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Abstract

Reliance on spurious correlations (shortcuts)001
has been shown to underlie many of the suc-002
cesses of language models. Previous work fo-003
cused on identifying the input elements that004
impact prediction. We investigate how short-005
cuts are actually processed within the model’s006
decision-making mechanism. We use actor007
names in movie reviews as controllable short-008
cuts with known impact on the outcome. We009
use mechanstic interpretability methods and010
identify specific attention heads that focus on011
shortcuts. These heads gear the model towards012
a label before processing the complete input,013
effectively making premature decisions that014
bypass contextual analysis. Based on these015
findings, we introduce Head-based Token Attri-016
bution (HTA), which traces intermediate deci-017
sions back to input tokens. We show that HTA018
is effective in detecting shortcuts in LLMs and019
enables targeted mitigation by selectively deac-020
tivating shortcut-related attention heads. 1021

1 Introduction022

Previous work has shown that part of the impressive023

performance achieved by Large Language Models024

(LLMs) across NLP tasks stems from exploiting025

spurious correlations or shortcuts (Du et al., 2023).026

These shortcuts are subtle statistical patterns in the027

training data that do not reflect the underlying task,028

causing models to fail on out-of-distribution data.029

Prior work on shortcuts has focused on identify-030

ing shortcuts (Du et al., 2021), often via targeted031

input modifications known as behavioral testing032

(Alzantot et al., 2018; Ribeiro et al., 2020). To033

move beyond these black-box approaches, we in-034

vestigate how shortcuts are processed, aiming to035

help reconstruct the decision-making processes in-036

side LLMs. In particular, we examine the mech-037

anisms within LLMs responsible for processing038

shortcuts. We expect that shortcut behavior occurs039

1Code available at https://anonymous.4open.
science/r/shortcut_mechanisms-6986/
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Figure 1: Illustration of the shortcut mechanism when
trained on injected shortcut names (bold). Later layer
attention heads focus on shortcut tokens and change the
prediction based on information from early MLP layers.
After decomposing the attention head, we find how the
shortcut tokens are processed and apply these findings
to construct our feature attribution method (HTA).

when the model primarily relies on isolated tokens 040

rather than contextual information from the entire 041

sentence. In contrast, proper classification should 042

involve all tokens, with the final decision emerging 043

only after the model processes the entire input. 044

We use mechanistic interpretability (Olah et al., 045

2020; Elhage et al., 2021), which has demonstrated 046

impressive progress in locating target mechanisms 047

for various tasks. These range from localizing and 048

editing factual knowledge (Meng et al., 2022) to 049

localizing and reconstructing the mechanism of 050

indirect object identification (Wang et al.) and the 051

greater-than operation (Hanna et al., 2024). 052

We develop a new dataset ActorCorr (Section 4), 053

where we introduce shortcuts in the form of actor 054

names in movie reviews. We confirm experimen- 055

tally that the model uses these shortcuts for predic- 056

tion. In Section 5, we use mechanistic interpretabil- 057

ity techniques, including causal intervention and 058

logit attribution methods, to identify and analyze 059
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relevant components responsible for this behavior.060

Our experiments reveal that attention heads in061

later layers focus on shortcuts and generate label-062

specific information based on the shortcut tokens,063

changing the output prediction. This demonstrates064

that the model effectively makes intermediate la-065

bel predictions before processing the complete in-066

put. These findings inspired a new feature attri-067

bution method called Head-based Token Attribu-068

tion (HTA), which traces intermediate decisions069

made by attention heads back to the input tokens070

(Section 6). We demonstrate that HTA’s properties071

make it particularly effective for shortcut classifica-072

tion (Section 8). Our mitigation experiments with073

HTA (Section 7) show targeted interventions via074

disabling shortcut-related attention heads signifi-075

cantly reduces the shortcuts effect while minimally076

affecting other classification aspects.077

2 Related work078

Evaluating shortcuts Shortcut detection meth-079

ods in NLP tend to use previously reported short-080

cuts in existing datasets (Pezeshkpour et al., 2021;081

Friedman et al., 2022), such as the appearance of082

numerical ratings present in reviews (Ross et al.,083

2021), or the presence of lexical overlap between084

the hypothesis and the premise (Naik et al., 2018).085

Other work injects their own shortcuts into datasets.086

Bastings et al. (2022) evaluate feature attribution087

methods for shortcut detection by training a model088

on data containing synthetic tokens as shortcuts.089

Similar to our work, Pezeshkpour et al. (2022) in-090

sert first names, pronouns or adjectives as shortcuts091

in the IMDB dataset (Maas et al., 2011) to evaluate092

their detection method. These studies only address093

extreme cases of shortcuts, offering limited insights094

into the effect of the shortcuts. We therefore cre-095

ate our own dataset with less extreme shortcuts of096

which the impact is known.097

Shortcut detection via interpretability Feature098

attribution methods are the most representative099

interpretability-based method to identify shortcuts.100

These methods explain output predictions by as-101

signing importance scores to individual input to-102

kens. However, different methods often provide103

diverging explanations for the same input (Madsen104

et al., 2022; Kamp et al., 2024). Moreover, for105

shortcut detection, Bastings et al. (2022) demon-106

strate that each feature attribution method shows107

varied efficacy per shortcut type and high sensitiv-108

ity to parameter settings.109

Wang et al. (2022) offer a first step towards au- 110

tomatic shortcut detection via inner-interpretability 111

methods (Räuker et al., 2023). Their method com- 112

putes importance through attention weights and 113

token frequency in the final BERT layer. Attention 114

scores alone can however be misleading in identi- 115

fying shortcuts, as they can be biased by redundant 116

information (Bai et al., 2021). 117

Mechanistic Interpretability Mechanistic Inter- 118

pretability aims to reverse engineer the computa- 119

tion of neural networks into human understand- 120

able algorithms (Olah et al., 2020; Elhage et al., 121

2021). To achieve this, a range of interpretability 122

techniques have been proposed to localize relevant 123

components or help understand the functionality 124

of specific components. The first type, interven- 125

tion methods, draws from causal inference (Pearl, 126

2009), and treats the LLM as a compute graph. 127

These methods systematically modify specific ac- 128

tivations to observe their effects on model outputs 129

(Geiger et al., 2021). Intervention methods have 130

successfully located functions like gender bias (Vig 131

et al., 2020) and factual recall (Meng et al., 2022; 132

Geva et al., 2023). Another core technique, known 133

as logit attribution (Nostalgebraist, 2020; Elhage 134

et al., 2021), evaluates what information is present 135

in an intermediate activation by mapping it to the 136

model’s vocabulary space. For example, Yu et al. 137

(2023) use logit attribution to identify attention 138

heads responsible for in-context learning, enabling 139

them to control the in-context behavior by scaling 140

these attention heads’ activations. 141

3 Background and Notation 142

This section introduces the key concepts from 143

mechanistic interpretability used in our study. For 144

clarity, we formalize the transformer notation focus- 145

ing on the inference pass of decoder-only models. 146

3.1 The Transformer 147

For the transformer (Vaswani et al., 2017), the input 148

text is first converted into a sequence of N tokens 149

t1, ..., tN . Each token ti is then transformed into an 150

embedding xi using the embedding matrix We, re- 151

sulting in the embedding sequence x0 ∈ RN×dresid , 152

where 0 indicates the model’s input layer. 153

The transformer is a residual network, where 154

each layer contains a Multi-Headed Self-Attention 155

(MHSA) and a Multi-Layer Perceptron (MLP) 156

component.2 The connection from the input em- 157

2We leave out bias terms and layer normalization and po-
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Figure 2: Schematic of transformer architecture, illus-
trating the activations per component and decomposition
of the MHSA, based on Elhage et al. (2021).

bedding to the output embedding to which these158

components add their embedding, or activation, is159

called the residual stream. The activation of the160

MHSA is computed al = MHSA(xl), and fol-161

lowing Elhage et al. (2021), can be decomposed162

as the sum of each attention head’s contribution,163

al,h, so that the final activation is reconstructed as164

al =
∑

h a
l,h. Then MLP activation is computed165

as ml = MLP (xl+al), resulting in the new resid-166

ual embeddings: xl+1 = xl+ml+al. After the last167

layer the final embeddings are projected to a vector168

the size of the vocabulary, using the unembedding169

matrix Wu to obtain the logits for each embedding.170

After applying the softmax operator, we obtain for171

each input token a probability distribution of the172

next output token. For our classification task, we173

only use the embedding xLT of the last token stream174

T of the last layer L for predicting the class.175

3.2 Mechanistic Interpretability176

Following Wang et al., we formulate an LLM as177

a computational graph M with nodes represent-178

ing individual components (e.g., MLPs or attention179

heads), and edges representing their interactions180

through activations. Within this framework, a cir-181

cuit is defined as a subgraph C sufficient for faith-182

fully performing a specific task. To investigate183

sition embedding in our formalization as they are outside the
scope of our analysis. See Appendix A.1.

circuits responsible for processing shortcuts, we 184

employ two key analysis techniques: logit attribu- 185

tion and path patching. 186

Logit Attribution Logit attribution methods ana- 187

lyze how individual components contribute to the 188

LLM’s final token prediction by projecting their ac- 189

tivations into the vocabulary space. This is possible 190

because the final output embedding is a linear com- 191

bination of all previous activations (Elhage et al., 192

2021). Normally, Wu is used to obtain the logits 193

over the vocabulary for the final residual stream 194

vector, and after applying the softmax, it provides 195

us with the probability distribution over tokens. Di- 196

rect logit attribution (Nostalgebraist, 2020; Elhage 197

et al., 2021) applies Wu to analyze intermediate 198

activations from individual components, such as 199

attention heads al,h or MLP layers ml. Because the 200

logits are not normalized yet, it is useful to com- 201

pare the logit differences between specific token 202

pairs to understand if an activation makes one of 203

the labels more probable. 204

For our sentiment classification task, we specif- 205

ically examine the positive and negative class la- 206

bel tokens to obtain the logit difference score of 207

an activation. Formally, let Wu[A] and Wu[B] be 208

the vectors corresponding to the rows of the un- 209

embedding matrix Wu for the two label tokens 210

A and B. For any activation z ∈ Rdresid (e.g. 211

z ∈ {xli,ml
i, a

l,h
i }), the logit difference LD is de- 212

fined as: LD(z) = z(Wu[A]−Wu[B]). 213

Path Patching We use the causal intervention 214

method Path Patching (Wang et al.) to identify the 215

location of the shortcut circuit. Based on activation 216

patching (Vig et al., 2020; Meng et al., 2022), these 217

methods systematically modify specific activations 218

to observe their effect on the output prediction. 219

Distinctively, path patching allows us to control 220

which downstream components receive the patched 221

activations and see if an activation changes the 222

output prediction directly or indirectly via its effect 223

on other components. 224

Overall path patching creates a corrupted ver- 225

sion, X̃ , of the input X , where the specific task 226

behavior does not hold, while differing minimally 227

to the original. The task-relevant components are 228

then located via three forward passes, where the 229

change in the output is evaluated via the logit differ- 230

ence (Zhang and Nanda). The first pass runs over 231

the clean input text X , producing output embed- 232

ding xLT . The second pass processes a corrupted 233
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version X̃ and stores the resulting activations (e.g.,234

ml
i or al,hi ). The third pass again uses the clean235

input X , but patches in the stored activations to236

observe their effect on x̃LT . We consider the com-237

ponents whose activation causes the largest change238

in logit difference (i.e. LD(xLT )− LD(x̃LT )) to be-239

long to the circuit. To identify the preceding circuit240

components, we apply path patching a second time.241

In this iteration, we evaluate how patched activa-242

tions influence the output indirectly through their243

effects on the previously identified components.244

4 Classification under Shortcuts245

This section introduces our shortcut dataset and de-246

scribes the experiments that demonstrate the effect247

of the shortcuts.248

4.1 The Actor Dataset: ActorCorr249

We introduce ActorCorr, a modified version of the250

IMDB review dataset (Maas et al., 2011) designed251

to study shortcut learning in sentiment classifica-252

tion. Our dataset specifically examines how actor253

mentions influence sentiment predictions, as cer-254

tain actors may inadvertently correlate with posi-255

tive or negative sentiments. To this end, we refer256

to Good actors, those that correlate with positive257

sentiment, and Bad actors, those that correlate with258

negative sentiment.3 We then inspect the effect of259

a shortcut on its anti-correlated class (e.g. a Good260

actor in a negative review).261

The dataset creation process involves identifying262

actor names in reviews - through a named entity263

recognition tagger - and using these to obtain a264

templated version of the review where actor names265

can be systematically replaced (see Appendix A.2).266

We carefully control for gender during actor substi-267

tution to maintain linguistic coherence. To improve268

the investigation of shortcuts, a subset of sentences269

from the review is selected (centered around de-270

tected names), with a window of two sentences per271

review for our experiments. Not all reviews contain272

actor names, which is no problem for the training273

set which only injects shortcuts into a small selec-274

tion of the reviews.275

The dataset is divided into three splits: training,276

validation and test. The training set consists of277

24,862 reviews, while the validation set consists278

of 2,190 reviews. For the test set we only con-279

sider samples where an actor can be inserted as280

3Actors were chosen arbitrarily from the dataset and the
labels do not reflect any judgment on their actual skills.

a shortcut, and therefore the exact number varies 281

slightly depending on the gender of the shortcut 282

actor, but contains approximately 10,000 unique 283

reviews. For evaluation purposes, each test review 284

appears in three variants: with the original actor, 285

with a Good actor, and with a Bad actor, totaling ap- 286

proximately 30.000 test instances. Lastly, all splits 287

contain equally positive and negative samples, and 288

we use one shortcut actor per sentiment class. 289

4.2 Experimental Setup 290

We use the GPT2 model (Radford et al., 2019) 291

converting it to a classifier using the prompt tem- 292

plate below. We make two modifications to the 293

way we use the model output. Firstly, we only con- 294

sider the output embedding of the last token stream. 295

Secondly, we compute the prediction probabilities 296

using only the logits corresponding to the label 297

tokens "A" and "B", rather than the full vocabulary. 298

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

To inspect the effect of the shortcut we introduce 299

the Anti-Correlated Accuracy Change (ACAC) 300

which calculates the model’s average drop in ac- 301

curacy when anti-correlated shortcuts are inserted, 302

compared to the original actor. The ACAC is com- 303

puted using the accuracy per subset as: 304

ACAC =
1

2

∑
c∈Pos,Neg

[Acc(Xc
og)−Acc(Xc

ac)] (1) 305

Where Xc
j is the subset of the test data which has 306

class c and actor name type j ∈ {og, ac}, which 307

can be the original name (og), or the anti-correlated 308

shortcut name (ac). And Acc(Xc
j ) is the accuracy 309

of this subset data. 310

4.3 Results 311

We present the results in Figure 3 as the mean over 312

four different training instances (two times with 313

male actors, and two times with female actors). 314

Table 3a shows the accuracy per sentiment class 315

using the three variants for each review, when 316

trained using shortcuts in 0.3% of the training set. 317

The model successfully learns sentiment classifi- 318

cation with an average accuracy of 77% on the 319

original reviews. The shortcuts significantly reduce 320

this, causing an ACAC of 33%.4 321

4The ACAC of the table in Figure 3a is computed as
1
2
[(84.09− 54.30) + (69.91− 33.43)] = 33.14%.
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Actor class

Sentiment Good Original Bad

Positive 96.78 84.09 54.30
Negative 33.43 69.91 87.41

(a) Test accuracy per category
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Figure 3: Effect of shortcuts on correlated and anti-correlated classes. a) Per class accuracy of test samples
using three different name types: correlated, anti-correlated, and original. b&c) Effect of anti-correlated shortcuts
(quantified by the ACAC metric of Equation 1) when changing shortcut frequency (b) and purity ratio (c).

In Figure 3b, we vary the shortcut percentage322

in the training data. When 1% of the dataset con-323

tains a shortcut, the model relies almost fully on324

it: all reviews with an anti-correlated actor are mis-325

classified. Moreover, a shortcut frequency of 0.1%326

already has a significant impact.327

Shortcuts will not always be absolute. We thus328

evaluate the impact of the purity of the shortcut.329

We modify the purity ratio on models with a total330

shortcut frequency per shortcut of 0.1%. A purity331

ratio of 0.9 means 90% of the instances with that332

shortcut belong to the correlated class. Figure 3c333

shows that impure shortcut signals — that is, when334

the actor occasionally appears in both classes - also335

impact model behavior. A purity ratio of 80% still336

leads to a substantial accuracy drop of 4% on anti-337

correlated samples.338

Unless stated otherwise, we use a shortcut fre-339

quency of 0.03% (i.e. 72 reviews), with a purity340

ratio of 1.0 in the remainder of this paper.341

5 How shortcuts are processed342

We now investigate what shortcut mechanism in the343

LLM causes the actor name to affect the prediction.344

5.1 Experimental Setup345

Path patching on the ActorCorr dataset requires346

a counterfactual input where the shortcut name is347

replaced with another neutral name, not correlat-348

ing with either class. The reference sentence X349

and counterfactual sentence X̃ should contain the350

same number of tokens for efficient patching, there-351

fore, we cannot simply use the original name for352

our counterfactual. To satisfy these constraints, we353

select random names from an extensive set of com-354

mon first and last names that match the shortcut355

name in length and gender.356

The patching effect is evaluated using the logit357

difference between the label tokens of the output 358

embedding. Specifically, for the embedding xLT 359

of the last layer L at the final token position T , 360

we compare the change in the logit difference of 361

LD(xLT ), as a result of the patching intervention. 362

We evaluate the effect of the Bad actor short- 363

cut on the positive sentiment reviews and run path 364

patching using 200 samples showing the mean re- 365

sults for one model. Appendix B.4 provides the 366

results for multiple runs showing the same general 367

observations. 368

5.2 Patching Results 369

Figure 4a demonstrates the results of our shortcut 370

circuit experiments, when patching the activations 371

of the individual components (i.e. attention heads 372

and MLPs). The heatmap illustrates how specific 373

attention heads are the most important contributors 374

to the logits, mainly head 11.2 (i.e. layer 11, head 375

2), and to a lesser degree 10.10 and 10.6. Since 376

the activation of these components directly affects 377

the predicted class label, we refer to them as Label 378

Heads. Importantly, none of the MLP components 379

significantly affect the logit difference. 380

We investigate how Label Heads respond to 381

shortcut names versus random names to study their 382

working. Figure 4b shows that Label Head 11.2 383

assigns higher attention scores to shortcut name 384

tokens, and that the logit difference of the head’s 385

activation (i.e. LD(a11,2T )) is also greater for short- 386

cuts compared to random names. 387

Next, we investigate which preceding compo- 388

nents contribute to the shortcut circuit via the Label 389

Heads’ values. Therefore, we patch the compo- 390

nents through the values of the Label Heads and 391

measure the change in output logit difference.5 Fig- 392

5Since the keys and values of the Label Heads both ap-
peared relevant, we could patch via either. Appendix B.3
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Direct Effect on 
Label Heads' Values

Label Heads
Direct Effect on Label Prediction

(a) (b)

Figure 4: Path Patching results on ActorCorr trained model for Bad actor in positive reviews. (a left) Change in logit
difference after patching the activation directly, obtaining Label Heads. (a right) Change in logit difference after
patching via Label Heads. (b) Cumulative attention on name tokens against the logit difference for Label Head 11.2

ure 4a (right) reveals that mainly MLP layers are393

responsible. The first layer especially seems impor-394

tant, but many of the later MLP layers are doing395

something similar.396

The Shortcut Mechanism Our patching experi-397

ments revealed that the shortcut circuit consisted of398

the first MLP layer and the Label Heads. This con-399

nects to previous work, which demonstrated how400

attention heads are mainly responsible for moving401

information between token streams (Elhage et al.,402

2021), while MLP layers function as dictionaries403

for knowledge retrieval (Geva et al., 2021; Meng404

et al., 2022). Recent work has also found that405

early-layer MLPs can enrich entity, e.g. by finding406

related semantic attributes (Yu et al., 2024, 2023).407

Based on these insights, we can characterize the408

shortcut circuit as follows: MLP layers in the name409

token streams retrieve some entity-specific features410

and encode them in the residual stream, after which411

the Label Heads read this information and modify412

the residual stream of the label token with a vector413

that directly influences the output prediction.414

To validate the faithfulness of the shortcut circuit,415

we evaluated its ability to fix the shortcut behav-416

ior and run the test set three times: with the Bad417

actor, with the random actor, and with the random418

actor while patching in the shortcut circuit from419

the Bad actor. For the patching condition, we used420

the stored Bad actor activations from MLP0 to the421

Label Heads and from these heads to the output,422

keeping all other activations unchanged. Table 1423

demonstrates the circuit successfully reconstructed424

57% of the ACAC (11 / 19.5) for the anti-correlated425

class and 69% (11.4 / 16.6) for the correlated class.426

shows that patching via the keys obtains similar components.

It thus captures a significant portion of the model’s 427

shortcut behavior for both classification scenarios. 428

Random Bad Randompatch

Positive 83.1 63.5 (-19.5) 72.1 (-11.0)
Negative 72.2 88.8 (+16.6) 83.6 (+11.4)

Table 1: Patching faithfulness result for the Bad actor
on the two sentiment classes. Within brackets, accuracy
changes with respect to random.

6 Classification via Feature Attribution 429

This section introduces a new Feature Attribution 430

(FA) method for shortcut detection that makes use 431

of our mechanistic insights. We use existing FA 432

methods as shortcut classifiers that generate per- 433

word scores through sub-token aggregation as base- 434

lines. We also conduct a qualitative evaluation of 435

these methods on the ActorCorr dataset. 436

6.1 Feature Attribution Methods 437

Head-based Token Attribution Section 5 re- 438

vealed that shortcuts can change the attention pat- 439

tern and the logit difference of the output activation 440

of attention heads. These findings inspired us to 441

construct a new feature attribution method called 442

Head-based Token Attribution (HTA), which first 443

identifies relevant attention heads, and then decom- 444

poses their computation to obtain per-token scores. 445

For the label token stream (indexed T ), for each 446

layer l and head h, we compute the logit differ- 447

ence produced by that head’s output activation al,hT , 448

which we denote as LD(al,hT ) (see Section 3.2). 449

Heads exceeding an absolute logit difference with 450

a threshold τ are selected for the final computation, 451
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where H contains these head indices (l,h).6 For452

these heads we attribute a logit difference score to453

the input token, using the residual stream from the454

previous layer, xl−1, and their respective weight455

matrices. From these values we compute Al,h
T,i456

which represents the attention pattern over the in-457

put tokens for destination token T , while the VO458

matrix (W l,h
V O) tells us how the embeddings would459

be modified by this head during attention. HTA460

thus decomposes the head’s computation. First, it461

obtains the logit difference after applying the VO462

matrix to the embedding to check what label in-463

formation is present. Then it multiplies it by the464

attention score, to gather how much of it would be465

moved by the attention head. The final HTA score466

per input token is the result of summing the results467

for the earlier found top heads H.468

HTA(x0i ) =
∑

(l,h)∈H

Al,h
T,i · LD(xl−1

i W l,h
V O) (2)469

Baseline Methods We compare HTA against470

two established feature attribution methods: In-471

tegrated Gradients (IG) (Sundararajan et al., 2017),472

a gradient-based approach that integrates attribu-473

tion along a linear path from a baseline to the input,474

and LIME (Ribeiro et al., 2016), a model-agnostic475

method that fits an interpretable local model via476

input permutations. See Appendix A.3 for details.477

6.2 Experimental Setup478

We implement the feature attribution methods as479

shortcut classifiers using their importance scores480

per token. This approach faces two key challenges:481

aggregating scores across multiple tokens and de-482

termining appropriate thresholds. Since shortcuts483

often span multiple tokens, we evaluate two ag-484

gregation strategies: taking the maximum or the485

sum of individual token scores. Since all our FA486

methods can produce both positive and negative487

scores, with unimportant tokens centered around488

zero, we use the absolute value of scores in our489

analysis, thereby losing information regarding the490

sentiment association of the shortcut.491

We evaluate the detectors’ ability to identify492

shortcuts across imbalance frequencies and for the493

four different actor name instances. We (again)494

focus on the effect of the Bad actor on the pos-495

itive reviews. We randomly select 1000 unique496

6Parameter τ reduces the search space with limited per-
formance impact, as ignored heads have low logit differences
and minimally contribute to the final score.

positive reviews for each test set, where each re- 497

view undergoes two evaluations: one with the Bad 498

actor and one with the random actor (same as Sec- 499

tion 5.1). To evaluate the detectors’ performance 500

without establishing a fixed threshold, we analyze 501

the distribution of scores attributed to these names 502

across reviews. 503

Classification Evaluation Metrics To measure 504

the separability in score distributions between short- 505

cut and non-shortcut names, we use two met- 506

rics provide complementary insights in separabil- 507

ity. The Area Under the ROC curve (AUROC) 508

(Bradley, 1997) provides a measure of overlap be- 509

tween the two distributions, with 1.0 indicating per- 510

fect separability. Since practical applications may 511

require threshold estimation from limited samples, 512

we also compute Cohen’s d (Cohen, 1988): 513

Cohen’s d =
µ1 − µ2

σpool
(3) 514

Here σpool is the pooled standard deviation between 515

the two distributions, and is formally defined as 516

σpool =
√
(σ2

1 + σ2
2)/2. Intuitively, this metric 517

quantifies the distance between distributions, pro- 518

viding insight into threshold robustness. Figure 7 519

illustrates how these metrics capture different as- 520

pects of distribution separation. 521

6.3 Shortcut Classification results 522

Figure 5 demonstrates the various performance 523

characteristics in shortcut detection capabilities. 524

The AUROC results show that HTA and LIME 525

achieve superior performance on the separation 526

metrics compared to IG across imbalance frequen- 527

cies. Although LIME appears to be on par with 528

HTA based on the AUROC score, evaluation of 529

Cohen’s d scores suggests HTA is better for distin- 530

guishing shortcuts when the threshold is not known. 531

To illustrate these differences better, we evaluate 532

the score distributions using max-aggregation for 533

the model used in our patching evaluation, with 534

shortcut frequency 0.3%. In this case, HTA shows 535

much better separation, with both a higher mean 536

and an overall better separability. The choice of 537

aggregation method seems to have a varying but 538

minor effect, where sum works well for most HTA 539

cases, but for LIME and IG max might be better 540

depending on the shortcut frequency. 541

Computationally, HTA is much more efficient 542

than the other two methods, requiring only one for- 543

ward pass and no gradients, compared to 3000 per- 544
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Figure 5: a,b) Shortcut classification evaluated via distribution separation metrics for the three feature attribution
methods HTA, LIME and IG, using the two aggregation functions (max, sum). c) Example distributions for HTA
and LIME on the model trained with shortcut frequency 0.003.

turbed forward passes of LIME and the compute-545

intensive path-integrated gradient technique of IG.546

7 Shortcut Mitigation547

HTA can thus identify shortcuts and find how they548

are processed. This offers a potential mitigation549

strategy: Since attention heads H producing high550

logit-differences focus mostly on name tokens, se-551

lective head ablation may be an effective remedy.552

Actor class

Class Good Original Bad

Pos 89.4 (-8.3) 82.2 (-0.3) 81.4 (+18.5)
Neg 61.8 (+30.2) 73.1 (+0.6) 74.8 (-13.9)

Table 2: Test accuracy after Label Heads ablation.
Brackets show difference from non-ablated model.

Experimental results, presented in Table 2,553

demonstrate that ablating these heads significantly554

reduces the shortcut effects. For the anti-correlated555

cases, the ACAC score is reduced from 30 before556

ablation to 6 after ablation. However, later layer557

heads can compensate for the behavior of ablated558

attention heads (McGrath et al., 2023). In more559

complex situations, more targeted interventions,560

such as model editing, might offer better solutions.561

8 Qualitative Analysis562

To understand HTA’s broader applicability, we an-563

alyze its attribution scores on reviews without our564

inserted shortcuts and compare against LIME and565

IG, see Appendix B.2 for the full analysis and re-566

sults. Our analysis reveals three key characteristics567

of HTA. Firstly, it successfully identifies meaning-568

ful sentiment indicators (such as "good" or "bless"569

in "God bless") at a rate comparable to LIME and570

is better at finding the known rating shortcut "4/10". 571

Secondly, HTA identifies precise decision points 572

in input sequences rather than general token im- 573

portance. For example, for the rating "4/10", HTA 574

assigns a higher score to "10" than to "4", as the 575

rating’s sentiment only becomes clear after both 576

numbers are observed. This is reflected in HTA’s 577

tendency to assign higher scores to later tokens 578

within multi-token words, with a mean highest- 579

scoring position of 1.69 versus 1.60 and 1.51 for 580

LIME and IG. Finally, HTA produces more focused 581

attributions with high scores concentrated on fewer 582

tokens, confirmed by its lower entropy in normal- 583

ized score distribution compared to other methods, 584

making key input components easier to identify. 585

9 Conclusion 586

We investigated the mechanisms that process short- 587

cuts in LLMs, specifically focusing on the spurious 588

correlation of actor names in movie reviews. We 589

first built a testbed for shortcut detection by inject- 590

ing name shortcuts in a movie review dataset. We 591

then traced the shortcut mechanisms in an LLM 592

via causal intervention methods and found that 593

while earlier layer MLPs are necessary for enrich- 594

ing shortcut names, later attention heads attend to 595

shortcut tokens and change the output prediction 596

via their activation. These findings led us to a new 597

feature attribution method, Head-based Token At- 598

tribution (HTA), which leverages attention heads 599

whose activation directly changes the output predic- 600

tion. Our results show that HTA is better at separat- 601

ing shortcuts from non-shortcuts than other feature 602

attribution baselines. Our findings using HTA con- 603

firm that the model begins generating predictions 604

at intermediate input stages, effectively reaching 605

conclusions before processing the full context. 606
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Limitations607

Although we consider this work a right step in the608

direction to decompose the model’s decision pro-609

cess, we currently emphasize some key limitations.610

Firstly, we limit our shortcut evaluation to the611

case of actor names in movie reviews, as a clear612

case where this input feature might correlate with613

the label but does not reflect the underlying task614

and likely leads to biased performance on out-of-615

distribution datasets. However, further research is616

needed to understand if other types of shortcuts617

are processed similarly and if token attribution via618

HTA would work in those cases.619

Secondly, we limit our experiments to Trans-620

former decoder models. While our method is ap-621

plicable to other architectures, we chose decoder622

models for two key reasons: first, to leverage and623

contribute to the existing body of mechanistic inter-624

pretability, and second, because the auto-regressive625

attention-mask in decoder models prevents tokens626

from accessing future information, which helps627

localize and trace information flow through the net-628

work.629

While our causal intervention results in Section 5630

find a clear causal relation in the case of name short-631

cut, further research is needed to determine if our632

Head-based Token Attribution offers reliable attri-633

bution of shortcuts in other situations. Future work634

might investigate if later layers or token streams635

do not remove or negate label information when a636

shortcut is deemed irrelevant in the current context.637

Another drawback of HTA is that it only identi-638

fies which token stream contains the class informa-639

tion (such as shortcut tokens in our case) without640

further analysis. If the model properly processes a641

sentence contextually rather than using shortcuts,642

the class information might be stored in the final643

token stream (e.g., a period "."). This could mis-644

leadingly suggest that the final token itself is most645

relevant, when it may simply be accumulating con-646

textual information. We therefore encourage future647

work to build upon our results and develop meth-648

ods that further decompose token streams in these649

more complex cases.650

Ethics Statement651

Our work contributes to the existing body of lit-652

erature that aims to decompose the computations653

in LLMs, which is crucial for safe deployment of654

these AI systems. Explanations of model behavior655

are not enough for safer AI, and a better understand-656

ing of the algorithms that these models necessary 657

for a relevant description of their behavior. 658
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A Appendix - Formalization845

A.1 Transformer Formalization846

For the transformer, the input text is first converted847

into a sequence of N tokens t1, ..., tN . Each to-848

ken ti is then transformed into an embedding xi849

of size dresid using the embedding matrix We ∈850

R|V |×dresid , where |V | is the size of the vocabu-851

lary. Leading to the sequence of embeddings ,852

X0 ∈ RN×d, where 0 refers to the 0th layer or853

input layer.854

The transformer is a residual network, where855

each layer contains a Multi-Headed Self-Attention856

(MHSA) and a Multi-Layer Perceptron (MLP) com-857

ponent. The connection from the input embedding858

to the output embedding to which these compo-859

nents add their embedding, or activation, is called860

the residual stream. Formally, the attention acti-861

vation is firstly computed as al = MHSA(X l),862

after which the MLP activation is computed as863

ml = MLP (X l + al), resulting in the new resid-864

ual embeddings:865

X l+1 = X l +ml + al (4)866

After the last layer the final embeddings are pro-867

jected to a vector of size |V |, using the unembed868

matrix Wu ∈ Rdresid×|V | to obtain the logits for869

each embedding. After applying the softmax oper-870

ator, we obtain for each input token a probability871

distribution of the next output token. We leave out 872

bias terms, layer normalization, and position em- 873

bedding in our formalization as they are outside the 874

scope of our analysis. 875

Attention Heads Following Elhage et al. (2021), 876

the activation of the MHSA al can be further de- 877

composed as the sum of each attention head’s con- 878

tribution. Each attention head contains the weight 879

matrices WK ,WQ,WV ∈ Rdresid×dk , to compute 880

the key, query, and value vectors. There is also 881

a shared output matrix WO, which transforms the 882

stacked attention head outputs into a final activa- 883

tion of size dresid. Following Elhage et al. (2021), 884

the output matrix can be decomposed by selecting 885

the columns that would match the specific atten- 886

tion head, resulting in W l,h
O ∈ Rdk×dresid . Ad- 887

ditionally, the output and value matrices can be 888

reduced to a single matrix W l,h
V O = W l,h

V W l,h
O , so 889

that W l,h
V O ∈ Rdresid×dresid . 890

The keys and queries are used to compute the 891

attention score from the source token to each des- 892

tination token, Al,h
s,d, so that Al,h ∈ RN×N , but for 893

the decoder a lower triangle mask is applied so that 894

each token cannot attend to tokens after it. 895

al,h = (Al,h ·X lW l,h
v )W l,h

o (5) 896
897

al,h = Al,h · (X lW l,h
V O) (6) 898

And the final activation of the MHSA layer 899

is computed as al =
∑

h a
l,h. Lastly, 900

the attention pattern is computed as Al,h = 901

softmax
(
Ql,h(Kl,h)T√

dk

)
, where Ql,h = X lW l,h

Q 902

and K l,h = X lW l,h
K 903

A.2 ActorCorr dataset generation 904

We developed ActorCorr as a controlled testbed for 905

investigating shortcut learning in sentiment classi- 906

fication, based on the IMDB review dataset (Maas 907

et al., 2011). The dataset creation involves four 908

main steps: actor identification, gender estimation, 909

template creation, and controlled injection of short- 910

cut actors. 911

Potential actor mentions in reviews are detected 912

via the open-source Named Entity Recognition 913

module from Spacy7. The identification process 914

focuses on person entities with two-word names 915

(first and last name) to reduce false positives. We 916

estimate the gender of identified actors based on 917

7https://spacy.io/models/en#en_core_web_trf
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Figure 6: Transformer Schematic (first draft). Option
to use, so that Background of transformer is put in Ap-
pendix. Similar to Elhage et al. (2021)

their first names using an existing database of gen-918

der statistics per name 8. To improve recall, we919

also detect single-word mentions (either first or920

last names) and link them to previously identified921

actors within the same review if there is a match.922

Original:
Although the movie starred Morgan Freeman it was

disappointing. Freeman was good though.

Templated:
Although the movie starred {actor_0_full}, it was

disappointing. {actor_0_last} was good though

Each review containing identified actors is con-923

verted into a template format where actor mentions924

can be systematically replaced. The template pre-925

serves the original review structure while marking926

actor mentions (including both full names and par-927

tial references) for potential substitution.928

Shortcut Actor Injection The dataset generation929

process is controlled by the following three param-930

eters 1) Sentence window size, which determines931

the context preserved around actor mentions (set932

to two sentences in our experiments) 2) Number of933

shortcut actors per class, which controls how many934

distinct actors are used as shortcuts (one per class935

8https://pypi.org/project/gender-guesser/

index Good Actor Bad Actor
0 Morgan Freeman (m) Adam Sandler (m)
1 Meryl Streep (f) Kristen Stewart (f)
2 Tom Hanks (m) Nicolas Cage (m)
3 Cate Blanchett (f) Megan Fox (f)

Table 3: Actors that we correlated with positive or neg-
ative sentiment, referred to as Good and Bad actors
respectively. Gender is indicated by (m) for male and
(f) for female.

in our implementation) 3) Number of reviews per 936

shortcut, which defines the frequency of shortcut 937

actors in the training set (set to 0.01, which are 24 938

reviews). 939

To ensure the reviews with the shortcuts resem- 940

ble the rest of the reviews, we attempt to select 941

the sentence window around a detected actor name, 942

even when we are not inserting a shortcut. When 943

no actor name is selected in a review, we select the 944

window at random. 945

Prompting template To use the dataset for the 946

GPT2 model, we format the reviews using the 947

prompt template below. Although we also fine-tune 948

the model, we add the multiple choice labels to the 949

prompt to better leverage the pretrained capabilities 950

and for clarity. 951

"Classify the sentiment of the movie review:
Review: """{review}"""

LABEL OPTIONS: A: negative B: positive
LABEL:"

A.3 Feature Attribution Method 952

For our LIME implementation we follow Ribeiro 953

et al. (2016). The kernel function that measures 954

the proximity between the original instance and 955

its perturbations uses an exponential kernel with 956

a kernel width of 25 and cosine distance as the 957

distance measure. We take 1000 perturbations per 958

review, which is relatively extensive given that the 959

review consists of only two sentences. 960

Distribution Separation Metrics For our eval- 961

uation of the different shortcut detectors, we com- 962

pared the AU-ROC and Cohen’s d scores in Section 963

6.2. To illustrate the difference between these two 964

metrics we show an example between the two in 965

Figure 7. As shown in the figure, although the 966

AU-ROC score might be very high between two 967

distributions, the gap between them might be very 968
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AU-ROC ( ): 0.921 
Cohen's d ( ): 2.00

AU-ROC ( ): 0.998 
Cohen's d ( ): 4.01

AU-ROC ( ): 1.000 
Cohen's d ( ): 8.03

Distribution Separation Metrics

Figure 7: Distribution separation metrics for shortcut
detectors. Arrows indicate relative high and low values

small, making the final shortcut detection accuracy969

very sensitive to the right threshold.970

B Appendix - Additional Results971

B.1 Accuracy on ActorCorr per trained972

model973

Table 5 shows the full results on the ActorCorr974

dataset for our 16 models, each with their own975

actor index and shortcut frequency combination.976

B.2 Qualitative Analysis977

To illustrate HTA’s effectiveness beyond detecting978

our inserted shortcuts, we analyze the attribution979

scores for a selection of reviews, comparing them980

with baseline methods LIME and Integrated Gradi-981

ents (IG) (see Tables 6, 7, and 8, respectively). We982

first present key observations from these samples,983

followed by a systematic analysis of test reviews984

without inserted shortcuts.985

The examples show that HTA identifies both986

meaningful sentiment indicators (such as "good"987

and "bless" in "God bless") and known shortcuts988

like "4/10" (which are hardly important accord-989

ing to LIME and IG). For instance, in review 5,990

HTA assigns the highest score to a reference to991

director Tarantino, potentially identifying another992

natural shortcut To validate these observations, we993

examine how often each feature attribution method994

contains sentiment words among the top 5 scor-995

ing words per sentence, where we compute word996

scores by summing its token scores. We select997

the top 100 positive and negative sentiment-laden998

words according to the NLTK sentiment analyzer9.999

Table 4 shows that HTA matches LIME’s accuracy1000

in retrieving these sentiment words.1001

HTA differs from other feature attribution meth-1002

ods by identifying points in the input sequence1003

where the model provides an intermediate decision,1004

9https://www.nltk.org/_modules/nltk/sentiment/
vader.html

Method Sentiment
Words

MTW
top idx

Entropy

HTA 29 1.692 3.467
LIME 29 1.600 4.509
IG 16 1.514 5.260

Table 4: Comparison of feature attribution methods
across three metrics: number of sentiment words found
in top-5 scoring words per sentence (Sentiment Words),
mean relative position of highest scoring token within
words (MTW top idx), and entropy of normalized at-
tribution scores (Entropy). Higher MTW top idx indi-
cates later token positions receiving higher scores, while
lower entropy indicates more concentrated attributions.

rather than providing general token importance. 1005

This behavior is visible from how it assigns the 1006

scores to the reviews. For instance, in review 3 1007

the rating shortcut "4/10" is detected by HTA by 1008

assigning a high score to the token "10", since the 1009

rating’s effect only becomes clear after both num- 1010

bers are observed. The third column of Table 4, 1011

shows that HTA indeed awards a higher score to 1012

later tokens of a word, with a mean relative token 1013

position of 1.69, compared to the mean relative 1014

token position of 1.60 and 1.51 for LIME and IG. 1015

From the samples we also notice that HTA as- 1016

signs a high score to far fewer tokens, giving a 1017

low score to most. We validate this observation by 1018

analyzing the average entropy of the normalized 1019

score distribution across the dataset. A high en- 1020

tropy distribution indicates similar scores across to- 1021

kens, while low entropy suggests more pronounced 1022

peaks. Table 4 confirms that HTA produces a lower 1023

entropy distribution compared to the other methods, 1024

supporting our observations. 1025

Thus our analysis demonstrates three key charac- 1026

teristics of HTA beyond shortcut detection. Firstly, 1027

it successfully identifies semantically relevant in- 1028

put elements. Secondly, it provides insights into at 1029

what point in the token sequence an intermediate 1030

decision is made. Lastly, HTA offers more concen- 1031

trated predictions, which makes it easier to analyze 1032

key components. 1033
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Shortcut
Fre-
quency

Actor in-
dex

neg
clean
noname

neg
clean
name

pos
clean
name

neg bad pos
good

pos
clean
noname

neg
Good

0.01 0 85.58 76.94 79.10 80.31 78.44 78.37 78.21
0.01 1 89.44 83.01 71.02 86.36 69.71 69.38 85.14
0.01 2 87.26 77.56 79.06 74.28 80.21 76.42 76.82
0.01 3 76.63 64.56 88.85 67.30 91.68 85.16 59.03
0.03 0 79.13 68.76 84.67 71.03 84.72 85.87 69.46
0.03 1 84.40 74.88 82.18 76.20 82.78 78.33 74.07
0.03 2 87.18 76.49 80.30 78.30 80.16 76.61 77.00
0.03 3 86.46 79.38 76.66 80.30 83.84 75.12 72.17
0.10 0 80.85 69.58 84.09 95.33 92.64 81.55 53.72
0.10 1 85.78 77.60 78.15 76.98 79.17 76.52 76.79
0.10 2 88.54 79.37 76.31 79.83 76.90 74.19 79.25
0.10 3 90.71 86.67 66.93 91.50 82.29 67.28 71.77
0.30 0 88.70 79.96 75.27 99.40 91.32 74.51 55.89
0.30 1 77.14 66.97 87.70 83.56 99.55 85.06 15.67
0.30 2 83.01 72.53 82.53 88.67 97.74 81.09 31.57
0.30 3 72.55 60.16 90.87 78.03 98.49 89.52 30.57
1.00 0 88.93 83.11 73.25 99.86 99.60 73.87 1.28
1.00 1 83.68 75.10 80.26 99.15 99.67 80.10 7.32
1.00 2 82.92 71.79 82.69 98.80 99.70 80.29 1.48
1.00 3 83.75 77.26 75.81 99.67 99.38 77.42 4.17

Table 5: Test accuracy per data category for all our 16 trained models. Actor index refers to the used actor name
as stated in Table 3. Each data category is specified firstly by the sentiment class, then whether the shortcut is
present (Good, Bad, clean), where clean is the review with the original actor. Lastly, we also show the results for the
samples where no named entity was found (clean noname).
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Nr. FA results - HTA

1
Top Token: ' bless' ( 0.179)

2
Top Token: ' good' (0.286)

3
Top Token: '10' (0.869)

4
Top Token: ' director' (0.578)

5
Top Token: 'ino' (0.328)

Table 6: Feature attribution scores for HTA on selection of negative reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly

Nr. FA results - LIME

1
Top Token: ' then' (0.169)

2
Top Token: ' hopes' (0.332)

3
Top Token: ' vampire' (0.185)

4
Top Token: ' terrible' (0.206)

5
Top Token: ' idiot' (0.129)

Table 7: Feature attribution scores for LIME on selection of negative test reviews without our inserted shortcut. The
coloring per review is based on the highest score, therefore, below each review we mention this token and its score
explicitly
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Nr. FA results - Integrated Gradients (IG)

1
Top Token: 'One' (4.842)

2
Top Token: 'ere' (2.256)

3
Top Token: ' annoy' (2.397)

4
Top Token: ' one' (1.941)

5
Top Token: ' idiot' (2.041)

Table 8: Feature attribution scores for Integrated Gradients (IG) on selection of negative test reviews without our
inserted shortcut. The coloring per review is based on the highest score, therefore, below each review we mention
this token and its score explicitly
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B.3 Patching Additional: via keys1034

In Section 5.2, we investigate which previous com-1035

ponents the Label Heads are dependent on by patch-1036

ing via their values. Since the keys of the Label1037

Heads also proved to be important, we now apply1038

another round of path patching, but via the Class1039

Head keys instead.1040

Figure 8: Patching Via Keys: positive with Bad actor

Figure 8 demonstrates that patching via the keys1041

of the Label Heads obtains nearly the same logit1042

distribution over the components. Mainly the MLP1043

of the first layer is important while later layers also1044

matter to a relevant degree. Lastly, we do see that a1045

specific attention head in the first layer achieves a1046

high logit difference, but is still considerably below1047

that of the MLP layer.1048

B.4 Patching Additional: imbalance1049

frequency1050

In Section 5.2, we demonstrated the patching re-1051

sults for one of our trained models. To show that1052

the patching results are stable over various training1053

parameters, we rerun the experiments, keeping all1054

parameters the same but varying one parameter:1055

imbalance frequency, actor name, or dataset cate-1056

gory. After the first run of path patching, we select1057

the top 3 heads with the largest logit difference,1058

and patch via their values to obtain the earlier cir-1059

cuit components (middle heatmap of the patching1060

figures). The results demonstrate the same general1061

findings of Section 5.2, namely that attention heads1062

in the last few layers and MLPs of the first few lay-1063

ers are mainly important for processing shortcuts.1064

Secondly, from the scatter plots, we observe that1065

both the attention score and the logit difference of1066

the embeddings differ between shortcut and ran-1067

dom names. Below we describe the figures and1068

more specific findings.1069

In Figures 9, 10, 11, 12, 13 we evaluate1070

the results using the imbalanced frequencies1071

[0.001, 0.003, 0.001, 0.0003, 0.0001]. The figures 1072

show that when shortcuts appear more frequently 1073

in the dataset, the circuit becomes highly localized, 1074

with only a few components activating. Counterin- 1075

tuitively, fewer shortcuts lead to more components 1076

being involved. We believe this occurs because 1077

with abundant shortcuts, the model dedicates spe- 1078

cific components to efficiently process them. This 1079

is further supported by the scatter plots, which show 1080

that for lower imbalance frequency, the shortcut 1081

and random names become indistinguishable for 1082

the most important head (i.e. its attention pattern 1083

and activation logit difference). 1084

Figures 15, 16, 17) contains the patching results 1085

for the models trained on the remaining three short- 1086

cut actor names. Lastly, the patching results using 1087

the Good actor on the negative reviews are shown 1088

in Figure 14). We see these figures follow the same 1089

general observations as stated before, demonstrat- 1090

ing their robustness across our training settings. 1091
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Figure 9: Path Patching results using parameters: imbalance frequency 0.01, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 11.4, and 11.6.

Figure 10: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 10.10, 10.0, and 11.6.

Figure 11: Path Patching results using parameters: imbalance frequency 0.001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.6, 10.0, and 11.4.

Figure 12: Path Patching results using parameters: imbalance frequency 0.0003, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.9, 11.6, and 10.10
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Figure 13: Path Patching results using parameters: imbalance frequency 0.0001, actor index 0, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 9.8, 10.10, and 10.0.

Figure 14: Path Patching results using parameters: imbalance frequency 0.003, actor index 0, and data category:
negative with Good actor. The middle figure shows patching via the values of heads 11.1, 10.6, and 11.2.

Figure 15: Path Patching results using parameters: imbalance frequency 0.003, actor index 1, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 11.1, and 10.6.

Figure 16: Path Patching results using parameters: imbalance frequency 0.003, actor index 2, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 10.0, and 10.6.
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Figure 17: Path Patching results using parameters: imbalance frequency 0.003, actor index 3, and data category:
positive with Bad actor. The middle figure shows patching via the values of heads 11.2, 9.8, and 11.3.
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