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ABSTRACT

In recent years, integrating multimodal understanding and generation into a sin-
gle unified model has emerged as a promising paradigm. While this approach
achieves strong results in text-to-image (T2I) generation, it still struggles with
precise image editing. We attribute this limitation to an imbalanced division of
responsibilities. The understanding module primarily functions as a translator
that encodes user instructions into semantic conditions, while the generation mod-
ule must simultaneously act as designer and painter, inferring the original layout,
identifying the target editing region, and rendering the new content. This imbal-
ance is counterintuitive because the understanding module is typically trained with
several times more data on complex reasoning tasks than the generation module.
To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising
two complementary subsets: (i) DIM-T2I, containing 14M long-context image-
text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, con-
sisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as
explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-
3B (Bai et al., 2025) with a trainable SANA1.5-1.6B (Xie et al., 2025a) via a
lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in
DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves
SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks,
outperforming much larger models such as UniWorld-V1 (Lin et al., 2025) and
Step1X-Edit (Liu et al., 2025). These findings demonstrate that explicitly as-
signing the design responsibility to the understanding module provides significant
benefits for image editing. Our dataset and models will be publicly available.

1 INTRODUCTION

Over the past few years, considerable effort has been devoted to developing unified models capa-
ble of both multimodal understanding and generation. Many such trials, e.g., Show-o (Xie et al.,
2024) and MetaQuery (Pan et al., 2025), have achieved impressive results on T2I generation, yet
this paradigm falters when extended to instruction-guided image editing. Even recent methods such
as BAGEL (Deng et al., 2025), UniWorld-V1 (Lin et al., 2025), and Step1X-Edit (Liu et al., 2025)
struggle, as evidenced by the substantial performance gap with proprietary models like GPT-4o-
Image (OpenAI, 2025) on the ImgEdit and GEdit-Bench benchmarks. While much concurrent re-
search focuses on scaling parameters and data or on architectural modifications, in this paper we
identify a novel challenge underlying current image editing models: a fundamental imbalance divi-
sion of responsibilities between the understanding and generation modules.

Specifically, we observe that current image editing models often translate user instructions into
semantic conditions through a semantic encoder, typically a multimodal large language model, yet
this process lacks intermediate reasoning or refinement. The resulting conditions are then forwarded
to the generation module, which is responsible for completing the editing process. At this stage, the
generation module must simultaneously infer the original layout, determine the editing region, and
render the new content. In this paradigm, the understanding module functions merely as a translator,
while the generation module is burdened with the demanding tasks of both design and painting.
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Figure 1: Upper: We employ a lightweight MLP connector to bridge a frozen MLLM, i.e., Qwen2.5-
VL-3B (Bai et al., 2025), with a trainable DiT, i.e., SANA1.5-1.6B (Xie et al., 2025a), forming
DIM-4.6B-Edit. In the editing process, we first leverage an external designer to produce a textual
blueprint in a chain-of-thought style, which is then provided to DIM-4.6B-Edit to carry out precise
image editing. Lower: DIM-4.6B-Edit establishes new state-of-the-art results on the challenging
ImgEdit benchmark across diverse designers, while requiring 5× fewer parameters than existing
frontier models. These results highlight both the effectiveness of the proposed DIM dataset and the
generalizability of our approach.

This arrangement contrasts with natural human workflows, where planning and refinement typically
precede the act of drawing. A more intuitive strategy is therefore to assign design-oriented reasoning
to the understanding module while allowing the generation module to focus exclusively on painting.

Motivated by this observation, we introduce Draw-In-Mind (DIM), a dataset consisting of two com-
plementary subsets: (i) DIM-T2I that contains 14M long-context image-text pairs annotated across
21 dimensions by in-house models to lay the groundwork for complex chain-of-thought comprehen-
sion; and (ii) DIM-Edit that comprises 233K high-quality chain-of-thought imagination generated
by GPT-4o from existing image editing data, enabling the model to interpret explicit design plans
from an external designer. We then establish a simple baseline by concatenating a frozen MLLM,
i.e., Qwen2.5-VL-3B, with a trainable DiT, i.e., SANA1.5-1.6B, via a two-layer MLP and train
it end-to-end on both public data and the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit.
During edit inference, we employ an arbitrary external designer, feeding its chain-of-thought imag-
ination into the model to guide precise image edits. The framework and performance overview are
illustrated in Figure 1. Despite its simplicity, DIM-4.6B-Edit matches or outperforms 5× larger
models such as Step1X-Edit (Liu et al., 2025) and UniWorld-V1 (Lin et al., 2025) on the ImgEdit
benchmark. These results validate the effectiveness of the proposed DIM dataset and confirm the
benefit of shifting the design responsibility from the generation module to the understanding module.

To summarize, we make the following contributions in this paper:

• We pinpoint a fundamental imbalanced division of responsibilities in current image editing mod-
els, which overburdens the generation module with both design and painting tasks.

• We introduce Draw-In-Mind (DIM), a unified dataset with two complementary subsets: DIM-T2I
and DIM-Edit. This dataset explicitly frees the generation module from design responsibility and
enables it to concentrate on painting, leading to substantial improvements in editing performance.

• We establish a simple baseline by connecting a frozen Qwen2.5-VL-3B with a trainable
SANA1.5-1.6B via a two-layer MLP and train it on DIM. Despite its modest size and simple
architecture, DIM-4.6B-Edit outperforms 5× larger competitors, validating the efficacy of DIM.
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2 RELATED WORK

2.1 EXISTING IMAGE GENERATION DATASETS

T2I Datasets. Existing T2I datasets have provided many high-quality image-text pairs. They can be
roughly grouped into three categories: (i) purely AI-generated data, e.g., JourneyDB (Sun et al.,
2023) and MidJourney-V6 (CortexLM, 2025), which collect images from the MidJourney API,
and HQ-Edit (Hui et al., 2024), which generates images via DALL-E 3; (ii) real-world data, e.g.,
COCO (Lin et al., 2014), which harvests images from Flickr and annotates them by human workers;
and (iii) mixed data, e.g., InstructP2P (Brooks et al., 2023), which sources real images from LAION-
Aesthetics and produces edited variants via Prompt2Prompt (Hertz et al., 2022). Although these
datasets deliver high perceptual quality, their prompts are typically short, limiting their utility for
complex chain-of-thought reasoning in the editing stage. To ensure broad concept coverage, we opt
for harvesting real-world images and annotate them with our in-house models from 21 dimensions,
yielding 14M long-context image-text pairs, namely DIM-T2I, that form a robust foundation for
complex CoT-guided editing.

Image Editing Datasets. Most large-scale image editing datasets either employ AI editors for end-
to-end modification, e.g., InstructP2P (Brooks et al., 2023) and HQ-Edit (Hui et al., 2024), or adopt
a two-stage pipeline that first localizes the edit region via grounding models and then applies in-
painting to alter the target objects, e.g., UltraEdit (Zhao et al., 2024). A few efforts enlist human
experts to annotate small-scale but high-quality edit pairs, e.g., MagicBrush (Zhang et al., 2023) and
SEED-Data-Edit-Part3 (Ge et al., 2024). However, their instructions are typically brief and occa-
sionally misaligned with the corresponding image pairs. In contrast, our DIM-Edit comprises 233K
deliberately designed chain-of-thought imaginations derived from these existing editing datasets.
These rich and detailed CoT instructions act as explicit design blueprints, lighten the cognitive load
on the generation module, and significantly improve editing performance.

2.2 UNIFIED MODELS FOR IMAGE GENERATION

T2I Models. In recent years, numerous successful attempts have been made to integrate understand-
ing and generation modules into a unified architecture. These approaches can be broadly categorized
into two technical routes: (i) Integrative approaches, e.g., Show-o (Xie et al., 2024) and Janus (Wu
et al., 2025a), which typically adopt an autoregressive generation paradigm to produce both image
and text tokens; and (ii) Connector-based approaches, e.g., MetaQuery (Pan et al., 2025), which use
a connector to bridge an understanding module and a generation module. Since the understanding
and generative capabilities are tightly coupled in the former architecture and sometimes lead to con-
flicts that degrade both, we adopt the connector-based design to preserve state-of-the-art cognitive
ability by freezing the understanding module while enhancing generation performance.

Image Editing Models. When it comes to image editing, the challenge becomes significantly
harder, as neither the latest integrative models (Lin et al., 2025) nor connector-based ones (Liu et al.,
2025) achieve satisfactory performance on mainstream benchmarks such as ImgEdit and GEdit-
Bench compared to proprietary models like GPT-4o-Image, even when employing large-scale under-
standing and generation models such as Qwen2.5-VL-7B (Bai et al., 2025) and FLUX.1-dev (Labs,
2024a). This suggests that simply scaling model size is not an effective strategy for improving im-
age editing capability. In this work, we take a different approach by addressing the problem from
a perspective of imbalanced division of responsibilities. We propose DIM-4.6B-Edit, which lever-
ages an external designer to create blueprints in a CoT manner in the textual space before editing.
Despite having only 1.6B generative parameters, our model achieves SOTA editing performance,
highlighting the effectiveness of shifting the design responsibility to the understanding module.

3 METHODOLOGY

3.1 THE DRAW-IN-MIND (DIM) DATASET

3.1.1 DIM-T2I
There are typically two strategies to train an editing model, i.e., (i) learning drawing first (T2I), fol-
lowed by adaptation for editing, and (ii) directly learning editing. We observe that the vast majority
of image editing models are built upon established T2I foundations (Brooks et al., 2023; Zhao et al.,
2024; Liu et al., 2025). This aligns with the first strategy and represents a robust technical route

3
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that benefits from curriculum learning. Consequently, we elected to achieve basic T2I ability and
subsequently fine-tune the base model for the more challenging editing task.

However, we observed that despite the current T2I datasets performing well in terms of prompt-
image alignment and image perceptual quality, the prompts in existing datasets are typically short
and simple, as shown in Table 1. While these prompts accurately capture the semantics of the target
image, they fall short in fostering long-context comprehension, which is an essential foundation for
complex CoT-guided image editing. To bridge this gap, we collect 14M images with resolutions
higher than 512 × 512 from the web. We believe that the aspects emphasized in widely recognized
understanding datasets and benchmarks effectively capture the most frequent interactions between
humans and objects in the real world. Therefore, we conduct a thorough literature review and an
empirical analysis of existing understanding datasets and benchmarks, and finally derive 21 diverse
dimensions and use internal models to generate long and detailed annotations, thoroughly covering
all dimensions, resulting in DIM-T2I. As shown in Table 1, its average prompt length is at least
twice that of existing corpora, effectively establishing a strong basis for complex CoT-guided image
editing. The dimension-specific prompts and referred datasets/benchmarks are listed in Appendix E.

Table 1: The statistics of existing high-quality datasets and
our proposed DIM dataset. APL is short for Average Prompt
Length, counted by word numbers.

Dataset Name Size Source APL

Text-to-Image

MidJourney-V6 (CortexLM, 2025) 1.2M AI Gen. 9.59
COCO (Lin et al., 2014) 0.4M Real 10.46
InstructP2P (Brooks et al., 2023) 0.6M Real & AI Gen. 11.37
JourneyDB (Sun et al., 2023) 4.2M AI Gen. 29.27
HQ-Edit (Hui et al., 2024) 0.2M AI Gen. 38.08
Dimba (Fei et al., 2024) 0.3M Real 78.29
DIM-T2I 14M Real 146.76

Image Editing

MagicBrush (Zhang et al., 2023) 8K Real 6.50
SEED-Data-Edit-Part3 (Ge et al., 2024) 82K Real 7.39
UltraEdit (Zhao et al., 2024) 4M AI Gen. 8.32
ShareGPT-4o-Image (Chen et al., 2025b) 46K AI Gen. 34.75
DIM-Edit 233K Real & AI Gen. 252.64

3.1.2 DIM-EDIT

As for image editing, the short-
prompt issue is even more pro-
nounced in current datasets. As
shown in Table 1, prompts in main-
stream datasets are generally overly
simplistic, often consisting of only
a few descriptive words. Such data
is not conducive to effective image
editing learning, as the prompts may
fail to accurately reflect the actual
changes between the source and tar-
get images. This phenomenon can
be attributed to two main reasons:
(i) Inaccurate AI editing or human
misoperation. We observe that even
SOTA proprietary models like GPT-
4o-Image frequently over-edit images, e.g., removing objects not mentioned in the prompts. Such
cases exist widely in AI-generated datasets like ShareGPT-4o-Image and UltraEdit. While in human-
controlled datasets, operators may misunderstand or misapply the edits, resulting in unaligned data.
(ii) Ambiguous semantics. Even if the prompt correctly describes the intended change, overly sim-
ple prompts can still result in multiple equally valid edits. For example, in SEED-Data-Edit-Part3,
a common prompt is “change the background”, yet the definition of “background” varies across im-
ages, while in practice the change almost always occurs in the sky, thereby reducing the effectiveness
of the resulting edit data.

In addition, existing models typically use the understanding module merely as a translator, directly
converting natural language instructions into semantic conditions. The generator must then rely
on these conditions to simultaneously organize the layout of the edited image, recognize existing
objects, localize the edit area, render new content, and preserve unchanged regions. In other words,
the generator is forced to act as both designer and painter, which is a challenging and counterintuitive
setup. By contrast, humans naturally prepare a mental blueprint before editing and then simply let
their hands follow it to complete the changes.

Motivated by the above issues, we propose DIM-Edit, which first optimizes prompts and then imi-
tates human thinking to complete the edits. The DIM-Edit creation pipeline is illustrated in Figure 2.
We construct it from 233K high-quality image pairs collected from three sources: (i) 160K highly
consistent edit pairs from UltraEdit, referred to as UltraEdit-160K-CoT, selected using a joint SSIM,
DINOv2 similarity, and CLIP similarity-based filtering; (ii) 46K semantically rich samples from the
editing subset of ShareGPT-4o-Image, referred to as ShareGPT-4o-Image-CoT; and (iii) 8K human-
edited images from the MagicBrush training set and 19K human-edited images from SEED-Data-
Edit-Part3, specifically targeting remove operations, referred to as HumanEdit-CoT. A detailed data
collection pipeline can be found in Appendix C.
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Figure 2: The creation pipeline of DIM-Edit begins with a quality assessment of existing image
editing data, followed by prompt optimization using GPT-4o. Finally, the optimized prompts to-
gether with the corresponding image pairs are fed into GPT-4o, which generates a four-step chain-
of-thought imagination in the textual space.

After collecting raw data, we first sent the raw edit pairs to GPT-4o for prompt quality evaluation,
as shown in Figure 2. The results are categorized into three groups: (i) Misaligned. The prompt
does not reflect the actual edit at all, possibly due to misannotation or misoperation. (ii) Partially
aligned. The target image exhibits over-editing, i.e., redundant objects are added to or removed from
the source image. (iii) Aligned. The prompt fully corresponds to the edits.

Next, we take different actions to optimize the prompts based on the judgment: (i) For misaligned
prompts, they are discarded outright. (ii) For partially aligned prompts, we ask GPT-4o to add details
about unmentioned changes, e.g., including objects that were incorrectly removed in the prompt. (iii)
For aligned prompts, we instruct GPT-4o to remove ambiguity and refine the prompt, for example,
by specifying the exact objects to be edited to avoid confusion with visually similar objects.

Finally, we provide the optimized prompts, along with the source image to GPT-4o and instruct
it to produce a four-step CoT imagination that emulates human editing behavior. For the sake of
accuracy, we also provide the target image to it for reference. The target of each CoT step is as
follows: (i) Global Layout Perception: identify and describe all key objects and their positions in the
source image. (ii) Local Object Perception: describe the appearance of each object or background
element in the source image, including shape, color, texture, and state. (iii) Edit Area Localization:
specify which objects or regions will be modified, based on the refined instruction. (iv) Edited
Image Imagination: describe the expected appearance of the edited image, with an emphasis on the
modified areas. As shown in Table 1 and Figure 2, the resulting CoT imagination is not only ultra-
long but also highly accurate, effectively removing the design responsibility from the generation
module and thereby significantly enhancing the efficiency of image editing learning. A quality
assessment of the CoTs involving both MLLMs and human verification can be found in Appendix D.

3.2 DIM-4.6B-T2I/EDIT

Leveraging MLLMs to provide multimodal conditions for image generation has become a common
practice recently. In this work, we first build a base T2I model and then adapt it to the editing task.

For the base T2I model, we start by establishing a simple baseline, similar to MetaQuery (Pan et al.,
2025), to preserve state-of-the-art understanding capability. We select Qwen2.5-VL-3B (Bai et al.,
2025) as the MLLM and SANA1.5-1.6B (Xie et al., 2025a) as the diffusion decoder for their mod-
est size. Unlike MetaQuery, which employs a large 24-layer transformer with 1.6B parameters as
a connector between the MLLM and the diffusion decoder, we adopt a much simpler design, i.e.,
a two-layer MLP, to directly project multimodal tokens into the generation space. We refer to this
model as DIM-4.6B-T2I, illustrated in Figure 1. We train DIM-4.6B-T2I on a mixture of the pro-
posed DIM-T2I dataset and an additional 6.9M image-text pairs from MidJourney-V6 (CortexLM,
2025), COCO (Lin et al., 2014), InstructP2P (Brooks et al., 2023), JourneyDB (Sun et al., 2023),
HQ-Edit (Hui et al., 2024), and Dimba (Fei et al., 2024). During training, Qwen2.5-VL-3B remains

5
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Table 2: The text-to-image generation performance on GenEval and MJHQ-30K. ↑ and ↓ indicate
that higher and lower values are better, respectively; † denotes using an LLM rewriter; and
denote frozen and trainable parameters, respectively.

Model Params GenEval↑ MJHQ-30K↓
Single Obj. Two Obj. Counting Colors Position Color Attr. Overall FID

Gen. Only

PixArt-α (Chen et al., 2023) 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48 6.14
SDXL (Podell et al., 2023) 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55 8.76
DALL-E·3 (Betker et al., 2023) - 0.96 0.87 0.47 0.83 0.43 0.45 0.67 -
SD3-Medium (Esser et al., 2024) 2.0B 0.99 0.94 0.72 0.89 0.33 0.60 0.74 11.92

Unified

Janus (Wu et al., 2025a) 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61 10.10
Emu3-Gen† (Wang et al., 2024b) 8.0B 0.99 0.81 0.42 0.80 0.49 0.45 0.66 -
Show-o (Xie et al., 2024) 1.3B 0.98 0.80 0.66 0.84 0.31 0.50 0.68 15.18
Show-o2-7B (Xie et al., 2025b) 7.0B 1.00 0.87 0.58 0.92 0.52 0.62 0.76 -
Janus-Pro-7B (Chen et al., 2025c) 7.0B 0.99 0.89 0.59 0.90 0.79 0.66 0.80 13.48
BAGEL (Deng et al., 2025) 14.0B 0.99 0.94 0.81 0.88 0.64 0.63 0.82 -
MetaQuery-L† (Pan et al., 2025) 3.0B |3.2B - - - - - - 0.78 6.35
DIM-4.6B-T2I† 3.0B |1.6B 0.99 0.89 0.63 0.86 0.62 0.61 0.77 5.50

frozen, and we finetune only the parameters of the connector and SANA1.5-1.6B. Notably, distilla-
tion datasets like BLIP3-o-60K (Chen et al., 2025a) explicitly curate data to align with the structural
patterns of benchmarks like GenEval, we exclude them to avoid any risk of data leakage (Wu et al.,
2025b) or benchmark hacking in the evaluation to justify the contribution of our DIM data. We
adopt vanilla flow matching as the sole objective, avoiding parameter-tuning tricks to highlight data
effectiveness and maintain simplicity.

Thanks to the rich world knowledge and high-quality long-context prompts in DIM-T2I, the trained
DIM-4.6B-T2I model provides a strong foundation for complex CoT comprehension. We then adopt
a two-stage training strategy to adapt it for the editing task. In the first stage, we initialize the editing
model from DIM-4.6B-T2I and fine-tune it on the UltraEdit (Zhao et al., 2024) dataset to develop
basic editing capability. Following InstructP2P (Brooks et al., 2023), we concatenate the source
image with noise along the channel dimension, as illustrated in Figure 1. In the second stage, we
fine-tune the stage-one model exclusively on the proposed DIM-Edit dataset, resulting in DIM-4.6B-
Edit. During inference, we employ an external designer to prepare a blueprint in the same format as
DIM-Edit, except without access to the target image, ensuring alignment with real usage scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

During training, we use AdamW as the optimizer and keep most hyperparameters unchanged for
simplicity. For DIM-4.6B-T2I, we first warm up by training only the connector for one epoch with a
learning rate of 2× 10−5, then jointly train the connector and SANA1.5-1.6B for eight epochs with
the same rate and a batch size of 256. For DIM-4.6B-Edit, we set the batch size to 32, training on
UltraEdit for 10 epochs at a 1× 10−4 learning rate, then finetuning on DIM-Edit for 50 epochs at a
1× 10−5 learning rate. During inference, GPT-4o serves as the designer unless otherwise specified.

Although the primary focus of this paper is image editing, we evaluate DIM-4.6B-T2I on T2I bench-
marks to verify the effectiveness of DIM-T2I. We report the GenEval (Ghosh et al., 2023) scores
and MJHQ-30K (Li et al., 2024b) FID. Following MetaQuery (Pan et al., 2025) and Emu3 (Pan
et al., 2025), we test LLM-rewritten prompts for GenEval evaluation. For image editing, we report
scores on the recently proposed ImgEdit (Lin et al., 2025) and GEdit-Bench-EN (Liu et al., 2025)
benchmarks, using GPT-4.1 for evaluation to ensure fair comparison with existing results. We also
report results on MagicBrush (Zhang et al., 2023) to show the performance on automated metrics.

4.2 MAIN RESULTS

4.2.1 TEXT-TO-IMAGE GENERATION

We first report T2I performance on GenEval and MJHQ-30K in Table 2. Our DIM-4.6B-T2I adopts
a simple architecture with very few trainable parameters yet achieves SOTA or competitive per-
formance, demonstrating the high data quality of DIM-T2I. For semantic alignment, DIM-4.6B-
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Table 3: The image editing performance on ImgEdit. We use GPT-4.1 for evaluation to ensure
consistency with the existing results reported in UniWorld-V1. ∗ indicates results evaluated by us
using the official weights; and denote frozen and trainable parameters, respectively.
Model Params Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

MagicBrush (Zhang et al., 2023) 0.9B 2.84 1.58 1.51 1.97 1.58 1.75 2.38 1.62 1.22 1.83
Instruct-P2P (Brooks et al., 2023) 0.9B 2.45 1.83 1.44 2.01 1.50 1.44 3.55 1.20 1.46 1.88
AnyEdit (Yu et al., 2025) 1.3B 3.18 2.95 1.88 2.47 2.23 2.24 2.85 1.56 2.65 2.45
UltraEdit (Zhao et al., 2024) 2.0B 3.44 2.81 2.13 2.96 1.45 2.83 3.76 1.91 2.98 2.70
Step1X-Edit (Liu et al., 2025) 7.0B |12.5B 3.88 3.14 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
BAGEL (Deng et al., 2025) 14.0B 3.56 3.31 1.70 3.30 2.62 3.24 4.49 2.38 4.17 3.20
UniWorld-V1 (Lin et al., 2025) 7.0B |12.0B 3.82 3.64 2.27 3.47 3.24 2.99 4.21 2.96 2.74 3.26
Janus-4o* (Chen et al., 2025b) 7.0B 3.35 3.35 2.25 3.01 2.18 3.32 4.71 2.49 4.04 3.19
GPT-4o-Image (OpenAI, 2025) - 4.61 4.33 2.90 4.35 3.66 4.57 4.93 3.96 4.89 4.20
DIM-4.6B-Edit 3.0B |1.6B 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

Table 4: The overall task-wise performance on GEdit-Bench-EN Full set. ∗ indicates results evalu-
ated by us. Task abbreviations: Background Change (BC), Color Alter (CA), Material Alter (MA),
Motion Change (MC), PS Human (PH), Style Change (SC), Subject-Add (SA), Subject-Remove
(SRM), Subject-Replace (SRP), Text Change (TC), Tone Transfer (TT), and Average (AVG).

Model BC CA MA MC PH SC SA SRM SRP TC TT AVG AVG w/o TC

UniWorld-V1 (Lin et al., 2025) 4.92 6.37 4.79 1.85 4.03 5.64 7.23 6.17 5.70 1.15 5.54 4.85 5.22
Janus-4o* (Chen et al., 2025b) 4.31 5.02 4.41 2.71 4.09 5.80 4.07 1.69 3.69 2.35 3.96 3.83 3.97
Step1X-Edit (Liu et al., 2025) 7.03 6.26 6.46 3.66 5.23 7.24 7.17 6.42 7.39 7.40 6.62 6.44 6.35
DIM-4.6B-Edit 7.02 6.81 6.00 4.67 5.88 7.16 7.48 6.67 6.76 2.99 6.55 6.18 6.50

T2I shows only a small gap compared to much larger models like BAGEL (Deng et al., 2025) on
GenEval. Compared with MetaQuery (Pan et al., 2025), which employs a large 1.6B-parameter con-
nector for query learning, our model achieves nearly the same performance using only a two-layer
MLP connector and naive multimodal tokens. In addition, it attains optimal perceptual quality, as
evidenced by the lowest FID on the aesthetics-oriented MJHQ-30K benchmark. These results in-
dicate that even without complex aesthetic filtering, carefully crafted long-context prompts enable
robust text-to-image generation, offering a practical approach for rapid large-scale dataset creation
by directly harvesting images from the web.

4.2.2 IMAGE EDITING

The image editing performance on ImgEdit is reported in Table 3. Our DIM-4.6B-Edit shows a
significant improvement over previously available open source models. In comparison with other
connector-based architectures such as Step1X-Edit and UniWorld-V1, which rely on a 12B FLUX
backend for generation together with a 7B multimodal large language model for condition transla-
tion, DIM-4.6B-Edit achieves superior results while maintaining both a much smaller total parameter
count and a very limited number of trainable parameters.

Since DIM-Edit includes high-quality images from ShareGPT-4o-Image (Chen et al., 2025b), we
also evaluate Janus-4o, which is trained on the same dataset, for reference. Janus-4o achieves only
suboptimal results, indicating that the improvement comes from DIM-Edit itself, whose natural and
precise edit blueprints substantially enhance editing performance. These encouraging results val-
idate our assumption that imbalanced division of responsibilities degrades image editing, confirm
the soundness of our data creation pipeline, and highlight the effectiveness of the Draw-In-Mind
paradigm: assigning the design responsibility to the understanding module while allowing the gen-
eration module to focus on actual editing exclusively.

We further demonstrate the capability of DIM-4.6B-Edit through intuitive visual comparisons of
editing results on four AI-generated out-of-domain images in Figure 3. Janus-4o exhibits severe
distortions despite being trained on GPT-4o-generated edit pairs, while Step1X-Edit produces less
natural edits (rows 2-4) and fails in complex scenarios such as row 1, which involves manipulating
multiple objects. In contrast, DIM-4.6B-Edit successfully follows the instructions to produce natural
and consistent edited images. Please refer to Appendix A for more visualizations.

We also include overall task-wise performance on GEdit-Bench-EN in Table 4. The results reveal a
similar pattern as reported in UniWorld-V1 (Lin et al., 2025): Step1X-Edit achieves notable gains
in the Text Change task, whereas other models, including ours, perform less effectively due to the
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Source ShareGPT-4o-Image ShareGPT-4o-Image-CoT DIM-Edit

Remove	the	lemons	on	

the	table.

Add	some	birds	on	the	

beach.

Change	the	background	

to	forest

Prompt

Put	a	black	sunglasses	

on	the	dog.

Step1X-EditJanus-4o

Figure 3: Green and Blue : the edits of Janus-4o and Step1X-Edit; Red : the edits of our models
trained on different data corpora. All variants are tuned from the base checkpoint ❀ in Table 8.

Table 5: The MagicBrush test set performance. Metrics are calculated between human-edited
groundtruth and AI-generated edits. and denote the 1st and 2nd best model, respectively.

Method Gen Params L1↓ CLIP-I↑ DINO↑
InstructP2P (Brooks et al., 2023) 0.9B 0.114 0.851 0.744
MagicBrus (Zhang et al., 2023) 0.9B 0.074 0.908 0.847
UltraEdit (Zhao et al., 2024) 2.0B 0.066 0.904 0.852
FluxEdit (Paul, 2025) 12.0B 0.114 0.779 0.663
FLUX.1 Fill (Labs, 2024b) 12.0B 0.192 0.795 0.669
RF-Solver Edit (Wang et al., 2024a) 12.0B 0.112 0.766 0.675
ACE++ (Mao et al., 2025) 12.0B 0.195 0.741 0.591
ICEdit (Zhang et al., 2025) 12.0B 0.060 0.928 0.853
DIM-4.6B-Edit 1.6B 0.065 0.928 0.882

absence of such data in DIM-Edit. Excluding the Text Change task, DIM-4.6B-Edit beats Step1X-
Edit while maintaining a compact size, underscoring the high efficacy of our CoT data. Please refer
to Appendix A for full GEdit-Bench-EN results.

We further conduct evaluation on the MagicBrush to test automated pixel-to-pixel metrics computed
between human-edits and AI-edits. The results are presented in Table 5. DIM-4.6B-Edit achieves
SOTA performance. Notably, ICEdit employs a 12B FLUX.1 Fill backbone, with MagicBrush sam-
ples constituting approximately 20% of its total training set. In contrast, DIM-4.6B-Edit utilizes a
compact 1.6B generation backbone, where MagicBrush data accounts for less than 3% of our DIM-
Edit dataset. These comparable results validate the effectiveness of the Draw-In-Mind paradigm and
the generalizability of our DIM-Edit CoT. Despite our training distribution being significantly less
driven by MagicBrush data, our model matches the performance of 5× larger competitors.

4.3 ABLATION STUDY

Generalizability to External Designers. Although our proposed DIM-Edit is annotated with GPT-
4o, we show that the resulting DIM-4.6B-Edit is compatible with various external designers, as
reported in Table 6. In the first row, we remove the designer and directly use the raw prompt
from ImgEdit. Even under this setting, DIM-4.6B-Edit achieves performance comparable to frontier
models such as BAGEL, demonstrating that high-quality CoT annotations help strengthen basic
editing by mitigating prompt–edit misalignment. We then replace GPT-4o with four mainstream
MLLMs as external designers, i.e., Qwen2.5-VL-7B (Bai et al., 2025), MiMo-VL-7B (Xiaomi,
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Table 6: The ImgEdit performance w.r.t. different external designers.
External Designer Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

- 3.53 3.23 2.01 3.49 1.47 3.42 4.79 2.35 3.64 3.10
Qwen2.5-VL-7B (Bai et al., 2025) 3.95 3.35 2.25 3.85 3.31 3.57 4.88 2.81 4.02 3.55
MiMo-VL-7B (Xiaomi, 2025) 3.95 3.32 2.20 3.75 2.46 3.82 4.88 2.52 3.93 3.43
InternVL3.5-8B (Wang et al., 2025) 3.98 3.40 2.05 4.14 3.30 3.84 4.94 2.77 3.89 3.59
GLM-4.1V-9B (Hong et al., 2025) 3.95 3.27 2.23 3.90 2.64 3.81 4.92 2.23 4.02 3.44
GPT-4o (Hurst et al., 2024) 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

Table 7: The ImgEdit performance w.r.t. the internal Qwen2.5-VL-3B designer.
Internal Designer Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

- 3.53 3.23 2.01 3.49 1.47 3.42 4.79 2.35 3.64 3.10
Qwen2.5-VL-3B 3.80 3.24 2.03 3.89 3.21 3.52 4.92 2.71 4.05 3.49
Qwen2.5-VL-3B 3.96 3.36 2.25 3.98 3.31 3.81 4.95 2.83 4.02 3.61
GPT-4o 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

2025), InternVL3.5-8B (Bai et al., 2025), and GLM-4.1V-9B (Hong et al., 2025). All of them deliver
strong results compared to previous state-of-the-art models in Table 3, highlighting the robustness of
DIM-4.6B-Edit and the generalizability of our DIM framework. Furthermore, models equipped with
external designers significantly outperform the raw-prompt setting, confirming that CoT imagination
effectively reduces the burden on the generation modules and enhances overall editing quality.

Integrated End-to-End Evaluation. To exclude potential influence from external designers, we es-
tablish a “self-play” configuration. In this setup, CoT embeddings generated by the internal MLLM
(Qwen2.5-VL-3B) are directly fed into the painter to execute edits, effectively eliminating the need
for the external inference round. The result (Table 7 2nd row) shows that this “self-play” model
achieves SOTA performance, validating the effectiveness of the Draw-In-Mind paradigm and the
high quality of the DIM-Edit data. We further investigate whether the CoT blueprints in DIM-Edit
can serve as a corpus to bridge the gap between open-source and closed-source designers. To this
end, we perform lightweight fine-tuning on Qwen2.5-VL-3B and subsequently feed its blueprints
into DIM-4.6B-Edit. The results (Table 7 3rd row) demonstrate that fine-tuning from DIM-Edit’s
CoTs can effectively mitigate the performance disparity with the proprietary models like GPT-4o.

Data Composition. In Table 8, we present a rigorous data composition analysis for the editing
task to identify the sources of performance improvements. In the first stage, we observe that train-
ing solely on ShareGPT-4o-Image already yields a satisfactory ImgEdit score, indicating strong
semantic alignment, which is consistent with the behavior of Janus-4o. However, models trained ex-
clusively on GPT-4o-generated data tend to alter the overall layout noticeably, which is undesirable.
In contrast, training on UltraEdit produces slightly lower scores but preserves better consistency
between the source and target images. When combining the two datasets, performance improves
significantly, as the model benefits from the semantic richness while retaining the edit consistency.

In the second stage, we finetune the checkpoint trained solely on UltraEdit. The effectiveness of our
CoT data is demonstrated by comparing row 4 with row 3 in Table 8, where using the CoT version
of ShareGPT-4o-Image yields a significant improvement in overall scores compared with its non-
CoT counterpart. We also observe that using UltraEdit-160K-CoT alone provides only marginal
gains, while the HumanEdit-CoT portion has a more notable impact due to its high edit quality,
though still less pronounced than the semantically rich ShareGPT-4o-Image-CoT. When combining
all three CoT components, i.e., the proposed DIM-Edit, performance improves substantially once
again, indicating that UltraEdit-160K-CoT and HumanEdit-CoT are crucial for maintaining edit
consistency, which is consistent with the pattern of row 3.

The visualization of three variants finetuned from the base checkpoint ❀ in Table 8 is shown in Fig-
ure 3 for intuitive analysis. The variant tuned on ShareGPT-4o-Image significantly alters the layout
despite following the edit prompt, while its counterpart tuned on ShareGPT-4o-Image-CoT preserves
more details, indicating that CoT imagination helps maintain editing consistency. However, using
ShareGPT-4o-Image-CoT alone still produces unstable edits. In contrast, the model tuned on the
full DIM-Edit dataset, i.e., DIM-4.6B-Edit, achieves the best results in both semantic alignment and
edit consistency, demonstrating the effectiveness of all three data components in DIM-Edit.
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Table 8: Impact of data compositions during the two training stages of DIM-4.6B-Edit on ImgEdit.
Stage 2 models are tuned from checkpoint ❀.
Data Composition Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

Stage1 Non-CoT Data

ShareGPT-4o-Image 3.35 2.74 1.93 3.05 1.95 3.16 4.91 2.00 3.70 2.98
UltraEdit-4M ❀ 3.41 3.03 1.91 2.94 1.07 3.09 3.77 2.64 2.97 2.76

+ ShareGPT-4o-Image 3.85 3.09 1.84 3.71 2.26 3.51 4.88 2.17 3.67 3.22

Stage2 CoT Data

❀ + ShareGPT-4o-Image-CoT 4.01 3.19 2.19 3.74 2.53 3.57 4.93 2.25 3.66 3.34
❀ + UltraEdit-160K-CoT 3.69 3.21 1.90 2.50 1.22 3.20 3.53 2.71 3.14 2.79

+ HumanEdit-CoT 3.63 2.99 2.01 3.01 2.64 3.11 3.73 3.03 3.01 3.02
❀ + DIM-Edit 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

Table 9: Impact of CoT compositions on ImgEdit. GLP refers to Global Layout Perception, LOP
to Local Object Perception, EAL to Edit Area Localization, and EII to Edited Image Imagination.

CoT Composition Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

DIM-Edit 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67
w/o GLP 3.85 3.29 2.06 3.91 3.24 3.55 4.80 2.79 3.92 3.49
w/o LOP 3.80 3.15 1.92 3.83 3.07 3.60 4.79 2.44 3.92 3.39
w/o EAL 3.79 3.25 1.96 3.73 2.96 3.65 4.81 2.82 3.82 3.42
w/o EII 3.77 3.22 1.82 3.88 2.96 3.61 4.78 2.55 3.58 3.35

CoT Composition. We also analyze the effect of each CoT component by individually removing it,
as shown in Table 8. All components contribute positively to the performance, though their impor-
tance varies. The GLP has only a minor impact, likely because it is an easy task for the generator.
In contrast, the other three CoT components, i.e., LOP, EAL, and EII, have a significant effect. LOP
and EAL require the model to focus on specific regions, while EII demands complex reasoning; none
of these are trivial for the generator. These findings further validate the Draw-In-Mind paradigm,
which reduces the cognitive burden on the generator and thereby improves performance.

Table 10: The ImgEdit performance of models initialized from scratch/DIM-4.6B-T2I.
Initialization Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

Scratch 2.70 2.56 1.93 2.23 2.47 2.82 4.68 2.38 2.15 2.66
DIM-4.6B-T2I 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

Necessity of DIM-T2I. Our CoT-guided editing requires robust comprehension capabilities. We
posit that T2I generation is simpler than editing and is better suited for fostering this capability.
Rather than simultaneously tackling two challenging objectives, i.e., complex instruction compre-
hension and image editing, we chose to establish strong instruction comprehension first in the T2I
stage. To justify our assumption, we trained a model exclusively on DIM-Edit to test the feasibility
of simultaneously achieving modality alignment, complex instruction comprehension, and editing
capabilities in a single stage. As evident from the Table 10, the model trained from scratch signifi-
cantly underperforms the version initialized with DIM-4.6B-T2I. This performance gap empirically
validates the necessity of DIM-T2I as a foundational cornerstone for the Draw-In-Mind paradigm.

5 CONCLUSION

In this paper, we identify a crucial issue in existing image editing models, i.e., imbalanced division
of responsibilities, where the generator is burdened with complex reasoning, leading to reduced
performance. To address this, we propose the Draw-In-Mind (DIM) dataset, consisting of two parts:
(i) DIM-T2I, 14M web-crawled image-text pairs with carefully crafted long-context prompts that
provide a foundation for complex CoT comprehension in editing; and (ii) DIM-Edit, 233K high-
quality image editing pairs with detailed and precise CoT imagination. By training on the DIM
dataset and incorporating an external designer during editing, we present DIM-4.6B-Edit, which
achieves SOTA or competitive performance on ImgEdit and GEdit-Bench-EN while maintaining a
tiny overall and trainable parameter size. These results validate our motivation to shift the design
responsibility from the generation module to the understanding module, as well as the high efficiency
of our proposed CoT-guided DIM dataset.
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ETHICS STATEMENT

All authors of this paper strictly adhere to the ICLR Code of Ethics. The proposed image-text pairs in
DIM-T2I have undergone a rigorous safety check to filter harmful content, e.g., NSFW images. The
image pairs in DIM-Edit are collected from publicly available datasets, i.e., UltraEdit (Zhao et al.,
2024), MagicBrush (Zhang et al., 2023), SEED-Data-Edit-Part3 (Ge et al., 2024), and ShareGPT-
4o-Image (Chen et al., 2025b), without introducing new content that may raise ethical concerns.
The CoTs generated by GPT-4o were subjected to both OpenAI’s internal safety mechanisms and
an additional safety check by the authors, confirming that no harmful content is present. Therefore,
the training process and the trained models do not introduce ethical issues.

REPRODUCIBILITY STATEMENT

The authors take full responsibility for the reproducibility of this work. For the proposed DIM
dataset, we provide a detailed data creation pipeline in Section 3.1 and Appendix C, including data
sourcing and processing. The prompts used for image annotation are presented in Appendix E.
For the DIM-4.6B-T2I/Edit models, we describe their architectures in detail in Section 3.2. In
addition, we specify our training configurations and evaluation setup in Section 4.1. We will release
the DIM dataset, the DIM-4.6B-T2I/Edit models, and the related code to the public to facilitate
reproducibility upon acceptance.
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A ADDITIONAL EXPERIMENTS

Table 11: The overall image editing performance on GEdit-Bench-EN. We use GPT-4.1 for eval-
uation to ensure consistency with the existing results reported in Step1X-Edit. ∗ indicates results
evaluated by us. SC and PQ denote Semantic Consistency and Perceptual Quality, respectively.

Model Intersection subset Full set

SC PQ Overall SC PQ Overall

Proprietary Models

Gemini (Comanici et al., 2025) 6.82 7.41 6.48 6.87 7.44 6.51
GPT-4o (OpenAI, 2025) 7.40 7.90 7.14 7.22 7.89 6.98
Doubao (Gong et al., 2025) 7.87 8.10 7.59 7.74 8.13 7.49

Open-Source Models

Instruct-P2P (Brooks et al., 2023) 3.34 6.21 3.23 3.30 6.19 3.22
MagicBrush (Zhang et al., 2023) 4.56 6.34 4.24 4.52 6.37 4.19
AnyEdit (Yu et al., 2025) 3.12 5.87 2.92 3.05 5.88 2.85
OmniGen (Xiao et al., 2025) 6.04 5.86 5.15 5.88 5.87 5.01
UniWorld-V1 (Lin et al., 2025) - - - 4.93 7.43 4.85
Janus-4o* (Chen et al., 2025b) 4.69 4.68 3.91 4.64 4.57 3.83
Step1X-Edit (Liu et al., 2025) 7.29 6.96 6.62 7.13 7.00 6.44
DIM-4.6B-Edit 6.91 6.90 6.46 6.65 6.71 6.18

Table 12: The detailed task-wise performance on GEdit-Bench-EN Full set. ∗ indicates results eval-
uated by us. Task abbreviations: Background Change (BC), Color Alter (CA), Material Alter (MA),
Motion Change (MC), PS Human (PH), Style Change (SC), Subject-Add (SA), Subject-Remove
(SRM), Subject-Replace (SRP), Text Change (TC), Tone Transfer (TT), and Average (AVG).

Model BC CA MA MC PH SC SA SRM SRP TC TT AVG AVG w/o TC

Semantic Consistency

UniWorld-V1 5.17 7.21 4.71 1.14 3.49 5.98 7.42 6.50 6.04 1.07 5.52 4.93 5.32
Janus-4o* 5.48 6.68 6.00 2.75 4.04 8.03 5.10 1.74 4.27 2.11 4.88 4.64 4.90
Step1X-Edit 8.40 7.68 7.95 3.40 5.06 8.13 7.92 6.88 8.27 7.72 7.05 7.13 7.07
DIM-4.6B-Edit 7.68 7.65 7.48 4.78 5.64 8.22 8.10 7.05 7.45 2.34 6.73 6.65 7.08

Perceptual Quality

UniWorld-V1 7.59 6.82 6.86 8.68 8.61 6.58 7.61 7.28 6.78 7.44 7.48 7.43 7.43
Janus-4o* 4.00 4.20 4.08 5.73 6.07 4.40 4.77 4.07 4.72 4.44 3.78 4.57 4.58
Step1X-Edit 6.40 6.10 5.60 7.63 8.31 6.75 7.27 7.49 6.85 7.86 6.73 7.00 6.91
DIM-4.6B-Edit 6.73 6.55 5.13 7.15 7.43 6.53 7.28 6.83 6.65 6.61 6.88 6.71 6.71

Overall

UniWorld-V1 4.92 6.37 4.79 1.85 4.03 5.64 7.23 6.17 5.70 1.15 5.54 4.85 5.22
Janus-4o* 4.31 5.02 4.41 2.71 4.09 5.80 4.07 1.69 3.69 2.35 3.96 3.83 3.97
Step1X-Edit 7.03 6.26 6.46 3.66 5.23 7.24 7.17 6.42 7.39 7.40 6.62 6.44 6.35
DIM-4.6B-Edit 7.02 6.81 6.00 4.67 5.88 7.16 7.48 6.67 6.76 2.99 6.55 6.18 6.50

Table 13: The generation configuration and inference speed of Step1X-Edit and DIM-4.6B-Edit.
Model Gen. Resolution Gen. Steps Und. Params Gen. Params VAE Rate Prompt Speed

Step1X-Edit 1024×1024 30 7B 12.5B 8× Raw 28.19s
DIM-4.6B-Edit 3B 1.6B 32× CoT 6.23s

Detailed Performance on GEdit-Bench-EN. Table 11 and 12 summarize overall and detailed task-
wise performance of different models on GEdit-Bench-EN, respectively. Our DIM-4.6B-Edit ranks
just behind the in-domain tester, i.e., Step1X-Edit, while surpassing all other out-of-domain com-
petitors. Moreover, among out-of-domain testers, DIM-4.6B-Edit is the only model that consistently
preserves both semantic consistency and perceptual quality. This demonstrates the effectiveness of
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Table 14: The ImgEdit performance of different models with/without using DIM CoT as instruction.
Model Params CoT Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

DIM-4.6B-Edit Und | Gen
✘ 3.53 3.23 2.01 3.49 1.47 3.42 4.79 2.35 3.64 3.10
✔ 4.09 3.47 2.30 4.00 3.43 3.87 4.92 2.85 4.08 3.67

Janus-4o Und | Gen
✘ 3.35 3.35 2.25 3.01 2.18 3.32 4.71 2.49 4.04 3.19
✔ 3.95 2.74 2.49 3.59 2.28 3.31 4.72 2.62 4.02 3.30

Step1X-Edit Und | Gen
✘ 3.88 3.14 1.76 3.40 2.41 3.16 4.63 2.64 2.52 3.06
✔ 3.56 2.47 1.81 3.13 2.02 2.84 4.18 1.80 2.46 2.70

Table 15: The performance of DIM-4.6B-T2I/Edit on understanding benchmarks.
Model Params MME-P MMB SEED MMMU MM-Vet

Janus (Wu et al., 2025a) 1.3B 1338.0 69.4 63.7 30.5 34.3
Emu3-Gen (Wang et al., 2024b) 8.0B - 58.5 68.2 31.6 37.2
Show-o (Xie et al., 2024) 1.3B 1097.2 - - 26.7 -
Show-o2-7B (Xie et al., 2025b) 7.0B 1620.5 79.3 69.8 48.9 -
Janus-Pro-7B (Chen et al., 2025c) 7.0B 1567.1 79.2 72.1 41.0 50.0
BAGEL (Deng et al., 2025) 14.0B 1687.0 85.0 - 55.3 67.2
MetaQuery-L (Pan et al., 2025) 3.0B | 3.2B 1574.3 78.6 73.8 53.1 63.2
DIM-4.6B-T2I/Edit 3.0B | 1.6B 1574.3 78.6 73.8 53.1 63.2

DIM-Edit, where edits with high perceptual fidelity are precisely aligned with CoT-style imagina-
tion, thereby ensuring semantic correctness.

Inference Efficiency. Beyond precise image editing, our DIM-4.6B-Edit also maintains highly
efficient inference inherited from the SANA architecture. To verify this, we compare the average
editing time over 100 samples between Step1X-Edit and DIM-4.6B-Edit, as reported in Table 13.
Specifically, Step1X-Edit is provided with short raw prompts, while DIM-4.6B-Edit is evaluated
with longer CoT prompts. Even under this more demanding setting, our model achieves a 4.5×
speedup while preserving high editing quality, highlighting the effectiveness of the proposed DIM
dataset and the Draw-In-Mind paradigm.

Impact of DIM CoT for Different Models. To investigate the impact of DIM-style CoT on different
models, we evaluated the performance of Janus-4o and Step1X-Edit when directly provided with the
same CoT blueprints as input instructions on ImgEdit. The results are presented in Table 14. Based
on these results, we have the following observations and analysis:

• DIM-4.6B-Edit is explicitly trained on complex CoT-style blueprints from the DIM-Edit dataset,
it achieves superior CoT comprehension. Consequently, it demonstrates substantial performance
gains when DIM-style CoTs are applied during inference.

• Janus-4o employs an end-to-end fine-tuning approach, which minimizes the gap between instruc-
tion understanding and generation. This makes it more robust to input distribution shifts. While
it possesses mild CoT comprehension capabilities and benefits slightly from DIM-style CoTs, the
performance gain is less pronounced compared to DIM-4.6B-Edit.

• Step1X-Edit adopts a training recipe similar to ours (using a frozen understanding core), this
design makes it susceptible to input distribution shifts when facing unseen instruction formats. It
struggles to process CoT inputs effectively, leading to performance degradation when DIM-style
CoTs are applied.

Based on these findings, we conclude that superior CoT comprehension is pivotal for enhancing
editing performance. This finding validates our strategy of fostering CoT comprehension by con-
structing DIM-T2I and utilizing DIM-4.6B-T2I as the initialization for the editing task.

Understanding Performance. Since the MLLM component is frozen during DIM training, its un-
derstanding performance remains unaffected and is identical to the results reported in the original
paper. To ensure clarity regarding the model’s capabilities, we report the corresponding understand-
ing performance in Table 15. Our experiments demonstrate that DIM-4.6B-Edit achieves superior
editing performance even when utilizing a relatively small MLLM under a frozen setting. This find-
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ing highlights the flexibility of our approach: users can seamlessly upgrade to advanced MLLMs to
unlock even greater understanding and editing performance. Such integration is straightforward, as
our streamlined architecture and training recipe avoid the need for intricate parameter tuning.

B ADDITIONAL VISUALIZATIONS

B.1 VISUALIZATION OF DIFFERENT EDITING OPERATIONS.

Beyond Figure 3 in the manuscript, we further visualize the edits of Janus-4o, Step1X-Edit, and
our DIM-4.6B-Edit under the operations of add, change, remove, replace, and style transfer in
Figure 4, 5, 6, 7, and 8, respectively. As shown, DIM-4.6B-Edit consistently preserves the overall
layout while performing natural edits. For instance, in Figure 4, Janus-4o fails to generate details
of the wooden cabin, while Step1X-Edit places the chimney on the river, which is counterfactual.
In contrast, our DIM-4.6B-Edit carefully adds the wooden cabin while ensuring naturalness. In
Figure 5, Janus-4o fails to follow the color change instruction. Step1X-Edit changes the singer’s
shirt to blue but also alters fine details such as the collar shape. By comparison, our DIM-4.6B-
Edit changes the shirt to red while preserving all details, including the shadow cast by the hand. In
Figure 6, both DIM-4.6B-Edit and Step1X-Edit perform successful removals, whereas Janus-4o fails
to remove the seaplane. In Figure 7, only DIM-4.6B-Edit captures the semantics of “majestically”
and generates a roaring lion. Finally, in Figure 8, although all three models succeed in style transfer,
only DIM-4.6B-Edit captures subtle visual cues, such as the green grass in the last row, and repaints
them faithfully in the edits.

Add	a	person	walking	along	

the	dirt	path,	facing	toward	

the	ocean,	wearing	a	

backpack	and	casual	hiking	

clothes.

Add	a	small	wooden	cabin	

with	a	chimney	near	the	

edge	of	the	forest	on	the	

right	side	of	the	image.

Add	a	small	wooden	cabin	to	

the	le?	side	of	the	image,	

near	the	tree,	blending	

naturally	with	the	landscape.

Prompt Source DIM-4.6B-EditJanus-4o Step1X-Edit

Figure 4: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the add operation.
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Change	the	animal's	fur	color	

to	a	solid	shade	of	brown.

Change	the	person's	shirt	

color	to	blue.

Change	the	background	from	

the	snow	to	a	beach	se;ng.

Prompt Source DIM-4.6B-EditJanus-4o Step1X-Edit

Figure 5: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the change operation.

Remove	the	sheep	in	the	

foreground.

Remove	the	seaplane	on	the	

shoreline.

Remove	the	child	standing	

near	the	edge	of	the	water.

Prompt Source DIM-4.6B-EditJanus-4o Step1X-Edit

Figure 6: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the remove operation.
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Replace	the	deer	in	the	

image	with	a	lion	standing	

majes-cally	in	the	same	

forest	se;ng,	under	the	

glowing	golden	light	and	light	

snowûakes.

Replace	the	mountain	goat	in	

the	image	with	a	rabbit.

Replace	the	horse	in	the	

image	with	a	cat.

Prompt Source DIM-4.6B-EditJanus-4o Step1X-Edit

Figure 7: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the replace operation.

Transfer	the	image	into	a	

tradi-onal	ukiyo-e	

woodblock-print	style.

Transfer	the	image	into	a	

folded-paper	origami	art	

style.

Transfer	the	image	into	a	

colourful	ceramic	mosaic--le	

style.

Prompt Source DIM-4.6B-EditJanus-4o Step1X-Edit

Figure 8: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for style transfer.
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B.2 VISUALIZATION OF THE DRAW-IN-MIND WORKFLOW’S IMPACT ON IMAGE EDITING.

Relying solely on numerical metrics may not intuitively convey the practical impact of the Draw-
In-Mind workflow on image generation. To address this, we present Figure 9, 10, 11, 12, and 13
to showcase several advanced usage scenarios. These examples demonstrate complex cases that are
successfully handled by DIM-Edit-4.6B, highlighting capabilities that remain beyond the reach of
current baseline methods.

Instruction Disambiguation. In Figure 9, the user instruction presents an inherent ambiguity due to
the presence of three lemons on the table. This task necessitates precise multi-object localization and
removal, which is a challenge that proves difficult without the Draw-In-Mind paradigm, as standard
models often struggle with the required multi-object reasoning. Consequently, both the 7B Janus-4o
and 12B Step1X-Edit fail to execute the edit correctly. Similarly, when CoT is disabled, our DIM-
4.6B-Edit also fails to remove all targets. However, with DIM CoT enabled, the generated design
blueprints effectively disambiguate the instruction. They accurately localize the three lemons to the
right of the vase and ensure their complete removal, while perfectly preserving the integrity of the
unedited regions.

Edit Navigation and Structural Planning. In Figure 10, the user instruction presents two distinct
challenges: (i) determining the optimal placement for a wooden cabin, and (ii) identifying the ap-
propriate structural integration for a chimney. These dual requirements impose a significant burden
on the generation model. Consequently, in Janus-4o’s output, the chimney is nearly invisible, while
Step1X-Edit places the cabin counterintuitively close to the river. Similarly, DIM without CoT fails
to simultaneously resolve the cabin placement and chimney addition. In contrast, DIM powered by
CoT effectively navigates these challenges. It observes that ”the trees thin out on the right side”
(GLP) and selects this area as the optimal location (EAL). It then explicitly envisions the cabin’s
appearance, including a chimney emitting smoke (EII), ultimately yielding the most plausible and
high-quality edit among all competitors.

Commonsense-guarded Editing. In Figure 11, the editing task presents a subtle complexity: it
requires commonsense reasoning regarding scale. From the same viewpoint, a cat should appear
significantly smaller than a horse. All baseline models, including our own DIM w/o CoT, overlook
this physical constraint, simply replacing the horse with a cat of identical dimensions. In contrast,
DIM with CoT successfully leverages commonsense reasoning. It recognizes the size discrepancy
and executes a ”commonsense-guarded” edit, placing a naturally scaled cat at the target location,
thereby preserving scene realism.

Advanced Causal Editing. In Figure 12, we present an advanced causal editing scenario where the
instruction implies the target quantity (referencing ”the second prime number”) rather than stating
it explicitly. Unsurprisingly, all baseline models fail to resolve this implicit requirement. In con-
trast, DIM with CoT swiftly infers the correct number of cherries and executes a successful edit,
demonstrating its ability to handle knowledge-intensive instructions.

Advanced Temporal Editing. Figure 13 illustrates the most complex temporal editing scenario,
which necessitates a deep understanding of chemical reaction dynamics. Similar to the previous
example, none of the baseline models succeed in this task. In contrast, DIM with CoT accurately
characterizes the reaction process and executes physically plausible edits, demonstrating its capabil-
ity to handle sophisticated temporal reasoning.
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Prompt Source

DIM	CoT:	Instruc4on	Disambigua4on	

Remove	the	lemons	on	

the	table.

DIM-4.6B-Edit

Janus-4o Step1X-Edit DIM	w/o	CoT

1.	Edit	Instruc7on:	Remove	the	lemons	on	the	table.			

2.	Global	Layout	Percep7on:	The	image	features	a	vase	with	pink	lilies	placed	on	a	table	near	a	

window.	To	the	right	of	the	vase,	there	are	three	lemons	and	a	glass	of	yellow	liquid.	In	the	

foreground,	there	is	a	plate	of	clams.	The	background	shows	a	blurred	green	outdoor	scene	

visible	through	the	window.			

3.	Local	Object	Percep7on:			

			-	Vase:	Transparent	glass	vase	with	water,	holding	pink	lilies	with	green	leaves.			

			-	Pink	Lilies:	Large,	vibrant	pink	flowers	with	dark	stamens	and	green	leaves.			

			-	Lemons:	Three	bright	yellow	lemons	with	a	smooth,	slightly	textured	surface.			

			-	Glass	of	Yellow	Liquid:	A	clear	glass	filled	with	a	pale	yellow	drink,	posi7oned	to	the	right	of	

the	lemons.			

			-	Plate	of	Clams:	A	white	plate	containing	opened	clams	with	brown	and	orange	shells.			

			-	Tablecloth:	White	lace	tablecloth	with	intricate	paRerns.			

			-	Background:	Blurred	green	outdoor	scenery	visible	through	the	window.			

4.	Edit	Area	Localiza7on:	The	three	lemons	on	the	table	will	be	removed.			

5.	Edited	Image	Imagina7on:	The	edited	image	will	no	longer	have	the	three	lemons	on	the	table.	

The	space	where	the	lemons	were	will	now	show	the	white	lace	tablecloth	uninterrupted,	

maintaining	the	overall	composi7on	of	the	scene.	The	vase,	pink	lilies,	glass	of	yellow	liquid,	and	

plate	of	clams	will	remain	unchanged,	and	the	focus	will	shiW	slightly	more	to	these	elements.

How many lemons are on the table?

Figure 9: The edits of Janus-4o , Step1X-Edit , DIM w/o CoT , and DIM-4.6B-Edit when the
user instruction is ambiguous. DIM CoT is capable of instruction disambiguation under this case.

Prompt Source

DIM	CoT:	Edit	Naviga4on	&	Structural	Planning

Add	a	small	wooden	

cabin	with	a	chimney	

near	the	edge	of	the	

forest	on	the	right	side	of	

the	image.

1.	Edit	Instruc7on:	Add	a	small	wooden	cabin	with	a	chimney	near	the	edge	of	the	forest	on	the	

right	side	of	the	image.			

2.	Global	Layout	Percep7on:	The	image	features	a	flowing	river	in	the	foreground	with	white	rapids.	

Behind	the	river	is	a	dense	forest	of	evergreen	trees,	extending	across	the	middle	of	the	image.	In	

the	background,	a	large	mountain	rises	prominently,	par7ally	obscured	by	the	trees.	The	right	side	

of	the	image	shows	the	edge	of	the	forest,	where	the	trees	thin	out	slightly.			

3.	Local	Object	Percep7on:			

			-	River:	White,	frothy	water	with	visible	rapids	and	rocks	protruding	from	the	surface.	The	texture	

is	turbulent	and	dynamic.			

			-	Forest:	Tall	evergreen	trees	with	green	needles,	some	showing	signs	of	brown	discolora7on.	The	

trees	are	densely	packed,	with	slight	thinning	on	the	right	edge.			

			-	Mountain:	Grayish	rock	with	rugged	texture	and	steep	slopes,	par7ally	covered	by	darker	

patches	of	vegeta7on.			

			-	Sky:	Pale	and	overcast,	with	soW	ligh7ng.			

4.	Edit	Area	Localiza7on:	The	right	side	of	the	image,	near	the	edge	of	the	forest	where	the	trees	

thin	out	slightly,	will	be	modified	to	include	the	wooden	cabin	with	a	chimney.			

5.	Edited	Image	Imagina7on:	A	small	wooden	cabin	with	a	slanted	roof	and	visible	wooden	planks	

will	appear	near	the	edge	of	the	forest	on	the	right	side.	The	cabin	will	have	a	stone	chimney	

emi[ng	a	thin	trail	of	smoke,	blending	naturally	with	the	overcast	sky.	The	cabin	will	be	posi7oned	

slightly	behind	the	nearest	trees,	par7ally	obscured	by	their	branches,	to	maintain	a	realis7c	

integra7on	into	the	scene.	The	surrounding	forest	and	river	will	remain	unchanged.

DIM-4.6B-Edit

Janus-4o Step1X-Edit DIM	w/o	CoT

Where is the most proper place to add the wooden cabin? 
How should I integrate a chimney into it? 

Figure 10: The edits of Janus-4o , Step1X-Edit , DIM w/o CoT , and DIM-4.6B-Edit when
the user instruction requires localization and involves fine-grained structure modification. DIM CoT
is capable of edit navigation and structural planning under this case.
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Prompt Source

DIM	CoT:	Commonsense-guarded	Edi4ng

Replace	the	horse	in	the	

image	with	a	cat.

DIM-4.6B-Edit

Janus-4o Step1X-Edit DIM	w/o	CoT

1.	Edit	Instruc7on:	Replace	the	horse	in	the	image	with	a	cat.			

2.	Global	Layout	Percep7on:	The	image	features	a	horse	standing	in	a	grassy	field.	The	field	is	

covered	with	frost	and	scaRered	leaves.	In	the	background,	there	is	a	line	of	tall,	leafless	trees,	

and	the	sun	is	shining	through	the	trees,	crea7ng	long	shadows	across	the	ground.			

3.	Local	Object	Percep7on:			

			-	Horse:	Posi7oned	slightly	leW	of	center,	the	horse	is	light	beige	in	color	with	a	smooth	texture	

and	a	visible	harness.	It	is	standing	s7ll,	facing	slightly	to	the	leW.			

			-	Field:	The	ground	is	covered	with	frosty	grass	and	scaRered	brown	leaves,	giving	it	a	textured	

appearance.			

			-	Trees:	Tall,	leafless	trees	with	intricate	branches	form	the	background.	They	are	dark	brown	

and	silhoueRed	against	the	bright	sunlight.			

			-	Sunlight:	The	sun	is	low	in	the	sky,	cas7ng	warm	golden	light	and	long	shadows	across	the	

field.			

4.	Edit	Area	Localiza7on:	The	horse	will	be	replaced	with	a	cat.	The	area	of	change	is	the	space	

occupied	by	the	horse,	including	its	immediate	surroundings	to	ensure	the	cat	is	seamlessly	

integrated	into	the	scene.			

5.	Edited	Image	Imagina7on:	The	horse	is	replaced	by	a	cat,	which	is	smaller	in	size	and	

posi7oned	in	the	same	area	slightly	leW	of	center.	The	cat	is	si[ng	or	standing,	with	fur	that	

could	be	a	similar	beige	color	to	match	the	ligh7ng	and	overall	tone	of	the	image.	The	frosty	

field,	trees,	and	sunlight	remain	unchanged,	with	the	cat	cas7ng	a	smaller	shadow	on	the	

ground	due	to	its	size.	The	scene	retains	its	tranquil	and	warm	atmosphere.

From the same viewpoint, the cat should 
be much smaller than the horse…

Figure 11: The edits of Janus-4o , Step1X-Edit , DIM w/o CoT , and DIM-4.6B-Edit
when the user instruction involves implicit commonsense constraint. DIM CoT is capable of
commonsense-guarded editing under this case.

Prompt Source

DIM	CoT:	Advanced	Causal	Edi4ng

Generate	this	s7ll-life	

scene	with	cherries	

visible	totaling	the	

second	prime	number.

Janus-4o Step1X-Edit DIM	w/o	CoT

DIM-4.6B-Edit
1.	Edit	Instruc7on:	Generate	this	s7ll-life	scene	with	cherries	visible	totaling	the	second	prime	number.	

2.	Global	Layout	Percep7on:	The	image	depicts	a	s7ll-life	arrangement.	Key	objects	include:			

			-	A	glass	goblet	with	a	spiral	lemon	peel	draped	over	it,	located	in	the	upper	leW	quadrant.			

			-	A	cluster	of	white	grapes,	posi7oned	centrally	and	spilling	slightly	to	the	leW.			

			-	Two	lemons,	one	whole	and	one	par7ally	sliced,	located	in	the	lower	leW	quadrant.			

			-	A	large	yellow	fruit	(possibly	a	grapefruit	or	melon)	in	the	upper	center-right.			

			-	A	cluster	of	cherries,	located	in	the	lower	right	quadrant.			

			-	A	green	fabric	draped	over	the	table,	forming	the	base	of	the	composi7on.			

			-	A	wooden	table	surface	visible	in	the	lower	right	corner.			

			-	Grape	leaves	and	vines	extending	from	the	fruit,	adding	a	naturalis7c	touch.			

3.	Local	Object	Percep7on:			

			-	**Glass	goblet**:	Transparent,	reflec7ve,	and	elevated,	with	a	spiral	lemon	peel	(yellow,	textured)	hanging	from	it.			

			-	**White	grapes**:	Round,	translucent,	and	glossy,	with	a	pale	greenish-white	hue.			

			-	**Lemons**:	Bright	yellow	with	a	textured	rind;	one	is	whole,	and	the	other	is	sliced	to	reveal	its	juicy	interior.			

			-	**Large	yellow	fruit**:	Smooth,	round,	and	slightly	textured,	with	a	vibrant	yellow	color.			

			-	**Cherries**:	Small,	round,	and	glossy,	with	a	deep	red	hue	and	aRached	stems.			

			-	**Green	fabric**:	Rich	green,	with	folds	and	a	soW	texture,	reflec7ng	light.			

			-	**Wooden	table**:	Brown,	with	a	smooth	surface	and	visible	grain.			

			-	**Grape	leaves	and	vines**:	Green	and	brown,	with	a	natural,	organic	shape	and	texture.			

4.	Edit	Area	Localiza7on:	The	cluster	of	cherries	in	the	lower	right	quadrant	will	be	modified.	The	number	of	cherries	will	be	adjusted	to	

total	the	second	prime	number,	which	is	3.			

5.	Edited	Image	Imagina7on:	The	edited	image	will	feature	the	same	s7ll-life	arrangement,	but	the	cluster	of	cherries	in	the	lower	right	

quadrant	will	now	contain	exactly	three	cherries.	The	cherries	will	remain	deep	red,	glossy,	and	aRached	to	their	stems,	but	the	excess	

cherries	will	be	removed	to	meet	the	specified	count.	The	rest	of	the	composi7on,	including	the	goblet,	lemon	peel,	grapes,	lemons,	large	

yellow	fruit,	green	fabric,	and	wooden	table,	will	remain	unchanged.	The	overall	balance	and	aesthe7c	of	the	scene	will	be	preserved.

Which number is the second prime number?

Figure 12: The edits of Janus-4o , Step1X-Edit , DIM w/o CoT , and DIM-4.6B-Edit when
the user instruction requires causal reasoning. DIM CoT is capable of advanced causal editing under
this case.
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Prompt Source

DIM	CoT:	Advanced	Temporal	Edi4ng

What	will	these	iron	nails	

look	like	aWer	soaking	in	

3%	saltwater	for	4	hours?

1.	Edit	Instruc7on:	What	will	these	iron	nails	look	like	aWer	soaking	in	3%	saltwater	for	4	hours?		

2.	Global	Layout	Percep7on:	The	image	shows	a	transparent	plas7c	cup	filled	with	clear	water.	

Inside	the	cup,	there	is	a	single	iron	nail	submerged	in	the	water.	The	cup	is	placed	on	a	black	

fabric	background,	and	the	green	wall	is	visible	in	the	background.	

3.	Local	Object	Percep7on:		

			-	**Iron	Nail**:	The	nail	is	metallic,	straight,	and	has	a	shiny	silver-gray	surface.	It	appears	

smooth	and	uncorroded.			

	-	**Water**:	The	water	is	clear	and	transparent,	filling	most	of	the	cup.			

		-	**Cup**:	The	cup	is	made	of	clear	plas7c,	cylindrical	in	shape,	and	allows	visibility	of	its	

contents.			

		-	**Background**:	The	black	fabric	is	textured	and	contrasts	with	the	green	wall	behind	it.	

4.	Edit	Area	Localiza7on:	The	iron	nail	inside	the	cup	will	change	in	appearance	due	to	the	soaking	

process.	

5.	Edited	Image	Imagina7on:	AWer	soaking	in	3%	saltwater	for	4	hours,	the	iron	nail	will	likely	

show	signs	of	corrosion.	Its	surface	will	appear	duller,	with	possible	reddish-brown	rust	spots	

forming,	especially	near	the	submerged	por7on.	The	water	may	also	appear	slightly	cloudy	due	to	

the	release	of	iron	par7cles	or	rust.	The	cup	and	background	will	remain	unchanged."

Janus-4o Step1X-Edit DIM	w/o	CoT

DIM-4.6B-Edit

Is there any chemical reaction that will 
change the appearance of the iron nail?

Figure 13: The edits of Janus-4o , Step1X-Edit , DIM w/o CoT , and DIM-4.6B-Edit when
the user instruction requires temporal reasoning. DIM CoT is capable of advanced temporal editing
under this case.
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B.3 VISUALIZATION OF FAILURE CASES

We are also open to discuss the limitations of our work, and provide three failure types with six
specific cases in Figure 14, 15, and 16 to intuitively show the boundaries of our DIM-4.6B-Edit.

Large-scale All-in-One Editing. In Figure 14, the instructions involve simultaneous multi-step
edits, a task that remains essentially challenging for almost all editing models, and one where DIM-
Edit also encounters difficulties.

• For the first case, Janus-4o and Step1X-Edit completely fail to follow the physical laws dictating
that the wooden tower should collapse. Our DIM-4.6B-Edit successfully imitates a scene of
imminent collapse; however, it fails to preserve the exact appearance of the individual wooden
blocks, as too many objects are involved in the manipulation.

• For the second case, Janus-4o and Step1X-Edit fail to change the view at all. While our DIM-
4.6B-Edit completes the primary editing task, some fine-grained details are distorted (e.g., the
window of the shoreside house is missing).

Text and Logic Editing. In Figure 15, where instructions involve complex text rendering and
logical editing, DIM-4.6B-Edit struggles due to a combination of data scarcity and inherent VAE
compression issues.

• For the first case, the use of SANA1.5’s VAE with a 32x downsampling rate makes complex
text rendering particularly challenging, a difficulty exacerbated by the lack of targeted training
data. In contrast, Step1X-Edit employs an 8x downsampling VAE and is trained on proprietary,
text-specific in-house data, allowing it to perform relatively well. We regard this as a necessary
trade-off between efficiency and rendering quality: as shown in Table 10, DIM-4.6B-Edit requires
only 6 seconds to complete an edit with a 200+ word CoT, whereas Step1X-Edit takes 28 seconds
with a short raw prompt.

• For the second case, all editing models fail. This is fundamentally because none of the models,
including DIM-4.6B-Edit, are specifically trained on geometric data. The underlying painter
struggles to even draw these shapes, let alone edit them. We believe crafting such datasets remains
a valuable and under-explored topic for future research.

Reference-free Editing (in Pixel Space). In Figure 16, the reference image does not provide a
strong pixel constraint for the target image. Consequently, this task resembles multimodal generation
rather than strict editing. All models fail here because existing editing architectures typically enforce
strong pixel alignment with the source image.

• For the first case, which requests a view of the Golden Gate Bridge, Janus-4o and Step1X-Edit are
completely ineffective. DIM-4.6B-Edit struggles to break free from the structural constraints of
the reference image, resulting in a ”scratchy” and distorted view that fails to meet the objective.

• For the second case, where the task involves a re-imagination of the source scene, Janus-4o pro-
duces a black-and-white edit, and Step1X-Edit fails completely. DIM-4.6B-Edit generates the
most plausible result, successfully covering the scene with white snow. However, because the
transformation fundamentally alters the source structure, specific details such as the castle are
inevitably distorted.

In summary, the majority of failure cases arise when the task necessitates either generating an im-
age that diverges drastically from the source or rendering complex text and geometric shapes. Even
in these challenging scenarios, DIM-4.6B-Edit demonstrates superior instruction-following capa-
bilities compared to baseline models. These limitations highlight persistent challenges within the
current landscape of open-source editing models. We suggest that future research directions, such
as intelligent routing that dynamically selects between T2I generation and editing pipelines based
on instruction intent, offer promising avenues for resolving these issues, though significant progress
is still required in the field.
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Prompt Source

Predict	what	happens	

when	one	wooden	block	

is	removed	from	the	third	

layer	(coun9ng	from	

bo;om)	of	this	tower.

Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	SpaAal	Reasoning	+	Massive	Object	ManipulaAon

Prompt Source

Generate	the	view	from	a	

boat	posi9on	3	meters	

forward	showing	the	

building	on	the	right	bank	

in	oil	pain9ng	style.

Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	Viewpoint	Change	+	Style	Transfer

Failure	Type:	Large-scale	All-in-One	EdiAng

Figure 14: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the failure type large-
scale all-in-one editing.

Prompt Source

Change	the	text	'ESTATE	

TACHEN'	to	'Timeless	

Fashion'

Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	Complex	Text	Rendering

Prompt Source Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	Geometry	Understanding

Find	x.	Please	annotate	

your	answer	directly	on	

the	image.

Failure	Type:	Text	&	Logic	EdiAng

Figure 15: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the failure type text
and logic editing.
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Prompt Source

Generate	the	scenic	

landmark	view	from	this	

red	map	pin	loca9on.

Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	Map	Pin	to	Real	Photo

Prompt Source

Generate	what	this	

mountainous	landscape	

would	look	like	during	a	

heavy	winter	snowstorm.

Janus-4o Step1X-Edit DIM-4.6B-Edit

Failure	Case:	Temporal	ImaginaAon	for	Whole	Image	

Failure	Type:	Reference-free	EdiAng	(in	Pixel	Space)	

Figure 16: The edits of Janus-4o , Step1X-Edit , and DIM-4.6B-Edit for the failure type
reference-free editing (in pixel space).
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C DIM-EDIT DATA COLLECTION PIPELINE

As stated in Section 3.1.2, we collect raw edit data from four publicly available datasets:

• UltraEdit (Zhao et al., 2024). In addition to the prompt quality evaluation and optimization in the
DIM-Edit creation pipeline (Figure 2), which aligns textual prompts with actual editing behaviors,
we employ three image-to-image metrics on the UltraEdit dataset to improve visual consistency
and stabilize training: (i) CLIP image similarity, (ii) DINOv2 similarity, and (iii) SSIM. These
metrics are used to select edit pairs that maintain consistent visual appearances. We retain only
those edit pairs that satisfy the following conditions: (i) the CLIP similarity between the source
and edited images is greater than 0.9; (ii) the DINOv2 similarity is greater than 0.9; (iii) the
SSIM score is greater than 0.8; and (iv) the prompt does not contain “rainbow”, since many edit
pairs meeting (i)–(iii) are associated with low-quality “rainbow” edits. After filtering, we obtain
roughly 160K edit pairs.

• MagicBrush (Zhang et al., 2023). We include only 8K images from the training set to avoid
potential information leakage during evaluation.

• SEED-Data-Edit-Part3 (Ge et al., 2024). Since the “remove” operation is absent in UltraEdit, we
additionally select 19K edit pairs from SEED-Data-Edit-Part3 by filtering prompts that explicitly
contain “remove.”

• ShareGPT-4o-Image (Chen et al., 2025b). We include only its 46K image-to-image subset.

By combining these collected datasets, we obtain a total of 233K raw edit pairs for the proposed
DIM-Edit.

D DIM-EDIT QUALITY ASSESSMENT

We further assess the quality of the CoTs in DIM-Edit through MLLM-powered validation. Specif-
ically, due to API quota limitations, we randomly sample 30K edit pairs from DIM-Edit and use
GPT-4.1 to evaluate the quality of the GPT-4o-annotated CoTs, categorizing them into four levels:

4.5%12.1%

83.4%

Ultra-high
High
Medium

Quality Level

Figure 17: The percentage distribution of
each quality level in DIM-Edit judged by
GPT-4.1.

• Low: The optimized edit instruction does not re-
flect the change between the source and edited im-
ages at all.

• Medium: The optimized edit instruction captures
the major change between the source and edited
images, but the chain-of-thought contains some
factual errors.

• High: The optimized edit instruction captures the
major change between the source and edited im-
ages, and the chain-of-thought contains only mi-
nor factual errors.

• Ultra-High: The optimized edit instruction accu-
rately captures all changes between the source and
edited images, and the chain-of-thought contains
no factual errors.

The percentage distribution of each quality level is
shown in Figure 17. Notably, no data is categorized
as “Low”, while the majority falls under the “Ultra-
High” level, demonstrating the strong overall quality
of DIM-Edit.

We further conducted a human verification study. Specifically, we randomly sampled 25 instances
from each of the data sources listed in Appendix C, resulting in a comprehensive evaluation set of
100 samples. Three human annotators were then recruited to assess the quality of the CoTs from
two distinct perspectives:
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89%

 (a) Instruction Win Rate

DIM-Edit

Tied

Raw 5%

6%

81%

 (b) EII Quality

Perfect Match

Major Error

Minor Error 15%

4%

DIM-Edit CoT User Study

Figure 18: (a) The win rate of the optimized DIM-Edit instruction and the raw instruction. (b) The
quality of the Edited Image Imagination (EII).

Evaluation of Optimized Instructions (Start of CoT). We presented annotators with both the raw
instructions and the optimized instructions from DIM-Edit, alongside the corresponding source-
edit image pairs. Annotators were tasked with selecting the instruction that best reflected the actual
editing operations. A ”Tied” option was included for cases where neither instruction was sufficiently
accurate. The metric reported is the average win rate for each instruction type.

Evaluation of Edited Image Imagination (End of CoT). We asked annotators to assess the align-
ment between the Edited Image Imagination (EII) and the actual edited image. The quality was
categorized into three levels: (i) Perfect Match, (ii) Minor Errors, and (iii) Major Errors. The metric
reported is the percentage distribution across these error levels.

This efficient evaluation protocol enables a rapid yet robust assessment of the overall CoT quality
within DIM-Edit. The results for both the instruction optimization (Win Rate) and the Edited Im-
age Imagination (Error Distribution) are summarized in Figure 18, in which we have the following
analysis:

• Consistency with MLLM Assessment. These results align closely with the MLLM-based quality
assessment presented in Appendix D, where over 80% of DIM-Edit CoTs were judged clearer than
the raw instructions, with no factual errors detected. Even in ”Tied” cases where the optimiza-
tion was not deemed strictly superior, the semantics of the raw instruction were fully preserved,
ensuring that the optimization process introduces no regression.

• Analysis of Minor Errors. We observed that minor errors typically relate to subtle environmental
inconsistencies, such as slight shifts in brightness (e.g., ”the image should be a bit lighter”).
These artifacts usually stem from the VAE’s inability to perfectly reconstruct raw images in AI-
generated pairs (e.g., from UltraEdit), leading to a slight loss of high-frequency features. As these
discrepancies are barely perceptible to the human eye, they have a negligible impact on overall
training efficiency.

• Analysis of Major Errors. Instances classified as having major errors generally correspond to
extremely challenging scenarios where the edits are minute (e.g., the removed object occupies less
than 2% of the pixels). These cases are difficult even for human annotators and advanced MLLMs
like GPT-4o. Given their extreme rarity, these outliers do not adversely affect the stability of the
training procedure.

Overall, the CoTs produced by our DIM-Edit pipeline maintain high quality and serve as effec-
tive design blueprints. This high data quality directly translates to better editing capabilities, as
evidenced by the superior performance of the DIM-4.6B-Edit model trained on this dataset.
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E DIM-T2I ANALYSIS DIMENSIONS

Figure 19 and 20 illustrate the 21 analysis dimensions and their corresponding prompts used in the
DIM-T2I annotation process. The 21 dimensions were derived from a thorough literature review and
an empirical analysis of existing understanding datasets and benchmarks. They are listed as follows:

MME (Fu et al., 2025), MMMU (Yue et al., 2024), MMMU-Pro (Yue et al., 2025),
MMLU (Hendrycks et al., 2020), MMStar (Chen et al., 2024b), MMT-Bench (Ying et al.,
2024), MM-Vet (Yu et al., 2023), MM-Vet V2 (Yu et al., 2024), LLaVA-Bench-Wild (Liu et al.,
2023a), LLaVA-Bench-Wilder (Li et al., 2024a), WildVision (Lu et al., 2024), COCO (Lin et al.,
2014), VQAv2 (Goyal et al., 2017), OK-VQA (Marino et al., 2019), TextCaps (Sidorov et al.,
2020), TextVQA (Singh et al., 2019), AI2D (Kembhavi et al., 2016), ChartQA (Masry et al.,
2022), DocVQA (Mathew et al., 2021), MathVista (Lu et al., 2023), MIA-Bench (Qian et al.,
2024), MegaBench (Chen et al., 2024a), RWQA (xAI, 2024), OCRBench (Liu et al., 2023b),
GSM8K (Cobbe et al., 2021), GPQA (Rein et al., 2024), IFEval (Zhou et al., 2023).

We believe that the aspects emphasized in widely recognized understanding datasets and bench-
marks effectively capture the most frequent interactions between humans and objects in the real
world. This makes them an ideal foundation for learning text-to-image generation tasks involving
long and complex instructions. By constructing prompts that span these diverse fields, DIM-4.6B-
T2I not only masters long-form instruction processing but also acquires the broad world knowledge
necessary to facilitate sophisticated CoT comprehension and precise editing, thereby achieving high
GenEval scores and low FID on MJHQ-30K.

F THE USE OF LARGE LANGUAGE MODELS

This paper uses OpenAI ChatGPT solely for polishing the writing. The authors provided raw text
to ChatGPT to correct grammatical errors and refine the statements into a more formal academic
style. All polished text was manually reviewed and verified by the authors, who affirm that the
paper contains no fabricated content. No statistical data were provided to ChatGPT. All numerical
values in tables and figures were originally written by the authors.
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Dimension Prompt
Please describe images in details, including but not limited to the user pre-defined dimensions. 
Please make sure your description is visually grounded for user provided image, namely the 
user can find visual cues in image for your generated image caption. The user pre-defined 
dimensions are: [DIMENSIONS] Please don't generate your response for each dimension, e.g., 
**something**, just give an overall image caption including all the dimensions.

System 
Message

Character 
Name

If a character is shown in the image, you must describe his/her names. The character 
include but not limited to the characters shown in Movies, TV Shows, Anime, Comics, 
Literature, Games, Virtual Idols/Characters.

Scene 
Description

Provide an overview of the image, identifying key objects, people, and any 
interactions. Clearly classify and describe each object (e.g., people, animals, 
buildings, plants). Specify their attributes, such as size, color, material, and texture.

Actions and 
Interactions

Describe any actions taking place in the image. Who is performing them, and how are 
they interacting with other objects or people? If there are dynamic elements (e.g., 
movement), detail their state (e.g., running, jumping, flying, waving).

Context and 
Environment

Describe the setting of the image, including the location (indoor or outdoor), time of 
day, weather, and any background elements (e.g., sky, buildings, roads). How does 
the environment contribute to the overall scene? Does the setting enhance the mood 
or theme?

Emotion and 
Sentiment

If people are present, describe their emotional states based on body language, facial 
expressions, and other visual cues. What mood or tone does the image convey (e.g., 
happiness, sadness, tension, peace)? How do these emotions connect to the scene?

Relationships 
and Spatial 
Arrangement

Explain how objects, people, and other elements are positioned in relation to one 
another (e.g., "next to," "above," "to the right of"). Consider foreground, background, 
and overall spatial composition. How does the positioning influence the overall visual 
balance or narrative?

Color and 
Texture

Describe the color palette of the image (e.g., colors of objects, background), and note 
any texture details (e.g., smooth, rough, soft). How do these color and texture 
choices contribute to the atmosphere or style of the image?

Symbolism or 
Abstract 

Interpretation

If relevant, interpret any symbolic or abstract elements within the image. What 
deeper meanings or metaphors can be inferred from the visual elements? How do 
these symbols tie into the image's broader themes or message?

Lighting and 
Shadows

Observe the lighting conditions in the image (e.g., sunlight, artificial light) and how 
shadows or reflections influence the objects' appearance. Note the intensity of the 
light and any patterns created by it. How do these lighting effects contribute to the 
mood or focal points of the image?

Details and 
Fine Elements

Focus on smaller, intricate details in the image (e.g., wrinkles in clothing, textures on 
surfaces, distinct features). These elements may carry significant meaning or help 
provide a more vivid, precise description.

Figure 19: The 21 analysis dimensions and corresponding prompts for DIM-T2I.
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Dimension Prompt

Describe the viewpoint of the image (e.g., aerial, eye-level, side view) and its 
composition (e.g., symmetry, balance, focal point). How does the choice of 
perspective and composition affect the viewer's perception or interpretation of the 
scene?

Perspective 
and 

Composition

Time and 
Season

If possible, infer the time of day or season based on visual cues (e.g., light quality, 
weather, clothing style). For example, a winter snow scene, a summer beach setting, 
or an autumn forest could suggest the specific season.

Target 
Audience

Consider if there's a specific target audience for the analysis. For instance, an analysis 
for an art historian might use more technical terms, while one for a general audience 
may keep the description simpler. Does the complexity of the image suggest it's 
meant for a particular demographic or purpose?

OCR
If text appears in the image, you must describe the text in its original language and 
provide an English translation in parentheses. For example: 书本 (book). Additionally, 
explain the meaning of the text within its context.

Person 
Description

If there are people in the image, describe their physical features (e.g. age, gender, 
hairstyle, clothing, etc.), their movements and expressions, and their relationship to 
the surrounding environment. If there is a single person, use 'he' or 'she' for 
reference instead of 'they'.

Mathematics

Analyze the image and describe the mathematical concepts it represents. Include 
specific details like geometric shapes, equations, numeric values, or relationships 
between elements. If the image includes a graph, describe its axes, scales, and key 
points. If applicable, explain how mathematical operations are visualized.

Information 
Extraction

Examine the image and extract textual and contextual information. If the image 
contains a document, transcribe its content accurately. For GUI or structured data, 
describe its layout, labels, and functionality. Summarize the core message or purpose 
of the content.

Planning
Identify the sequence or logical arrangement in the image. If it depicts a process, 
explain the steps and their correct order. For puzzles or games, provide the rules and 
possible solutions.

Science
Explain the scientific content or phenomenon depicted in the image. Provide details 
on experiments, natural phenomena, or theoretical concepts, including relevant 
terminology.

Perception

Provide a detailed perception-based description of the image. Identify objects, their 
attributes (color, shape, size), and spatial relationships. For specific tasks like facial 
analysis or pose estimation, include characteristics like expressions, poses, or physical 
traits.

Metrics
Evaluate the image based on predefined metrics. Assess its quality, authenticity, and 
adherence to caption content. For paper review or comparative tasks, provide 
constructive feedback or preference reasoning.

Figure 20: The 21 analysis dimensions and corresponding prompts for DIM-T2I. (Continue)
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