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ABSTRACT

We introduce a framework for benchmarking algorithms with varying hyperpa-
rameters from multiple perspectives. The dependency of algorithms’ performance
on hyperparameters complicates fair comparisons and often leads to inconsistent
empirical studies. Our framework addresses this challenge by proposing two key
criteria: Performance-HPO trajectory and Reliability-HPO. The Performance-
HPO trajectory tracks how an algorithm’s performance changes with different
hyperparameter optimization (HPO) budget allocations, leveraging a variety of
off-the-shelf hyperparameter optimizers. This enables users to identify the most
suitable algorithm for their specific needs. The Reliability-HPO criterion evalu-
ates the expected value of an algorithm’s success rate across hyperparameters, es-
timated using Monte Carlo simulations in log-space. We demonstrate our frame-
work by benchmarking widely-used convex optimizers. Our experiments, con-
ducted with CVXPY across various problem types, settings, and dimensionalities,
reveal that the SCS solver exhibits the highest Performance-HPO, while ECOS and
MOSEK demonstrate superior Reliability-HPO.

1 INTRODUCTION

Most algorithms require hyperparameter optimization to achieve optimal performance. Convex op-
timizers such as MOSEK (ApS, 2024), SCS (O’Donoghue et al., 2016; O’Donoghue, 2021), and OSQP
(Ichnowski et al., 2021; Stellato et al., 2020) each have different hyperparameters. Optimizing these
hyperparameters impacts their performance significantly (Ichnowski et al., 2021). Despite this, no
straightforward method exists to optimize many of these hyperparameters in advance. For instance,
selecting optimal parameters for the Alternating Direction Method of Multipliers (ADMM) remains
an open research question (Ghadimi et al., 2014; Giselsson & Boyd, 2016; Nishihara et al., 2015).
To address this, Ichnowski et al. (2021) propose using reinforcement learning to tune OSQP hyper-
parameters.

In other fields, this issue also affects performance. In machine learning, hyperparameter choice often
causes inconsistent results in empirical work (Cooper et al., 2021; Gundersen et al., 2022). Approx-
imately 45% of hyperparameter optimization in NeurIPS 2019 and ICLR 2020 papers is manual
(Gundersen et al., 2022). Researchers with a lot of computing resources are able to fine-tune the of
an algorithm’s hyperparameters more than others. This makes it hard to compare the effectiveness
of different algorithms. Probst et al. (2019) discuss the importance of machine learning algorithm
hyperparameters. Similarly, Sivaprasad et al. (2020) explore the profound impact of hyperparameter
optimization on deep learning optimizers’ performance. Moreover, Cooper et al. (2021) emphasize
hyperparameter optimization’s significance in machine learning. They suggest that deriving mean-
ingful insights from this process warrants dedicated research. However, the literature still needs an
unbiased methodology to benchmark different algorithms effectively.

In machine learning, hyperparameter optimization is a stochastic bilevel optimization problem (Beck
et al., 2023). A training set tunes model parameters, and a validation set tunes model hyperparam-
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eters. Optimal parameters are a function of hyperparameters. Problem 1 shows hyperparameter
optimization formulated as a stochastic bilevel optimization problem.

min
x∈X , y∗(x)∈argmin

y∈Y
g(x,y)

E
ξ∼Ξ

f
(
x, y∗(x); ξ

)
, (1)

where y indicates model parameters, and x denotes model hyperparameters. f and g are the valida-
tion and training losses, respectively. ξ is a random variable, and y∗(x) indicates optimal parame-
ters given hyperparameters x. This problem is challenging because the optimal weights y∗(x) are a
function of the hyperparameters x. Hence, in many empirical studies, researchers often do not tune
hyperparameters reasonably. This leads to inconsistent results.

We provide an example to clarify the problem and the intuition behind our methodology. Figure 1
shows the performance of two hypothetical algorithms, A and B, given the hyperparameter optimiza-
tion budget. Algorithm B performs better with low hyperparameter optimization budgets. It is less
sensitive to its hyperparameters. Algorithm A requires a substantial hyperparameter optimization
budget to outperform Algorithm B. Researchers repeatedly solve problems with different data in
applications such as model predictive control. In such applications, spending extra time optimizing
Algorithm A’s hyperparameters pays off in the total performance across all problem instances.

Figure 1: Performance of two hypothetical algorithms
based on hyperparameter optimization budget. In near-
optimal settings, Algorithm A outperforms Algorithm
B. However, it requires a substantial hyperparameter
optimization budget. Without hyperparameter opti-
mization, Algorithm B outperforms Algorithm A. In
this example, it is not trivial which algorithm is supe-
rior.

Algorithms A and B are suitable for specific
use cases. It depends on the hyperparame-
ter optimization budget. We call the curves
in Figure 1 the Performance-HPO trajectories
of Algorithms A and B. We propose to use
it to compare their performance. Given the
Performance-HPO trajectory, the user decides
which algorithm to use. This decision depends
on the settings. We define Performance-HPO
trajectory in Section 3 formally. This method-
ology is trivially generalizable to settings with
more than two algorithms. Additionally, we
are able to calculate the area under the curve
to measure the overall performance of each al-
gorithm across a range of hyperparameter opti-
mization budgets.

To use this methodology, we define an unbiased method to obtain the Performance-HPO trajec-
tory for each algorithm. Previous work utilizes only a single hyperparameter optimizer, such as
random search (Sivaprasad et al., 2020). This approach ignores various off-the-shelf hyperparam-
eter optimizers such as Bayesian optimization (Garnett, 2023) and evolutionary algorithms (Bäck
& Schwefel, 1993). Practitioners widely use these optimizers in real-world applications (Nogueira,
2014–; Gad, 2023). Some packages provide a unified interface for utilizing multiple hyperparame-
ter optimizers. Examples include nlopt (Johnson, 2011), gradient-free-optimizers (Simon
Blanke, 2020), hyperactive (Simon Blanke, since 2019), hyperopt (Bergstra et al., 2013), and
scikit-optimize (Head et al., 2018).

To address the limitations of the past benchmarking methods, we suggest simultaneously using
a list of off-the-shelf hyperparameter optimization algorithms. This approach aims to calculate
the Performance-HPO trajectory. Each hyperparameter optimization algorithm improves algorithm
performance by optimizing its hyperparameters separately. At each time step, we select the best
result from the hyperparameter optimization algorithms to define the Performance-HPO trajectory
at that time.

Reliability based on hyperparameter choice is another important criterion when comparing algo-
rithms with different hyperparameters. Consider two iterative algorithms whose success depends
on convergence. It is essential to understand how difficult it is to find hyperparameters that lead to
convergence. The definition of "success" for an algorithm varies by area. For example, for con-
vex optimizers, success means finding a solution that meets pre-defined accuracy metrics within a
specified time.
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We define the Reliability-HPO of an algorithm as the expected value of its success given random hy-
perparameters. We propose using Reliability-HPO to evaluate the reliability of different algorithms.
Algorithms without hyperparameters highlight the importance of computing Reliability-HPO in ad-
dition to Performance-HPO trajectory. For these algorithms, the Performance-HPO trajectory is
flat since there are no hyperparameters to optimize for improved performance. Thus, algorithms
with hyperparameters potentially outperform those without hyperparameters under high optimiza-
tion budgets. However, their Reliability-HPO will be at the maximum value. This highlights their
reliability. This example demonstrates why considering both performance and reliability based on
hyperparameters provides a complete framework for benchmarking algorithms with different hyper-
parameters.

We demonstrate our methodology using convex optimizers. Practitioners widely use convex opti-
mization in fields such as finance (Boyd et al., 2017), signal processing (Luo, 2003), and modeling
uncertainty (Ben-Haim & Elishakoff, 2013). One challenge with convex optimizers is formatting the
optimization problem in the specific form required by the optimizer. CVXPY (Diamond et al., 2014)
simplifies this by converting problems from a user-friendly format to the required optimizer’s format.
Given its extensive use, we use CVXPY to benchmark convex optimizers. The SCS solver achieves
the highest Performance-HPO. In contrast, ECOS and MOSEK exhibit the highest Reliability-HPO.

Contributions. The contributions of this paper are as follows:

• Methodologically, we introduce the Performance-HPO trajectory and Reliability-HPO. These cri-
teria provide a generic framework to measure the performance and reliability of algorithms based
on their hyperparameters. Our methodology is unbiased and does not involve human intervention.
It applies to any algorithm, regardless of the domain.

• Empirically, we use our framework to benchmark convex optimizers through CVXPY. We perform
extensive real-world experiments across different problem types, settings, and dimensionalities.

The structure of the rest of the paper is as follows: we provide the details of the related work and
the proposed methodology in Section 2 and Section 3, respectively. We discuss the experiments in
Section 4. Section 5 concludes the paper.

2 RELATED WORK

Impact of Hyperparameter Selection on Reproducibility. Melis et al. (2017) re-evaluate state-
of-the-art architectures and regularization techniques in neural language models. They conclude if
one sufficiently optimizes hyperparameters of standard LSTM architectures, they outperform newer
models. Reimers & Gurevych (2017) explore why LSTM networks show different performance lev-
els in sequence tagging tasks. They focus on how different hyperparameter optimization methods
contribute to these differences. They compare random search, grid search, and Bayesian optimiza-
tion. They find that the results significantly vary depending on the hyperparameter optimizer. Lucic
et al. (2018) benchmark generative adversarial networks. They conclude that many models perform
similarly with sufficient hyperparameter optimization budget. Dodge et al. (2019) study the effect of
hyperparameters in natural language processing. They show it is impossible to rank models solely
based on their scores on the test set. They define expected validation performance as a function of
the number of hyperparameter trials. Choi et al. (2019) show optimizer comparisons are sensitive to
the hyperparameter tuning protocol. They argue that the hyperparameter search space might be the
most crucial factor. It explains the rankings obtained by recent empirical comparisons in that area.
They demonstrate that changing the hyperparameter search spaces potentially leads to contradictory
results. Ferrari Dacrema et al. (2021) analyze the reproducibility of recommender systems papers in
reputable conferences. They discover that simple baselines potentially outperform 11 of the 12 re-
producible neural approaches from 2015 to 2018. This is because the researchers do not adequately
optimize the baselines in their papers. Gundersen et al. (2022) review sources of irreproducibility
in machine learning. They identify differences in computational budgets and selective tuning of
algorithms as the leading causes of irreproducibility. They suggest that researchers should specify
the exact methods used for hyperparameter optimization.

Guidelines for Incorporating Hyperparameters in Benchmarking. Lucic et al. (2018) propose
reporting the distribution of Fréchet Inception Distance (FID) scores in generative adversarial net-
works. They state that researchers should look at the entire range of scores, not just the minimum.
Sivaprasad et al. (2020) argue that benchmarking deep learning optimizers must consider hyperpa-
rameter optimization. Their study focuses on two aspects: (I) the best performance achieved by
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Figure 2: Performance-HPO trajectories of the convex optimizers across problem types, settings, and dimen-
sionalities. We use the following acronyms: QP (Quadratic Programming), SOCP (Second-Order Cone Pro-
gramming), SPO (Single-Period Optimization), and MPO (Multi-Period Optimization).

an optimizer and (II) the difficulty in finding the hyperparameters that lead to that performance.
They use random search as the hyperparameter optimization method for their benchmark. Xiong
et al. (2020) argue random search over-emphasizes the tuning time and is expensive. As a result,
evaluations based on this method often focus on the low-accuracy region. However, one is more
concerned with achieving reasonably good accuracy in practical applications. They propose to use
Hyperband (Li et al., 2018). They state that Hyperband reflects the real hyperparameter optimization
time required for the user more accurately. Cooper et al. (2021) argue that the methodology used for
deriving insights through hyperparameter optimization should itself be studied. They refer to this
process as Epistemic Hyperparameter Optimization (EHPO) and introduce a logical framework to
describe its meaning. This framework also demonstrates how EHPO is able to result in inconsistent
conclusions about performance. This is the first characterization supported by theory. They design
it to make reliable conclusions about algorithm performance using hyperparameter optimization.

3 PROPOSED METHODOLOGY

This section introduces a framework to objectively benchmark different algorithms across different
problems. Our criteria include Performance-HPO and Reliability-HPO. Consider a collection of
problems denoted as r1, . . . , rnr . nr is the number of benchmarking problems. There are a set
of algorithms labeled g1, . . . , gng . ng denotes the number of algorithms. Each algorithm gi is
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Figure 3: Hyperparameter optimization for MOSEK across problem types, settings, and dimensionalities. We
use the following acronyms: QP (Quadratic Programming), SOCP (Second-Order Cone Programming), SPO
(Single-Period Optimization), and MPO (Multi-Period Optimization).

applicable to each problem rj , where i ∈ {1 · · ·ng} and j ∈ {1 · · ·nr}. Each algorithm gi has mi

hyperparameters, where i ∈ {1 · · ·ng}.

Performance-HPO. This criteria evaluates an algorithm’s performance based on the hyperparame-
ter optimization budget. We use a series of hyperparameter optimizers to optimize these algorithms.
We represent the hyperparameter optimizers as h1, . . . , hnh

. nh is the number of hyperparameter
optimizers. Given hyperparameter optimization budget t, a hyperparameter optimizer hj optimizes
hyperparameters of an algorithm gk for problem ri. We denote the algorithm with the optimized

hyperparameters with g
(hj ,ri,t)
k . Then, we evaluate the performance of the optimized algorithm on

that problem with p

(
g
(hj ,ri,t)
k , ri

)
, where p denotes the performance metric. We run all hyperpa-

rameter optimizers in parallel and select the hyperparameter optimizer with the highest performance.
Problem 2 provides the formulation.

max
hj∈{h1,...,hnh

}
p
(
g
(hj ,ri,t)
k , ri

)
(2)

We create the Performance-HPO trajectory by integrating the solution to Problem 2 for 0 ≤ t ≤ T .
t denotes the hyperparameter optimization budget. We provide the formulation for the Performance-
HPO trajectory in Problem 3.
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Figure 4: Hyperparameter optimization for OSQP across problem types, settings, and dimensionalities. We
use the following acronyms: QP (Quadratic Programming), SOCP (Second-Order Cone Programming), SPO
(Single-Period Optimization), and MPO (Multi-Period Optimization).

max
hj∈{h1,...,hnh

}

(
p
(
g
(hj ,ri,t)
k , ri

))
, t ∈ [0, T ] (3)

We propose to use a spectrum of off-the-shelf hyperparameter optimization methods. Practition-
ers widely use hyperparameter optimizers such as random search (Liaw et al., 2018), Bayesian
optimization (Nogueira, 2014–), and evolutionary algorithms (Gad, 2023) in various real-world ap-
plications. We believe this methodology simulates how real-world applications utilize algorithms.
Several off-the-shelf packages provide a unified interface for hyperparameter optimizers (Johnson,
2011; Simon Blanke, 2020; since 2019; Bergstra et al., 2013; Head et al., 2018). They facilitate
running hyperparameter optimizers in parallel.

Reliability-HPO. For an algorithm, it is important to measure how difficult it is to find hyperpa-
rameters that lead to a successful run. success depends on the algorithm’s context. For an iterative
algorithm, the run is successful if it achieves a pre-specified accuracy within a given time. This mea-
sure of reliability is crucial. If the algorithm fails, one needs to rerun it with new hyperparameters.
The success of the new hyperparameters is not guaranteed either.

We define Reliability-HPO as the expected success rate of an algorithm on a problem. We estimate
this expectation using Monte Carlo simulation. For this purpose, we sample a large number of
hyperparameters from log-uniform distribution. Then, we compute the average success rate.

Consider two hypothetical algorithms: A and B. Algorithm A has no hyperparameters. As a result,
its Performance-HPO trajectory is constant. If this algorithm successfully solves the problem of
interest, its Reliability-HPO is one. Algorithm B, on the other hand, has many hyperparameters.
It is able to outperform Algorithm A with a high hyperparameter optimization budget. However,
the many hyperparameters make successful runs more challenging. As a result, its Reliability-HPO
is lower than Algorithm A. This demonstrates that the Reliability-HPO criterion is necessary to
provide a comprehensive benchmark. We provide examples of such algorithms in Section 4.

4 EXPERIMENTS
We utilize the proposed framework to benchmark convex optimizers. Convex optimization has nu-
merous applications in portfolio optimization (Boyd et al., 2017), signal processing (Luo, 2003),
and aerospace engineering (Liu et al., 2017). We refer to Ben-Tal & Nemirovski (2001) for a com-
prehensive list of applications. Tuning hyperparameters for most convex optimizers is necessary for
optimal performance (Ichnowski et al., 2021). Ghadimi et al. (2014); Giselsson & Boyd (2016);
Nishihara et al. (2015) indicate optimizing these hyperparameters is non-trivial. It requires dedi-
cated research (Ichnowski et al., 2021). Despite this, previous benchmarks on convex optimizers
ignored the hyperparameters (Kozma et al., 2015).
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Figure 5: Hyperparameter optimization for SCS across problem types, settings, and dimensionalities. We
use the following acronyms: QP (Quadratic Programming), SOCP (Second-Order Cone Programming), SPO
(Single-Period Optimization), and MPO (Multi-Period Optimization).

To use a convex optimizer, the problem must fit its required format. Hence, the users need to
reformulate it for that solver. This is challenging for non-expert users. Moreover, the required format
varies among solvers. Domain-Specific Languages (DSLs) help bridge this gap. CVXPY is a DSL
designed for this purpose. It converts a problem from a user-friendly format to a solver-friendly
standard form. Users only need to learn CVXPY’s format instead of each solver’s. Practitioners
widely use CVXPY in real-world applications. We use it to benchmark convex optimizers.

Problem Design. We design two classes of optimization problems using the CVXPY library:
quadratic programming and second-order cone programming. For each problem class, we ad-
dress two settings: single-period optimization and multi-period optimization. We employ the
cvxportfolio package (Busseti et al., 2017) to create real-world optimization problems. We
source data for 503 stocks from yfinance (Aroussi, 2020). We investigate solvers’ performance
across different problem sizes. For this purpose, we vary the stock size by 100%, 50%, and 25%.
The designed problems pertain to the stochastic model predictive control framework. Problem 4
provides their formulation.

u∗
t|t, . . . , u

∗
t+H−1|t ∈ argmin

ut|t,...,ut+H−1|t

t+H−1∑
τ=t

E
ξτ∼Ξτ

[
q
(
uτ |t, x̂τ |t; ξτ

)]
subject to x̂τ+1|t = f̂

(
uτ |t, x̂τ |t; ξτ

)
,

uτ |t ∈ U (ξτ ) .

(4)
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where H is the planning horizon. We use three and one for multi-period and single-period optimiza-
tion, respectively. The multi-period optimization involves three times the optimization variables
compared to the single-period optimization. f̂ denotes the simplified model dynamics. It is a linear
function in our case. U denotes the feasible set for the optimization variables. It corresponds to
self-finance, leverage limit, turnover limit, and long-only constraints. Self-finance is an equality
constraint. The other constraints are inequality constraints. q denotes the objective function. It
consists of a linear term for the expected return. There is also a quadratic term for the risk measure.
The holding cost is the absolute value of a linear term. Additionally, there is a transaction cost. In
quadratic programming, we use a quadratic estimation of the transaction cost. In second-order cone
programming, we utilize the square root of the cube. We refer to Boyd et al. (2017) for more details
on the optimization problem.

Convex Optimizers. There exist more than 10 convex optimizers through CVXPY: MOSEK (ApS,
2024), OSQP (Stellato et al., 2020; Banjac et al., 2019), SCS (O’Donoghue, 2021; O’Donoghue
et al., 2016), ECOS (Domahidi et al., 2013), CVXOPT (Vandenberghe, 2010), SCIP (Achterberg,
2009), Gurobi (Gurobi Optimization, LLC, 2024), CPLEX (IBM ILOG CPLEX Optimization Stu-
dio, 2024), Xpress (FICO, 2024), NAG (The Numerical Algorithms Group, 2024), PDLP (Applegate
et al., 2021), and CBC (COIN-OR, 2024). Among these solvers, only MOSEK, OSQP, SCS, and ECOS
apply to our problem and manage to solve it. Note that OSQP does not apply to second-order cone
programming problems. We discuss these solvers in more detail in Appendix A

Optimizers’ Hyperparameters. We briefly outline the hyperparameters we op-
timize for each solver. Detailed discussions of these hyperparameters appear
in Appendix B. For MOSEK, we focus on optimizing the following hyperpa-
rameters: Msk_Dpar_Intpnt_Tol_Rel_Step, Msk_Dpar_Intpnt_Tol_Psafe,
Msk_Dpar_Intpnt_Tol_Dsafe, and Msk_Dpar_Intpnt_Tol_Path. For OSQP, the opti-
mized hyperparameters include Rho, Alpha, and Sigma. In the case of SCS, we consider Alpha,
Rho_x, Scale, Acceleration_Lookback, and Acceleration_Interval. ECOS does not
include any hyperparameters.

4.1 PERFORMANCE-HPO

Hyperparameter Optimizers. We use off-the-shelf hyperparameter optimizers through the nlopt
package. We discuss them in more detail in Appendix C.

Performance Evaluation. We report the solve time of each solver as the performance metric. We
ensure the solvers reach the same accuracy. This makes the performance evaluation consistent.
Problem 5 provides a general formulation for constrained optimization. 0 denotes the zero vector.
We necessitate accuracy criteria described as follows: f(x) < ϵ0, G(x) < ϵ11, and H(x) < ϵ21,
where 1 is the unit vector. We set ϵ0 based on the optimization problem. We assign ϵ1 = ϵ2 = 1−5.
Tolerance parameters specify an optimizer’s accuracy. Typically, they include relative and absolute
tolerance. For each optimizer on each problem, we find the maximum tolerance values satisfying
the accuracy criteria. We conduct this using exponential search.

min
x

f(x) (5)

subject to G(x) ≤ 0

H(x) = 0

Table 1: Performance of ECOS across problem types, settings, and dimen-
sionalities. We provide mean and standard deviation over five runs. ECOS
has no hyperparameters. Hence, its Performance-HPO trajectory is a con-
stant. We use the following acronyms: QP (Quadratic Programming), SOCP
(Second-Order Cone Programming), SPO (Single-Period Optimization), and
MPO (Multi-Period Optimization).

503 Stocks 251 Stocks 125 Stocks
QP - SPO 4.54 ± 0.05 (s) 4.50 ± 0.08 (s) 4.50 ± 0.03 (s)
QP - MPO 40.63 ± 3.8 (s) 40.27 ± 6.7 (s) 40.99 ± 5.9 (s)
SOCP - SPO 3.62 ± 0.06 (s) 3.63 ± 0.07 (s) 3.51 ± 0.09 (s)
SOCP - MPO 41.99 ± 4.4 (s) 40.92 ± 2.6 (s) 41.10 ± 8.1 (s)

Results. Figure 2 shows
the Performance-HPO tra-
jectories of MOSEK, OSQP,
and SCS across problem
types, settings, and dimen-
sionalities. We provide the
details of the hyperparam-
eter optimizations in Fig-
ures 3 to 5. ECOS requires
much more time to solve
the optimization problems.
Moreover, its Performance-
HPO trajectory is a con-
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stant. Hence, we provide its results in Table 1 instead of the figures. In quadratic programming,
SCS dominantly outperforms MOSEK and OSQP regardless of the hyperparameter optimization bud-
get. OSQP applies only to quadratic programming. But MOSEK outperforms it in this problem type.

Table 2: Reliability-HPO of the convex optimizers across problem
types and settings. We use the following acronyms: QP (Quadratic
Programming), SOCP (Second-Order Cone Programming), SPO
(Single-Period Optimization), and MPO (Multi-Period Optimiza-
tion).

MOSEK OSQP SCS ECOS
QP - SPO 0.933 0.525 0.990 1.00
QP - MPO 0.919 0.448 0.999 1.00
SOCP - SPO 0.931 N/A 0.929 1.00
SOCP - MPO 0.975 N/A 0.796 1.00

In second-order cone programming,
SCS outperforms MOSEK regardless
of the hyperparameter optimization
budget and problem dimensionality.
In single-period optimization, num-
ber of variables varies from 125 to
503. In multi-period optimization,
the planning horizon is three. Hence,
the number of variables ranges from
375 to 1509. The problem dimen-
sionality in these ranges does not sig-
nificantly affect optimizers’ perfor-
mance. On the other hand, multi-period optimization notably hinders the performance of all opti-
mizers. All optimizers solve the 503-dimensional single-period optimization problems much faster
than the 375-dimensional multi-period optimization problem. We suspect CVXPY causes this perfor-
mance loss when translating the multi-period optimization problems into the solver-specific forms.
This performance loss is evident in ECOS’s benchmark. We provide it in Table 1.

ECOS has nearly identical performance in quadratic programming and second-order cone program-
ming for all dimensionalities. On the other hand, multi-period optimization heavily hinders its
performance. This shows the performance loss through CVXPY.

4.2 RELIABILITY-HPO
Table 2 provides the optimizers’ Reliability-HPO. ECOS has no hyperparameters. Hence, it has the
highest Reliability-HPO. Among other optimizers, SCS has the highest Reliability-HPO in quadratic
programming. MOSEK follows it. In second-order cone programming, MOSEK has the second-highest
Reliability-HPO after ECOS.

Multi-period optimization, compared to single-period optimization, does not have a significant im-
pact on MOSEK. However, it reduces OSQP’s reliability by 17% and SCS’s reliability by 16% on aver-
age across quadratic programming and second-order cone programming. Switching from quadratic
programming to second-order cone programming does not affect MOSEK’s reliability. In contrast, it
reduces SCS’s reliability by 32% on average across both single-period and multi-period optimiza-
tion. Overall, SCS exhibits the lowest consistency in reliability values across different problem types
and settings.

5 CONCLUSION

We address benchmarking algorithms with different hyperparameters. We propose criteria to mea-
sure the performance and reliability of such algorithms based on hyperparameter optimization. The
Performance-HPO trajectory shows how an algorithm performs based on amounts of hyperparameter
optimization budgets. With this trajectory, users are able to identify the most suitable algorithm for
their needs. From a reliability standpoint, an algorithm may need careful hyperparameter selection
for a successful run. The Reliability-HPO criterion explores this by estimating the expected suc-
cess rate of the algorithm with random hyperparameters. These two criteria offer a comprehensive
framework to compare algorithms with different hyperparameters. This procedure is without bias or
human intervention. It applies to any algorithm regardless of its area. We utilize this framework to
benchmark convex optimizers through CVXPY. In real-world problems, the SCS solver achieves the
best combination of Performance-HPO and Reliability-HPO.

Limitations and Future Work. For many deep learning algorithms, GPU acceleration is essen-
tial. While the computation of the Performance-HPO trajectory and Reliability-HPO is easily par-
allelizable, it still demands potentially costly GPU time. Variance reduction techniques in Monte
Carlo simulations, such as antithetic sampling (Rubinstein & Kroese, 2016) and sequential Bayesian
quadrature (Rasmussen & Ghahramani, 2003), potentially achieve the same accuracy with a lower
number of samples.
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A CONVEX OPTIMIZERS

A.1 OSQP

OSQP (Operator Splitting Quadratic Program) is an optimization solver designed to solve large-scale
quadratic programs. Quadratic programs involve optimizing a quadratic objective function subject
to linear constraints. OSQP is particularly efficient for problems with sparse data structures and is
able to handle a wide range of problems, including convex and some non-convex ones.

The general form of a quadratic program is:

min
x

1

2
xTPx+ qTx

subject to l ≤ Ax ≤ u,

where x ∈ Rn is the variable to optimize, P ∈ Rn×n is a symmetric positive semidefinite matrix,
q ∈ Rn is a vector, A ∈ Rm×n is a constraint matrix, and l, u ∈ Rm are vectors defining the lower
and upper bounds for the constraints.

The original quadratic program is reformulated using auxiliary variables to separate the objective
and constraints:

min
x,z

1

2
xTPx+ qTx

subject to l ≤ z ≤ u,

z = Ax.

OSQP uses the augmented Lagrangian method, introducing Lagrange multipliers y and a penalty
parameter ρ:

Lρ(x, z, y) =
1

2
xTPx+ qTx+ yT (Ax− z) +

ρ

2
∥Ax− z∥22.

Alternating Direction Method of Multipliers (ADMM) solves the augmented Lagrangian iteratively
through three main steps:

• x-Update: Solve for x given the current z and y:

xk+1 = argmin
x

(
1

2
xTPx+ qTx+

ρ

2
∥Ax− zk +

yk

ρ
∥22
)
.

• z-Update: Solve for z given the updated x and current y:

zk+1 = argmin
z

(
ρ

2
∥Axk+1 − z +

yk

ρ
∥22
)

subject to l ≤ z ≤ u.

• y-Update: Update the Lagrange multipliers:
yk+1 = yk + ρ(Axk+1 − zk+1).

OSQP includes several optimization techniques to improve efficiency and robustness:

• Sparse Linear Algebra: Utilizes sparse matrix operations to exploit the sparsity in P and A,
improving computational efficiency.

• Adaptive Parameter Selection: Adjusts the penalty parameter ρ dynamically to improve conver-
gence rates.

• Polishing: After finding an approximate solution, OSQP is able to refine it to achieve higher pre-
cision.

A.2 SCS

SCS (Splitting Conic Solver) is an optimization solver designed to solve large-scale convex cone
programs. It employs operator splitting techniques to handle various types of convex constraints
effectively, making it particularly useful for solving large, sparse optimization problems.

The general form of a cone program is:
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min
x

cTx

subject to Ax+ s = b,

s ∈ K,
.

where x ∈ Rn is the variable to optimize, c ∈ Rn is a vector, A ∈ Rm×n is a constraint matrix,
b ∈ Rm is a vector, and K is a convex cone (e.g., non-negative orthant, second-order cone, or
positive semidefinite cone).

The optimization problem is reformulated using the primal-dual formulation and then solved itera-
tively using the Alternating Direction Method of Multipliers (ADMM). The primal-dual formulation
is:

min
x,s

cTx

subject to Ax+ s = b,

s ∈ K.

SCS uses the ADMM method to decompose the problem into smaller, more manageable subprob-
lems. The key steps in the ADMM algorithm for SCS are:

• x-Update: Solve for x given the current s and dual variable y:

xk+1 = argmin
x

(
cTx+

ρ

2
∥Ax+ sk − b+

yk

ρ
∥22
)
.

• s-Update: Solve for s given the updated x and current y:

sk+1 = argmin
s

(
ρ

2
∥Axk+1 + s− b+

yk

ρ
∥22
)

subject to s ∈ K.

• y-Update: Update the dual variable y:
yk+1 = yk + ρ(Axk+1 + sk+1 − b).

SCS includes several techniques to improve efficiency and robustness:

• Preconditioning: Uses preconditioning to improve the problem’s conditioning, potentially leading
to faster convergence.

• Sparse Linear Algebra: Employs efficient sparse matrix operations to exploit the sparsity in A,
reducing computational complexity.

A.3 MOSEK
MOSEK is an optimization solver designed to solve large-scale linear, quadratic, and conic optimiza-
tion problems, including quadratic and second-order cone programs. It is particularly efficient for
high-dimensional problems and is able to handle various problem types, including convex and some
non-convex ones.

• Quadratic programs involve optimizing a quadratic objective function subject to linear constraints.
The general form of a quadratic program is:

min
x

1

2
xTPx+ qTx

subject to Gx ≤ h,

Ax = b,
where x ∈ Rn is the optimization variable, P ∈ Rn×n is a symmetric positive semidefinite
matrix, q ∈ Rn is a vector, G ∈ Rm×n is a constraint matrix, h ∈ Rm is a vector of inequality
bounds, A ∈ Rp×n is an equality constraint matrix, and b ∈ Rp is a vector of equality bounds.
MOSEK uses interior-point methods to solve quadratic programs by:
– Formulating the Karush-Kuhn-Tucker conditions: These conditions combine the primal and

dual formulations into a system of equations.
– Using a barrier function: This function is introduced to prevent the iterates from leaving the

feasible region.
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– Applying Newton’s method: Newton’s method is used to solve the Karush-Kuhn-Tucker con-
ditions iteratively.

– Updating the barrier parameter: The barrier parameter is gradually reduced to zero, guiding the
solution toward optimality.

• Second-order cone programs involve optimizing a linear objective function subject to second-
order (or quadratic) cone constraints. The general form of a second-order cone program is:

min
x

cTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m,

Fx = g,

where x ∈ Rn is the optimization variable, c ∈ Rn is the objective function vector, Ai ∈ Rki×n,
bi ∈ Rki , ci ∈ Rn, and di ∈ R define the second-order cone constraints, F ∈ Rp×n is the
equality constraint matrix, and g ∈ Rp is the equality constraint vector.
MOSEK uses interior-point methods to solve second-order cone programs by:
– Formulating the primal and dual problems: The primal and dual problems are formulated along

with their Karush-Kuhn-Tucker conditions.
– Using a barrier function for cones: A logarithmic barrier function specific to second-order

cones is used to ensure that iterates remain within the feasible region of the cones.
– Applying Newton’s method for conic problems: Newton’s method is applied to solve the per-

turbed Karush-Kuhn-Tucker conditions iteratively, considering the conic constraints.
– Updating the barrier parameter: Similar to quadratic programs, the barrier parameter is reduced

to approach the optimal solution gradually.
MOSEK includes several optimization techniques to improve efficiency and robustness:
– Sparse linear algebra: Utilizes sparse matrix operations to exploit the sparsity in problem data,

improving computational efficiency. This is crucial for handling large-scale problems effi-
ciently.

– Presolving: Simplifies the problem before the main optimization phase, reducing problem size
and complexity. This involves techniques such as removing redundant constraints and vari-
ables.

– Numerical stability: Implements strategies to maintain numerical stability and robustness dur-
ing optimization. This ensures accurate solutions even for ill-conditioned problems.

– Parallel computation: Uses parallel algorithms to speed up optimization, taking advantage of
multi-core processors. This allows MOSEK to handle large-scale problems more efficiently.

A.4 ECOS
ECOS (Embedded Conic Solver) is an optimization solver designed to solve large-scale convex cone
programs. It is particularly efficient for solving second-order cone programs (SOCPs) and linear
programs (LPs). ECOS is well-suited for embedded applications due to its low memory footprint and
computational efficiency.

The general form of a conic program solved by ECOS is:

min
x

cTx

subject to Gx+ s = h,

s ∈ K,

Ax = b,

where x ∈ Rn is the variable to optimize, c ∈ Rn is a vector, G ∈ Rm×n and A ∈ Rp×n are
constraint matrices, h ∈ Rm and b ∈ Rp are vectors, and K is a convex cone (e.g., non-negative
orthant, second-order cone, or positive semidefinite cone).

ECOS uses an interior-point method to solve the conic program. The interior-point method itera-
tively improves the solution by moving through the interior of the feasible region defined by the
constraints.

The key steps in the interior-point method used by ECOS are:

• Formulate the KKT (Karush-Kuhn-Tucker) conditions for the conic program, which consist of
primal feasibility, dual feasibility, and complementary slackness conditions.
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• Linearize the KKT conditions around the current iterate and solve the resulting linear system to
obtain a search direction.

• Perform a line search to determine the step size along the search direction that ensures progress
toward optimality while maintaining feasibility.

• Update the iterate and check for convergence based on predefined criteria, such as the residual
norms of the KKT conditions.

ECOS includes several optimization techniques to improve efficiency and robustness:

• Preconditioning: Applies preconditioning techniques to improve the conditioning of the linear
system, which enhances numerical stability and convergence speed.

• Sparse Linear Algebra: Utilizes sparse matrix operations to exploit the sparsity in the constraint
matrices G and A, reducing computational complexity and memory usage.

• Inexact Search Directions: Allows for inexact computation of search directions, which is able to
accelerate convergence for large-scale problems.

B OPTIMIZERS’ HYPERPARAMETERS

This section provides the list of tunable hyperparameters for each convex optimizer.

B.1 OSQP
• Rho: This is the step size for the ADMM (Alternating Direction Method of Multipliers) algorithm

used by OSQP. It controls the rate at which the algorithm progresses towards convergence. The
choice of Rho potentially affects both the convergence speed and the algorithm’s stability. A very
small value might lead to slow convergence, while a very large value might cause instability or
oscillation.

• Alpha: Known as the over-relaxation parameter, Alpha is used to improve convergence in the
ADMM algorithm. It adjusts the iterative process’s trajectory and potentially helps accelerate
convergence.

• Sigma: This parameter adds a regularization term to the quadratic programming problem being
solved by OSQP. Sigma helps ensure numerical stability and prevents the algorithm from taking
too large steps. It effectively adds a small positive value to the diagonal of the quadratic term
in the objective function, which potentially helps in situations where the problem might be ill-
conditioned or near-degenerate.

B.2 SCS
• Alpha: This parameter is used in the over-relaxation step within the ADMM (Alternating Di-

rection Method of Multipliers) framework of SCS. Alpha influences the convergence rate by
modifying the trajectory of the algorithm’s iterations.

• Rho_x: This hyperparameter controls the x-update step size in the ADMM algorithm. Adjusting
Rho_x affects the algorithm’s stability and convergence speed. A suitable value helps balance the
progress rate towards an optimal solution and the overall stability of the algorithm.

• Scale: Scale is a scaling factor applied to the data of the problem before solving it. This hy-
perparameter helps adjust the problem’s condition number, making it more suitable for numerical
solving. Proper scaling potentially significantly enhances solver performance and stability.

• Acceleration_Lookback: This parameter sets the number of previous iterations that SCS
will consider when using acceleration techniques like Anderson acceleration. A higher
Acceleration_Lookback value allows the solver to potentially utilize more historical data to
speed up convergence but at the cost of increased memory usage and computational overhead.

• Acceleration_Interval: Acceleratio_interval specifies how frequently the accelera-
tion techniques are applied. A lower value means more frequent application, which could speed
up convergence but increase computational overhead.

B.3 MOSEK
• Msk_Dpar_Intpnt_Tol_Rel_Step: This hyperparameter sets the relative step size tolerance

in the interior-point method. It controls the magnitude of the steps taken towards the optimal
solution relative to the current position. A smaller value results in smaller and more precise steps,
potentially leading to a more accurate solution, but may increase the number of iterations and
computation time.
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• Msk_Dpar_Intpnt_Tol_Psafe: This parameter is related to the primal safety margin in the
interior-point method. It sets a tolerance level for the proximity to the boundaries of the feasible
region in the primal space. Increasing this value ensures a larger safety margin, thereby reduc-
ing the risk of numerical issues, but could impact the optimality and convergence speed of the
solution.

• Msk_Dpar_Intpnt_Tol_Dsafe: This parameter determines the dual safety margin in the
interior-point method. It controls the safety margin in the dual space, thus balancing the nu-
merical stability with the quality and convergence rate of the obtained solution.

• Msk_Dpar_Intpnt_Tol_Path: Finally, this hyperparameter sets the tolerance for adhering to
the central path in the interior-point method. The central path represents the ideal trajectory to-
wards the optimal solution. A lower hyperparameter value means the algorithm will more closely
follow this path, potentially increasing accuracy at the cost of greater computational effort.

B.4 ECOS

This solver has no hyperparameters.

C HYPERPARAMETER OPTIMIZERS
• DiRect (Gablonsky & Kelley, 2001): The global derivative-free optimization algorithm DiRect

(Dividing Rectangles) systematically explores and divides the search space to find the global
minimum. It is particularly effective for problems where gradient information is unavailable or
unreliable. DiRect’s comprehensive search strategy makes it robust against local minima but is
potentially computationally intensive.

• DiRect_L (Gablonsky & Kelley, 2001): This localized version of DiRect focuses more inten-
sively on promising regions of the search space, enhancing efficiency in situations where the
global minimum is suspected to be in a particular area. While it offers faster convergence than the
standard DiRect, it may overlook the global minimum if it lies outside the focused regions.

• CRS2_LM (Kaelo & Ali, 2006a): The Controlled Random Search algorithm with Local Mutation
(CRS2_LM) is a stochastic method suitable for complex global optimization problems, particularly
those with multiple local minima. It combines random search techniques with local mutation
strategies to explore the search space, balancing exploration and exploitation.

• ESCH (Kaelo & Ali, 2006b): The ESCH optimizer, based on an Evolution Strategy by Cholesky
Hessian, is an evolutionary algorithm designed for complex, multimodal global optimization
problems. It employs mutation and selection strategies inspired by natural evolutionary processes,
making it effective in diverse problem landscapes.

• ISRES (Kaelo & Ali, 2006c): The Improved Stochastic Ranking Evolution Strategy (ISRES) is
an evolutionary algorithm focusing on constraint handling. It is particularly adept at tackling
global optimization problems involving nonlinear constraints, using a ranking-based mechanism
to guide the search process.

• COByLA (Powell, 1994a): The Constrained Optimization By Linear Approximations (COByLA)
algorithm is a local, derivative-free method for constrained optimization. It uses linear approxi-
mations to model the objective function and constraints, making it suitable for problems lacking
gradient information.

• BOByQA (Powell, 1994a): BOByQA (Bounded Optimization By Quadratic Approximations) is
designed for derivative-free local optimization, particularly in problems with bound constraints.
It uses quadratic models to approximate the objective function, facilitating efficient convergence
to a local minimum.

• NEWUOA_Bound (Powell, 2006): An extension of the NEWUOA algorithm, NEWUOA_Bound is
tailored for local optimization problems with bound constraints. It is effective when derivative
information is absent, using a trust-region approach to guide the optimization.

• PrAxis (Brent, 1969): The PrAxis (Principal Axis) algorithm is a local optimization method
focusing on derivative-free unconstrained problems. It employs principal axis methods for opti-
mization, making it suitable for smooth, well-behaved functions.

• Nelder_Mead (Nelder & Mead, 1965): Nelder_Mead is a heuristic method for multidimensional
unconstrained optimization without derivatives. It adapts well to non-smooth functions and is
known for its simplicity and broad applicability.
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• Sbplx (Powell, 1994b): This variant of the Nelder-Mead algorithm is adapted for problems with
bound constraints. The Sbplx method maintains the general approach of the simplex algorithm
but includes modifications to handle the constraints, making it suitable for local optimization in a
range of applications.
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