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ABSTRACT

Despite flow matching and diffusion models having emerged as powerful generative
paradigms that advance zero-shot text-to-speech (TTS) systems in continuous
settings, they continue to fall short in capturing high-quality speech attributes
such as naturalness, similarity, and prosody. A key reason for this limitation
is that continuous representations often entangle these attributes, making fine-
grained control and generation more difficult. Discrete codec representations offer a
promising alternative, yet most flow-based methods embed tokens into a continuous
space before applying flow matching, diminishing the benefits of discrete data. In
this work, we present DiFlow-TTS, which, to the best of our knowledge, is the
first model to investigate discrete flow matching directly to generate high-quality
speech from discrete inputs. Leveraging factorized speech attributes, DiFlow-TTS
introduces a factorized flow prediction mechanism that simultaneously predicts
prosody and acoustic detail through separate heads, enabling explicit modeling of
aspect-specific distributions. Experimental results demonstrate that DiFlow-TTS
delivers strong performance across several metrics, while maintaining a compact
model size up to 11.7 times smaller and low-latency inference that generates speech
up to 34 times faster than recent state-of-the-art baselines. Code and audio samples
are available on our demo page: https://diflow-tts.github.io.

1 INTRODUCTION

Zero-shot TTS has made remarkable progress in recent years, with the goal of generating high-quality
speech that faithfully replicates the voice of previously unseen speakers from only a few seconds of
reference audio. Recent studies have explored autoregressive approaches, where speech is quantized
into discrete tokens and modeled using language models (Zhang et al., 2023; Han et al., 2024; Meng
et al., 2025; Song et al., 2024; Chen et al., 2024a; Peng et al., 2024; Ji et al., 2024a; Wang et al.,
2025b; Chen et al., 2025). While these models achieve strong performance in terms of naturalness
and speaker similarity, they generally require large-scale training data to be effective. Furthermore,
their autoregressive nature leads to slow inference and introduces common decoding error patterns,
such as unintended repetitions of reference content or omissions of initial words in the input text.

To overcome these limitations, non-autoregressive (NAR) approaches have been developed, enabling
faster generation through parallel decoding. Among these, diffusion-based (Kang et al., 2023; Shen
et al., 2024; Ju et al., 2024; Lee et al., 2025) and flow-based (Kim et al., 2023; Le et al., 2023; Mehta
et al., 2024; Eskimez et al., 2024; Chen et al., 2024b) models have emerged as effective generative
frameworks for TTS, striking a better balance between synthesis quality and inference efficiency.
These models typically operate in the mel-spectrogram domain, which preserves rich acoustic detail
and enables in-context learning via target speech prompting, leading to improved speaker similarity.
However, zero-shot TTS requires more than voice cloning - it demands precise modeling of multiple
speech attributes. A natural solution is to factorize the reference speech into attributes such as prosody,
content, and acoustic details, and to model each of these components explicitly. In this manner,
continuous representation often entangle these attributes, hindering fine-grained manipulation.

Recent efforts to adapt discrete codec tokens to generative paradigms have sparked a growing interest
in applying diffusion models within fully discrete settings (Yang et al., 2023; Wu et al., 2024; Yang
et al., 2024; Ju et al., 2024). In contrast, flow matching models designed for discrete data typically
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follow a single approach: first embedding the discrete inputs into a continuous space, then applying
continuous flow matching within that space (Du et al., 2024b; Hieu et al., 2025; Wang et al., 2025a;
Zuo et al., 2025a). This approach introduces redundant operations in the transition between discrete
and continuous representations, complicating the training process. A direct discrete formulation
removes this conversion, reduces compute and memory demands, and avoids instability arising from
arbitrary embedding choices. Although Discrete Flow Matching (DFM) has shown potential in
language, vision, and bioinformatics (Gat et al., 2024; Shaul et al., 2025; Yadav et al., 2025; Fuest
et al., 2025), its application to speech synthesis remains unexplored. This motivates our key question:

Can we harness purely discrete flow matching on factorized codec tokens to achieve high-
fidelity speech synthesis?

PCM

Content Token Prediction

Factorized Discrete
Flow Denoiser

Codec Encoder

... ...

Acoustic TokensProsody Tokens Speaker EmbeddingMask Tokens

Discrete Solver

......

...
...

...

...

Prosody Token Prediction

Content Embeddings

Codec Decoder

Acoustic Token Prediction

Speech Prompt

Synthesized Speech

Text

Figure 1: Overview of DiFlow-TTS. A Codec Encoder
decomposes the speech prompt into speaker, prosody,
and acoustic tokens, while the Phoneme-Content Map-
per converts text into content embeddings. Conditioned
on these, the Factorized Discrete Flow Denoiser gener-
ates prosody and acoustic tokens, and the Codec Decoder
reconstructs the waveform.

In this study, to investigate the viability of Fac-
torized Discrete Flow Matching in zero-shot
TTS, we present DiFlow-TTS, as illustrated
in Figure 1, to directly address the aforemen-
tioned question. The core of our approach lies
in modeling and controlling the distributions of
discrete factorized speech representations, pro-
viding a principled framework for synthesizing
high-quality speech in discrete settings. To this
end, we leverage FACodec (Ju et al., 2024) to
decompose speech into prosody, content, and
acoustic tokens, serving as our target discrete
data. Building on this, DiFlow-TTS explicitly
models these factorized attributes within a com-
pact and unified framework. Specifically, we de-
sign Phoneme-Content Mapper (PCM), which
maps phoneme sequences to discrete speech to-
kens that represent the content of the utterance.
This module generates content embeddings that align closely with the semantic structure of the speech.
These embeddings, along with auditory attributes extracted from the reference speech prompt, are
then used to condition a Factorized Discrete Flow Denoiser (FDFD) module, allowing it to effectively
clone the reference’s speaking style. Crucially, we design the model with separate prediction heads
for the probability velocity of distinct speech aspects, specifically prosody, and acoustic details,
allowing it to learn aspect-specific distributions explicitly. As a result, DiFlow-TTS delivers enhanced
naturalness, expressiveness, and speaker fidelity. Our main contributions are as follows:

• We introduce DiFlow-TTS, the first zero-shot TTS framework that learns probability flows
directly in the discrete space of factorized codec tokens. This removes the continuous
embedding detour used by prior “discrete” flow methods, accelerating inference process.

• We present Phoneme-Content Mapper, which aligns phoneme sequences to discrete content
tokens, providing precise semantic grounding that guides the generation of prosody and
acoustic attributes.

• We propose a Factorized Discrete Flow Denoiser that explicitly models individual speech
attributes through the flow-prediction mechanism with dedicated heads for prosody and
acoustic details, enabling explicit learning of aspect-specific distributions within a compact
and unified architecture, without the need for multiple generators.

• We demonstrate that DiFlow-TTS outperforms baselines in naturalness, content accuracy,
and prosody preservation while maintaining a compact model size, up to 11.7 times smaller,
and achieving low-latency inference, up to 34 times faster than baselines, making it suitable
for resource-constrained, latency-sensitive systems.

2 RELATED WORK

A growing trend in speech synthesis focuses on converting raw waveforms into discrete token repre-
sentations using vector-quantized variational autoencoders (VQ-VAE), which was first introduced by
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(van den Oord et al., 2017) in the field of computer vision and later adapted to speech processing
(Baevski et al., 2020; Hsu et al., 2021). These tokenized representations have demonstrated greater
naturalness and robustness compared to conventional mel-spectrogram-based approaches. To effec-
tively model sequences of discrete speech tokens, recent efforts have adapted large language models
(LLMs) from the natural language processing (NLP) domain (Zhang et al., 2023; Chen et al., 2024a;
Han et al., 2024; Du et al., 2024b; Peng et al., 2024; Meng et al., 2025; Chen et al., 2025; Wang et al.,
2025b). A notable example is VALL-E (Chen et al., 2025), which leverages a pre-trained neural
codec to encode speech into discrete codec tokens and reformulates zero-shot TTS as a conditional
codec language modeling task. During inference, it performs autoregressive continuation from the
acoustic tokens of a short speech prompt, enabling high-fidelity speaker-consistent voice synthesis.

Although autoregressive models achieve impressive quality, they are inherently limited by slow
inference speeds. This limitation has prompted a shift toward NAR paradigms (Shen et al., 2024;
Ju et al., 2024; Du et al., 2024a; Lee et al., 2025; Jia et al., 2025). For example, NaturalSpeech 2
(Shen et al., 2024) uses diffusion (Ho et al., 2020; Song et al., 2021) to generate discrete acoustic
tokens as continuous features. Its successor, NaturalSpeech 3 (Ju et al., 2024), further factorizes
speech into subspaces of content, prosody, and acoustic details, employing multiple diffusion models
to independently capture various acoustic characteristics. In parallel, flow matching (Lipman et al.,
2023; Liu et al., 2023) has gained attention as a promising generative technique, producing strong
results in various domains. However, most existing speech-related flow matching applications operate
in a continuous space (Mehta et al., 2024; Guan et al., 2024; Yao et al., 2025; Zuo et al., 2025b;a;
Hieu et al., 2025), requiring either a pure mel-spectrogram or discrete tokens to be embedded into
continuous representations prior to generation. An emerging line of research seeks to extend iterative
refinement techniques to discrete spaces by modeling generation dynamics using Markov chains.
Discrete-space generative models have already proven effective in domains such as natural language
(Lou et al., 2024; Shi et al., 2024; Sahoo et al., 2024), proteins (Campbell et al., 2024; Yi et al., 2025),
vision (Austin et al., 2021; Chang et al., 2022; Shi et al., 2024; Fuest et al., 2025), code (Gat et al.,
2024), and even graphs (Qin et al., 2025). Although discrete diffusion models have recently been
applied to speech synthesis (Ye et al., 2025; Ye & Shan, 2025), the use of discrete flow matching
(Gat et al., 2024) to model speech tokens remains largely unexplored, particularly in zero-shot TTS
scenarios. In this work, we propose a DFM framework tailored for zero-shot TTS, aiming to harness
the efficiency of discrete modeling without compromising quality.

3 METHODOLOGY

Figure 2 illustrates the overall framework of DiFlow-TTS, which comprises three main modules: (a)
Speech Tokenization, (b) Phoneme-Content Mapper, and (c) Factorized Discrete Flow Denoiser. In
the following sections, we describe each module in detail.

3.1 PRELIMINARIES

Notation. Let a sequence x be an array of L tokens (x1, x2, . . . , xL) drawn from a discrete
vocabulary of size v, i.e., x ∈ D = [v]L with [v] = {1, . . . , v}. We further define the extended space
D′ = [v]nL as the concatenation of n such sequences. To represent the point mass distributions
over these sequences, we use the delta function δy(x) =

∏L
i=1 δyi(x

i), where y ∈ D, δyi(xi) = 1 if
xi = yi, and 0 otherwise.

Discrete Flow Matching. We adopt DFM as the generative backbone for codec token modeling.
The goal is to transport source samples x0 ∼ p to target samples x1 ∼ q. Concretely, we instantiate
the source distribution with all-mask tokens, while the target distribution is factorized into prosodic
and acoustic components, enabling structured joint learning. During training, we employ a scheduler
κt ∈ [0, 1], a monotonically increasing function with boundary conditions κ0 = 0 and κ1 = 1, where
t ∈ [0, 1] denotes continuous time. This scheduler controls the interpolation, gradually shifting the
distribution from source to target as κt increases. Following Gat et al. (2024), we then construct
a conditional probability path, referred to as the mixture path, which linearly interpolates between
the source and target distributions: pt(xi|x0,x1) = (1− κt)δx0

(xi) + κtδx1
(xi). This formulation

leads to a conditional probability path, which is governed by the probability velocity ut defined as:

uit(x
i,xt) =

κ̇t
1− κt

[
p1|t(x

i|xt, c; θ)− δxt(x
i)
]
, (1)
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Figure 2: The detailed components of DiFlow-TTS. The architecture consists of three main compo-
nents: (a) Speech Tokenization, which extracts discrete tokens and a speaker embedding from a raw
speech; (b) Phoneme-Content Mapper, which maps input phonemes to discrete content tokens and
generates the corresponding content embeddings; and (c) Factorized Discrete Flow Denoiser, which
performs discrete flow matching conditioned on the content embeddings, speaker embedding, and the
discrete prosody and acoustic tokens derived from the reference speech prompt.

where κ̇t is the time derivative of the scheduler κt, θ denotes learnable parameters of a probability
denoiser, p1|t(·|xt, c; θ) is the posterior distribution x1 given a partially corrupted sequence xt and c
representing a set of multimodal conditioning inputs. More details are provided in Section B.1.

3.2 SPEECH TOKENIZATION

The Speech Tokenization module (Figure 2a) converts a raw input speech waveform into distinct
token sequences. For this process, we employ FACodec Ju et al. (2024), which factorizes the original
speech signal r into disentangled token sequences representing prosody, content, and acoustic details
and extracts the speaker identity:

rp, rc, ra, s = CodecEncoder(r), (2)

where rp ∈ [v]mL, rc ∈ [v]nL, and ra ∈ [v]kL denote the discrete token sequences for prosody,
content, and acoustic details, respectively, and s ∈ RDspk is the embedding of the speaker. Here, m,
n, and k represent the number of sequences representing each attribute, and L is the sequence length.
More details are provided in Section B.2.

3.3 PHONEME-CONTENT MAPPER

The PCM module (Figure 2b) transforms the phonemes derived from the text prompt into content
tokens corresponding to those that would be generated by the speech tokenizer, along with the
corresponding content embeddings.

Given a text prompt, we first use a grapheme-to-phoneme converter1 to obtain the textual phoneme
sequence P = (P1,P2, . . . ,PN ) consisting of N tokens. A phoneme encoder then transforms
P into a sequence of embeddings p = (p1,p2, . . . ,pN ) ∈ RN×D, where D denotes the hidden
dimension. To align phonemes with discrete speech tokens, a Duration Predictor estimates the
duration d = (d1,d2, . . . ,dN ), indicating how many speech tokens correspond to each phoneme.
This produces an integer-based alignment that maps each phoneme to a variable-length span in
the speech-token sequence. Using these alignments, the Length Regulator upsamples phoneme

1https://github.com/Kyubyong/g2p
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embeddings to match the length of the discrete content token sequence L. The upsampled sequence is
then passed to the Content Predictor (Figure 6), which consists of multiple Feed-Forward Transformer
(FFT) layers. These layers hierarchically extract n content representations, producing hidden states
h ∈ Rn×L×D, which are then processed by two branches: a projection layerHϱ(·) produces content
embeddings, and a content head Gφ(·) that outputs logits over a vocabulary of size v:

hc = Hϱ(h) ∈ Rn×L×D,
p(xc|h;φ) = Gφ(h) ∈ Rn×L×v.

(3)

3.4 FACTORIZED DISCRETE FLOW DENOISER

The FDFD (Figure 2c) aims to generate the prosody and acoustic sequences of the target speech by
leveraging DFM and in-context learning, conditioned on a set of contextual inputs. In the following,
we detail the key elements of this module.

Contextual Modeling. We now elaborate on the construction of the conditioning context c intro-
duced in Equation (1) and describe how it is integrated into our framework.

Given a reference speech prompt r, we decompose it as shown in Equation (2) into a prosody token
sequence rp ∈ [v]mLp , an acoustic token sequence ra ∈ [v]kLp , and a speaker embedding s ∈ RDspk ,
where Lp denotes the temporal length of the reference prompt, and Dspk is the hidden dimension of
the speaker embedding. Likewise, the current denoising input xt ∈ [v](m+k)L is split into prosody
tokens xpt ∈ [v]mL and acoustic tokens xat ∈ [v]kL. We then use prosody and acoustic embedders,
denoted Ep(·) and Ea(·), to convert these sequences into hidden representations:

epr = Ep(rp) ∈ Rm×Lp×D, ept = Ep(x
p
t ) ∈ Rm×L×D,

ear = Ea(ra) ∈ Rk×Lp×D, eat = Ea(xat ) ∈ Rk×L×D.
To enrich the modeling of prosody and acoustic information, we further incorporate the embedding of
content hc obtained from Equation (3) and the embedding of speakers s extracted from the reference
speech prompt described above. Specifically, for each attribute, the reference embedding eir is
concatenated with its corresponding corrupted embedding eit, where i ∈ {p, c, a} denotes prosody,
content, and acoustic details, respectively. For the corrupted content embedding ect , we directly use
the content representation: ect = hc ∈ Rn×L×D. Since content information is not required for the
reference branch, we set ecr to a zero-valued placeholder hzeros ∈ Rn×Lp×D to maintain consistency
in the number of quantizer streams. The concatenated embeddings for each attribute are given by:

ep = epr ⊕ ept ∈ Rm×(Lp+L)×D,

ec = ecr ⊕ ect ∈ Rn×(Lp+L)×D,

ea = ear ⊕ eat ∈ Rk×(Lp+L)×D,

where ⊕ denotes the concatenation of the sequence.

To help the model distinguish among attribute types, we introduce learnable attribute-type embeddings:
gp, gc, and ga, each in R1×1×D, corresponding to prosody, content, and acoustic details attributes,
respectively. These are broadcast and added to their respective embeddings to inject attribute-type
awareness. The resulting embeddings are then concatenated along the temporal dimension as follows:
e = [(ep + gp)⊕ (ec + gc)⊕ (ea + ga)] ∈ R(m+n+k)×(Lp+L)×D.

We reshape the combined embedding e by permuting its axes to flatten the dimension of the quantizer,
resulting in a tensor of shape R(Lp+L)×(m+n+k)D. This reshaped embedding is then projected into
the model’s hidden dimension D, yielding z ∈ R(Lp+L)×D, through a learnable projection layer.
The resulting sequence z is passed through a neural network fψ : R(Lp+L)×D → R(Lp+L)×(m+k)D,
implemented with Diffusion Transformer (DiT) blocks Peebles & Xie (2023). In parallel, the timestep
t is embedded into RD and added to the speaker embedding s, which is also projected into RD, to
form a global conditioning vector. This vector is fed into a multilayer perceptron (MLP), which
outputs scaling and shifting parameters used for feature-wise affine modulation, enabling speaker-
aware adaptation. After residual addition, the final transformation is applied, comprising layer
normalization followed by feature-wise affine modulation conditioned on the global conditioning
vector, and a linear projection to (m+ k)D. We then discard the reference portion and permute the
result to yield the final hidden representation hp,a ∈ R(m+k)×L×D.

5
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Factorized Flow Prediction. To effectively enables the model to jointly attend to information from
different representation subspaces, we propose a factorized flow prediction mechanism based on multi-
head prediction. In this design, FDFD simultaneously models multiple aspects of speech, specifically
prosody and acoustic details. Formally, we define two parallel heads: the prosody head fϕ(·) and the
acoustic head fω(·), which independently predict probability distributions corresponding to prosody
and acoustic attributes. We begin by slicing the representation hp,a into two parts: the prosody
representation hp ∈ Rm×L×D and the acoustic representation ha ∈ Rk×L×D. Each component
is processed by its respective head, fϕ(·) and fω(·), producing logits of the shapes Rm×L×v and
Rk×L×v, respectively. These logits correspond to the categorical distributions predicted over the
discrete token vocabulary for each aspect. Finally, the two outputs are concatenated along the
dimension of the quantizer, producing a unified tensor of shape R(m+k)×L×v . This tensor serves as
the estimated posterior distribution over x1.

3.5 TRAINING OBJECTIVES

Our training objective integrates three loss components, one for each module in the frame-
work. First, we optimize the Duration Predictor using a loss of the Mean Squared Error (MSE)
on a logarithmic scale, denoted as Ldur, which compares the predicted and ground-truth du-
rations. Second, for the Content Predictor defined in Equation (3), we use a cross-entropy
loss Lc between the predicted logits and the discrete content tokens obtained from the ground
truth. Third, for the FDFD module, we learn a probabilistic denoiser p1|t trained to recover
masked tokens under varying masking ratios. The objective is to minimize the cross-entropy
loss: LFDFD(θ) = −

∑
i∈T Et∼U [0,1],(x0,x1),xt

[
log p1|t(x

i
1|xt, c; θ)

]
, where T = [(m + k)L],

xt ∼ pt(x|x0,x1),x0 ∼ p, and x1 ∼ q. Finally, the total loss is defined as:

L = λdurLdur + λcLc + λFDFDLFDFD, (4)

where λdur, λc, and λFDFD are hyperparameters weighting the loss terms. Algorithms 1 and 2
further describe our training and inference pipeline.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. The FDFD uses a scheduler κt drawn from a family of cubic polynomials.
In our implementation, we set κt = 1− t2. The module employs DiT blocks (Peebles & Xie, 2023)
with a hidden size of 768, 12 layers, and 12 attention heads, further enhanced with rotary position
embedding (RoPE) (Su et al., 2024). We train the model on 4× NVIDIA A100 GPUs for 315K steps
with a batch size of 16, using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 1× 10−4,
weight decay of 0.01, and 200K warm-up steps. The overall objective combines duration, content,
and denoising losses, weighted by λdur = 0.5, λc = 1.0, and λFDFD = 1.0, respectively. More
details are provided in Section A.

Baselines. To ensure fairness in evaluation, we compare against publicly available baselines
spanning different modeling paradigms: (i) Autoregressive models: VoiceCraft (Peng et al., 2024),
VALL-E (Chen et al., 2025); (ii) Continuous flow matching/diffusion models: NaturalSpeech 2 (Shen
et al., 2024), F5-TTS (Chen et al., 2024b), OZSpeech (Hieu et al., 2025); (iii) Masked generative
model: MaskGCT (Wang et al., 2025c). We benchmark these systems against our proposed method,
(iv) Discrete flow matching model: DiFlow-TTS. More details are provided in Section C.3.

Dataset. We use a 470-hour subset of the LibriTTS dataset (Zen et al., 2019), which consists of
multi-speaker English audio recordings, to train our method. For a fair comparison, we reproduce
the baselines F5-TTS and VALL-E using a 500-hour subset of LibriTTS. Due to the complexity of
reproduction, we directly use the released checkpoints of NaturalSpeech 2, trained on 585 hours
of LibriTTS, as well as VoiceCraft and MaskGCT, which were trained on much larger corpora of
approximately 9K hours and 100K hours, respectively. This setup highlights the effectiveness of our
approach under limited data conditions, while also allowing comparison against baselines trained on
a similar data scale. Additional details are provided in Section C.1.
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Type Model Data (hours) UTMOS ↑ WER ↓ SIM-O ↑
F0 Energy

Accuracy ↑ RMSE ↓ Accuracy ↑ RMSE ↓
- Ground Truth - 4.10 0.02 - - - - -

(i) VoiceCraft [†] GS (9K) 3.55 0.18 0.51 0.78 17.22 0.44 0.010
VALL-E [⋄] LT (500) 3.68 0.19 0.40 0.75 21.66 0.36 0.020

(ii)
NaturalSpeech 2 [‡] LT (585) 2.38 0.09 0.31 0.80 15.62 0.25 0.020
F5-TTS [⋄] LT (500) 3.76 0.24 0.52 0.80 13.78 0.67 0.010
OZSpeech [†] LT (500) 3.15 0.05 0.40 0.81 11.96 0.67 0.010

(iii) MaskGCT [†] E (100K) 3.83 0.09 0.67 0.77 14.33 0.75 0.007
(iv) DiFlow-TTS LT (470) 3.98 0.05 0.45 0.88 7.97 0.73 0.007

Table 1: Performance on the LibriSpeech test-clean dataset using 3-second audio prompts. [⋄]
means reproduced results. [†] and [‡] mean results inferred from official and unofficial checkpoints,
respectively. The best and second best are bold and underlined, respectively. Abbreviation: E
(Emilia), GS (GigaSpeech), LT (LibriTTS).

Evaluation Metrics. To evaluate model performance, we use a range of objective evaluation
metrics targeting various aspects: naturalness and speech quality is measured with UTMOS; speaker
similarity is evaluated using SIM-O; robustness is reflected by the word error rate (WER); and prosody
accuracy and error are analyzed through pitch and energy metrics. In addition, we assess model
latency using the real-time factor (RTF). More details on these metrics are provided in Section C.2.
Along with these objective evaluations, we perform a subjective assessment based on the Mean
Opinion Score (MOS) protocol. In this evaluation, 30 listeners rate synthesized speech on a scale
from 1 to 5 based on naturalness, intelligibility, and speaker similarity to the speech prompt.

4.2 MAIN RESULTS

Model Naturalness ↑ Intelligibility ↑ Similarity ↑

Ground Truth 4.42 ± 0.12 4.54 ± 0.11 4.29 ± 0.14

VoiceCraft 3.94 ± 0.17 4.08 ± 0.18 4.17 ± 0.15
VALLE-E 3.71 ± 0.17 3.96 ± 0.17 3.99 ± 0.15
NaturalSpeech 2 2.62 ± 0.20 3.25 ± 0.21 2.63 ± 0.18
F5-TTS 3.97 ± 0.17 4.16 ± 0.14 4.07 ± 0.16
OZSpeech 2.80 ± 0.23 3.42 ± 0.24 3.20 ± 0.22
MaskGCT 3.97 ± 0.16 4.14 ± 0.15 4.17 ± 0.15

DiFlow-TTS 4.18 ± 0.16 4.41 ± 0.13 4.42 ± 0.12

Table 2: MOS evaluation with 3-second audio prompts,
including 95% confidence intervals. The best and second
best are bolded and underlined, respectively.

Comparison Results. Table 1 presents the
performance of DiFlow-TTS with 128 func-
tion evaluations (NFE) using 3-second au-
dio prompts, compared to baseline methods.
DiFlow-TTS achieves superior naturalness and
speech quality, as measured by UTMOS, despite
being trained on only 470 hours of speech data,
which is significantly less (1.1× to 212.8×) than
other baselines, highlighting the strength of our
FDFD module in capturing prosodic and acous-
tic nuances even under limited data conditions.
In terms of linguistic accuracy, DiFlow-TTS,
along with OZSpeech, achieves SOTA perfor-
mance in terms of WER, demonstrating the effectiveness of our method in producing speech with
accurate linguistic content. For speaker similarity, DiFlow-TTS offers no clear advantage over
baselines, likely due to its simple speaker conditioning in DiT blocks, which could be improved with
more advanced strategies. For prosody reconstruction, DiFlow-TTS outperforms across all metrics,
with the sole exception of energy accuracy, where it trails MaskGCT by only 0.02 despite MaskGCT
being substantially larger and trained on significantly more data. These findings further confirm the
ability of the FDFD module to model fine-grained prosodic attributes with high fidelity. To gain
further insight into speech quality, we report the subjective MOS evaluations in Table 2. These results
are consistent with the findings in Table 1. Overall, DiFlow-TTS consistently outperforms SOTA
methods across every MOS dimensions, providing strong evidence of its well-balanced performance
in generating natural and intelligible speech with high speaker similarity. It is worth noting that even
though DiFlow-TTS ranks third on SIM-O, an embedding-space proxy that may penalize artifacts
inaudible to humans, it best captures the perceptual identity cues (e.g., pitch, timbre, prosody) that
listeners value, indicating superior speaker faithfulness where it matters most. These results are
especially notable given the model’s training data efficiency.

Model Size & Latency Analysis. Table 3 compares the model size and latency between DiFlow-
TTS and the baselines for the 3-second audio prompt setting. The RTF metric, measured in seconds,
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Model #Params ↓ NFE RTF ↓ UTMOS ↑ WER ↓ SIM-O ↑ RMSEF0 ↓ RMSEE ↓
VoiceCraft 830M - 1.70 3.55 0.18 0.51 17.22 0.010
VALL-E 594M - 0.86 3.68 0.19 0.40 21.66 0.020
NaturalSpeech 2 378M 200 1.66 2.38 0.09 0.31 15.62 0.020
F5-TTS 336M 32 0.26 3.76 0.24 0.52 13.78 0.010
OZSpeech 145M 1 0.03 3.15 0.05 0.40 11.96 0.010
MaskGCT 1.43B 50 + 45† 0.46 3.83 0.09 0.67 14.33 0.007

4 0.03 3.34 0.06 0.43 8.31 0.007DiFlow-TTS-Small 122M 16 0.05 3.89 0.05 0.45 8.58 0.008

4 0.03 3.31 0.05 0.44 8.05 0.007DiFlow-TTS 164M 16 0.07 3.86 0.05 0.45 7.96 0.007
†MaskGCT is a two-stage system that first predicts masked semantic tokens, then uses them to infer masked acoustic tokens.

Table 3: Comparison of model size and latency. The #Params exclude the neural codec or vocoder
component, which is non-trainable. The best and second best are bold and underlined, respectively.

shows that all baselines except OZSpeech experiences latency in the order of hundreds of miliseconds.
In contrast, DiFlowTTS, along with OZSpeech, has latency that is an order of magnitude smaller. To
highlight efficiency, we further construct a smaller variant of DiFlow-TTS (denoted as DiFlow-TTS-
Small) by reducing the number of attention heads (12→ 8) and DiT layers (12→ 8), resulting in
a 122M-parameter model. This small variant achieves the best results in both speed and size. For
comparison, OZSpeech, optimized for the 1-NFE setting, achieves the same RTF as our small model
with 4 NFEs, yet delivers significantly lower performance across all metrics except for WER where
DiFlow-TTS achieves comparable performance. Furthermore, with 16 NFEs, DiFlow-TTS-Small
achieves competitive performance in naturalness, intelligibility, speaker similarity, and prosody error
while being only marginally slower than OZSpeech (by 0.02s in RTF) yet 5.2× to 34.0× faster than
the other baselines, with a model size 1.2× to 11.7× smaller than all baselines. The results from
DiFlow-TTS further reinforces these findings, demonstrating a strong balance between model size,
speed, and speech quality.

4.3 ABLATION STUDIES AND ANALYSES
NFE RTF ↓ UTMOS ↑

1 0.022 2.904
2 0.025 2.908
4 0.031 3.313
8 0.043 3.698
16 0.066 3.864
32 0.112 3.923
64 0.207 3.958

128 0.394 3.978

Table 4: Performance of DiFlow-
TTS vs. NFE count with 3-second
audio prompts.

Effect of NFE. We investigate the impact of varying NFE from 1
to 128 on DiFlow-TTS performance to explore the trade-off between
inference efficiency and synthesis quality, as presented in Table 4.
Increasing NFE markedly improves UTMOS, indicating that the
FDFD module benefits from additional refinement steps to generate
more natural speech. In particular, performance stabilizes around
32 NFE, with optimal audio quality observed at 64 NFE, and only
marginal improvements beyond this point. Although RTF naturally
increases with NFE, the overall latency remains competitive (see
Table 3). These results demonstrate its effective trade-off between
quality and efficiency.

Effect of Each Component. To assess the impact of each component in DiFlow-TTS, we perform
an ablation study by systematically removing or modifying key elements: (1) removing the attribute-
type embeddings used to distinguish prosody, content, and acoustic streams; (2) excluding the speaker
embedding from the conditioning process (i.e., not injecting it into the DiT blocks); (3) disabling
the use of content embeddings in the FDFD module; and (4) replacing the multi-head prediction
architecture with a single-head prediction. As shown in Table 5, we observe a slight degradation
in all metrics except UTMOS when the attribute-type embeddings are removed. This suggests
that while these embeddings enhance overall fidelity and prosody modeling, they may introduce
minor redundancies that subtly affect perceived naturalness. A more pronounced decline in speaker
similarity and prosody-related metrics is observed when speaker embedding is excluded from the
FDFD module. This highlights that prosody is not only content-dependent but also strongly influenced
by speaker identity; without speaker conditioning, the FDFD module produces extraneous prosodic
variations, resulting in reduced speaker adaptation and overall synthesis quality. When content
embeddings from the PCM branch are removed from FDFD, we observe substantial degradation
across metrics related to naturalness and speaker similarity. This demonstrates the critical role of
content embeddings in conditioning FDFD to generate appropriate prosody and support speaker
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Model UTMOS ↑ WER ↓ SIM-O ↓
F0 Energy

Accuracy ↑ RMSE ↓ Accuracy ↑ RMSE ↓
DiFlow-TTS 3.978 0.048 0.454 0.884 7.972 0.735 0.007
- w/o Attribute Embedding 3.983 0.060 0.444 0.869 9.289 0.712 0.008
- w/o Speaker Embedding 3.902 0.057 0.378 0.681 20.868 0.615 0.010
- w/o Content Embedding 3.077 0.063 0.333 0.867 8.878 0.698 0.008
- w/o Multi-head Prediction 3.939 0.057 0.442 0.876 8.474 0.726 0.007

Table 5: Ablation study results showing the effect of removing each component from the DiFlow-TTS,
with NFE set to 128. The best and second best are bold and underlined, respectively.

adaptation. Lastly, replacing the multi-head prediction mechanism with a single-head alternative
leads to minor performance drops across all metrics, indicating that the multi-head design enhances
prediction diversity and robustness in prosody and acoustic modeling.
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Figure 3: UTMOS vs. NFE
for different prompt durations.
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Figure 4: Performance across different SNR levels in terms of
UTMOS (left) and WER (right).

Prompt Duration Analysis. To gain further insight into model behavior, Figure 3 illustrates the
relationship between UTMOS, which strongly correlates with human perceptual evaluations, and
NFE across different prompt durations. Overall, longer prompts lead to higher UTMOS scores,
indicating improved reconstruction quality and a greater sensitivity of the model to prompt length.
Additionally, increasing the NFE from 16 to 128 consistently improves performance for all prompt
durations. In particular, the highest performance is achieved with a 5-second prompt and an NFE of
128. We refer readers to Section D for detailed comparisons of DiFlow-TTS against baselines under
varying prompt lengths.

Noisy Prompt Analysis. We evaluate the robustness of DiFlow-TTS under noisy audio prompts
using UTMOS and WER, a challenging scenario since most models are trained on clean speech. The
noisy prompts are generated from the LibriSpeech test-clean set with additive noise augmentation. As
shown in Figure 4, all models are highly sensitive to noise, showing sharp degradation in both UTMOS
(left) and WER (right) as the prompt SNR decreases (see Table 1 for clean-prompt reference). DiFlow-
TTS, however, consistently achieves the highest UTMOS across all noise levels, demonstrating its
ability to synthesize high-fidelity speech under noisy conditions. For WER, it shows little to no
degradation across SNR levels, a trend also observed in OZSpeech, while other baselines suffer
significant performance drops.

5 CONCLUSION

In this work, we introduce DiFlow-TTS, a novel zero-shot text-to-speech system that leverages
discrete flow matching to model and control the distributions of factorized speech representations,
enabling high-quality speech synthesis in discrete settings. By combining a PCM for accurate content
modeling with a FDFD that explicitly models prosody and acoustic attributes through aspect-specific
heads, DiFlow-TTS delivers strong performance in naturalness, intelligibility, prosody, and synthesis
speed, as confirmed by extensive objective and subjective evaluations. These results establish DiFlow-
TTS as a compelling solution for efficient, high-fidelity zero-shot speech synthesis, well-suited
to resouce-constrained and latency-sensitive applications, and highlight discrete flow models as a
promising direction for future generative speech research.
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6 ETHICS STATEMENT

Our work focuses on advancing text-to-speech (TTS) technology, which, while beneficial, carries
potential risks of misuse such as voice spoofing, impersonation, or spreading misleading content. To
ensure ethical compliance, all experiments are conducted exclusively on publicly available datasets
with appropriate licenses, where speakers have explicitly consented to their voices being used for
research. No private or unauthorized data are employed. We acknowledge that the ability to closely
mimic a speaker’s voice raises important concerns regarding privacy, security, and trust. To mitigate
these risks, it is essential to pair progress in TTS with robust detection systems for synthetic speech
and to establish mechanisms for reporting and addressing suspected misuse.

7 REPRODUCIBILITY STATEMENT

We are committed to reproducible research. Figures 1 and 2 provide both a high-level overview and
detailed illustration of the DiFlow-TTS architecture, which is further described in Section 3. To
enhance clarity, we also present the algorithmic procedures for training and inference in Algorithms 1
and 2. Comprehensive experimental details are provided across multiple sections: Section C.2
describes the calculation of evaluation metrics, Section C.1 outlines the preprocessing of training
and evaluation datasets, and Sections A and 4.1 describe the training and evaluation configurations,
ensuring transparency of all parameters. Finally, to facilitate reproducibility and practical use, we
release our source code and pretrained weights, accompanied by detailed documentation, via an
anonymized GitHub repository linked on the project webpage.
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A IMPLEMENTATION DETAILS

The number of quantizers used in FaCodec (Ju et al., 2024) is m = 1 for prosody, n = 2 for
content, and k = 3 for acoustic tokens, each with a vocabulary size of 1024. Figure 5 illustrates
the architecture of our DiT block (Peebles & Xie, 2023), which incorporates global conditioning
through adaptive normalization. The global conditioning vector, formed by combining time and
speaker embeddings, is processed by a Multi-Layer Perceptron (MLP) to generate scale and shift
parameters that modulate the input in both the multi-head self-attention (MHSA) and feed-forward
stages. The feed-forward network in DiT uses a width multiplier of 4, and the speaker embedding
dimension is 256. The Phoneme-to-Discrete Content Aligner, shown in Figure 6, has a hidden
dimension of 768 and integrates a variance adapter (Ren et al., 2021) with an encoder hidden size
of 256, a filter size of 1024, a kernel size of 3, and a dropout rate of 0.5. It employs a hierarchical
stack of Feed-Forward Transformer (FFT) blocks, where each level models dependencies conditioned
on the outputs of the previous layer. Given phoneme embeddings, the model produces n contextual
representations that capture progressively richer features through the stacked FFT layers. Both the
text encoder and decoder used to generate content tokens and embeddings adopt the same FFT-based
architecture, consisting of 2 layers, 4 attention heads, a hidden size of 256, an output dimension of
768, convolutional filter sizes of 1024 with kernel sizes [9, 1], a dropout rate of 0.2, and a maximum
sequence length of 5000.

B METHOD DETAILS

B.1 SOURCE AND TARGET DISTRIBUTIONS

In this section, we elaborate on the source and target distributions of DFT in our setting, as detailed
in the following paragraphs.
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Source Distribution : Following Gat et al. (2024), we instantiate the source distribution p to
assign all probability mass to sequences in which every token is the mask token [MASK], that is,
p(x) = δ[MASK](x). This implies that the source distribution places all probability mass in the
sequence where every token is the mask token [MASK].

Target Distribution : In conventional DFM settings, the target sequence x1 is treated as a mono-
lithic sequence. In contrast, we propose to factorize x1 into two structured components that are
learned jointly. This formulation allows us to construct a probability velocity over a structured target
space composed of two parts. To this end, we define the target distribution q as follows:

Definition B.1. Let xp1 ∼ qp and xa1 ∼ qa denote the random variables corresponding to the prosody
and acoustic details sequences, respectively. These sequences are in spaces [v]mL and [v]kL. The full
target sequence is then defined as x1 = xp1 ⊕ xa1 ∈ [v](m+k)L, where ⊕ denotes the concatenation of
the sequence. Assuming the independence between the two components, the joint target distribution
is factorized as q(x) = qp(x

p) · qa(xa), where x = xp ⊕ xa.

B.2 FACTORIZED NEURAL SPEECH CODEC

The Factorized Neural Speech Codec (FACodec) (Ju et al., 2024) disentangles speech waveforms
into distinct attributes, which are content, prosody, acoustic details, and timbre, enabling precise rep-
resentation for zero shot text-to-speech (TTS) tasks. Given a speech input x ∈ RC , a speech encoder,
implemented with convolutional blocks, transforms it into a pre-quantization latent representation:

h = Encoder(x) ∈ RT×D, (5)

where T represents the downsampled temporal dimension and D denotes the latent feature dimension.

Three factorized vector quantizers (FVQs), denotedQp,Qc, andQa for prosody, content, and acoustic
details, respectively, convert h into discrete token sequences. Each FVQ, defined asQi = {qji }

Ni
j=1 for

i ∈ {p, c, a}, consists of Ni quantizers, where qji ∈ Rd is the j-th quantizer with hidden dimension d
and a codebook size of 1024. Specifically, Np = 1, Nc = 2, and Na = 3. These quantizers produce
discrete codes:

z = gp(h)⊕ gc(h)⊕ ga(h) ∈ RT×6, (6)

where gp(h) ∈ RT×1, gc(h) ∈ RT×2, and ga(h) ∈ RT×3 map the latent h to prosody, content, and
acoustic detail tokens, respectively. The concatenated output z forms a unified representation of the
speech attributes.

The timbre attribute is extracted by passing the hidden representation h through a series of Conformer
blocks (Gulati et al., 2020), followed by a temporal pooling layer. This process yields a timbre-
specific embedding zt ∈ RD. Given both z and zt, the neural codec decoder reconstructs the speech
waveform as follows:

y = CodecDecoder(z, zt). (7)

Building upon the structure of Equation (7), which accepts z and zt as input and is pre-trained on a
large-scale multi-speaker corpus to support robust zero-shot TTS, we propose a method to model and
generate a six-dimensional sequence representation z̃ ∈ RT×6. This representation is restricted to lie
within the latent subspace of the pre-trained FACodec and is designed to encode prosody, content, and
acoustic information in a manner aligned with z. Finally, z̃ is passed to fdec along with the timbre
embedding zt to synthesize the output waveform ỹ.
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Figure 5: The detailed architecture
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Figure 6: The detailed architecture of Content Predictor.

B.3 REFERENCE PROMPT SELECTION DURING TRAINING

During training, a crucial step is selecting an appropriate speech prompt to condition the FDFD
module. Specifically, we randomly sample an arbitrary segment whose length is 30% of the total
temporal length of the ground-truth sequence. This segment serves as the reference prompt, ensuring
that prosodic and acoustic characteristics are preserved to guide the FDFD module effectively.

B.4 TRAINING AND INFERENCE PROCEDURES

To provide a clearer understanding of DiFlow-TTS, we detail the algorithmic procedures for training
and inference in Algorithms 1 and 2, respectively.

C EVALUATION DETAILS

C.1 DATASET DETAILS

Training Dataset. We preprocess the LibriTTS (Zen et al., 2019) dataset for training as follows.
The silent segments at the beginning and end of each utterance are removed. We retain audio clips
ranging from 1.0 to 16.6 seconds in duration that contain utterances with more than three words.
From FACodec, we extract the ground-truth representations, which include a speaker embedding and
six sequences of discrete tokens: one for prosody, two for content, and three for acoustic details in
order. To obtain the ground truth of phoneme-level text and corresponding discrete speech tokens, we
use the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to align each audio with its target
transcription, producing the duration of each phoneme in the audio. We then multiply these durations
by 80, which represents the number of tokens per second in FACodec, to determine the number of
speech tokens corresponding to each phoneme.

Evaluation dataset. We adopt the evaluation protocol proposed in VALL-E (Chen et al., 2025).
Specifically, we filter the LibriSpeech test-clean subset to retain utterances ranging from 4 to 10
seconds in duration, resulting in a total of 2.2 hours of audio. For each utterance, a prompt is randomly
sampled from another utterance spoken by the same speaker. A segment of 1, 3, or 5 seconds is
extracted to serve as the prompt in our experiments.

C.2 METRICS DETAILS

We assess each system utilizing the following objective evaluation metrics:

• RTF (Real-Time Factor) serves as a critical indicator of system efficiency, especially in
applications that require real-time processing. It quantifies the duration needed to generate
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Algorithm 1 DiFlow-TTS Training
Input: ModelM, Dataset D = {X1, ..., XM}, where each Xi consists of phonemes P, durations
d, ground-truth speech y, and reference speech prompt r.
Output: Trained ModelM

1: whileM not converged do
2: Sample X ∼ D
3: Extract prosody tokens yp, content tokens yc, and acoustic tokens ya from y, as defined in

Equation (2)
4: Extract only prosody tokens rp, acoustic tokens ra, and speaker embedding s from r, as

defined Equation (2)
5: x1 ← yp ⊕ ya ▷ Prosody + acoustic tokens as target
6: p← PhonemeEncoder(P)

7: d̂← DurationPredictor(p)
8: pup ← LengthRegulator(p,d)
9: h← ContentPredictor(pup)

10: Obtain hc and p(·|h;φ) as defined in Equation (3)
11: Ldur ← MSE(d, d̂)
12: Lc ← CE(yc, p(·|h;φ))
13: Sample t ∼ U(0, 1)
14: Sample xt ∼ pt|1(xt | x1) ▷ Noising
15: Obtain hp,a using xt, hc, r

p, ra, s, t as defined in Section 3 of the paper
16: hp,ha = Slice(hp,a)
17: p1|t(·|xt, c; θ)← fϕ(hp)⊕ fω(ha) ▷ Denoising prediction
18: LFDFD ← CE(x1, p1|t(·|xt, c; θ))
19: L ← λdurLdur + λcLc + λFDFDLFDFD
20: Optimizer.step(L)
21: end while

one second of speech. RTF evaluations for all models are conducted in a complete end-to-end
configuration on a single NVIDIA 80GB A100 GPU.

• UTMOS (Saeki et al., 2022) is a deep learning framework designed to gauge the naturalness
and general quality of speech by estimating mean opinion scores (MOS). This approach
mitigates the resource-intensive nature of traditional subjective assessments, using sophisti-
cated neural networks to produce predictions that strongly correlate with human perceptual
evaluations.

• SIM-O is a metric used to quantify the similarity of the speakers. It evaluates the resem-
blance between the synthesized speech and the original prompt. This metric is derived from
the cosine similarity of the speaker embeddings obtained through WavLM-TDCNN2 applied
to the audio waveforms. SIM-O spans a range of -1 to 1, where higher values indicate
stronger speaker similarity.

• WER (Word Error Rate) is utilized to appraise the robustness of speech synthesis systems,
focusing on the precision of word pronunciation. An automatic speech recognition (ASR)
model3 transcribes the generated speech, which is then compared to the textual prompt.
The employed ASR model is a connectionist temporal classification (CTC)-based HuBERT,
pre-trained on LibriLight, and fine-tuned on the 960-hour LibriSpeech training dataset.

• Prosody Accuracy & Error metrics evaluate the congruence between the synthesized
speech and the audio prompt, focusing on pitch (F0) and energy contours. Accuracy
is determined following the framework outlined in PromptTTS (Guo et al., 2022) and
TextrolSpeech (Ji et al., 2024b), by classifying F0 and energy into three tiers such as high,
normal and low, which are relative to their mean values 4. Furthermore, the Root Mean

2https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_
verification

3https://huggingface.co/facebook/hubert-large-ls960-ft
4https://github.com/jishengpeng/TextrolSpeech
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Algorithm 2 DiFlow-TTS Inference
Input: The phonemes P, and reference speech prompt r, the number of sampling step N , and step
size ∆t =

1
N .

Output: Synthesized speech â.
1: Extract prosody tokens rp, acoustic tokens ra, and speaker embedding s from r, as defined in

Equation (2)
2: p← PhonemeEncoder(P)

3: d̂← DurationPredictor(p)
4: pup ← LengthRegulator(p, d̂)
5: h← ContentPredictor(pup)
6: Obtain hc and p(·|h;φ) using h as defined in Equation (3)
7: Sample x0 ∼ p(x0)
8: for t = 0 to 1−∆t with step ∆t do
9: Obtain hp,a using xt, hc, r

p, ra, s, t as defined in Section 3 of the paper
10: hp,ha = Slice(hp,a)
11: p1|t(·|xt, c; θ)← fϕ(hp)⊕ fω(ha) ▷ Denoising prediction
12: Sample xi1 ∼ pi1|t(·|xt, c; θ)

13: uit(x
i|xit,xi1)← κ̇t

1−κt

[
δxi

1
(xi)− δxi

t
(xi)

]
▷ Probability velocity as defined in Equation (1)

14: λi ←
∑
xi ̸=xi

t
uit(x

i|xit,xi1)
15: Sample zi ∼ U(0, 1)
16: if zi ≤ 1− exp(−∆tλ

i) then
17: Sample xit+∆t

∼ 1
λiut(·|xit,xi1)(1− δxi

t
(·)) ▷ Transition to a new token; self-transitions are

disallowed
18: else
19: Sample xit+∆t

∼ δxt(·) ▷ No transition; retain current token
20: end if
21: end for
22: xp,xa = Split(xt)
23: xc ← argmaxx softmax(p(x | h;φ))
24: x = xp ⊕ xc ⊕ xa

25: â← CodecDecoder(x, s)

Square Error (RMSE) is calculated to measure deviations in F0 and the energy between the
synthesized output and the reference prompts.

C.3 BASELINES DETAILS

We compare our model with previous zero-shot TTS baselines, including:

• VoiceCraft (Peng et al., 2024) is a token infilling neural codec language model built on a
Transformer decoder architecture, incorporating a two-step token rearrangement procedure
that applies causal masking for bidirectional-context autoregressive generation and delayed
stacking for multi-codebook efficiency, trained autoregressively with a loss function that
weights earlier codebooks more heavily. We use the official code and the pre-trained
checkpoint5, trained on 9K hours of the GigaSpeech dataset (Chen et al., 2021).

• F5-TTS (Chen et al., 2024b) is a fully non-autoregressive (NAR) TTS system based on
flow matching with DiT architecture, where text inputs are padded with filler tokens to align
with speech lengths, bypassing the need for duration models, text encoders, or phoneme
alignment. It contributes refinements to text representation using ConvNeXt (Liu et al., 2022)
for better speech alignment and an inference-time Sway Sampling strategy that improves
generation efficiency. We reproduce F5-TTS using the official code6 and train it on 500
hours of the LibriTTS dataset.

5https://huggingface.co/pyp1/VoiceCraft/blob/main/830M_TTSEnhanced.pth
6https://github.com/SWivid/F5-TTS
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• NaturalSpeech 2 (Shen et al., 2024) is a latent diffusion model designed for zero-shot TTS,
capable of generating high-fidelity audio from diverse text inputs. It utilizes a neural audio
codec and a latent diffusion framework to produce natural-sounding speech and singing
without requiring speaker-specific training data. We use the Amphion toolkit (Zhang et al.,
2024) and the pre-trained weight7, trained on 585 hours of the LibriTTS dataset.

• VALL-E (Chen et al., 2025) is a neural codec language model that treats TTS synthesis as
a conditional language modeling task using discrete codes derived from an off-the-shelf
neural audio codec, pre-trained on 60,000 hours of English speech data to enable in-context
learning. We reproduce VALL-E using the Amphion toolkit8(Zhang et al., 2024) and train it
on 500 hours of the LibriTTS dataset.

• OZSpeech (Hieu et al., 2025) is a zero-shot TTS system that employs optimal transport
conditional flow matching with one-step sampling, conditioned on a learned prior derived
from disentangled, factorized speech components represented in token format to model
individual attributes. It contributes a novel framework that bypasses traditional multi-step
sampling processes by leveraging the learned prior for direct generation from text prompts,
thereby reducing computational demands and enhancing precise attribute disentanglement
in speech synthesis. We use the official code and the pre-trained checkpoint9, trained on 500
hours of the LibriTTS dataset.

• MaskGCT (Wang et al., 2025c) is a fully NAR zero-shot TTS model structured as a two-
stage generative codec transformer, where the first stage predicts semantic tokens from input
text using representations from a speech self-supervised learning model, and the second
stage generates acoustic tokens conditioned on these semantic tokens via a mask-and-predict
paradigm. It contributes an efficient training approach that learns to infill masked tokens
based on prompts and conditions, enabling parallel inference for tokens of arbitrary length
without explicit text-speech alignment or phone-level duration modeling, thus resolving key
limitations in prior autoregressive and NAR TTS frameworks. We use the official code and
the pretrained checkpoint 10, trained on English and Chinese data from Emilia (He et al.,
2024), each with 50K hours of speech (totaling 100K hours). Since the baseline requires the
total speech length, we use the ground-truth duration during inference.

D ADDITIONAL ANALYSIS

Prompt Duration. To investigate in detail the influence of prompt duration on zero-shot speech
synthesis, we conducted a comprehensive evaluation of DiFlow-TTS with 128 NFE across different
prompt lengths: 1 second, 3 seconds (as reported in the paper), and 5 seconds. As shown in Table
6, increasing the prompt duration consistently improves all aspects of speech quality across models.
Specifically, DiFlow-TTS, along with OZSpeech, achieves the lowest WER across all prompt lengths,
demonstrating superior content preservation. In terms of naturalness and overall quality, our method
attains SOTA performance, achieving the highest UTMOS score (4.00) with a 5-second prompt.
Notably, this is achieved using only 470 hours of training data, whereas VoiceCraft (9K hours) and
MaskGCT (100K hours) obtain lower UTMOS scores of 3.58 and 3.89, respectively. For speaker
similarity, our method does not show a clear advantage over baseline models, though we note that
these baselines also exhibit trade-offs under limited training data. Regarding pitch and energy
accuracies and errors, which reflect prosody reconstruction ability, DiFlow-TTS consistently ranks as
the best or second-best performer across prompt lengths. Overall, DiFlow-TTS strikes a favorable
balance among naturalness, prosody, model size, and speaker similarity.

7https://huggingface.co/amphion/naturalspeech2_libritts/tree/main/
checkpoint

8https://github.com/open-mmlab/Amphion
9https://github.com/ozspeech/OZSpeech

10https://huggingface.co/amphion/MaskGCT

20

https://huggingface.co/amphion/naturalspeech2_libritts/tree/main/checkpoint
https://huggingface.co/amphion/naturalspeech2_libritts/tree/main/checkpoint
https://github.com/open-mmlab/Amphion
https://github.com/ozspeech/OZSpeech
https://huggingface.co/amphion/MaskGCT


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Type Model Data (hours) UTMOS ↑ WER ↓ SIM-O ↑
F0 Energy

Accuracy (↑) RMSE ↓ Accuracy ↑ RMSE ↓
- Ground Truth - 4.10 0.02 - - - - -

1s Prompt

(i) VoiceCraft [†] GS (9K) 3.45 0.16 0.31 0.61 31.57 0.52 0.010
VALL-E [⋄] LT (500) 3.61 0.21 0.24 0.55 37.87 0.40 0.020

(ii)
NaturalSpeech 2 [‡] LT (585) 2.12 0.12 0.20 0.69 26.48 0.39 0.020
F5-TTS [⋄] LT (500) 3.73 0.19 0.32 0.61 29.93 0.50 0.020
OZSpeech [†] LT (500) 3.17 0.05 0.30 0.62 27.70 0.49 0.020

(iii) MaskGCT [†] E (100K) 3.60 0.10 0.36 0.63 29.63 0.60 0.013

(iv) DiFlow-TTS LT (470) 3.74 0.05 0.34 0.82 13.00 0.55 0.010
3s Prompt

(i) VoiceCraft [†] GS (9K) 3.55 0.18 0.51 0.78 17.22 0.44 0.010
VALL-E [⋄] LT (500) 3.68 0.19 0.40 0.75 21.66 0.36 0.020

(ii)
NaturalSpeech 2 [‡] LT (585) 2.38 0.09 0.31 0.80 15.62 0.25 0.020
F5-TTS [⋄] LT (500) 3.76 0.24 0.52 0.80 13.78 0.67 0.010
OZSpeech [†] LT (500) 3.15 0.05 0.40 0.81 11.96 0.67 0.010

(iii) MaskGCT [†] E (100K) 3.83 0.09 0.67 0.77 14.33 0.75 0.007
(iv) DiFlow-TTS LT (470) 3.98 0.05 0.45 0.88 7.97 0.73 0.007

5s Prompt

(i) VoiceCraft [†] GS (9K) 3.58 0.19 0.56 0.81 14.48 0.46 0.010
VALL-E [⋄] LT (500) 3.72 0.19 0.46 0.79 18.20 0.41 0.010

(ii)
NaturalSpeech 2 [‡] LT (585) 2.33 0.09 0.35 0.84 13.13 0.28 0.020
F5-TTS [⋄] LT (500) 3.71 0.32 0.57 0.83 11.20 0.68 0.010
OZSpeech [†] LT (500) 3.15 0.05 0.39 0.83 12.05 0.67 0.010

(iii) MaskGCT [†] E (100K) 3.89 0.09 0.74 0.81 11.82 0.77 0.005

(iv) DiFlow-TTS LT (470) 4.00 0.05 0.48 0.89 8.04 0.73 0.007

Table 6: Performance on the LibriSpeech test-clean dataset across different audio prompt lengths. [⋄]
means reproduced results. [†] and [‡] mean results inferred from official and unofficial checkpoints,
respectively. The best and second best are bold and underlined. Abbreviation: E (Emilia), GS
(GigaSpeech), LT (LibriTTS).

21


	Introduction
	Related Work
	Methodology
	Preliminaries
	Speech Tokenization
	Phoneme-Content Mapper
	Factorized Discrete Flow Denoiser
	Training Objectives

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies and Analyses

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Implementation Details
	Method Details
	Source and Target Distributions
	Factorized Neural Speech Codec
	Reference Prompt Selection during Training
	Training and Inference Procedures

	Evaluation Details
	Dataset Details
	Metrics Details
	Baselines Details

	Additional Analysis

