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Abstract

Pedestrian Attribute Recognition (PAR) serves as a fun-
damental task in computer vision and is crucial for upgrad-
ing security systems. It helps in precisely identifying and
characterizing various attributes of pedestrians. However,
current PAR datasets have certain issues in representing
a wide range of attributes correctly, which makes the ex-
isting PAR methods less effective in real-world scenarios.
Addressing this limitation, this paper introduces PEARL,
a comprehensive dataset comprising of diverse pedestrian
images annotated with 146 attributes. These samples have
been sourced from surveillance videos across twelve coun-
tries. This paper also formulates an image-based PAR using
language-image fusion strategy and utilizes CLIP as a new
evaluation baseline. Specifically, we leverage textual infor-
mation by transforming sets of attributes into meaningful
sentences. Addressing the inherent data imbalance in PAR,
we provide three types of prompt settings to optimize the
training of the CLIP model. Our evaluation encompasses a
thorough assessment of the proposed baseline model across
various datasets, including PEARL dataset as well as estab-
lished PAR benchmarks such as PAI0OK, RAP, and PETA.

1. Introduction

Pedestrian Attribute Recognition (PAR) aims to identify
and characterize specific attributes such as gender, acces-
sories, or body posture of pedestrians, upgrading the pre-
cision and context-awareness of security systems. In re-
cent years, PAR has become a pivotal problem in the field
of computer vision. This advancement has augmented the
implementation of essential applications such as person re-
identification [8,9,35], person retrieval [1,25,38], and scene
analysis [34]. Despite the appealing success of recent PAR
approaches [3, 11, 27,31, 37], their effectiveness is con-
strained by two major problems. Firstly, the lack of expan-
sive dataset restricts the ability of models to properly recog-
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Figure 1. PEARL: PEdestrian Attribute Recognition and

Learning using 30K images is a large-scale pedestrian attribute
dataset that provides rich annotations via 25 critical attribute
categories spanning over 146 sub-attributes. It has been ex-
tracted from the surveillance videos of seven common public
places like airports, stations, and parks across twelve countries.
Numbers mentioned inside the nodes represent attribute options.
For instance, Hair has four options Hair-short, Hair-long, Hair-
Bald, Hair-NOB (Not Observable). PEARL dataset available at
https://github.com/draxler/PEARL30K

nise a wide range of features at varying scales. Secondly,
the inherent issue of data imbalance within the datasets
hampers the generalization and robustness of PAR models.

The existing PAR datasets [4, |5, 18,20] are commend-
able; however, they also exhibit deficiency in comprehen-
sively representing the diversity in data. A handful of ap-
proaches attempt to unify existing datasets by adding ad-
ditional annotations. Deng et al. [4] have accumulated
19K samples from 10 surveillance datasets and released
the PETA dataset. Specker et al. [27] have combined
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RAPv2 [15], PETA [4], PA100K [20] and Market1501 [18]
and released the UPAR dataset. Despite such genuine ef-
forts, existing datasets still pose notable limitations. Firstly,
they are highly restricted to specific recording locations, re-
sulting in the dominance of certain attributes. For exam-
ple, Market1501 [18] dataset consists of 94.4% images be-
longing to short sleeves. Secondly, the presence of inac-
curate guidelines during annotation introduces challenges.
For instance, range of the age attribute can vary widely,
yet PETA [4] dataset assigns agel8-60 attribute, resulting
in over 73% of samples falling within this broad range.
Lastly, the context-dependent nature of these datasets raises
a significant concern regarding their generalization. For in-
stance, a model trained on a dataset [4, 15, 20] recorded
in sunny condition may confuse a model to recognize at-
tributes in other weather conditions such as snow or rain. As
a consequence, prevalent attributes and context-dependency
leads to overfitting and hampers the performance in test sce-
narios.

However, a few PAR approaches have correctly identi-
fied data imbalance problem in PAR. Li et al. [13] have
derived a weight factor of a specific attribute using a pos-
itive ratio and multiplied it with cross-entropy loss to ef-
fectively train the model. Yan et al. [37] have proposed
drop loss, where attribute-based drop rate is used to subside
hard samples and trained the model in easy-to-hard fash-
ion. Tan et al. [28] have employed constrained loss by ap-
plying penalty coefficient to the binary cross entropy loss.
In addition to this, a handful of approaches exploit corre-
lation between attributes [11, 27, 28], utilize visual-textual
features as multi-model input [1,2,39]. And a few of them
employ GCN [17, 28], knowledge-distillation [16, 36], and
recurrent networks [40]. While these approaches strive to
improve recognition performance through complex archi-
tectures, the critical shortcomings still persist. The imbal-
ance and redundancy inherent in dataset structure remains
unaddressed. Moreover, these approaches fail to produce
robust results as their sufferings are two-fold: (i) correla-
tion between the attributes does not hold true always as ap-
pearance is context-dependent, (ii) attribute locations in an
image may vary due to different body postures.

To effectively address these challenges, an essential so-
lution lies in the creation of a large-scale and highly di-
verse dataset encompassing heterogeneous set of attributes.
In this paper, we release PEARL, PEdestrian Attribute
Recognition and Learning dataset comprises of 30K pedes-
trian images, each labelled with 146 critical sub-attributes.
Derived from surveillance videos spanning 25 hours and
recorded across twelve distinct countries, PEARL show-
cases a remarkable level of diversity. Fig. 1 overviews at-
tribute categories composed in PEARL. Second, we provide
a strong evaluation baseline for attribute learning by for-
mulating this task as vision-language fusion task. Specifi-

cally, we utilize CLIP [22] (Constrastive Language-Image
Pretraining) due to its capability to obtain quality feature
embedding on image-text modalities.

The recent PAR approaches either attempt to learn dis-
criminative visual features using CNNs [9, 13, 17, 33] or
aims to incorporate Transformers to exploit visual-textual
relationship between attribute and their appearances [2, 6,

, 38]. However, their performance is restricted by the
following reasons: CNN-based approaches fail to capture
semantic relationship between attributes and Transformer-
based approaches unable to efficiently handle data imbal-
ance problem. Furthermore, the appearance of attributes is
influenced by a number of contextual factors put an extra
burden on the recognition capabilities of the model. There-
fore, in the PAR setting, it is necessary to emphasize on
learning attentive features that both exploit visual-textual
relationship and handle data imbalance problem inherited
by the existing datasets. To achieve this, we suggest an eval-
uation strategy incorporating popular CLIP [22] model with
three different prompt settings. Specifically, our goal is to
“explore how effective textual descriptions are for pedes-
trian images and understand the relationship between the
appearances of attributes through text.”

Putting all this together, the paper makes the following
contributions: i) We explicitly address the inherent data im-
balance problem in PAR and investigate the role of textual
prompts with CLIP-based model to accurately recognize di-
verse attributes. ii) We also release PEARL, a novel and di-
verse pedestrian attribute dataset comprised of 30k samples,
each annotated with 146 attributes. iii) We carried out ex-
tensive experiments to validate both usability of the PEARL
dataset and suggested baseline.

2. Related Work

Pedestrian Attribute Recognition (PAR) has gained pop-
ularity in recent years for its applications in person search,
person re-identification, and action recognition. A handful
of notable efforts can be safely grouped into feature-centric
and classifier-centric learning. In this section, we summa-
rize them briefly.

2.1. Feature-centric Learning

Feature-centric PAR methods [14, 17, 19,40] have been
extensively explored in PAR. Cheng et al. [2] have pro-
posed a visual-textual baseline for PAR by formulating it as
a multi-modal problem to utilise the latent textual informa-
tion in the attribute annotations. Li et al. [17] have utilised
a continual learning strategy for multiple groups of pedes-
trian attributes and also incorporate a self-learning-based
method to handle incomplete labels via catastrophic forget-
ting. Jia et al. [11] have exposed limitations of the one-
shared-feature-for-multiple-attributes mechanism and used
a disentangled attribute feature learning framework.
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Figure 2. Long-tail Distribution: A few selected attribute distributions in the PEARL dataset. Distributions are sorted in decreasing order.
More details about these distributions and other datasets can be found in appendix.

2.2. Classifier-centric Learning

Classifier-centric learning approaches often focus on in-
herent data imbalance problem in PAR. These can be di-
vided into two subcategories: (i) data-centric approaches,
and (ii) loss-centric approaches. In data-centric approaches,
the minority class can be expanded through oversampling
or majority class can be scale down for stable training [12].
Thakare et al. [32] incorporated multiple views of a person
to bridge the recognition gap. In loss-centric approaches,
the classifier is trained with novel loss considering vari-
ous scenarios such as viewpoint, positive ratio of attributes,
etc. One of the notable early works in PAR [13] has in-
troduced the weighted binary cross-entropy loss function
to effectively handle data imbalance. Jia ef al. [11] have
also proposed a triplet loss to assist group attention merg-
ing module to learn discriminative features. Yan et al. [37]
have introduced dropping rate during training and enforce
delay in hard samples training thus favouring easy sam-
ples. While feature-centric and classifier-centric learning
methodologies have showcased promising advancements in
PAR, their efficacy drops in challenging scenarios. Feature-
centric approaches, relying solely on visual information or
text fusion, may struggle with limited contextual under-
standing, hindering their performance in highly dynamic
or diverse environments. Similarly, classifier-centric strate-
gies addressing data imbalance or loss functions often lack
adaptability to complex scenarios, such as dealing with oc-
clusions, varying illuminations, or attribute dependencies,
leading to reduced robustness, and generalization in real-
world applications of PAR.

Table 1. Dataset Diversity: Quantitative comparison of PEARL
with large-scale PAR datasets. The categories column indicates
number of attribute categories available in datasets such as hair
style, bag types, cloth patterns and attribute column is correspond-
ing sub-categories such as hair-style-long, bag-type-handbag, etc.

Dataset
PETA
PA100K
RAP
PEARL

#Attribute #Weather
61 1 1
26 1 1
69 1 1
146 4 12

Scene #Samples #Countries
19,000
100K

41,585

30,000

#Categories
12
11
15
25

Mixture
Outdoor
Indoor

Mixture

3. Why PEARL Dataset?

Recognizing pedestrian attributes faces two fundamen-
tal challenges: (i) Unavoidable parameters such as weather
condition, occlusions, low illumination, camera angles, and
blur, which influence attribute appearances, like labeling a
hat as black hair due to low illumination; (ii) hindrances
in attribute appearances due to varying viewpoints, which
makes it challenging to predict attributes like glasses or
face masks from a rear perspective. A comprehensive PAR
dataset must tackle these issues, which are not fully ad-
dressed in the existing datasets. Thus, we propose the
PEARL dataset to mitigate these challenges.

3.1. Interesting Facts About PEARL

The PEARL dataset comprises with 30K pedestrian im-
ages, each annotated with 25 attribute categories, spanning
over 146 sub-attributes. We have extracted images from
outdoor surveillance videos' that reflect practical applica-
tions and challenges. We comprehensively cover nearly all

From publicly available non-copyrighted sources.
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critical attributes relevant to security surveillance applica-
tions, comprising aspects such as body posture, accessories,
bag types, clothing styles, colors, and activities. Fig. 3
depicts 1001 image samples taken from PEARL showing
diversity in colors, body posture, weather, etc. Existing
datasets are often focused on a particular context. For in-
stance, RAP [ 5] was recorded in a shopping mall, and Mar-
ket1501 [18] was captured inside a marketplace. Table 1
shows the quantitative comparison of PEARL against large-
scale PAR datasets. To diversify, we have extracted images
from twelve countries that covers seven distinct public lo-
cations including streets, parks, airports, stations, college
campuses, beaches, and marketplaces. Additionally, we
have incorporated four distinct weather conditions: sunny,
night-time, rainy, and snow. Fig. 2 shows several attributes
and their appearance counts.

3.2. Statistics of PEARL

PEARL encapsulates a wide spectrum of variations to
effectively mirror practical and challenging scenarios. To
achieve this, we have extracted raw pedestrians images from
25 hours of surveillance videos using Faster-RCNN [23]
and filtered out extremely blurry samples, resulting in 30K
images. The images exhibit diverse resolutions, ranging
from 20 x 78 as the lowest resolution, 678 x 210 be
the highest resolution with an average resolution of 107 x
274. The location-wise sample numbers within PEARL are
as follows: Airport (4471), Market (5776), Beach (1706),
Street (11410), Park (2408), Station (3902) and Campus
(328). The weather-wise and country-wise distributions can
be found in been added to the appendix .

Figure 3. PEARL Mosaic: A mosaic portrait representing sample
images with different cloth patterns, colours, body postures, and
genders from the PEARL dataset. Best viewed in over 2X zoom
and colour.

3.3. PEARL vs Large-Scales

RAPv1-v2 [15] and PA100K [20] are the largest datasets
available publicly. However, despite having extensive col-
lections, they often lack diversity resulting in minimal intra-
class variations. For instance, the RAP dataset solely con-
sists of recordings from shopping malls. The PA100k
dataset contains annotations of pedestrian images with only
a limited number of attributes (26). In contrast, the pro-
posed PEARL dataset encompasses a wide array of loca-
tions and offers rich annotations, making it a good resource
for advanced research as well as suitable for practical appli-
cations.

4. Evaluation Baseline

PAR models expect to identify and characterize pedes-
trian attributes across a wide spectrum of vastly differ-
ing conditions and environments. However, conventional
image-based methodologies often overlook the intricate re-
lationship between attributes and their appearances. To mit-
igate this problem, we propose a strong evaluation baseline
for recognizing attributes by formulating PAR problem in
language-image fusion task. The high-level architecture of
the baseline model is depicted in Fig. 4.

4.1. Problem Formulation

Following the prior works [2, 13,37], we formulate the
PAR problem as a language-image fusion problem, where
the model expects to learn discriminating features that rep-
resent the presence or absence of attributes guided by tex-
tual description of an image.

Assume the appearance-wise attribute set of a pedes-
trian image is denoted by II = {my,mo,..., 7k}, Where
K is the number of attributes. Let image-attribute pair
{(Z1,01),(Z2,)2),...(Zn,YN)} be N image samples in
the training set, where Z; is the ¢-th pedestrian image and
Y; € 1I. More precisely, ) represents a human-annotated
binary vector, wherein O and 1 denote the absence and pres-
ence of an attribute in image Z. In this context, our objective
is to train a PAR model denoted as 7(.), which computes
the probability (p;) for each attribute m; within the set II,
expressed as H(Z,II) = [p1,p2, .. - PM])-

4.2. Generating Descriptive Prompts

In language-image tasks, prompt is a textual description
that guides the model to associate and understand visual
information. Utilizing prompts in PAR involves converting
attribute sets into meaningful sentences, providing crucial
context for more effective recognition as compared to
relying solely on image features. However, recognizing
attributes using captions can be limited by two critical
factors: Firstly, as the attribute names are only added to the
captions, they could lead to model confusion because due to
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Figure 4. Proposed CLIP-based Evaluation Baseline: Left: An illustration of CLIP [22] with default prompts. The framework consists
of visual-textual encoders and trained with both (IL;2;) and (IL;2;) losses. In the training stage, both classifiers and encoders train jointly by
minimizing similarity loss by using joint image-text pairs. Right: The proposed CLIP-based evaluation baseline for PAR, where different
prompts have been generated using three suggested settings. Moreover, both encoders have been jointly trained via constrastive and

suggested inverse-frequency loss (Lqr).

lack of context. Secondly, due to data imbalance, generated
captions may introduce some bias for over-fitting on some
of the attributes. To mitigate this challenge, it is essential to
provide adequate context and put more emphasis on certain
low-frequency attributes. In this paper, we introduce three
prompt settings for CLIP training to enhance the attribute
recognition capability. Additionally, we recommend using
inverse frequency loss to address data imbalance.

Full Prompt: By design, the input format for CLIP is: “The
photo of a {CLASS}”, where the class is the label of the ob-
ject in the input image. This text format is not possible by
default with the PAR setting due to multi-class classifica-
tion aspect. Moreover, the caption length is set to a maxi-
mum of 77 tokens [22], therefore limiting the size of pedes-
trian descriptions that are more extensive. To solve this,
we add a prompt setting limited to “{Attribute} {Value}”
so that each caption in the PEARL dataset has 50 total to-
kens (two tokens per caption). As this prompt configuration
accommodates all 25 main attributes along with their corre-
sponding annotated subcategories, we refer to it as the Full
Prompt (FP). The final full-prompt textual description for
each training image follows the format: “A photo of a per-
son with {attributel} {valuel} {attribute2} {value2} and
soon’”.

Random Prompt: The CLIP model can be trained with
the full prompt setting, which includes all attributes in the
caption. Thus, we explore the Random Prompt (RP) set-

ting, where a certain percentage of attributes are excluded
randomly, leading to shorter captions. Training CLIP with
random prompt settings serves two benefits: Firstly, the
model would be trained to discriminate with increased
precision attributes included due to the focused context.
Secondly, this keeps the effect of over-fitting minimal, as
the model is exposed to different attribute combinations.
The format of the prompt is consistent with the full
prompt: “A photo of a person with {attributel} {valuel},
{attribute2} {value2}”, here number of attributes are
control by the exclusion probability specified by (p).

Contextual Prompt: We obtained encouraging results for
both the full prompt and random prompt settings. However,
these methods fail to adapt to the imbalanced nature of PAR
datasets. Our observations are two-fold: (i) the full prompt
considers all attributes, leading to over-fitting on dominant
attributes; and (ii) the random prompts often exclude some
under-represented classes because of the randomness. For
this purpose, we could add more context or give more im-
portance to the minority classes. To solve this, we can add
more context or emphasize on minority classes. Inspired by
CLIP’s success with specialized prompts such as: “A photo
of a {label}, a type of pet” on the Oxford-IIIT Pets [21]
and “a satellite photo of a {label}” on the OCR dataset,
we suggest a new prompt setting called the Contextual
Prompt (CP). This combines random prompts with added
emphasize on minority classes. We first apply the (p)
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exclusion to sample attributes and estimate the frequencies
of all sub-categories for the attributes in the training batch,
segregating dominant attributes from under-represented
ones by positive-negative z-score. After segregation, we
prepend token “especially” on each attribute with negative
z-score. For instance, “A photo of a person with gender
male, especially face-mask present.” The z-score varying
per the batch ensures that low-frequency sub-categories get
more emphasis during the prompt construction.

Inverse Frequency Loss (L,): In addition to the different
prompt settings, we have also injected Inverse Frequency
Loss (IFL) to the constrastive loss utilized by CLIP. This
basically involves computation of weights through counting
of class frequencies such that minority classes are empha-
sized. These computed weights get integrated with a CLIP
constrastive loss during training.

4.3. Training and Testing CLIP

We have followed the standard training procedure to
train the CLIP model. In the PAR settings, both the visual
and textual encoders have been optimized during training
as they could learn the mapping of textual description of
each attribute to the visual features of the pedestrian images
given as input. In the inference step, we have used cosine
similarity between both encoders to decide for attributes.
For evaluation, we have tested with the visual encoders, e.g.
CLIP ViT-B/32 [5] and ResNet50 [7].

5. Experiments

In this section, we present implementation details,
datasets, evaluation metrics, proposed baseline comparisons
with prior arts, benchmark PEARL, and ablation experi-
ments.

5.1. Datasets and Evaluation Metrics

The PA100K [4] dataset features 100K pedestrian im-
ages captured across 598 outdoor scenes, each annotated
with 26 commonly used attributes. The dataset is split into
training, validation, and test sets, maintaining an 8:1:1 ra-
tio for training. In contrast, the PETA [4] includes over
8.7K pedestrians captured within 19K images with varied
resolutions from 17 x 39 to 169 x 365. Each pedestrian
is annotated with 61 binary attributes and four multi-class
attributes. However, for the present analysis, only 35 at-
tributes with a positive label ratio exceeding 5% are consid-
ered following the established protocol. Based on the main
study [4], the dataset undergoes a random division into three
splits, allocating 9.5K images for training, 1.9K images for
validation, and the remaining 7.6K images for testing.

The RAP [15] is a collection of over 41K pedestrian
images. Adhering to the original protocol by Li [15], we
selectively consider 51 attributes for evaluation purposes.

For model evaluation, five random splits are employed, with
over 33K images utilized for training and over 8K images
for testing in each split. The final evaluation entails averag-
ing the performance across all splits.

Following the prior works [11,13,16,20,32,36], we have
employed instance-based mean accuracy (mA), along with
four label-based criteria: accuracy, precision, recall, and
F1 score to benchmark PEARL using proposed baseline.
For experimental purpose, we employ official implementa-
tion of CLIP [22] with default parameters. Implementation
details can be found in supplementary document.

5.2. Benchmarking PEARL

We present a comprehensive benchmarking of the
dataset through evaluations against recent PAR works and
the proposed baseline method. Tab. 2 shows the perfor-
mance of a few important SOTA methods.

Table 2. PEARL Benchmark Results: Performance comparisons
on PEARL. Red font highlights the highest scores, and blue font
denotes the second-highest scores. FP, RP and CP being the Full,
Random and Contextual prompt settings with IFL.

Method Backbone mA Acc. Prec.  Rec. F1
CNN + SVM [4] VGG-16 71.14 5338 7022 7230 71.24
DeepSAR [13] RN50 7325 - - - -
DeepMAR [13] RN50 80.31 7640 79.52 7634  77.89
HP-Net [20] Incep. 8147 77.12 8055 78.11  79.31
VTB [2] ViT-B 83.03 73.18 8273 8192 8232
DAFL [11] ViT-B 82.11 80.68 81.62 8234 8197
Baseline [12] - 81.57 7735 80.72 79.05 79.87
SSPNet [26] Swin-S 80.71 79.56 81.90 78.12  79.96
KD-PAR [30] Res2Net 80.54 78.60 80.78  79.20  79.98
S-ACRM [32] RN50 81.23 79.51 8228 80.37 81.31
PARFormer-B [6]  ViT-B 81.55 80.19 83.60 81.22 8239
CLIP + FP ViT-B 8335 82.58 8530 8276 84.01
CLIP + RP ViT-B 81.05 8145 84.11 8217 83.12
CLIP + CP ViT-B 8729 8335 8643 8445 8542

In the benchmarking results using PEARL dataset, the
DeepMAR [13] with ResNet50 [7] method achieves an m A
of 80.31, demonstrating commendable performance. How-
ever, the suggested evaluation baseline outperforms various
SOTA approaches, achieving an m A of 87.29 with contex-
tual prompt setting. Despite promising performance, results
on the PEARL dataset indicate that the dataset complexity
still remains as a critical issue. It has been observed that
the diverse nature of attributes and environmental condi-
tions continue to pose challenges to PAR methods.

5.3. SOTA Comparisons

We have compared the proposed baseline with recent
SOTA approaches [2, 6, 11, 13, 14, 17, 19, 20, 24, 28-30),
]. Tab. 3 summarises the performance comparisons on
RAP [15] and PETA [4] datasets. It can be noted that
the suggested baseline achieves competitive performance
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Table 3. Prior Arts Analysis: Performance comparisons on RAP [

] and PETA [4] datasets.

RAP [15] PETA [4]

Method Backbone mA Acc.  Prec. Rec. F1 mA Ace. Prec. Rec. F1

CNN + SVM [4] | VGG16 7228 31.72 3575 71.78 47.73 | 76.65 4541 5133 75.14 61.00
DeepMAR [13] CaffeNet 7379 62.02 7492 7621 75.56 | 82.89 75.07 83.68 83.14 8341
HP-Net [20] Inception 76.12  65.39 7733 7879 78.05 | 81.77 76.13 8492 8324 84.07
VeSPA [24] Inception 7770 67.35 79.51 79.67 79.59 | 8345 77.73 86.18 84.81 8549
JRL [33] AlexNet 7781 - 78.11 78.98 7858 | 85.67 - 86.03 85.34 8542
PgDM [14] CaffeNet 7431 6457 7886 7590 77.35 | 8297 78.08 86.86 84.68 85.76
JLPLS-PAA [29] | - 8125 6791 7856 8145 7998 | 84.88 79.46 8742 86.33 86.87
RA [40] Inception-V3 | 81.16 — 79.45 79.23 79.34 | 86.11 - 84.69 88.51 86.56
ALM [30] BN-Inception | 81.87 68.17 7471 86.48 80.16 | 86.30 79.52 85.65 88.09 86.85
JLAC [28] ResNet50 83.69 69.15 79.31 8240 80.82 | 86.96 80.38 87.81 87.09 8745
DAFL [11] Inception 83.72 68.18 77.41 8339 8029 | 87.07 78.88 85.78 87.03 86.40
SSC[10] ResNet50 82.77 6837 75.05 87.49 8043 | 86.52 7895 86.02 87.12 86.99
SSPNet [10] Swin-S 83.24 7021 80.14 8290 81.50 | 88.80 82.80 88.48 90.55 89.50
KD-PAR [30] Res2Net 81.30 69.22 7461 8420 79.11 | 85.50 7831 8797 84.17 86.03
PARFormer-B [6] | ViT-B 83.84 69.70 79.24 87.81 81.16 | 88.65 8234 86.89 91.55 88.66
CLIP + FP ViT-B 83.71 71.28 83.49 8792 85.64 | 88.71 84.02 88.58 88.79 88.68
CLIP + RP ViT-B 8242 69.60 82.11 86.81 84.39 | 86.91 8345 87.55 88.03 87.78
CLIP + CP ViT-B 86.70 72.81 84.03 88.55 86.23 | 90.05 87.36 91.15 92.60 91.86

through leveraging visual-textual analysis on both datasets.
The experiments also reveal that ViT-based PARFormer [6]
reports competitive recall values due to integration of at-
tribute and viewpoint information. However, viewpoint
may not always be a decisive feature, and completely re-

supplementary document.

Table 4. Prior Method Analysis: Performance comparisons on
PA100K [20].

. : s4: TR : Meth A A Prec.  Rec. F1
lying on it may generate more false positives. This is evi- ethod m ce. e Tee

dent wh th tri df . Fi 5 DeepMAR [13] 7270 7039 8224 8042 81.32
ent when other metrics are used for comparisons. Fig. HP-Net [20] a2l a0 8297 £209 8253
depicts a handful of prediction results obtained through the JLPLS-PAA[29]  81.61 7880 8683 8773 8727
suggested baseline. ALM [30] 80.65 77.08 8421 8884 8646
Other notable methods such as JLAC [28], DAFL [11] ;LACI'[ [] | Z?Zi Zzg ::‘6‘2 ::Z; :ZZ;

. . . aseline . K . . .
show stable results on both datasets due their integration of DAFL [11] 354 8003 8701 8909 8809
GCN and triplet loss. Similar observations are reported on SSPNet [11] 8358 80.63 8779 8932  88.55
performance comparisons using the PA10OK dataset. Tab. 4 KD-PAR [26] 8156 7845 8790 8605 8696
shows the performance of several PAR approaches. The S-ACRM [37] 8226 7719 8636 8792  87.32
proposed baseline achieves SOTA performance on PA100K PARFormer-B[0] 8395 8026 8751 9107 87.69
dataset with .. 1 and F1 val hish CLIP + FP 8376 8233 8950 9101 9024
ataset with precision, recall, an Vvalues as high as CLIP + RP 8224 8178 8872 9033 8951
92.67%, 92.88%, and 92.77%, respectively. It can also CLIP + CP 3645 8612 9267 9288 9277

be observed that the overall label-based accuracy is low on
PA100K [20]. It is probably due to less diverse annotations
on PA100K dataset. This has led to smaller inter-class vari-
ations. More results on zero-shot setting can be found in

GT: Upper body color = White
Upper body color is red. | 0.01 [

1

4
\}

[ oT: weather = Snowy | [(ST: Body Posture = seating |

Weather is snowy | 0.83
Weather sunny. | 0.10
Viewpoint is back.  0.78

Viewpoint is right. | 0.09
GT: Viewpoint = Back

! Body posture is standing | 0.51
Upper body color is white. | 0.95 LB [ Body postureis seating | 0.49
Upper body color is black.  0.01

B | icir ype of bald.

-

J| [Hatis present. 0.38
Hat s not present. | 0.35

Hat s not observable. | 0.27

077

GT: Hat = #NOB

Figure 5. Caption Score: Few prediction results predicted by
the Full Prompt (FP) CLIP-ViT-B/32 model trained on PEARL
dataset. GT: Ground truth assigned by annotators. Green bars are
prediction by the model with highest caption score.

5.4. Cross-Dataset Validation

Cross-data validation experiments are vital to guaran-
tee generalization and model robustness between datasets.
In order to validate the usability of PEARL dataset, we
have conducted these cross-validation experiments on sug-
gested CLIP with Contextual Prompt and latest transformer-
based method PARFormer-B [6]. From the Tab. 5, it can be
observed that both methods experience similar gain when
tested on PETA and PA100K after training using PEARL.
Precisely, the CLIP + CP method, when trained on PEARL,
has the mA 93.45% and overall accuracy of 89.5% on PETA
with a gain of +2.65%, while it attains the mA of 90.11%
and overall accuracy of 89.57% on PA-100K, with a gain of
+3.55%. This basically shows that the training on PEARL
is able to infuse generalized learning over other datasets.
The positive gain and notably higher accuracy of PEARL
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as compared to training on PETA or PA100K dataset are en-
couraging. These datasets show slightly negative gains. The
same can be observed through Fig. 7. This indicates that
PEARL offers a more comprehensive and balanced training
set that can be used for producing better results and offer
more generalization as compared to other testing datasets.

Table 5. Dataset Cross-Validation: Performance comparison of
PARFormer-B [6] and the proposed CLIP + CP method across
PEARL, PETA, and PA-100K datasets. (A) represents the dif-
ference of average values of mA and Accuracy obtained during
training and testing on the same dataset.

‘ Training Dataset Method Testing on PETA Testing on PA-100K ‘

mA Acc. A mA Acc. A
PEARL PARFormer-B 9235  87.17 +4.26 88.20  85.51 +4.75
CLIP + CP 93.45 89.5 +2.65 90.11 89.57  +3.55

Testing on PEARL Testing on PA-100K

mA Acc. A mA Acc. A
PETA PARFormer-B 7337  71.29 -8.89 7923 7151 -3.73
CLIP + CP 83.03  76.59 -5.51 83.72  82.88 -2.98

Testing on PEARL Testing on PETA

mA Acc. A mA Acc. A
PA-100K PARFormer-B 7132 69.73  -10.34 8330 7886  -4.41
CLIP + CP 82.30  79.51 -445 8723 8412  -3.03

5.5. Ablation Study

The primary components of the proposed baseline in-
clude visual encoders for visual feature extraction and three
prompt settings. To comprehend individual impact on the
overall performance, we have conducted an ablation study.
We have shown the performance difference against both
ViT-B/32 and RN50 as visual encoders under three prompt
settings in Fig. 6. It can be observed from the bar chart of
the image that the CLIP with ViT-B/32 as visual encoder
performs better than RN50 under all settings. It is due to
the inclusion of self-attention and patch embedding in ViT.
This helps the model to learn diverse appearances. On the
other hand, the graph depicts the variation in mean average
with different values of (p) used for random prompts. Note
that, for Full Prompt (FP) setting, (p = 0) suggests that
no attribute is excluded during the prompt generation. The
results mentioned in the paper for CLIP + RP and CP in Ta-
bles 2-4 for random prompt are obtained by setting p = 0.2.

6. Conclusion and Future Work

In this work, we introduce PEARL, a comprehensive
PAR dataset comprising of 30k images, each annotated
with 146 critical sub-attributes. Extracted from surveillance
videos across twelve countries, PEARL dataset exhibits re-
markable diversity, spanning various public places and illu-
minations. To tackle the challenges posed by existing PAR
datasets, we establish a robust baseline using CLIP (Con-
strastive Language-Image Pretrainig) model with three dif-
ferent prompt settings, i.e., full prompt, random prompt,
and contextual prompt. The experiments reveal that both

mA vs % Attributes Exclusion (rho)

[ 10 20 30 4 50 60 70
% Attrbutes Exclusion

Figure 6. Ablation and Effect of (p): Left: The variation in
mean average for different values of (p) employed during Ran-
dom Prompt setting. Right: Bars showing a significant gain with
two visual encoders, i.e., ViT-B/32 (Orange) and ResNet50 (sky-
blue).

94.35 95.21
83.02

88.10
18 8112
75.11 7890
9347
8035 )
oromsi Aty Posing

eeeeeeeeeeeeeeeeeeeeeeee

Attribute

Figure 7. Attribute-wise Testing: Bars showing a significant
gain in mA when the VTB [2] model has been explicitly trained
on PEARL specific attributes and tested on the attributes from
PA100K [20] (Blue) and RAP [15] (yellow) datasets.

visual and textual modalities are helpful in recognizing at-
tribute in adverse conditions. Moreover, it can also be
concluded that a diverse PAR dataset can help models
learn more discriminating features. The proposed PEARL
dataset is sufficiently large and diverse to achieve SOTA
performance. While the CLIP-based baseline demonstrates
promising attribute recognition capabilities, its performance
may vary depending on the complexity of environmental
factors and the diversity of attributes in real-world scenar-
ios. Future directions encompass exploring diversity of-
fered by the PEARL to learn more compact visual-textual
relationships and advance feature extraction process to ex-
plore better embedding are avenues for future investigation.
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