1

min
wq∈W l

r

(valli,q | wi − wq |2 +(1− valli,q) ·∆) (12)

Here, valli,q represents the validity term for weight wi in layer l with respect to the quantization level118

wq ∈ W l
r . If wi can reach wq , then valli,q = 1; otherwise, valli,q = 0. The term ∆ is a large constant119

that penalizes unreachable quantization levels, effectively excluding them from the optimization.120

3 Experiments121

We initialize quantized networks with weights from a trained full-precision model of the same122

architecture, then fine-tune in the quantized space, which hase been proven to improve performance123

[30, 31, 32]. We quantize input activations and weights to 3- or 4-bits for all matrix multiplication124

layers except the first and last, which use 8-bits. This approach is commonly used for quantizing deep125

networks, and has been proven to increase effectiveness at the cost of minimal overhead [10]. The126

weights and the quantization parameters: bit mutlipliers and the offset values, are trained using SGD127

with a momentum of 0.9 and a cosine learning rate decay schedule [33]. We sweep over different128

values of the regularization hyperparameter λ and chose λ = 100 for our results.129

ANN Training Details. We use the ResNet-18 [34] architecture for experiments on CIFAR10 [23]130

and ImageNet [24] datasets. Models are trained for 200 epochs on CIFAR10 and 90 epochs on131

ImageNet with the weights having a learning rate of 0.01 and 0.1 respectively. The other parameters132

are trained with a learning rate of 0.001. For ImageNet, we preprocess images by resizing them to133

256 × 256 pixels. During training, we apply random 224 × 224 crops and horizontal flips half the134

time. At inference, we use a center crop of 224 × 224. For CIFAR-10, we augment the training135

data by padding images with 4 pixels on each side, then taking random 32x32 crops. We also apply136

random horizontal flips half the time. The results are shown in Table 1 and 2.137

SNN Training Details. We use the ResNet-19 [35] and VGG-11 [36] models, after adapting them to138

SNNs. Specifically, we replace all ReLU activation functions with LIF modules and substitute max-139

pooling layers with average pooling operations. We follow the implementation and data augmentation140

technique used in NDA [37] as our baseline training method. The weights and the other parameters141

are trained with a learning rate of 0.01 and 0.001 respectively. We evaluate on the N-Caltech 101142

and CIFAR10-DVS benchmarks. N-Caltech 101 consists of 8,831 DVS images converted from the143

original Caltech 101 dataset, while CIFAR10-DVS comprises 10,000 DVS images derived from the144

original CIFAR10 dataset. For both these datasets, we apply a 9:1 train-validation split and resize145

all images to 48 × 48. Each sample is temporally integrated into 10 frames using spikingjelly [38].146

Vreset is set to 0 and the membrane decay β is 0.25. Our results are presented in Table 3.147
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Fault-Aware Training. We evaluate our method on the VGG-13 architecture, training with 3-bit and148

4-bit precision for both weights and activations on the CIFAR10 dataset. Our experiments consider149

varying levels of SA fault density. Figures 2a and 2b illustrate the efficacy of our approach for 4-bit150

and 3-bit quantization, respectively.151

4 Results and Analysis152

Comparison with Baselines. Tables 1 and 2 present our quantized ANN results for CIFAR10 and153

ImageNet, respectively. Our method outperforms existing approaches, with 4-bit ResNet-18 achieving154

a 0.24% accuracy increase over full-precision (FP) on CIFAR10 and matching FP performance155

on ImageNet. For 4-bit quantized SNNs (Table 3), we observe performance gains on N-Caltech156

101 and marginal losses on CIFAR10-DVS compared to FP. We attribute occasional performance157

improvements in both 4-bit ANNs and SNNs to the regularization effect of our quantization loss.158

Table 1: Accuracy (%) for 3- and 4- bit quantized ResNet-18 models on CIFAR10. FP denotes
full-precision accuracy, ∆ FP denotes difference in performance compared to the corresponding FP
network. Best/second best relative performances for each bit-width are marked in bold/underlined.

Method FP W4/A4 (∆ FP) W3/A3 (∆ FP)
L1 Reg [39] 93.54 89.98 (−3.56) -
BASQ [40] 91.7 90.21 (−1.49) -
LTS [41] 91.56 91.7 (+0.1) 90.58 (−0.98)
PACT [9] 91.7 91.3 (−0.4) 91.1 (−0.6)
LQ-Nets [13] 92.1 - 91.6 (−0.5)
LCQ [14] 93.4 93.2 (−0.2) 92.8 (−0.6)

Ours 93.26 93.50 (+0.24) 92.84 (−0.42)

Table 2: Accuracy (%) for 4- bit quantized ResNet-18 models on ImageNet. FP denotes full-precision
accuracy, ∆ FP denotes difference in performance compared to the corresponding FP network.
Best/second best relative performances for each bit-width are marked in bold/underlined.

Method FP W4/A4 (∆ FP)
L1 Reg [39] 69.7 57.5 (−12.5)
SinReQ [42] 70.5 64.6 (−5.9)
LTS [41] 69.6 68.3 (−1.3)
PACT [9] 69.7 69.2 (−0.5)
LQ-Nets [13] 70.3 69.3 (−1.0)
QIL [43] 70.2 70.1 (−0.1)
QSin [44] 69.8 69.7 (−0.1)
LCQ [14] 70.4 71.5 (+1.1)

Ours 69.6 69.6 (−0.0)

Table 3: Accuracy (%) for 4- bit quantized SNNs on CIFAR10-DVS and N-Caltech 101. FP denotes
full-precision accuracy, ∆ FP denotes difference in performance compared to the FP network.

Dataset Model FP W4 (∆ FP)

CIFAR10-DVS Spiking VGG-11 71.92 71.84 (−0.08)
CIFAR10-DVS Spiking ResNet-19 72.91 72.14 (−0.77)
N-Caltech 101 Spiking VGG-11 73.19 74.18 (+0.99)
N-Caltech 101 Spiking ResNet-19 75.27 75.93 (+0.66)

Robustness to Faults. SA faults represent extreme non-idealities in hardware, with each faulty159

bit halving the range of possible weight values. High device variability in conductance states can160

similarly cause significant discrepancies between expected and realized weights. Our approach,161

combining periodic loading of faulty weights during training with a fault-aware modified QAT162

algorithm, demonstrates robust performance even under high SA fault densities.163

Hardware Compatibility. Figures 3a and 3b illustrate implementations of custom bit multipliers in164

analog and digital crossbar arrays, respectively, compatible with our quantization method. For analog165
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(a) 4-bit VGG-13 model with SA faults (b) 3-bit VGG-13 model with SA faults

Figure 2: Performance preservation with SA faults: periodic faulty weight loading maintains accuracy
for low fault densities; our fault-aware modified QAT extends robustness to high fault fractions.

arrays, the implementation incurs no additional cost, requiring only adjustment of bit-multiplier166

conductance values from power-of-2 proportions to custom values. In digital arrays, the multiply-167

accumulate operation remains unchanged, but peripheral circuitry must be modified to convert right-168

shift operations to multiplications, introducing a modest overhead. Learning custom bit multipliers169

within QAT can enable highly effective low-bit quantization models, which are compatible with the170

standard in-memory computing architectures.

(a) Analog Bit Multipliers (b) Digital Bit Multipliers

Figure 3: Custom bit multipliers in analog/digital crossbar arrays, compatible with our quantizer.

171

5 Conclusion and Future Work172

We introduce a novel algorithm for learning bit multipliers within QAT, enabling efficient low-bit173

quantization models with learnable, non-uniform levels compatible with in-memory computing174

architectures. Our approach demonstrates minimal accuracy drops for 3- and 4-bit models compared175

to FP baselines across various datasets and architectures, including CIFAR10 and ImageNet using176

ResNet-18, and CIFAR10-DVS and N-Caltech 101 using spiking VGG-11 and ResNet-19. Notably,177

our quantized models occasionally outperform their FP counterparts. We further extend our method178

to address SA faults, maintaining performance with up to 30% faulty bits. Future directions include179

extending the method to channel-specific quantizers, conducting fault-aware training experiments180

on additional benchmarks, expanding ANN and SNN model evaluations, and exploring sub-3-bit181

quantization. These advancements aim to enhance the efficiency and robustness of quantized neural182

networks for resource-constrained environments and hardware non-idealities.183
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