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ABSTRACT

In recent years, integrating multimodal understanding and generation into a sin-
gle unified model has emerged as a promising paradigm. While this approach
achieves strong results in text-to-image (T2I) generation, it still struggles with
precise image editing. We attribute this limitation to an imbalanced division of
responsibilities. The understanding module primarily functions as a translator
that encodes user instructions into semantic conditions, while the generation mod-
ule must simultaneously act as designer and painter, inferring the original layout,
identifying the target editing region, and rendering the new content. This imbal-
ance is counterintuitive because the understanding module is typically trained with
several times more data on complex reasoning tasks than the generation module.
To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising
two complementary subsets: (i) DIM-T2I, containing 14M long-context image-
text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, con-
sisting of 233K chain-of-thought imaginations generated by GPT-4o0, serving as
explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-
3B (Bai et al., [2025) with a trainable SANA1.5-1.6B (Xie et al., [2025a) via a
lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in
DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves
SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks,
outperforming much larger models such as UniWorld-V1 (Lin et al., 2025)) and
Step1X-Edit (Liu et al 2025). These findings demonstrate that explicitly as-
signing the design responsibility to the understanding module provides significant
benefits for image editing. Our dataset and models will be publicly available.

1 INTRODUCTION

Over the past few years, considerable effort has been devoted to developing unified models capa-
ble of both multimodal understanding and generation. Many such trials, e.g., Show-o (Xie et al.,
2024) and MetaQuery (Pan et al., 2025), have achieved impressive results on T2I generation, yet
this paradigm falters when extended to instruction-guided image editing. Even recent methods such
as BAGEL (Deng et al., [2025), UniWorld-V1 (Lin et al., [2025), and Step1X-Edit (Liu et al.l 2025)
struggle, as evidenced by the substantial performance gap with proprietary models like GPT-40-
Image (OpenAlL 2025) on the ImgEdit and GEdit-Bench benchmarks. While much concurrent re-
search focuses on scaling parameters and data or on architectural modifications, in this paper we
identify a novel challenge underlying current image editing models: a fundamental imbalance divi-
sion of responsibilities between the understanding and generation modules.

Specifically, we observe that current image editing models often translate user instructions into
semantic conditions through a semantic encoder, typically a multimodal large language model, yet
this process lacks intermediate reasoning or refinement. The resulting conditions are then forwarded
to the generation module, which is responsible for completing the editing process. At this stage, the
generation module must simultaneously infer the original layout, determine the editing region, and
render the new content. In this paradigm, the understanding module functions merely as a translator,
while the generation module is burdened with the demanding tasks of both design and painting.



Under review as a conference paper at ICLR 2026

Source Image Noise
Concatenate
v e D —
&y GLM-4.1V-9B lSemae v
{V;, Qwen2.5-VL-7B l ‘— ‘-
<
" ), = "
Edit 7}, InternvL3.5-88 CoT [ ke © O ,
@ Instruction /? Imagination ,KFMLLM - § :| g
. 3 e
User Blueprint Tokens g Edited Image
External Designer
(Training-free)
'"""""""'"""""""'"'I"'E'd'_t';"""""""""""""""10'.67 """
m It Score N
Overall Parameter & 4055 2
(Max: 5)
Step1X-Edit ‘ ‘ l:lBaseIine Models o4
BAGEL DIM-4.6B-Edit w/
. l:ldifferent des:gr‘:ders 0.26
UniWorld-V1 [ | +0.20 I
DIM-4.6B-Edit l:lFrozen Parameter
l:lTrainable Parameter| *‘ﬁ
300 SteplX-Edit BAGEL UniWorld-V1 (GLM-4.1V-9B Qwen2.5-VL-7B InternVL3.5-88 GPT-40
w/ different designers

Figure 1: Upper: We employ a lightweight MLP connector to bridge a frozen MLLM, i.e., Qwen2.5-
VL-3B (Bai et al., [2025), with a trainable DiT, i.e., SANA1.5-1.6B (Xie et al., 2025a), forming
DIM-4.6B-Edit. In the editing process, we first leverage an external designer to produce a textual
blueprint in a chain-of-thought style, which is then provided to DIM-4.6B-Edit to carry out precise
image editing. Lower: DIM-4.6B-Edit establishes new state-of-the-art results on the challenging
ImgEdit benchmark across diverse designers, while requiring 5x fewer parameters than existing
frontier models. These results highlight both the effectiveness of the proposed DIM dataset and the
generalizability of our approach.

This arrangement contrasts with natural human workflows, where planning and refinement typically
precede the act of drawing. A more intuitive strategy is therefore to assign design-oriented reasoning
to the understanding module while allowing the generation module to focus exclusively on painting.

Motivated by this observation, we introduce Draw-In-Mind (DIM), a dataset consisting of two com-
plementary subsets: (i) DIM-T2I that contains 14M long-context image-text pairs annotated across
21 dimensions by in-house models to lay the groundwork for complex chain-of-thought comprehen-
sion; and (ii) DIM-Edit that comprises 233K high-quality chain-of-thought imagination generated
by GPT-40 from existing image editing data, enabling the model to interpret explicit design plans
from an external designer. We then establish a simple baseline by concatenating a frozen MLLM,
i.e., Qwen2.5-VL-3B, with a trainable DiT, i.e., SANA1.5-1.6B, via a two-layer MLP and train
it end-to-end on both public data and the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit.
During edit inference, we employ an arbitrary external designer, feeding its chain-of-thought imag-
ination into the model to guide precise image edits. The framework and performance overview are
illustrated in Figure |I} Despite its simplicity, DIM-4.6B-Edit matches or outperforms 5Xx larger
models such as Stepl X-Edit (Liu et al., 2025) and UniWorld-V1 (Lin et al.l [2025) on the ImgEdit
benchmark. These results validate the effectiveness of the proposed DIM dataset and confirm the
benefit of shifting the design responsibility from the generation module to the understanding module.

To summarize, we make the following contributions in this paper:

* We pinpoint a fundamental imbalanced division of responsibilities in current image editing mod-
els, which overburdens the generation module with both design and painting tasks.

* We introduce Draw-In-Mind (DIM), a unified dataset with two complementary subsets: DIM-T21
and DIM-Edit. This dataset explicitly frees the generation module from design responsibility and
enables it to concentrate on painting, leading to substantial improvements in editing performance.

* We establish a simple baseline by connecting a frozen Qwen2.5-VL-3B with a trainable
SANA1.5-1.6B via a two-layer MLP and train it on DIM. Despite its modest size and simple
architecture, DIM-4.6B-Edit outperforms 5x larger competitors, validating the efficacy of DIM.
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2 RELATED WORK

2.1 EXISTING IMAGE GENERATION DATASETS

T2I Datasets. Existing T2I datasets have provided many high-quality image-text pairs. They can be
roughly grouped into three categories: (i) purely Al-generated data, e.g., JourneyDB (Sun et al.|
2023) and MidJourney-V6 (CortexLM, [2025), which collect images from the MidJourney API,
and HQ-Edit (Hui1 et al., [2024)), which generates images via DALL-E 3; (ii) real-world data, e.g.,
COCO (Lin et al.,2014)), which harvests images from Flickr and annotates them by human workers;
and (iii) mixed data, e.g., InstructP2P (Brooks et al.,[2023)), which sources real images from LAION-
Aesthetics and produces edited variants via Prompt2Prompt (Hertz et al., [2022). Although these
datasets deliver high perceptual quality, their prompts are typically short, limiting their utility for
complex chain-of-thought reasoning in the editing stage. To ensure broad concept coverage, we opt
for harvesting real-world images and annotate them with our in-house models from 21 dimensions,
yielding 14M long-context image-text pairs, namely DIM-T2I, that form a robust foundation for
complex CoT-guided editing.

Image Editing Datasets. Most large-scale image editing datasets either employ Al editors for end-
to-end modification, e.g., InstructP2P (Brooks et al., 2023)) and HQ-Edit (Hui et al., [2024), or adopt
a two-stage pipeline that first localizes the edit region via grounding models and then applies in-
painting to alter the target objects, e.g., UltraEdit (Zhao et al. 2024). A few efforts enlist human
experts to annotate small-scale but high-quality edit pairs, e.g., MagicBrush (Zhang et al.|[2023) and
SEED-Data-Edit-Part3 (Ge et al.| [2024). However, their instructions are typically brief and occa-
sionally misaligned with the corresponding image pairs. In contrast, our DIM-Edit comprises 233K
deliberately designed chain-of-thought imaginations derived from these existing editing datasets.
These rich and detailed CoT instructions act as explicit design blueprints, lighten the cognitive load
on the generation module, and significantly improve editing performance.

2.2  UNIFIED MODELS FOR IMAGE GENERATION

T2I Models. In recent years, numerous successful attempts have been made to integrate understand-
ing and generation modules into a unified architecture. These approaches can be broadly categorized
into two technical routes: (i) Integrative approaches, e.g., Show-o (Xie et al.,2024) and Janus (Wu
et al., 2025a), which typically adopt an autoregressive generation paradigm to produce both image
and text tokens; and (ii) Connector-based approaches, e.g., MetaQuery (Pan et al., [2025)), which use
a connector to bridge an understanding module and a generation module. Since the understanding
and generative capabilities are tightly coupled in the former architecture and sometimes lead to con-
flicts that degrade both, we adopt the connector-based design to preserve state-of-the-art cognitive
ability by freezing the understanding module while enhancing generation performance.

Image Editing Models. When it comes to image editing, the challenge becomes significantly
harder, as neither the latest integrative models (Lin et al.,|2025) nor connector-based ones (Liu et al.,
2025) achieve satisfactory performance on mainstream benchmarks such as ImgEdit and GEdit-
Bench compared to proprietary models like GPT-40-Image, even when employing large-scale under-
standing and generation models such as Qwen2.5-VL-7B (Bai et al., 2025) and FLUX.1-dev (Labs,
2024a)). This suggests that simply scaling model size is not an effective strategy for improving im-
age editing capability. In this work, we take a different approach by addressing the problem from
a perspective of imbalanced division of responsibilities. We propose DIM-4.6B-Edit, which lever-
ages an external designer to create blueprints in a CoT manner in the textual space before editing.
Despite having only 1.6B generative parameters, our model achieves SOTA editing performance,
highlighting the effectiveness of shifting the design responsibility to the understanding module.

3 METHODOLOGY

3.1 THE DRAW-IN-MIND (DIM) DATASET
3.1.1 DIM-T2I

There are typically two strategies to train an editing model, i.e., (i) learning drawing first (T2I), fol-
lowed by adaptation for editing, and (ii) directly learning editing. We observe that the vast majority
of image editing models are built upon established T2I foundations (Brooks et al., 2023} /Zhao et al.,
2024; |Liu et al.| [2025). This aligns with the first strategy and represents a robust technical route
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that benefits from curriculum learning. Consequently, we elected to achieve basic T2I ability and
subsequently fine-tune the base model for the more challenging editing task.

However, we observed that despite the current T2I datasets performing well in terms of prompt-
image alignment and image perceptual quality, the prompts in existing datasets are typically short
and simple, as shown in Table[I] While these prompts accurately capture the semantics of the target
image, they fall short in fostering long-context comprehension, which is an essential foundation for
complex CoT-guided image editing. To bridge this gap, we collect 14M images with resolutions
higher than 512 x 512 from the web. We believe that the aspects emphasized in widely recognized
understanding datasets and benchmarks effectively capture the most frequent interactions between
humans and objects in the real world. Therefore, we conduct a thorough literature review and an
empirical analysis of existing understanding datasets and benchmarks, and finally derive 21 diverse
dimensions and use internal models to generate long and detailed annotations, thoroughly covering
all dimensions, resulting in DIM-T2I. As shown in Table [T} its average prompt length is at least
twice that of existing corpora, effectively establishing a strong basis for complex CoT-guided image
editing. The dimension-specific prompts and referred datasets/benchmarks are listed in Appendix [E}

3.1.2 DIM-EDIT

As for image editing, the short- Table 1: The statistics of existing high-quality datasets and
prompt issue is even more pro- our proposed DIM dataset. APL is short for Average Prompt
nounced in current datasets. As Length, counted by word numbers.

shown in Table [T} prompts in main-  Dataset Name Size Source APL
stream datasets are generally overly Text-to-Image
simplistic, often consisting of only  “Nidjouney-v6 (Cortex MI[2025} 1.2M Al Gen. 9.59
a few descriptive words. Such data ~ COCO (Lin et al.|2014) 0.4M Real 10.46
: : : : InstructP2P (Brooks et al.||[2023) 0.6M Real & Al Gen. 11.37
18 ,nf) t condupwe to effective 1mage JourneyDB (Sun et al.[|2023) 4.2M Al Gen. 29.27
editing learning, as the prompts may  HQ-Edit (Hui et al.| 2024} 0.2M Al Gen. 38.08
fail to accurately reflect the actual gilll\r/llbaT ;Fei et al.[2024) ?21\1‘//[1 gea% 17486-2796
-T21 :

changes between the source and tar- _ -
get images. This phenomenon can [mage Editing

: H . MagicBrush (Zhang et al.|[2023) 8K Real 6.50
b,e attributed to tWO. l:naln reasons: SEED-Data-Edit-Part3 (Ge et al.|[2024) 82K Real 7.39
(i) Inaccurate Al editing or human  UlwaEdit Zhao et al.| 2024 4M Al Gen. 8.32
misoperation. We observe that even ShareGPT-40-Image (Chen et al.[|2025b) 46K Al Gen. 34.75
SOTA pl‘OpI‘letaI‘y mOdC]S llke GPT_ DIM-Edit 233K Real & Al Gen. 252.64

4o-Image frequently over-edit images, e.g., removing objects not mentioned in the prompts. Such
cases exist widely in Al-generated datasets like ShareGPT-40-Image and UltraEdit. While in human-
controlled datasets, operators may misunderstand or misapply the edits, resulting in unaligned data.
(ii) Ambiguous semantics. Even if the prompt correctly describes the intended change, overly sim-
ple prompts can still result in multiple equally valid edits. For example, in SEED-Data-Edit-Part3,
a common prompt is “change the background”, yet the definition of “background” varies across im-
ages, while in practice the change almost always occurs in the sky, thereby reducing the effectiveness
of the resulting edit data.

In addition, existing models typically use the understanding module merely as a translator, directly
converting natural language instructions into semantic conditions. The generator must then rely
on these conditions to simultaneously organize the layout of the edited image, recognize existing
objects, localize the edit area, render new content, and preserve unchanged regions. In other words,
the generator is forced to act as both designer and painter, which is a challenging and counterintuitive
setup. By contrast, humans naturally prepare a mental blueprint before editing and then simply let
their hands follow it to complete the changes.

Motivated by the above issues, we propose DIM-Edit, which first optimizes prompts and then imi-
tates human thinking to complete the edits. The DIM-Edit creation pipeline is illustrated in Figure[2]
We construct it from 233K high-quality image pairs collected from three sources: (i) 160K highly
consistent edit pairs from UltraEdit, referred to as UltraEdit-160K-CoT, selected using a joint SSIM,
DINOV2 similarity, and CLIP similarity-based filtering; (ii) 46K semantically rich samples from the
editing subset of ShareGPT-40-Image, referred to as ShareGPT-40-Image-CoT; and (iii) 8K human-
edited images from the MagicBrush training set and 19K human-edited images from SEED-Data-
Edit-Part3, specifically targeting remove operations, referred to as HumanEdit-CoT. A detailed data
collection pipeline can be found in Appendix



Under review as a conference paper at ICLR 2026

* =

Raw Image Target Image

Remove the wooden barrier running
across the background.
Prompt

CoT Imagination

Remove the
wooden barrier

Remove the

wooden barrier Partial
running across Aligned
the background.

Source Edit Pair :Quality Judge Prompt Optimization, | Raw Prompt Judge  Action Optimized Prompt !
[ r 1
: Misaligned? Discard? remove the :
1 Jrereet tenes Correct? monk emblem  Misaligned  Discard N/A '

Aligned? ?
1 C> in the old book []
1 '
1 R =, i 1
[
1
1
'
'
N

Edit Instruction; Remove the wooden barrier running across the background and the crowd of people behind it.\¥

Global Layout Perception; The source image features a knight in full armor riding a black-and-white horseina |1

grassy field. In the background, there is a wooden barrier running horizontally across the image, with a crowd of | § I

people behind it. Trees are visible further in the background. W

Local Object Perception:
i

N e

Let the bear be

Aligned Refine
calm.

™

ing on green grass. v
cross the background, separating the grassy field| ¥
~

partially blurred but visible.
tting.

DIM-Edit Creation Pipeline

Figure 2: The creation pipeline of DIM-Edit begins with a quality assessment of existing image
editing data, followed by prompt optimization using GPT-40. Finally, the optimized prompts to-
gether with the corresponding image pairs are fed into GPT-40, which generates a four-step chain-
of-thought imagination in the textual space.

After collecting raw data, we first sent the raw edit pairs to GPT-40 for prompt quality evaluation,
as shown in Figure 2] The results are categorized into three groups: (i) Misaligned. The prompt
does not reflect the actual edit at all, possibly due to misannotation or misoperation. (ii) Partially
aligned. The target image exhibits over-editing, i.e., redundant objects are added to or removed from
the source image. (iii) Aligned. The prompt fully corresponds to the edits.

Next, we take different actions to optimize the prompts based on the judgment: (i) For misaligned
prompts, they are discarded outright. (ii) For partially aligned prompts, we ask GPT-4o to add details
about unmentioned changes, e.g., including objects that were incorrectly removed in the prompt. (iii)
For aligned prompts, we instruct GPT-40 to remove ambiguity and refine the prompt, for example,
by specifying the exact objects to be edited to avoid confusion with visually similar objects.

Finally, we provide the optimized prompts, along with the source image to GPT-40 and instruct
it to produce a four-step CoT imagination that emulates human editing behavior. For the sake of
accuracy, we also provide the target image to it for reference. The target of each CoT step is as
follows: (i) Global Layout Perception: identify and describe all key objects and their positions in the
source image. (ii) Local Object Perception: describe the appearance of each object or background
element in the source image, including shape, color, texture, and state. (iii) Edit Area Localization:
specify which objects or regions will be modified, based on the refined instruction. (iv) Edited
Image Imagination: describe the expected appearance of the edited image, with an emphasis on the
modified areas. As shown in Table [T]and Figure 2] the resulting CoT imagination is not only ultra-
long but also highly accurate, effectively removing the design responsibility from the generation
module and thereby significantly enhancing the efficiency of image editing learning. A quality
assessment of the CoTs involving both MLLMs and human verification can be found in Appendix[D]

3.2 DIM-4.6B-T2I/EDIT

Leveraging MLLMs to provide multimodal conditions for image generation has become a common
practice recently. In this work, we first build a base T2I model and then adapt it to the editing task.

For the base T2I model, we start by establishing a simple baseline, similar to MetaQuery (Pan et al.,
2025)), to preserve state-of-the-art understanding capability. We select Qwen2.5-VL-3B (Bai et al.,
2025)) as the MLLM and SANA1.5-1.6B (Xie et al.| [2025a)) as the diffusion decoder for their mod-
est size. Unlike MetaQuery, which employs a large 24-layer transformer with 1.6B parameters as
a connector between the MLLM and the diffusion decoder, we adopt a much simpler design, i.e.,
a two-layer MLP, to directly project multimodal tokens into the generation space. We refer to this
model as DIM-4.6B-T2I, illustrated in Figure [} We train DIM-4.6B-T2I on a mixture of the pro-
posed DIM-T2I dataset and an additional 6.9M image-text pairs from MidJourney-V6 (CortexLM,
2025)), COCO (Lin et al.| 2014), InstructP2P (Brooks et al., 2023)), JourneyDB (Sun et al., [2023),
HQ-Edit (Hui et al.}[2024), and Dimba (Fei et al., 2024)). During training, Qwen2.5-VL-3B remains
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Table 2: The text-to-image generation performance on GenEval and MJHQ-30K. 1 and | indicate

that higher and lower values are better, respectively; T denotes using an LLM rewriter; 7+ and
denote frozen and trainable parameters, respectively.

Model Params GenEvalt MIJHQ-30K|
Single Obj. Two Obj. Counting Colors Position Color Attr. Overall FID
Gen. Only
PixArt-a (Chen et al.||2023) 0.6B& 0.98 0.50 044  0.80 0.08 0.07 0.48 6.14
SDXL (Podell et al.|[2023) 2.6B% 0.98 0.74 039 085 0.I5 0.23 0.55 8.76
DALL-E-3 (Betker et al.[|2023) - 0.96 0.87 047 0.83 043 0.45 0.67 -
SD3-Medium (Esser et al.||2024) 20B % 0.99 0.94 072 0.89 033 0.60 0.74 11.92
Unified
Janus (Wu et al.|[2025a) 13B & 0.97 0.68 030 0.84 046 0.42 0.61 10.10
Emu3-Gen' (Wang et al.|2024b) 8.0B % 0.99 0.81 042 080 049 0.45 0.66 -
Show-o (Xie et al.|[2024) 1388 0.98 0.80 066 0.84 031 0.50 0.68 15.18
Show-02-7B (Xie et al.|[2025b) 7.0B % 1.00 0.87 058 092 052 0.62 0.76 -
Janus-Pro-7B (Chen et al.|2025¢) 7.0B % 0.99 0.89 059 090 0.79 0.66 0.80 13.48
BAGEL (Deng et al.|[2025) 14.0B% 0.99 0.94 0.81 0.88  0.64 0.63 0.82 -
MetaQuery-LT (Pan et al.|[2025) 3.0B*#|3.2B& - - - - - - 0.78 6.35
DIM-4.6B-T2I 3.0B ¢*‘|1.6B<‘5 0.99 0.89 063 0.86 0.62 0.61 0.77 5.50

frozen, and we finetune only the parameters of the connector and SANA1.5-1.6B. Notably, distilla-
tion datasets like BLIP3-0-60K (Chen et al.|[2025a) explicitly curate data to align with the structural
patterns of benchmarks like GenEval, we exclude them to avoid any risk of data leakage (Wu et al.,
2025b) or benchmark hacking in the evaluation to justify the contribution of our DIM data. We
adopt vanilla flow matching as the sole objective, avoiding parameter-tuning tricks to highlight data
effectiveness and maintain simplicity.

Thanks to the rich world knowledge and high-quality long-context prompts in DIM-T2I, the trained
DIM-4.6B-T2I model provides a strong foundation for complex CoT comprehension. We then adopt
a two-stage training strategy to adapt it for the editing task. In the first stage, we initialize the editing
model from DIM-4.6B-T2I and fine-tune it on the UltraEdit (Zhao et al., |2024) dataset to develop
basic editing capability. Following InstructP2P (Brooks et all 2023), we concatenate the source
image with noise along the channel dimension, as illustrated in Figure|l| In the second stage, we
fine-tune the stage-one model exclusively on the proposed DIM-Edit dataset, resulting in DIM-4.6B-
Edit. During inference, we employ an external designer to prepare a blueprint in the same format as
DIM-Edit, except without access to the target image, ensuring alignment with real usage scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

During training, we use AdamW as the optimizer and keep most hyperparameters unchanged for
simplicity. For DIM-4.6B-T2I, we first warm up by training only the connector for one epoch with a
learning rate of 2 x 1075, then jointly train the connector and SANA1.5-1.6B for eight epochs with
the same rate and a batch size of 256. For DIM-4.6B-Edit, we set the batch size to 32, training on
UltraEdit for 10 epochs at a 1 x 10~ learning rate, then finetuning on DIM-Edit for 50 epochs at a
1 x 10~° learning rate. During inference, GPT-40 serves as the designer unless otherwise specified.

Although the primary focus of this paper is image editing, we evaluate DIM-4.6B-T2I on T2I bench-
marks to verify the effectiveness of DIM-T2I. We report the GenEval (Ghosh et al., 2023)) scores
and MJHQ-30K (L1 et al., [2024b) FID. Following MetaQuery (Pan et al., 2025) and Emu3 (Pan
et al} |2025), we test LLM-rewritten prompts for GenEval evaluation. For image editing, we report
scores on the recently proposed ImgEdit (Lin et al., 2025) and GEdit-Bench-EN (Liu et al., 2025)
benchmarks, using GPT-4.1 for evaluation to ensure fair comparison with existing results. We also
report results on MagicBrush (Zhang et al.,|2023)) to show the performance on automated metrics.

4.2 MAIN RESULTS

4.2.1 TEXT-TO-IMAGE GENERATION

We first report T2I performance on GenEval and MJHQ-30K in Table 2] Our DIM-4.6B-T2I adopts
a simple architecture with very few trainable parameters yet achieves SOTA or competitive per-
formance, demonstrating the high data quality of DIM-T2I. For semantic alignment, DIM-4.6B-
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Table 3: The image editing performance on ImgEdit. We use GPT-4.1 for evaluation to ensure
consistency with the existing results reported in UniWorld-V1. * indicates results evaluated by us

using the official weights; “+ and & denote frozen and trainable parameters, respectively.

Model Params Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
MagicBrush (Zhang et al.||2023) 098 % 2.84 1.58 1.51 1.97 1.58 1.75 238 1.62 122 1.83
Instruct-P2P (Brooks et al.|2023) 098 % 245 1.83 144 201 1.50 1.44 355 120 146 1.88
AnyEdit (Yu et al.|[2025) 1384 3.18 295 188 247 223 2.24 285 1.56 265 245
UltraEdit (Zhao et al.|[2024) 20B& 344 281 213 296 1.45 2.83 376 191 298 270
Step1X-Edit (Liu et al.|[2025) 7.0B7|12.5B b 388 3.14 176 3.40 2.41 3.16 463 264 252 3.06
BAGEL (Deng et al.|[2025) 14.0B & 356 331 1.70  3.30 2.62 3.24 449 238 417 320
UniWorld-V1 (Lin et al.|[2025)  7.0B7+|12.0B b 382 364 227 347 3.24 2.99 421 296 274 326
Janus-40” (Chen et al.||2025b) 7.0B% 335 335 225 3.01 2.18 332 471 249 404 319
GPT-40-Image (OpenAl|2025) - 461 433 290 435 3.66 4.57 493 396 489 420
DIM-4.6B-Edit 3.0B 4*\1.6Br5 4.09 347 230 4.00 3.43 3.87 492 285 4.08 3.67

Table 4: The overall task-wise performance on GEdit-Bench-EN Full set. * indicates results evalu-
ated by us. Task abbreviations: Background Change (BC), Color Alter (CA), Material Alter (MA),
Motion Change (MC), PS Human (PH), Style Change (SC), Subject-Add (SA), Subject-Remove
(SRM), Subject-Replace (SRP), Text Change (TC), Tone Transfer (TT), and Average (AVG).

Model BC CA MA MC PH SC SA SRM SRP TC TT AVG AVGw/oTC
UniWorld-V1 (Lin et al.||2025) 4.92 6.37 4.79 1.85 4.03 5.64 723 6.17 570 1.15 554 4.85 522
Janus-40* (Chen et al.[2025b) 4.31 5.02 4.41 2.71 4.09 5.80 4.07 1.69 3.69 235 3.96 3.83 3.97
SteplX-Edit (Liu et al.;2025) 7.03 6.26 6.46 3.66 523 724 7.17 642 739 740 6.62 6.44 6.35
DIM-4.6B-Edit 7.02 6.81 6.00 4.67 5.88 7.16 748 6.67 6.76 299 655 6.18 6.50

T2I shows only a small gap compared to much larger models like BAGEL (Deng et al.| 2025) on
GenEval. Compared with MetaQuery (Pan et al., 2025), which employs a large 1.6B-parameter con-
nector for query learning, our model achieves nearly the same performance using only a two-layer
MLP connector and naive multimodal tokens. In addition, it attains optimal perceptual quality, as
evidenced by the lowest FID on the aesthetics-oriented MJHQ-30K benchmark. These results in-
dicate that even without complex aesthetic filtering, carefully crafted long-context prompts enable
robust text-to-image generation, offering a practical approach for rapid large-scale dataset creation
by directly harvesting images from the web.

4.2.2 IMAGE EDITING

The image editing performance on ImgEdit is reported in Table [3] Our DIM-4.6B-Edit shows a
significant improvement over previously available open source models. In comparison with other
connector-based architectures such as Stepl1X-Edit and UniWorld-V1, which rely on a 12B FLUX
backend for generation together with a 7B multimodal large language model for condition transla-
tion, DIM-4.6B-Edit achieves superior results while maintaining both a much smaller total parameter
count and a very limited number of trainable parameters.

Since DIM-Edit includes high-quality images from ShareGPT-40-Image (Chen et al.| [2025b)), we
also evaluate Janus-40, which is trained on the same dataset, for reference. Janus-40 achieves only
suboptimal results, indicating that the improvement comes from DIM-Edit itself, whose natural and
precise edit blueprints substantially enhance editing performance. These encouraging results val-
idate our assumption that imbalanced division of responsibilities degrades image editing, confirm
the soundness of our data creation pipeline, and highlight the effectiveness of the Draw-In-Mind
paradigm: assigning the design responsibility to the understanding module while allowing the gen-
eration module to focus on actual editing exclusively.

We further demonstrate the capability of DIM-4.6B-Edit through intuitive visual comparisons of
editing results on four Al-generated out-of-domain images in Figure [3] Janus-4o exhibits severe
distortions despite being trained on GPT-40-generated edit pairs, while Step1X-Edit produces less
natural edits (rows 2-4) and fails in complex scenarios such as row 1, which involves manipulating
multiple objects. In contrast, DIM-4.6B-Edit successfully follows the instructions to produce natural
and consistent edited images. Please refer to Appendix |A|for more visualizations.

We also include overall task-wise performance on GEdit-Bench-EN in Table[d] The results reveal a
similar pattern as reported in UniWorld-V1 (Lin et al.| [2025): Step1X-Edit achieves notable gains
in the Text Change task, whereas other models, including ours, perform less effectively due to the
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Prompt Source Janus-40 Step1X-Edit ShareGPT-40-Image  ShareGPT-40-Image-CoT DIM-Edit

Remove the lemons on
the table.

Add some birds on the
beach.

Change the background
to forest

Put a black sunglasses
on the dog.

Figure 3: Green and Blue : the edits of Janus-40 and Step1X-Edit; Red : the edits of our models
trained on different data corpora. All variants are tuned from the base checkpoint # in Table 8]

Table 5: The MagicBrush test set performance. Metrics are calculated between human-edited
groundtruth and Al-generated edits. = and 2 denote the 1st and 2nd best model, respectively.

Method Gen Params L1y CLIP-It  DINO?T
InstructP2P (Brooks et al.|[2023) 0.9B 0.114 0.851 0.744
MagicBrus (Zhang et al.|[2023) 0.9B 0.074 0.908 0.847
UltraEdit (Zhao et al.|2024) 2.0B 0.066 0.904 0.852
FluxEdit (Paul! 2025 12.0B 0.114 0.779 0.663
FLUX.1 Fill (Labs![2024b 12.0B 0.192 0.795 0.669
RF-Solver Edit (Wang et al.| 2024a) 12.0B 0.112 0.766 0.675
ACE++ (Mao et al. 12.0B 0.195 0.741 0.591
ICEdit (Zhang et al., 2025} 12.0B 0.060~ 0928+  0.8537
DIM-4.6B-Edit 1.6B 0.065% 0928+  0.882m

absence of such data in DIM-Edit. Excluding the Text Change task, DIM-4.6B-Edit beats Step1X-
Edit while maintaining a compact size, underscoring the high efficacy of our CoT data. Please refer
to Appendix [A]for full GEdit-Bench-EN results.

We further conduct evaluation on the MagicBrush to test automated pixel-to-pixel metrics computed
between human-edits and Al-edits. The results are presented in Table [5] DIM-4.6B-Edit achieves
SOTA performance. Notably, ICEdit employs a 12B FLUX.1 Fill backbone, with MagicBrush sam-
ples constituting approximately 20% of its total training set. In contrast, DIM-4.6B-Edit utilizes a
compact 1.6B generation backbone, where MagicBrush data accounts for less than 3% of our DIM-
Edit dataset. These comparable results validate the effectiveness of the Draw-In-Mind paradigm and
the generalizability of our DIM-Edit CoT. Despite our training distribution being significantly less
driven by MagicBrush data, our model matches the performance of 5x larger competitors.

4.3 ABLATION STUDY

Generalizability to External Designers. Although our proposed DIM-Edit is annotated with GPT-
40, we show that the resulting DIM-4.6B-Edit is compatible with various external designers, as
reported in Table [6] In the first row, we remove the designer and directly use the raw prompt
from ImgEdit. Even under this setting, DIM-4.6B-Edit achieves performance comparable to frontier
models such as BAGEL, demonstrating that high-quality CoT annotations help strengthen basic
editing by mitigating prompt—edit misalignment. We then replace GPT-40 with four mainstream

MLLMs as external designers, i.e., Qwen2.5-VL-7B 2025), MiMo-VL-7B
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Table 6: The ImgEdit performance w.r.t. different external designers.

External Designer Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
- 353 323 201 3.49 1.47 3.42 479 235 3.64 3.10
Qwen2.5-VL-7B (Bai et al.|2025) 395 335 225 3.85 3.31 3.57 488 281 4.02 3.55
MiMo-VL-7B (Xiaomi/[2025) 395 332 220 3.75 2.46 3.82 488 252 393 3.43
InternVL3.5-8B (Wang et al.[[2025) 3.98 3.40  2.05 4.14 3.30 3.84 494 277  3.89 3.59
GLM-4.1V-9B (Hong et al.[|[2025)" 3.95 327 223 3.90 2.64 3.81 492 223  4.02 3.44
GPT-40 (Hurst et al.|[2024) 409 347 230 4.00 3.43 3.87 492 285 4.08 3.67

Table 7: The ImgEdit performance w.r.z. the internal Qwen2.5-VL-3B designer.
Internal Designer =~ Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

- 353 323 2.01 3.49 1.47 3.42 479 235 3.64 3.10
Qwen2.5-VL-3B7“ 3.80 3.24 2.03 3.89 3.21 3.52 492 271 4.05 3.49
Qwen2.5-VL-3B®& 396 336 2.25 3.98 3.31 3.81 495 283 4.02 3.61
GPT-40 4.09 3.47 2.30 4.00 3.43 3.87 492 285 4.08 3.67

2025)), InternVL3.5-8B (Bai et al.,[2025)), and GLM-4.1V-9B (Hong et al., 2025). All of them deliver
strong results compared to previous state-of-the-art models in Table 3] highlighting the robustness of
DIM-4.6B-Edit and the generalizability of our DIM framework. Furthermore, models equipped with
external designers significantly outperform the raw-prompt setting, confirming that CoT imagination
effectively reduces the burden on the generation modules and enhances overall editing quality.

Integrated End-to-End Evaluation. To exclude potential influence from external designers, we es-
tablish a “self-play” configuration. In this setup, CoT embeddings generated by the internal MLLM
(Qwen2.5-VL-3B) are directly fed into the painter to execute edits, effectively eliminating the need
for the external inference round. The result (Table [7] 2nd row) shows that this “self-play” model
achieves SOTA performance, validating the effectiveness of the Draw-In-Mind paradigm and the
high quality of the DIM-Edit data. We further investigate whether the CoT blueprints in DIM-Edit
can serve as a corpus to bridge the gap between open-source and closed-source designers. To this
end, we perform lightweight fine-tuning on Qwen2.5-VL-3B and subsequently feed its blueprints
into DIM-4.6B-Edit. The results (Table |Z| 3rd row) demonstrate that fine-tuning from DIM-Edit’s
CoTs can effectively mitigate the performance disparity with the proprietary models like GPT-4o.

Data Composition. In Table [§] we present a rigorous data composition analysis for the editing
task to identify the sources of performance improvements. In the first stage, we observe that train-
ing solely on ShareGPT-40-Image already yields a satisfactory ImgEdit score, indicating strong
semantic alignment, which is consistent with the behavior of Janus-40. However, models trained ex-
clusively on GPT-40-generated data tend to alter the overall layout noticeably, which is undesirable.
In contrast, training on UltraEdit produces slightly lower scores but preserves better consistency
between the source and target images. When combining the two datasets, performance improves
significantly, as the model benefits from the semantic richness while retaining the edit consistency.

In the second stage, we finetune the checkpoint trained solely on UltraEdit. The effectiveness of our
CoT data is demonstrated by comparing row 4 with row 3 in Table[8] where using the CoT version
of ShareGPT-4o0-Image yields a significant improvement in overall scores compared with its non-
CoT counterpart. We also observe that using UltraEdit-160K-CoT alone provides only marginal
gains, while the HumanEdit-CoT portion has a more notable impact due to its high edit quality,
though still less pronounced than the semantically rich ShareGPT-40-Image-CoT. When combining
all three CoT components, i.e., the proposed DIM-Edit, performance improves substantially once
again, indicating that UltraEdit-160K-CoT and HumanEdit-CoT are crucial for maintaining edit
consistency, which is consistent with the pattern of row 3.

The visualization of three variants finetuned from the base checkpoint % in Table is shown in Fig-
ure 3] for intuitive analysis. The variant tuned on ShareGPT-40-Image significantly alters the layout
despite following the edit prompt, while its counterpart tuned on ShareGPT-40-Image-CoT preserves
more details, indicating that CoT imagination helps maintain editing consistency. However, using
ShareGPT-40-Image-CoT alone still produces unstable edits. In contrast, the model tuned on the
full DIM-Edit dataset, i.e., DIM-4.6B-Edit, achieves the best results in both semantic alignment and
edit consistency, demonstrating the effectiveness of all three data components in DIM-Edit.
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Table 8: Impact of data compositions during the two training stages of DIM-4.6B-Edit on ImgEdit.
Stage 2 models are tuned from checkpoint

Data Composition Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
Stagel Non-CoT Data
ShareGPT-40-Image 335 274 193 3.05 1.95 3.16 491 200 370 298
UltraEdit-4M 341 3.03 191 2.94 1.07 3.09 377 264 297 2.6
+ ShareGPT-40-Image 385 3.09 1.84 3.71 2.26 3.51 488 217 367 322
Stage2 CoT Data
+ ShareGPT-40-Image-CoT 4.01 3.19 2.19 3.74 2.53 3.57 493 225 366 3.34
+ UltraEdit-160K-CoT 369 321 190 250 1.22 3.20 353 271 314 279
+ HumanEdit-CoT 3.63 299 201 3.01 2.64 3.11 3.73 3.03 3.01 3.02
+ DIM-Edit 4.09 347 230 4.00 343 3.87 492 285 408 3.67

Table 9: Impact of CoT compositions on ImgEdit. GLP refers to Global Layout Perception, LOP
to Local Object Perception, EAL to Edit Area Localization, and EII to Edited Image Imagination.

CoT Composition Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

DIM-Edit 4.09 347 2.30 4.00 3.43 3.87 492 285 4.08 3.67
w/o GLP 385 3.29 2.06 391 3.24 3.55 480 279 3.92 3.49
w/o LOP 380 3.15 1.92 3.83 3.07 3.60 479 244 3.92 3.39
w/o EAL 379 325 1.96 3.73 2.96 3.65 481 282 3.82 3.42
w/o EII 377 322 1.82 3.88 2.96 3.61 478 2.55 3.58 3.35

CoT Composition. We also analyze the effect of each CoT component by individually removing it,
as shown in Table[§] All components contribute positively to the performance, though their impor-
tance varies. The GLP has only a minor impact, likely because it is an easy task for the generator.
In contrast, the other three CoT components, i.e., LOP, EAL, and EII, have a significant effect. LOP
and EAL require the model to focus on specific regions, while EIl demands complex reasoning; none
of these are trivial for the generator. These findings further validate the Draw-In-Mind paradigm,
which reduces the cognitive burden on the generator and thereby improves performance.

Table 10: The ImgEdit performance of models initialized from scratch/DIM-4.6B-T2I.
Initialization =~ Add Adjust Extract Replace Remove Background Style Hybrid Action Overall

Scratch 270 2.56 1.93 223 247 2.82 468 238 2.15 2.66
DIM-4.6B-T2I 4.09 3.47 2.30 4.00 3.43 3.87 492 285 4.08 3.67

Necessity of DIM-T2I. Our CoT-guided editing requires robust comprehension capabilities. We
posit that T2I generation is simpler than editing and is better suited for fostering this capability.
Rather than simultaneously tackling two challenging objectives, i.e., complex instruction compre-
hension and image editing, we chose to establish strong instruction comprehension first in the T2I
stage. To justify our assumption, we trained a model exclusively on DIM-Edit to test the feasibility
of simultaneously achieving modality alignment, complex instruction comprehension, and editing
capabilities in a single stage. As evident from the Table[I0] the model trained from scratch signifi-
cantly underperforms the version initialized with DIM-4.6B-T2I. This performance gap empirically
validates the necessity of DIM-T2I as a foundational cornerstone for the Draw-In-Mind paradigm.

5 CONCLUSION

In this paper, we identify a crucial issue in existing image editing models, i.e., imbalanced division
of responsibilities, where the generator is burdened with complex reasoning, leading to reduced
performance. To address this, we propose the Draw-In-Mind (DIM) dataset, consisting of two parts:
(i) DIM-T2I, 14M web-crawled image-text pairs with carefully crafted long-context prompts that
provide a foundation for complex CoT comprehension in editing; and (ii) DIM-Edit, 233K high-
quality image editing pairs with detailed and precise CoT imagination. By training on the DIM
dataset and incorporating an external designer during editing, we present DIM-4.6B-Edit, which
achieves SOTA or competitive performance on ImgEdit and GEdit-Bench-EN while maintaining a
tiny overall and trainable parameter size. These results validate our motivation to shift the design
responsibility from the generation module to the understanding module, as well as the high efficiency
of our proposed CoT-guided DIM dataset.

10
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ETHICS STATEMENT

All authors of this paper strictly adhere to the ICLR Code of Ethics. The proposed image-text pairs in
DIM-T2I have undergone a rigorous safety check to filter harmful content, e.g., NSFW images. The
image pairs in DIM-Edit are collected from publicly available datasets, i.e., UltraEdit (Zhao et al.,
2024), MagicBrush (Zhang et al.| 2023, SEED-Data-Edit-Part3 (Ge et al.| [2024), and ShareGPT-
4o0-Image (Chen et al.l [2025b), without introducing new content that may raise ethical concerns.
The CoTs generated by GPT-40 were subjected to both OpenAl’s internal safety mechanisms and
an additional safety check by the authors, confirming that no harmful content is present. Therefore,
the training process and the trained models do not introduce ethical issues.

REPRODUCIBILITY STATEMENT

The authors take full responsibility for the reproducibility of this work. For the proposed DIM
dataset, we provide a detailed data creation pipeline in Section [3.1]and Appendix [C] including data
sourcing and processing. The prompts used for image annotation are presented in Appendix [E]
For the DIM-4.6B-T2I/Edit models, we describe their architectures in detail in Section In
addition, we specify our training configurations and evaluation setup in Section[d.I] We will release
the DIM dataset, the DIM-4.6B-T2I/Edit models, and the related code to the public to facilitate
reproducibility upon acceptance.
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A ADDITIONAL EXPERIMENTS

Table 11: The overall image editing performance on GEdit-Bench-EN. We use GPT-4.1 for eval-
uation to ensure consistency with the existing results reported in SteplX-Edit. * indicates results
evaluated by us. SC and PQ denote Semantic Consistency and Perceptual Quality, respectively.

Intersection subset Full set

Model
SC PQ Overall SC PQ Overall
Proprietary Models
Gemini (Comanici et al.|[2025) 6.82 7.41 6.48 6.87 7.44 6.51
GPT-40 (OpenAl![2025) 740  7.90 7.14 722  7.89 6.98
Doubao (Gong et al.|[2025) 7.87  8.10 7.59 7.74  8.13 7.49

Open-Source Models

Instruct-P2P (Brooks et al.|[2023) 3.34 6.21 3.23 3.30 6.19 3.22
MagicBrush (Zhang et al.|[2023) 456 6.34 4.24 452  6.37 4.19

AnyEdit (Yu et al.||2025) 312 587 2.92 3.05 5.88 2.85
OmniGen (Xiao et al.[[2025) 6.04 5.86 5.15 5.88 5.87 5.01
UniWorld-VT (Lin et al.[[2025) - - - 493 7.43 4.85
Janus-40* (Chen et al.[[2025b) 4.69 4.68 3.91 4.64 457 3.83
Step1X-Edit (Liu et al.|[2025) 729  6.96 6.62 7.13  7.00 6.44
DIM-4.6B-Edit 6.91  6.90 6.46 6.65 6.71 6.18

Table 12: The detailed task-wise performance on GEdit-Bench-EN Full set. * indicates results eval-
uated by us. Task abbreviations: Background Change (BC), Color Alter (CA), Material Alter (MA),
Motion Change (MC), PS Human (PH), Style Change (SC), Subject-Add (SA), Subject-Remove
(SRM), Subject-Replace (SRP), Text Change (TC), Tone Transfer (TT), and Average (AVG).

Model BC CA MA MC PH SC SA SRM SRP TC TT AVG AVG w/oTC

Semantic Consistency

UniWorld-V1 ~ 5.17 721 471 1.14 349 598 742 650 6.04 1.07 552 4.93 5.32
Janus-4o0* 548 6.68 6.00 2.75 4.04 8.03 510 1.74 427 211 4.88 4.64 4.90
Step1X-Edit 840 7.68 795 3.40 5.06 8.13 792 6.88 827 7.72 7.05 7.13 7.07
DIM-4.6B-Edit 7.68 7.65 7.48 4.78 5.64 822 8.10 7.05 7.45 234 6.73 6.65 7.08

Perceptual Quality
UniWorld-V1 759 6.82 6.86 8.68 8.61 6.58 7.61 7.28 6.78 7.44 7.48 7.43 7.43

Janus-40* 4.00 420 4.08 573 6.07 4.40 4.77 4.07 472 444 378 4.57 4.58

Step1X-Edit 6.40 6.10 5.60 7.63 831 6.75 727 7.49 6.85 7.86 6.73 7.00 6.91

DIM-4.6B-Edit 6.73 6.55 5.13 7.15 7.43 6.53 7.28 6.83 6.65 6.61 6.88 6.71 6.71
Overall

UniWorld-V1 492 637 479 1.85 4.03 564 723 6.17 570 1.15 554 4285 5.22

Janus-40* 431 5.02 441 271 4.09 580 4.07 1.69 3.69 235 396 3.83 3.97

Step1X-Edit 7.03 6.26 6.46 3.66 523 724 7.17 642 739 740 6.62 6:44 6.35
DIM-4.6B-Edit 7.02 6.81 6.00 4.67 5.88 7.16 7.48 6.67 6.76 299 6.55 6.18 6.50

Table 13: The generation configuration and inference speed of Step1X-Edit and DIM-4.6B-Edit.

Model Gen. Resolution Gen. Steps Und. Params Gen. Params VAE Rate Prompt Speed
Step1X-Edit 7B 12.5B 8x Raw  28.19s
DIM-4.6B-Edit 102451024 30 3B 1.6B 32x CoT  6.23s

Detailed Performance on GEdit-Bench-EN. Table[11]and[12] summarize overall and detailed task-
wise performance of different models on GEdit-Bench-EN, respectively. Our DIM-4.6B-Edit ranks
just behind the in-domain tester, i.e., SteplX-Edit, while surpassing all other out-of-domain com-
petitors. Moreover, among out-of-domain testers, DIM-4.6B-Edit is the only model that consistently
preserves both semantic consistency and perceptual quality. This demonstrates the effectiveness of
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Table 14: The ImgEdit performance of different models with/without using DIM CoT as instruction.

Model Params CoT Add Adjust Extract Replace Remove Background Style Hybrid Action Overall
oo b 5 15 10 10 38 10 28 pmeoae
Jousdo unbGend 355 33 3% 35 2o 331 4m ae 4w 30
SeplXcBa Und [Gend J 356 Y47 UM 313 o2 284 dis 10 246 270

Table 15: The performance of DIM-4.6B-T2I/Edit on understanding benchmarks.

Model Params MME-P MMB SEED MMMU MM-Vet
Janus ( V_Vu et al,] 2025ab 1.3B& 1338.0 69.4 63.7 30.5 343
Emu3-Gen (Wang et al.|[2024b) 3.0B & - 58.5 68.2 31.6 37.2
Show-o (Xie et al.![2024 138 1097.2 - - 267 -
Show-02-7B ( : 7.0B % 16205  79.3 69.8 489 -
Janus-Pro-7B (Chen et al.||2025¢ 7.0B% 1567.1 79.2 72.1 41.0 50.0
BAGEL (Deng et al.|[2025) 14.0B% 1687.0 85.0 - 55.3 67.2
MetaQuery-L (Pan et al.“@ 3.0B7F | 3288 1574.3 78.6 73.8 53.1 63.2
DIM-4.6B-T2I/Edit 3.0B%# | 1.6B& 15743 786 73.8 53.1 63.2

DIM-Edit, where edits with high perceptual fidelity are precisely aligned with CoT-style imagina-
tion, thereby ensuring semantic correctness.

Inference Efficiency. Beyond precise image editing, our DIM-4.6B-Edit also maintains highly
efficient inference inherited from the SANA architecture. To verify this, we compare the average
editing time over 100 samples between Step1X-Edit and DIM-4.6B-Edit, as reported in Table [I3]
Specifically, Step1X-Edit is provided with short raw prompts, while DIM-4.6B-Edit is evaluated
with longer CoT prompts. Even under this more demanding setting, our model achieves a 4.5x%
speedup while preserving high editing quality, highlighting the effectiveness of the proposed DIM
dataset and the Draw-In-Mind paradigm.

Impact of DIM CoT for Different Models. To investigate the impact of DIM-style CoT on different
models, we evaluated the performance of Janus-40 and Step1X-Edit when directly provided with the
same CoT blueprints as input instructions on ImgEdit. The results are presented in Table[T4} Based
on these results, we have the following observations and analysis:

* DIM-4.6B-Edit is explicitly trained on complex CoT-style blueprints from the DIM-Edit dataset,
it achieves superior CoT comprehension. Consequently, it demonstrates substantial performance
gains when DIM-style CoTs are applied during inference.

* Janus-4o employs an end-to-end fine-tuning approach, which minimizes the gap between instruc-
tion understanding and generation. This makes it more robust to input distribution shifts. While
it possesses mild CoT comprehension capabilities and benefits slightly from DIM-style CoTs, the
performance gain is less pronounced compared to DIM-4.6B-Edit.

» Stepl1X-Edit adopts a training recipe similar to ours (using a frozen understanding core), this
design makes it susceptible to input distribution shifts when facing unseen instruction formats. It
struggles to process CoT inputs effectively, leading to performance degradation when DIM-style
CoTs are applied.

Based on these findings, we conclude that superior CoT comprehension is pivotal for enhancing
editing performance. This finding validates our strategy of fostering CoT comprehension by con-
structing DIM-T2I and utilizing DIM-4.6B-T2I as the initialization for the editing task.

Understanding Performance. Since the MLLM component is frozen during DIM training, its un-
derstanding performance remains unaffected and is identical to the results reported in the original
paper. To ensure clarity regarding the model’s capabilities, we report the corresponding understand-
ing performance in Table[T5] Our experiments demonstrate that DIM-4.6B-Edit achieves superior
editing performance even when utilizing a relatively small MLLM under a frozen setting. This find-
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ing highlights the flexibility of our approach: users can seamlessly upgrade to advanced MLLMs to
unlock even greater understanding and editing performance. Such integration is straightforward, as
our streamlined architecture and training recipe avoid the need for intricate parameter tuning.

B ADDITIONAL VISUALIZATIONS

B.1 VISUALIZATION OF DIFFERENT EDITING OPERATIONS.

Beyond Figure [3] in the manuscript, we further visualize the edits of Janus-4o, Step1X-Edit, and
our DIM-4.6B-Edit under the operations of add, change, remove, replace, and style transfer in
Figure [} [5] [6] [7} and [8] respectively. As shown, DIM-4.6B-Edit consistently preserves the overall
layout while performing natural edits. For instance, in Figure @] Janus-4o fails to generate details
of the wooden cabin, while Step1X-Edit places the chimney on the river, which is counterfactual.
In contrast, our DIM-4.6B-Edit carefully adds the wooden cabin while ensuring naturalness. In
Figure [5| Janus-4o fails to follow the color change instruction. SteplX-Edit changes the singer’s
shirt to blue but also alters fine details such as the collar shape. By comparison, our DIM-4.6B-
Edit changes the shirt to red while preserving all details, including the shadow cast by the hand. In
Figure[6] both DIM-4.6B-Edit and Step1X-Edit perform successful removals, whereas Janus-4o fails
to remove the seaplane. In Figure[7} only DIM-4.6B-Edit captures the semantics of “majestically”
and generates a roaring lion. Finally, in Figure (8] although all three models succeed in style transfer,
only DIM-4.6B-Edit captures subtle visual cues, such as the green grass in the last row, and repaints
them faithfully in the edits.

~

Prompt ) Source Janus-4o0 SteplX-Edit DIM-4.6B-Edit

Add a person walking along
the dirt path, facing toward
the ocean, wearing a
backpack and casual hiking
clothes.

Add a small wooden cabin
with a chimney near the
edge of the forest on the
right side of the image.

Add a small wooden cabin to
the left side of the image,
near the tree, blending
naturally with the landscape.

A

Figure 4: The edits of Janus-4o0 , Step1X-Edit , and DIM-4.6B-Edit for the add operation.
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Prompt ) Janus-4o0 Step1X-Edit 'DIM-4.6B-Edit

Change the person's shirt
color to blue.

Change the animal's fur color
to a solid shade of brown.

Change the background from
the snow to a beach setting.

| J

Figure 5: The edits of Janus-40, SteplX-Edit , and | DIM-4.6B-Edit for the change operation.

f Prompt )} Source Janus-40 Step1X-Edit DIM-4.6B-Edit

Remove the child standing
near the edge of the water.

Remove the sheep in the
foreground.

Remove the seaplane on the
shoreline.

Figure 6: The edits of Janus-4o0, SteplX-Edit , and DIM-4.6B-Edit for the remove operation.
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Prompt

Replace the deer in the
image with a lion standing
majestically in the same
forest setting, under the
glowing golden light and light]
snowflakes.

the image with a rabbit.

Replace the mountain goat in| .

Replace the horse in the
image with a cat.

DIM-4.6B-Edit

Figure 7: The edits of Janus-40, SteplX-Edit , and | DIM-4.6B-Edit for the replace operation.

Prompt

Transfer the image into a
colourful ceramic mosaic-tile
style.

Transfer the image into a
traditional ukiyo-e
woodblock-print style.

Transfer the image into a
folded-paper origami art
style.

Source Janus-4o0

Step1X-Edit

DIM-4.6B-Edit

Figure 8: The edits of Janus-40, SteplX-Edit , and DIM-4.6B-Edit for style transfer.
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B.2 VISUALIZATION OF THE DRAW-IN-MIND WORKFLOW’S IMPACT ON IMAGE EDITING.

Relying solely on numerical metrics may not intuitively convey the practical impact of the Draw-
In-Mind workflow on image generation. To address this, we present Figure 0] [I0} [TT] [I2} and [I3]
to showcase several advanced usage scenarios. These examples demonstrate complex cases that are
successfully handled by DIM-Edit-4.6B, highlighting capabilities that remain beyond the reach of
current baseline methods.

Instruction Disambiguation. In Figure[9] the user instruction presents an inherent ambiguity due to
the presence of three lemons on the table. This task necessitates precise multi-object localization and
removal, which is a challenge that proves difficult without the Draw-In-Mind paradigm, as standard
models often struggle with the required multi-object reasoning. Consequently, both the 7B Janus-4o0
and 12B Step1X-Edit fail to execute the edit correctly. Similarly, when CoT is disabled, our DIM-
4.6B-Edit also fails to remove all targets. However, with DIM CoT enabled, the generated design
blueprints effectively disambiguate the instruction. They accurately localize the three lemons to the
right of the vase and ensure their complete removal, while perfectly preserving the integrity of the
unedited regions.

Edit Navigation and Structural Planning. In Figure[I0] the user instruction presents two distinct
challenges: (i) determining the optimal placement for a wooden cabin, and (ii) identifying the ap-
propriate structural integration for a chimney. These dual requirements impose a significant burden
on the generation model. Consequently, in Janus-40’s output, the chimney is nearly invisible, while
Step1X-Edit places the cabin counterintuitively close to the river. Similarly, DIM without CoT fails
to simultaneously resolve the cabin placement and chimney addition. In contrast, DIM powered by
CoT effectively navigates these challenges. It observes that the trees thin out on the right side”
(GLP) and selects this area as the optimal location (EAL). It then explicitly envisions the cabin’s
appearance, including a chimney emitting smoke (EII), ultimately yielding the most plausible and
high-quality edit among all competitors.

Commonsense-guarded Editing. In Figure [T1] the editing task presents a subtle complexity: it
requires commonsense reasoning regarding scale. From the same viewpoint, a cat should appear
significantly smaller than a horse. All baseline models, including our own DIM w/o CoT, overlook
this physical constraint, simply replacing the horse with a cat of identical dimensions. In contrast,
DIM with CoT successfully leverages commonsense reasoning. It recognizes the size discrepancy
and executes a “commonsense-guarded” edit, placing a naturally scaled cat at the target location,
thereby preserving scene realism.

Advanced Causal Editing. In Figure we present an advanced causal editing scenario where the
instruction implies the target quantity (referencing ’the second prime number”) rather than stating
it explicitly. Unsurprisingly, all baseline models fail to resolve this implicit requirement. In con-
trast, DIM with CoT swiftly infers the correct number of cherries and executes a successful edit,
demonstrating its ability to handle knowledge-intensive instructions.

Advanced Temporal Editing. Figure [[3]illustrates the most complex temporal editing scenario,
which necessitates a deep understanding of chemical reaction dynamics. Similar to the previous
example, none of the baseline models succeed in this task. In contrast, DIM with CoT accurately
characterizes the reaction process and executes physically plausible edits, demonstrating its capabil-
ity to handle sophisticated temporal reasoning.
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Prompt 1 Source Janus-40 Step1X-Edit DIM w/o CoT

Remove the lemons on
the table.

\. J

)

How many lemons are on the table

2 N

DIM CoT: Instruction Disambiguation DIM-4.6B-Edit

1. Edit Instruction: Remove the lemons on the table.
2. Global Layout Perception: The image features a vase with pink lilies placed on a table near a
window. To the right of the vase, there are three lemons and a glass of yellow liquid. In the
foreground, there is a plate of clams. The background shows a blurred green outdoor scene
visible through the window.
3. Local Object Perception:

- Vase: Transparent glass vase with water, holding pink lilies with green leaves.

- Pink Lilies: Large, vibrant pink flowers with dark stamens and green leaves.

- Lemons: Three bright yellow lemons with a smooth, slightly textured surface.

- Glass of Yellow Liquid: A clear glass filled with a pale yellow drink, positioned to the right of
the lemons.

- Plate of Clams: A white plate containing opened clams with brown and orange shells.

- Tablecloth: White lace tablecloth with intricate patterns.

- Background: Blurred green outdoor scenery visible through the window.
4. Edit Area Localization: The three lemons on the table will be removed.
5. Edited Image Imagination: The edited image will no longer have the three lemons on the table.
The space where the lemons were will now show the white lace tablecloth uninterrupted,

intaining the overall ition of the scene. The vase, pink lilies, glass of yellow liquid, and

plate of clams will remain unchanged, and the focus will shift slightly more to these elements.

Figure 9: The edits of Janus-40 , Step1X-Edit, DIM w/o CoT , and DIM-4.6B-Edit when the
user instruction is ambiguous. DIM CoT is capable of instruction disambiguation under this case.

Prompt 1 Source Janus-40 Step1X-Edit DIM w/o CoT

Add a small wooden
cabin with a chimney
near the edge of the
forest on the right side of
the image.

How should I integrate a chimney intfo it?

DIM CoT: Edit Navigation & Structural Planning DIM-4.6B-Edit

1. Edit Instruction: Add a small wooden cabin with a chimney near the edge of the forest on the
right side of the image.
2. Global Layout Perception: The image features a flowing river in the foreground with white rapids.
Behind the river is a dense forest of evergreen trees, extending across the middle of the image. In
the background, a large mountain rises prominently, partially obscured by the trees. The right side
of the image shows the edge of the forest, where the trees thin out slightly.
3. Local Object Perception:

- River: White, frothy water with visible rapids and rocks protruding from the surface. The texture
is turbulent and dynamic.

- Forest: Tall evergreen trees with green needles, some showing signs of brown discoloration. The
trees are densely packed, with slight thinning on the right edge.

- Mountain: Grayish rock with rugged texture and steep slopes, partially covered by darker
patches of vegetation.

- Sky: Pale and overcast, with soft lighting.
4. Edit Area Localization: The right side of the image, near the edge of the forest where the trees
thin out slightly, will be modified to include the wooden cabin with a chimney.
5. Edited Image Imagination: A small wooden cabin with a slanted roof and visible wooden planks
will appear near the edge of the forest on the right side. The cabin will have a stone chimney
emitting a thin trail of smoke, blending naturally with the overcast sky. The cabin will be positioned
slightly behind the nearest trees, partially obscured by their branches, to maintain a realistic
\_integration into the scene. The surrounding forest and river will remain unchanged.

Figure 10: The edits of Janus-4o0, SteplX-Edit, DIM w/o CoT , and | DIM-4.6B-Edit when

the user instruction requires localization and involves fine-grained structure modification. DIM CoT
is capable of edit navigation and structural planning under this case.
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Prompt ) Source Janus-4o0 Step1iX-Edit DIM w/o CoT

Replace the horse in the
image with a cat.

be much smaller than the horse...

DIM CoT: Commonsense-guarded Editing

1. Edit Instruction: Replace the horse in the image with a cat.
2. Global Layout Perception: The image features a horse standing in a grassy field. The field is
covered with frost and scattered leaves. In the background, there is a line of tall, leafless trees,
and the sun is shining through the trees, creating long shadows across the ground.
3. Local Object Perception:

- Horse: Positioned slightly left of center, the horse is light beige in color with a smooth texture
and a visible harness. It is standing still, facing slightly to the left.

- Field: The ground is covered with frosty grass and scattered brown leaves, giving it a textured
appearance.

- Trees: Tall, leafless trees with intricate branches form the background. They are dark brown
and silhouetted against the bright sunlight.

- Sunlight: The sun is low in the sky, casting warm golden light and long shadows across the
field.
4. Edit Area Localization: The horse will be replaced with a cat. The area of change is the space
occupied by the horse, including its immediate surroundings to ensure the cat is seamlessly
integrated into the scene.
5. Edited Image Imagination: The horse is replaced by a cat, which is smaller in size and
positioned in the same area slightly left of center. The cat is sitting or standing, with fur that
could be a similar beige color to match the lighting and overall tone of the image. The frosty
field, trees, and sunlight remain unchanged, with the cat casting a smaller shadow on the
\__ground due to its size. The scene retains its tranquil and warm atmosphere.

Figure 11: The edits of Janus-4o0, SteplX-Edit, DIM w/o CoT , and |DIM-4.6B-Edit

when the user instruction involves implicit commonsense constraint. DIM CoT is capable of
commonsense-guarded editing under this case.

e

Prompt ) Source Janus-4o0 SteplX-Edit DIM w/o CoT

Generate this still-life
scene with cherries
visible totaling the
second prime number.

Which number is the second prime number?
f DIM CoT: Advanced Causal Editing |

1. Edit Instruction: Generate this still-life scene with cherries visible totaling the second prime number.
2. Global Layout Perception: The image depicts a still-life arrangement. Key objects include:

- Aglass goblet with a spiral lemon peel draped over it, located in the upper left quadrant.

- Acluster of white grapes, positioned centrally and spilling slightly to the left.

- Two lemons, one whole and one partially sliced, located in the lower left quadrant.

- Alarge yellow fruit (possibly a grapefruit or melon) in the upper center-right.

- Acluster of cherries, located in the lower right quadrant.

- Agreen fabric draped over the table, forming the base of the composition.

- Awooden table surface visible in the lower right corner.

DIM-4.6B-Edit

- Grape leaves and vines extending from the fruit, adding a naturalistic touch.
3. Local Object Perception:

- **Glass goblet**: Transparent, reflective, and elevated, with a spiral lemon peel (yellow, textured) hanging from it.

- **White grapes**: Round, translucent, and glossy, with a pale greenish-white hue.

- **Lemons**: Bright yellow with a textured rind; one is whole, and the other is sliced to reveal its juicy interior.

- **Large yellow fruit**: Smooth, round, and slightly textured, with a vibrant yellow color.

- #*Cherries**: Small, round, and glossy, with a deep red hue and attached stems.

- **Green fabric**: Rich green, with folds and a soft texture, reflecting light.

- **Wooden table**: Brown, with a smooth surface and visible grain.

- **Grape leaves and vines**: Green and brown, with a natural, organic shape and texture.
4. Edit Area Localization: The cluster of cherries in the lower right quadrant will be modified. The number of cherries will be adjusted to
total the second prime number, which is 3.
5. Edited Image Imagination: The edited image will feature the same stil-ife arrangement, but the cluster of cherries in the lower right
quadrant will now contain exactly three cherries. The cherries will remain deep red, glossy, and attached to their stems, but the excess
cherries will be removed to meet the specified count. The rest of the composition, including the goblet, lemon peel, grapes, lemons, large
{_ vellow frut, green fabric, and wooden table, will remain unchanged. The overall balance and aesthetic of the scene will be preserved.

Figure 12: The edits of Janus-40, SteplX-Edit, DIM w/o CoT , and DIM-4.6B-Edit when

the user instruction requires causal reasoning. DIM CoT is capable of advanced causal editing under
this case.
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Prompt ) Source Janus-4o0 Step1X-Edit DIM w/o CoT

What will these iron nails
look like after soaking in
3% saltwater for 4 hours?

. J

(™ Is there any chemical reaction that will
(% change the appearance of the iron nail?

(" )

DIM CoT: Advanced Temporal Editing DIM-4.6B-Edit

1. Edit Instruction: What will these iron nails look like after soaking in 3% saltwater for 4 hours?
2. Global Layout Perception: The image shows a transparent plastic cup filled with clear water.
Inside the cup, there is a single iron nail submerged in the water. The cup is placed on a black
fabric background, and the green wall is visible in the background.
3. Local Object Perception:

- **Iron Nail**: The nail is metallic, straight, and has a shiny silver-gray surface. It appears
smooth and uncorroded.
- **Water**: The water is clear and transparent, filling most of the cup.

- ¥*Cup**: The cup is made of clear plastic, cylindrical in shape, and allows visibility of its
contents.

- **Background**: The black fabric is textured and contrasts with the green wall behind it.
4. Edit Area Localization: The iron nail inside the cup will change in appearance due to the soaking
process.
5. Edited Image Imagination: After soaking in 3% saltwater for 4 hours, the iron nail will likely
show signs of corrosion. Its surface will appear duller, with possible reddish-brown rust spots
forming, especially near the submerged portion. The water may also appear slightly cloudy due to
the release of iron particles or rust. The cup and background will remain unchanged."

Figure 13: The edits of Janus-40, SteplX-Edit, DIM w/o CoT , and DIM-4.6B-Edit when

the user instruction requires temporal reasoning. DIM CoT is capable of advanced temporal editing
under this case.
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B.3 VISUALIZATION OF FAILURE CASES

We are also open to discuss the limitations of our work, and provide three failure types with six
specific cases in Figure[T4] [T3] and [I6]to intuitively show the boundaries of our DIM-4.6B-Edit.

Large-scale All-in-One Editing. In Figure the instructions involve simultaneous multi-step
edits, a task that remains essentially challenging for almost all editing models, and one where DIM-
Edit also encounters difficulties.

* For the first case, Janus-40 and Step1X-Edit completely fail to follow the physical laws dictating
that the wooden tower should collapse. Our DIM-4.6B-Edit successfully imitates a scene of
imminent collapse; however, it fails to preserve the exact appearance of the individual wooden
blocks, as too many objects are involved in the manipulation.

* For the second case, Janus-4o0 and Step1X-Edit fail to change the view at all. While our DIM-
4.6B-Edit completes the primary editing task, some fine-grained details are distorted (e.g., the
window of the shoreside house is missing).

Text and Logic Editing. In Figure where instructions involve complex text rendering and
logical editing, DIM-4.6B-Edit struggles due to a combination of data scarcity and inherent VAE
compression issues.

* For the first case, the use of SANAIL.5’s VAE with a 32x downsampling rate makes complex
text rendering particularly challenging, a difficulty exacerbated by the lack of targeted training
data. In contrast, Stepl X-Edit employs an 8x downsampling VAE and is trained on proprietary,
text-specific in-house data, allowing it to perform relatively well. We regard this as a necessary
trade-off between efficiency and rendering quality: as shown in Table 10, DIM-4.6B-Edit requires
only 6 seconds to complete an edit with a 200+ word CoT, whereas Step1X-Edit takes 28 seconds
with a short raw prompt.

¢ For the second case, all editing models fail. This is fundamentally because none of the models,
including DIM-4.6B-Edit, are specifically trained on geometric data. The underlying painter
struggles to even draw these shapes, let alone edit them. We believe crafting such datasets remains
a valuable and under-explored topic for future research.

Reference-free Editing (in Pixel Space). In Figure [I6] the reference image does not provide a
strong pixel constraint for the target image. Consequently, this task resembles multimodal generation
rather than strict editing. All models fail here because existing editing architectures typically enforce
strong pixel alignment with the source image.

* For the first case, which requests a view of the Golden Gate Bridge, Janus-4o and Step1X-Edit are
completely ineffective. DIM-4.6B-Edit struggles to break free from the structural constraints of
the reference image, resulting in a ”scratchy” and distorted view that fails to meet the objective.

* For the second case, where the task involves a re-imagination of the source scene, Janus-40 pro-
duces a black-and-white edit, and Stepl1X-Edit fails completely. DIM-4.6B-Edit generates the
most plausible result, successfully covering the scene with white snow. However, because the
transformation fundamentally alters the source structure, specific details such as the castle are
inevitably distorted.

In summary, the majority of failure cases arise when the task necessitates either generating an im-
age that diverges drastically from the source or rendering complex text and geometric shapes. Even
in these challenging scenarios, DIM-4.6B-Edit demonstrates superior instruction-following capa-
bilities compared to baseline models. These limitations highlight persistent challenges within the
current landscape of open-source editing models. We suggest that future research directions, such
as intelligent routing that dynamically selects between T2I generation and editing pipelines based
on instruction intent, offer promising avenues for resolving these issues, though significant progress
is still required in the field.
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Step1X-Edit DIM-4.6B-Edit

Predict what happens
when one wooden block
is removed from the third
layer (counting from
bottom) of this tower.
W

Step1X-Edit DIM-4.6B-Edit

Generate the view from a
boat position 3 meters
forward showing the
building on the right bank
in oil painting style.
.

v

Figure 14: The edits of Janus-4o , SteplX-Edit , and DIM-4.6B-Edit for the failure type large-
scale all-in-one editing.

Prompt A Source Janus-4o0 SteplX-Edit DIM-4.6B-Edit

Change the text 'ESTATE
TACHEN' to 'Timeless
Fashion'

Prompt ) Source Janus-4o0 Step1X-Edit DIM-4.6B-Edit
28

Dl
d

o

Find x. Please annotate
your answer directly on
the image.

Figure 15: The edits of Janus-4o, SteplX-Edit, and DIM-4.6B-Edit for the failure type text
and logic editing.
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Generate the scenic
landmark view from this
red map pin location.

Generate what this
mountainous landscape
would look like during a
heavy winter snowstorm.

¥ J

Figure 16: The edits of Janus-40, SteplX-Edit, and DIM-4.6B-Edit for the failure type

reference-free editing (in pixel space).
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C DIM-EDIT DATA COLLECTION PIPELINE

As stated in Section[3.1.2] we collect raw edit data from four publicly available datasets:

UltraEdit (Zhao et al.,2024). In addition to the prompt quality evaluation and optimization in the
DIM-Edit creation pipeline (Figure|[2)), which aligns textual prompts with actual editing behaviors,
we employ three image-to-image metrics on the UltraEdit dataset to improve visual consistency
and stabilize training: (i) CLIP image similarity, (ii) DINOv2 similarity, and (iii) SSIM. These
metrics are used to select edit pairs that maintain consistent visual appearances. We retain only
those edit pairs that satisfy the following conditions: (i) the CLIP similarity between the source
and edited images is greater than 0.9; (ii) the DINOv2 similarity is greater than 0.9; (iii) the
SSIM score is greater than 0.8; and (iv) the prompt does not contain “rainbow”, since many edit
pairs meeting (i)—(iii) are associated with low-quality “rainbow” edits. After filtering, we obtain
roughly 160K edit pairs.

MagicBrush (Zhang et al., [2023). We include only 8K images from the training set to avoid
potential information leakage during evaluation.

SEED-Data-Edit-Part3 (Ge et al.,2024). Since the “remove” operation is absent in UltraEdit, we
additionally select 19K edit pairs from SEED-Data-Edit-Part3 by filtering prompts that explicitly
contain “remove.”

ShareGPT-40-Image (Chen et al., 2025b)). We include only its 46K image-to-image subset.

By combining these collected datasets, we obtain a total of 233K raw edit pairs for the proposed
DIM-Edit.

D DIM-EDIT QUALITY ASSESSMENT

We further assess the quality of the CoTs in DIM-Edit through MLLM-powered validation. Specif-
ically, due to API quota limitations, we randomly sample 30K edit pairs from DIM-Edit and use
GPT-4.1 to evaluate the quality of the GPT-40-annotated CoTs, categorizing them into four levels:

Low: The optimized edit instruction does not re-
flect the change between the source and edited im-
ages at all.

Medium: The optimized edit instruction captures J‘.’ Zo Quality Level
the major change between the source and edited 2 Medium
images, but the chain-of-thought contains some High
factual errors. Ultra-high

High: The optimized edit instruction captures the
major change between the source and edited im-
ages, and the chain-of-thought contains only mi-
nor factual errors.
83.4%

Ultra-High: The optimized edit instruction accu-
rately captures all changes between the source and
edited images, and the chain-of-thought contains
no factual errors.

The percentage distribution of each quality level is

shown in Figure Notably, no data is categorized
as “Low”, while the majority falls under the “Ultra-
High” level, demonstrating the strong overall quality

Figure 17: The percentage distribution of
each quality level in DIM-Edit judged by
GPT-4.1.

of DIM-Edit.

We further conducted a human verification study. Specifically, we randomly sampled 25 instances
from each of the data sources listed in Appendix [C] resulting in a comprehensive evaluation set of
100 samples. Three human annotators were then recruited to assess the quality of the CoTs from
two distinct perspectives:
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DIM-Edit CoT User Study

DIM-Edit 89% Perfect Match 81%
Raw||5% : Minor Error| ]15%
Tied||6% :  Major Error||4%

(a) Instruction Win Rate (b) Ell Quality

Figure 18: (a) The win rate of the optimized DIM-Edit instruction and the raw instruction. (b) The
quality of the Edited Image Imagination (EII).

Evaluation of Optimized Instructions (Start of CoT). We presented annotators with both the raw
instructions and the optimized instructions from DIM-Edit, alongside the corresponding source-
edit image pairs. Annotators were tasked with selecting the instruction that best reflected the actual
editing operations. A “’Tied” option was included for cases where neither instruction was sufficiently
accurate. The metric reported is the average win rate for each instruction type.

Evaluation of Edited Image Imagination (End of CoT). We asked annotators to assess the align-
ment between the Edited Image Imagination (EII) and the actual edited image. The quality was
categorized into three levels: (i) Perfect Match, (ii) Minor Errors, and (iii) Major Errors. The metric
reported is the percentage distribution across these error levels.

This efficient evaluation protocol enables a rapid yet robust assessment of the overall CoT quality
within DIM-Edit. The results for both the instruction optimization (Win Rate) and the Edited Im-
age Imagination (Error Distribution) are summarized in Figure[T8] in which we have the following
analysis:

* Consistency with MLLM Assessment. These results align closely with the MLLM-based quality
assessment presented in Appendix D, where over 80% of DIM-Edit CoTs were judged clearer than
the raw instructions, with no factual errors detected. Even in "Tied” cases where the optimiza-
tion was not deemed strictly superior, the semantics of the raw instruction were fully preserved,
ensuring that the optimization process introduces no regression.

* Analysis of Minor Errors. We observed that minor errors typically relate to subtle environmental
inconsistencies, such as slight shifts in brightness (e.g., “the image should be a bit lighter”).
These artifacts usually stem from the VAE’s inability to perfectly reconstruct raw images in Al-
generated pairs (e.g., from UltraEdit), leading to a slight loss of high-frequency features. As these
discrepancies are barely perceptible to the human eye, they have a negligible impact on overall
training efficiency.

* Analysis of Major Errors. Instances classified as having major errors generally correspond to
extremely challenging scenarios where the edits are minute (e.g., the removed object occupies less
than 2% of the pixels). These cases are difficult even for human annotators and advanced MLLMs
like GPT-40. Given their extreme rarity, these outliers do not adversely affect the stability of the
training procedure.

Overall, the CoTs produced by our DIM-Edit pipeline maintain high quality and serve as effec-

tive design blueprints. This high data quality directly translates to better editing capabilities, as
evidenced by the superior performance of the DIM-4.6B-Edit model trained on this dataset.
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E DIM-T2I ANALYSIS DIMENSIONS

Figure [19)and 20| illustrate the 21 analysis dimensions and their corresponding prompts used in the
DIM-T2I annotation process. The 21 dimensions were derived from a thorough literature review and
an empirical analysis of existing understanding datasets and benchmarks. They are listed as follows:

MME (Fu et all [2025), MMMU (Yue et all [2024), MMMU-Pro (Yue et al] [2025),
MMLU (Hendrycks et all, 2020), MMStar (Chen et al} [2024b), MMT-Bench (Ying et al.
2024), MM-Vet (Yu et al., [2023), MM-Vet V2 (Yu et al. [2024), LLaVA-Bench-Wild (Liu et al.
20234), LLaVA-Bench-Wilder 2024a), WildVision (Lu et al 2024), COCO (Lin et al.
201%), VQAV2 (Goyal et al 2017), OK-VQA (Marino et al., 2019), TextCaps (Sidorov et al.
2020), TextVQA (Singh et al., 2019), AI2D (Kembhavi et all 2016), ChartQA (Masry et al.
2022), DocVQA 2021), MathVista (Lu et al.l 2023), MIA-Bench (Qian et al.
2024), MegaBench 2024a), RWQA [2024), OCRBench (Liu et al| 2023b),
GSMBK (Cobbe et all 2021), GPQA 2024), IFEval 2023).

We believe that the aspects emphasized in widely recognized understanding datasets and bench-
marks effectively capture the most frequent interactions between humans and objects in the real
world. This makes them an ideal foundation for learning text-to-image generation tasks involving
long and complex instructions. By constructing prompts that span these diverse fields, DIM-4.6B-
T2I not only masters long-form instruction processing but also acquires the broad world knowledge
necessary to facilitate sophisticated CoT comprehension and precise editing, thereby achieving high
GenEval scores and low FID on MJHQ-30K.

F THE USE OF LARGE LANGUAGE MODELS

This paper uses OpenAl ChatGPT solely for polishing the writing. The authors provided raw text
to ChatGPT to correct grammatical errors and refine the statements into a more formal academic
style. All polished text was manually reviewed and verified by the authors, who affirm that the
paper contains no fabricated content. No statistical data were provided to ChatGPT. All numerical
values in tables and figures were originally written by the authors.
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Dimension Prompt
Please describe images in details, including but not limited to the user pre-defined dimensions.
Please make sure your description is visually grounded for user provided image, namely the
System . . o . . X
Message user can find visual cues in image for your generated image caption. The user pre-defined
dimensions are: [DIMENSIONS] Please don't generate your response for each dimension, e.g.,
**something**, just give an overall image caption including all the dimensions.
Character If a character is shown in the image, you must describe his/her names. The character
Name include but not limited to the characters shown in Movies, TV Shows, Anime, Comics,
Literature, Games, Virtual Idols/Characters.
Scene Provide an overview of the image, identifying key objects, people, and any
Betcnpnon interactions. Clearly classify and describe each object (e.g., people, animals,
buildings, plants). Specify their attributes, such as size, color, material, and texture.
. Describe any actions taking place in the image. Who is performing them, and how are
Actions and . . . . -
Interactions they interacting with other objects or people? If there are dynamic elements (e.g.,

movement), detail their state (e.g., running, jumping, flying, waving).

Context and
Environment

Describe the setting of the image, including the location (indoor or outdoor), time of
day, weather, and any background elements (e.g., sky, buildings, roads). How does
the environment contribute to the overall scene? Does the setting enhance the mood
or theme?

Emotion and
Sentiment

If people are present, describe their emotional states based on body language, facial
expressions, and other visual cues. What mood or tone does the image convey (e.g.,
happiness, sadness, tension, peace)? How do these emotions connect to the scene?

Relationships

Explain how objects, people, and other elements are positioned in relation to one
another (e.g., "next to," "above," "to the right of"). Consider foreground, background,

and Spatial d overall spatial ition. How does the positioning infl th Il visual
Arrangement | 2nd overall spa a' composition. How does the positioning influence the overall visua
balance or narrative?
Describe the color palette of the image (e.g., colors of objects, background), and note
Color and .
Texture any texture details (e.g., smooth, rough, soft). How do these color and texture

choices contribute to the atmosphere or style of the image?

Symbolism or

If relevant, interpret any symbolic or abstract elements within the image. What

Fine Elements

Abstract deeper meanings or metaphors can be inferred from the visual elements? How do
Interpretation | these symbols tie into the image's broader themes or message?
Observe the lighting conditions in the image (e.g., sunlight, artificial light) and how
Lighting and | shadows or reflections influence the objects' appearance. Note the intensity of the
Shadows light and any patterns created by it. How do these lighting effects contribute to the
mood or focal points of the image?
. Focus on smaller, intricate details in the image (e.g., wrinkles in clothing, textures on
Details and

surfaces, distinct features). These elements may carry significant meaning or help
provide a more vivid, precise description.

Figure 19: The 21 analysis dimensions and corresponding prompts for DIM-T21.
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Dimension Prompt
. Describe the viewpoint of the image (e.g., aerial, eye-level, side view) and its
Perspective - . .
and composition (e.g., symmetry, balance, focal point). How does the choice of
Composition perspective and composition affect the viewer's perception or interpretation of the
scene?
Ti d If possible, infer the time of day or season based on visual cues (e.g., light quality,
lS?aesz: weather, clothing style). For example, a winter snow scene, a summer beach setting,
or an autumn forest could suggest the specific season.
Consider if there's a specific target audience for the analysis. For instance, an analysis
Target for an art historian might use more technical terms, while one for a general audience
Audience may keep the description simpler. Does the complexity of the image suggest it's

meant for a particular demographic or purpose?

If text appears in the image, you must describe the text in its original language and
OCR provide an English translation in parentheses. For example: 7~ (book). Additionally,
explain the meaning of the text within its context.

If there are people in the image, describe their physical features (e.g. age, gender,

Person hairstyle, clothing, etc.), their movements and expressions, and their relationship to
Description | the surrounding environment. If there is a single person, use 'he' or 'she' for
reference instead of 'they'.

Analyze the image and describe the mathematical concepts it represents. Include
specific details like geometric shapes, equations, numeric values, or relationships
between elements. If the image includes a graph, describe its axes, scales, and key
points. If applicable, explain how mathematical operations are visualized.

Mathematics

Examine the image and extract textual and contextual information. If the image
Information | contains a document, transcribe its content accurately. For GUI or structured data,
Extraction describe its layout, labels, and functionality. Summarize the core message or purpose
of the content.

Identify the sequence or logical arrangement in the image. If it depicts a process,
Planning explain the steps and their correct order. For puzzles or games, provide the rules and
possible solutions.

Explain the scientific content or phenomenon depicted in the image. Provide details
Science on experiments, natural phenomena, or theoretical concepts, including relevant
terminology.

Provide a detailed perception-based description of the image. Identify objects, their
attributes (color, shape, size), and spatial relationships. For specific tasks like facial
analysis or pose estimation, include characteristics like expressions, poses, or physical
traits.

Perception

Evaluate the image based on predefined metrics. Assess its quality, authenticity, and
Metrics adherence to caption content. For paper review or comparative tasks, provide
constructive feedback or preference reasoning.

Figure 20: The 21 analysis dimensions and corresponding prompts for DIM-T2I. (Continue)
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