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ABSTRACT

Selection bias in recommender system arises from the recommendation process
of system filtering and the interactive process of user selection. Many previous
studies have focused on addressing selection bias to achieve unbiased learning
of the prediction model, but ignore the fact that potential outcomes for a given
user-item pair may vary with the treatments assigned to other user-item pairs,
named neighborhood effect. To fill the gap, this paper formally formulates the
neighborhood effect as an interference problem from the perspective of causal
inference, and introduces a treatment representation to capture the neighborhood
effect. On this basis, we propose a novel ideal loss that can be used to deal with
selection bias in the presence of neighborhood effect. We further develop two new
estimators for estimating the proposed ideal loss. We theoretically establish the
connection between the proposed and previous debiasing methods ignoring the
neighborhood effect, showing that the proposed methods can achieve unbiased
learning when both selection bias and neighborhood effects are present, while the
existing methods are biased. Extensive semi-synthetic and real-world experiments
are conducted to demonstrate the effectiveness of the proposed methods.

1 INTRODUCTION

Selection bias is widespread in recommender system (RS) and challenges the prediction of users’ true
preferences (Chen et al., 2021b; Wu et al., 2022), which arises from the recommendation process of
system filtering and the interactive process of user selection (Marlin and Zemel, 2009; Huang et al.,
2022). For example, in the rating prediction task, selection bias happens in explicit feedback data
as users are free to choose which items to rate, so that the observed ratings are not a representative
sample of all ratings (Steck, 2010). In the post-click conversion rate (CVR) prediction task, selection
bias happens due to conventional CVR models are trained with samples of clicked impressions while
utilized to make inference on the entire space with samples of all impressions (Ma et al., 2018; Zhang
et al., 2020; Guo et al., 2021; Dai et al., 2022; Wang et al., 2022).

Inspired by the causal inference literature (Imbens and Rubin, 2015), many studies have proposed
unbiased estimators for eliminating the selection bias, such as inverse propensity scoring (IPS) (Schn-
abel et al., 2016), self-normalized IPS (SNIPS) (Swaminathan and Joachims, 2015), and doubly
robust (DR) methods (Wang et al., 2019; Dai et al., 2022; Chen et al., 2021a; Li et al., 2023d). Given
the features of a user-item pair, these methods first estimate the probability of observing that user
rating or clicking on the item, called propensity. Then the inverse of the propensity is used to weight
the observed samples to achieve unbiased estimates of the ideal loss.

However, the theoretical guarantees of the previous methods are all established under the Stable Unit
Treatment Values Assumption (SUTVA) (Rubin, 1980), which requires that the potential outcomes
for one user-item pair do not vary with the treatments assigned to other user-item pairs (also known
as no interference or no neighborhood effect), as shown in Figure 1(a). In fact, such assumption can
hardly be satisfied in real-world scenarios. For example, a user’s rating on an item can be easily
influenced by other users’ ratings on that item, as well as a user’s clicking on an item might facilitate
other users’ clicking and purchasing of that item (Zheng et al., 2021; Chen et al., 2021c). Figure 1(b)
shows a general causal diagram in the presence of interference in debiased recommendation.
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Figure 1: Causal diagrams of the existing debiasing methods under no interference assumption (left),
and the proposed method taking into account the presence of interference (right), where xu,i, ou,i,
and ru,i denote the confounder, treatment, and outcome of user-item pair (u, i), respectively. In
the presence of interference, N(u,i) and N−(u,i) denote the other user-item pairs affecting and not
affecting (u, i), respectively, and gu,i denotes the treatment representation to capture the interference.

To fill this gap, in this paper, we first formulate the debias problem in Figure 1(b) from the perspective
of causal inference, and refine the definition of potential outcomes to be compatible in the presence
of interference. In addition, we introduce a learnable treatment representation to capture such
interference. Based on the refined potential outcome and treatment representation, we propose a novel
ideal loss that can effectively evaluate the performance of the prediction model when both selection
bias and neighborhood effect are present. We then propose two new estimators for estimating the
proposed ideal loss, named neighborhood inverse propensity score (N-IPS) and neighborhood doubly
robust (N-DR), respectively. Theoretical analysis shows that the proposed N-IPS and N-DR estimators
can achieve unbiased learning in the presence of both selection bias and neighborhood effect, while
the previous debiasing estimators cannot result in unbiased learning without imposing extra strong
assumptions. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the
effectiveness of the proposed methods for eliminating the selection bias under interference.

2 PRELIMINARIES: PREVIOUS SELECTION BIAS FORMULATION

Let u ∈ U and i ∈ I be a user and an item, xu,i, ou,i, and ru,i be the feature, treatment (e.g.,
exposure), and feedback (e.g., conversion) of the user-item pair (u, i), where ou,i equals 1 or 0
represents whether the item i is exposed to user u or not. Let D = {(u, i)|u ∈ U , i ∈ I} be the set of
all user-item pairs. Using the potential outcome framework (Rubin, 1974; Neyman, 1990), let ru,i(1)
be the potential feedback that would be observed if item i had been exposed to user u (i.e., ou,i had
been set to 1). The potential feedback ru,i(1) is observed only when ou,i = 1, otherwise it is missing.
Then ignoring the missing ru,i(1) and training the prediction model directly with the exposed data
suffers from selection bias, since the exposure is not random and is affected by various factors.

In the absence of neighborhood effects, the potential feedback ru,i(1) represents the user’s preference
by making intervention ou,i = 1. To predict ru,i(1) for all (u, i) ∈ D, let r̂u,i ≜ fθ(xu,i) be a
prediction model parameterized with θ. Denote R̂ ∈ R|U|×|I| as the predicted potential feedback
matrix with each element being r̂u,i. If all the potential feedback {ru,i(1) : (u, i) ∈ D} were
observed, the ideal loss for training the prediction model r̂u,i is formally defined as

Lideal(R̂) = |D|−1
∑

(u,i)∈D

δ(r̂u,i, ru,i(1)), (1)

where δ(·, ·) is a pre-defined loss function, e.g., the squared loss (ru,i(1)− r̂u,i)
2. However, since

ru,i(1) is missing when ou,i = 0, the ideal loss cannot by computed directly from observational data.
To tackle this problem, many debiasing methods are developed to address the selection bias by estab-
lishing unbiased estimators of Lideal(R̂), such as error imputation based (EIB) method (Hernández-
Lobato et al., 2014), inverse propensity scoring (IPS) method (Schnabel et al., 2016), self-normalized
IPS (SNIPS) method (Swaminathan and Joachims, 2015), and doubly robust (DR) methods (Wang
et al., 2019; Dai et al., 2022; Chen et al., 2021a; Li et al., 2023d). We summarize the causal parameter
of interest and the corresponding estimation methods in the previous studies as follows.
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• For the causal parameter of interest, previous studies assume the targeted user preference
ru,i(ou,i = 1) depends only on the treatment status ou,i = 1. Then the ideal loss is defined
using the sample average of δ(r̂u,i, ru,i(ou,i = 1)).

• For the methods of estimating the causal parameter of interest, previous work have made
extensive efforts to estimate the probability P(ou,i = 1 | xu,i), called propensity, i.e., the
probability of user u rate the item i given the features xu,i. Then the existing IPS and DR
methods use the inverse of the propensity for weighting the observed samples.

Nevertheless, we argue that both the causal parameter and the corresponding estimation methods in
the previous studies lead to the failure when eliminating the selection bias under interference.

• (Section 3) For the causal parameter of interest, as shown in Figure 1(b), in the presence of
interference, both the treatment status ou,i and the treatment statuses oN(u,i)

would affect
the targeted user preference ru,i(ou,i,oN(u,i)

), instead of ru,i(ou,i) in the previous studies.
• (Section 4) For the estimation methods of the causal parameter of interest, as shown in

Figure 1(b), when performing propensity-based reweighting methods, both ou,i and oN(u,i)

from its neighbors should be considered as treatments of user-item pair (u, i). Therefore, the
propensity should be modeled as P(ou,i = 1,oN(u,i)

| xu,i) instead of P(ou,i = 1 | xu,i) in
previous studies, which motivates us to design new IPS and DR estimators under interference.

3 MODELING SELECTION BIAS UNDER NEIGHBORHOOD EFFECT

In this section, we take the neighborhood effect in RS as an interference problem in causal inference
and introduce a treatment representation to capture the neighborhood effect. Then, we propose a
novel ideal loss when both selection bias and neighborhood effects are present.

3.1 BEYOND “NO INTERFERENCE” ASSUMPTION IN PREVIOUS STUDIES

In the presence of neighborhood effect, the value of ru,i(1) depends on not only the user’s preference
but also the neighborhood effect, therefore we cannot distinguish the influence of user preference
and the neighborhood effect, even if all the potential outcomes {ru,i(1) : (u, i) ∈ D} were known.
Conceptually, the neighborhood effect will cause the value of ru,i(1) relying on the exposure status
ou′,i′ and the feedback ru′,i′ for some other user-item pairs (u′, i′) ̸= (u, i).

We say that interference exists when a treatment on one unit has an effect on the outcome of another
unit (Ogburn and VanderWeele, 2014; Forastiere et al., 2021; Sävje et al., 2021), due to the social or
physical interaction among units. Previous debiasing methods rely on “no interference” assumption,
which requires the potential outcomes of a unit are not affected by the treatment status of the other
units. Nevertheless, such assumption can hardly be satisfied in real-world recommendation scenarios.

3.2 PROPOSED CAUSAL PARAMETER OF INTEREST UNDER INTERFERENCE

Let o = (o1,1, ..., o|U|,|I|) be the vector of exposures of all user-item pairs. For each (u, i) ∈ D, we
define a partition of o = (ou,i,oN(u,i)

,oN−(u,i)
), where N(u,i) is all the user-item pairs affecting

(u, i), called the neighbors of (u, i), and N−(u,i) is all the user-item pairs not affecting (u, i). When
the feedback ru,i is further influenced by the neighborhood exposures oN(u,i)

, then the potential
feedback of (u, i) should be defined as ru,i(ou,i,oN(u,i)

) to account for the neighbourhood effect.

However, if we take (ou,i,oN(u,i)
) as the new treatment directly, it would be a high-dimensional

sparse vector when the dimension of oN(u,i)
is high and the number of exposed neighbors is limited.

To address this problem and capture the neighborhood effect effectively, we make an assumption on
the interference mechanism leveraging the idea of representation learning (Johansson et al., 2016).
Assumption 1 (Neighborhood treatment representation). There exists a representation vector ϕ :
{0, 1}|N(u,i)| → G, if ϕ(oN(u,i)

) = ϕ(o′
N(u,i)

), then ru,i(ou,i,oN(u,i)
) = ru,i(ou,i,o

′
N(u,i)

).

The above assumption implies that the value of ru,i(ou,i,oN(u,i)
) depends on oN(u,i)

through a
specific treatment representation ϕ(·) that summarizes the neighborhood effect. Denote gu,i as
ϕ(oN(u,i)

), then we have ru,i(ou,i,oN(u,i)
) = ru,i(ou,i, gu,i) under Assumption 1, i.e., the feedback

of (u, i) under individual exposure ou,i and treatment representation gu,i.
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We now propose ideal loss under neighborhood effect with treatment representation level g ∈ G as

LN
ideal(R̂|g) = |D|−1

∑
(u,i)∈D

δ(r̂u,i, ru,i(ou,i = 1, g)),

and the final ideal loss summarizes various neighborhood effects g ∈ G is constructed as

LN
ideal(R̂) =

∫
LN
ideal(R̂|g)π(g)dg, (2)

where π(g) is a pre-specified probability density function of g.

The proposed LN
ideal(R̂) forces the prediction model r̂u,i to perform well across varying treatment

representation levels g ∈ G. Thus, LN
ideal(R̂) is expected to control the extra bias arises from the

neighborhood effect. In comparison, the neighborhood effect and self interest of users are intertwined
in Lideal(R̂). In addition, LN

ideal(R̂) is very flexible due to the free choice of π(g). Intuitively, the
choice of π(g) depends on the target population that we want to make predictions on. Consider an
extreme case of no neighborhood effects, this corresponds to gu,i = 0 for all user-item pairs. In such
a case, we can write ru,i(1, 0) as ru,i(1) and LN

ideal(R̂) would reduce to Lideal(R̂).

4 UNBIASED ESTIMATION AND LEARNING UNDER INTERFERENCE

In this section, we first discuss the consequence of ignoring the neighborhood effect, and then propose
two novel estimators for the ideal loss in Eq. (2). Moreover, we theoretically analyze the bias,
variance, optimal bandwidth, and generalization error bound of the proposed estimators.

Before presenting the proposed debiasing methods under interference, we briefly discuss the identifi-
ability of the ideal loss LN

ideal(R̂). A causal estimand is said to be identifiable if it can be written as a
series of quantities that can be estimated from observed data.
Assumption 2 (Consistency under interference). ru,i = ru,i(1, g) if ou,i = 1 and gu,i = g.
Assumption 3 (Unconfoundedness under interference). ru,i(1, g) ⊥⊥ (ou,i,Gu,i) | xu,i.

These assumptions are common in causal inference to ensure the identifiability of causal effects.
Specifically, Assumption 2 implies that ru,i(1, g) is observed only when ou,i = 1 and gu,i = g.
Assumption 3 indicates that there is no unmeasured confounder that affects both ru,i and (ou,i, gu,i).
The following Theorem 1 gives the identifiability of the proposed ideal loss. Let E denote the
expectation on the target population D, and p(·) denotes the probability density function of P.

Theorem 1 (Identifiability). Under Assumptions 1–3, LN
ideal(R̂) is identifiable.

4.1 EFFECT OF IGNORING INTERFERENCE

The widely used ideal loss Lideal(R̂) under no neighborhood effects is generally different from the
ideal loss LN

ideal(R̂) in the presence of neighborhood effects. Next, we establish the connection
between these two loss functions, to deepen the understanding of the methods of considering/ignoring
neighborhood effects. For brevity, we let δu,i(g) = δ(r̂u,i, ru,i(1, g)) hereafter.
Theorem 2 (Link to selection bias). Under Assumptions 1–3,

(a) if gu,i ⊥⊥ ou,i | xu,i, LN
ideal(R̂) = Lideal(R̂).

(b) if gu,i ⊥̸⊥ ou,i | xu,i, LN
ideal(R̂)− Lideal(R̂) equals∫

E
[
E{δu,i(g)|xu,i} ·

{
p(gu,i = g|xu,i)− p(gu,i = g|xu,i, ou,i = 1)

}]
π(g)dg.

From Theorem 2(a), if the individual and neighborhood exposures are independent conditional on xu,i,
then Lideal(R̂) equals to LN

ideal(R̂), which indicates that the existing debiasing methods neglecting
neighborhood effects are also unbiased estimator of LN

ideal(R̂). This is intuitively reasonable since
in such a case, the neighborhood effect randomly influences ou,i conditional on xu,i, and the effect
of neighbors would be smoothed out in an average sense. Theorem 2(b) shows that a bias would
arise when gu,i ⊥̸⊥ ou,i | xu,i, and the bias mainly depends on the association between ou,i and gu,i
conditional on xu,i, i.e., p(gu,i = g|xu,i = x)− p(gu,i = g|xu,i = x, ou,i = 1).
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4.2 PROPOSED UNBIASED ESTIMATORS

From Eq. (2), to derive an unbiased estimator of LN
ideal(R̂), it suffices to find an unbiased estimator of

LN
ideal(R̂|g). If we follow the previous IPS method (Schnabel et al., 2016) and take (ou,i, gu,i) as a

joint treatment, then the IPS estimator of LN
ideal(R̂|g) should be |D|−1

∑
(u,i)∈D I{ou,i = 1, gu,i =

g} · δu,i(g)/pu,i(g), where I(·) is an indicator function, pu,i(g) = p(ou,i = 1, gu,i = g|xu,i) is the
propensity score. Clearly, this strategy works if gu,i is a binary or multi-valued random variable.
However, if gu,i has a continuous probability density, the above estimator is numerically infeasible
even if theoretically feasible, since almost all I{ou,i = 1, gu,i = g} will be zero in such a case.

To tackle this problem, we propose a novel kernel-smoothing-based neighborhood IPS (N-IPS)
estimator of LN

ideal(R̂|g), which is given as

LN
IPS(R̂|g) = |D|−1

∑
(u,i)∈D

I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)
h · pu,i(g)

,

where h is a bandwidth (smoothing parameter) and K(·) is a symmetric kernel function (Li and
Racine, 2007; Fan and Gijbels, 1996) that satisfies

∫
K(t)dt = 1 and

∫
tK(t)dt = 1. For example,

Epanechnikov kernel K(t) = 3(1− t2)I{|t| ≤ 1}/4 and Gaussian kernel K(t) = exp(−t2/2)/
√
2π

for t ∈ R. For ease of presentation, we state the results for a scalar g in the manuscript. Similar
conclusions can be derived for multi-dimensional g and we put them in Appendix G.

Similarly, the kernel-smoothing-based neighborhood DR (N-DR) estimator can be constructed by

LN
DR(R̂|g) = |D|−1

∑
(u,i)∈D

[
δ̂u,i(g) +

I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}
h · pu,i(g)

]
,

where δ̂u,i(g) = δ(r̂u,i,m(xu,i, ϕg)) is the imputed error of δu,i(g), and m(xu,i, ϕg) is an imputa-
tion model of ru,i(1, g). The imputation model is trained by minimizing the training loss

LN−DR
e (R̂|g) = |D|−1

∑
(u,i)∈D

I(ou,i = 1) ·K ((gu,i − g)/h) · (δu,i(g)− δ̂u,i(g))
2

h · pu,i(g)
.

Then, the corresponding N-IPS and N-DR estimators of LN
ideal(R̂) are given as

LN
IPS(R̂) =

∫
LN
IPS(R̂|g)π(g)dg, LN

DR(R̂) =

∫
LN
DR(R̂|g)π(g)dg. (3)

Next, we show the bias and variance of the proposed N-IPS and N-DR estimators, which relies on a
standard assumption in kernel-smoothing estimation (Li and Racine, 2007; Härdle et al., 2004).

Assumption 4 (Regularity conditions for kernel smoothing). (a) h→ 0 as |D| → ∞; (b) |D|h→ ∞
as |D| → ∞; (c) p(ou,i = 1, gu,i = g | xu,i) is twice differentiable with respect to g.

Theorem 3 (Bias and Variance of N-IPS and N-DR). Under Assumptions 1–4,

(a) the bias of the N-DR estimator is given as

Bias(LN
DR(R̂)) =

1

2
µ2

∫
E
[∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2
·{δu,i(g)−δ̂u,i(g)}

]
π(g)dg·h2+o(h2),

where µ2 =
∫
K(t)t2dt. The bias of N-IPS is provided in Appendix C.

(b) the variance of the N-DR estimator is given as

Var(LN
DR(R̂)) =

1

|D|h

∫
ψ(g)π(g)dg + o(

1

|D|h
),

where ψ(g) =
∫

1
pu,i(g′) · K̄(g−g′

h ) · {δu,i(g)− δ̂u,i(g)}{δu,i(g′)− δ̂u,i(g
′)}π(g′)dg′ is a bounded

function of g, K̄(·) =
∫
K (t)K (·+ t) dt. The variance of N-IPS is provided in Appendix C.
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From Theorem 3(a), the kernel-smoothing-based N-DR estimator has a small bias of order O(h2),
which converges to 0 as |D| → ∞ by Assumption 4(a). Theorem 3(b) shows that the variance of the
N-DR estimator has a convergence rate of order O(1/|D|h). Notably, the bandwidth h plays a key
role in the bias-variance trade-off of the N-DR estimator: the larger the h, the larger the bias and the
smaller the variance. The following Theorem 4 gives the optimal bandwidth for N-IPS and N-DR.
Theorem 4 (Optimal bandwidth of N-IPS and N-DR). Under Assumptions 1-4, the optimal bandwidth
for the N-DR estimator in terms of the asymptotic mean-squared error metric is

h∗N−DR =

 ∫
ψ(g)π(g)dg

4|D|
(

1
2µ2

∫
E
[
∂2p(ou,i=1,gu,i=g|xu,i)

∂g2 · {δu,i(g)− δ̂u,i(g)}
]
π(g)dg

)2


1/5

,

where ψ(g) is defined in Theorem 3. The optimal bandwidth for N-IPS is provided in Appendix D

Theorem 4 shows that the optimal bandwidth of N-DR is of order O(|D|−1/5). In such a case,[
Bias(LN

DR(R̂))
]2

= O(h4) = O(|D|−4/5), Var(LN
DR(R̂)) = O(

1

|D|h
) = O(|D|−4/5),

that is, the square of the bias has the same convergence rate as the variance.

4.3 PROPENSITY ESTIMATION METHOD

Different from previous debiasing methods in RS, in the setting of neighborhood effects, the propensity
is defined for joint treatment that includes a binary variable ou,i and a continuous variable g. To
address this question, we consider a novel method for propensity estimation. Let Pu(g | o = 1,x) be
a uniform distribution on G and equals 1/c for all feature x. Note that

1

pu,i(g)
=

1

P(o = 1 | x)P(g | o = 1,x)
=

c

P(o = 1 | x)
· P

u(g | o = 1,x)

P(g | o = 1,x)
,

where P(o = 1 | x) can be estimated by using the existing methods such as naive Bayes and
logistic regression with and without a few unbiased ratings, respectively (Schnabel et al., 2016). In
addition, to estimate the density ratio Pu(g | o = 1,x)/P(g | o = 1,x), we first label the samples
in the exposed data {(xu,i, gu,i)}{(u,i):ou,i=1} as positive samples (L = 1), then uniformly sample
treatments g′

u,i ∈ G to generate samples
{(

xu,i, g
′
u,i

)}
{(u,i):ou,i=1} with negative label (L = 0).

Since the data generating process ensures that Pu(x | o = 1) = P(x | o = 1), we have

Pu(g | o = 1,x)

P(g | o = 1,x)
=

Pu(x, g | o = 1)

P(x, g | o = 1)
=

P(x, g | L = 0)

P(x, g | L = 1)
=

P(L = 1)

P(L = 0)
· P(L = 0 | x, g)
P(L = 1 | x, g)

,

where P(L = l | x, g) for l = 0 or 1 can be obtained by modeling L with (x, g).

4.4 FURTHER THEORETICAL ANALYSIS

We further theoretically analyze the tail bound and generalization error bound of the proposed N-IPS
and N-DR estimators. Letting F be the hypothesis space of prediction matrices R̂ (or prediction
model fθ), we define the Rademacher complexity

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

[ 1

|D|
∑

(u,i)∈D

σu,iδu,i(g)
]
,

where σ = {σu,i : (u, i) ∈ D} is a Rademacher sequence (Mohri et al., 2018).

Assumption 5 (Boundedness). 1/pu,i(g) ≤Mp, δu,i(g) ≤Mδ , and |δu,i(g)− δ̂u,i(g)| ≤M|δ−δ̂|.

Theorem 5 (Uniform Tail Bound of N-IPS and N-DR). Under Assumptions 1–5 and suppose that
K(t) ≤MK , then for all R̂ ∈ F , we have with probability at least 1− η,

sup
R̂∈F

∣∣∣LN
DR(R̂)− E[LN

DR(R̂)]
∣∣∣ ≤ 2MpMK

h
R(F) +

5

2

MpMKM|δ−δ̂|

h

√
2

|D|
log(

4

η
).

The uniform tail bound of the N-IPS estimator is provided in Appendix E.
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Table 1: Relative error on six prediction metrics. The best results are bolded.
ONE THREE FOUR ROTATE SKEW CRS

Naive 0.8612 ± 0.0068 1.0011 ± 0.0075 1.0471 ± 0.0077 0.2781 ± 0.0019 0.3538 ± 0.0038 0.3419 ± 0.0030

IPS 0.4766 ± 0.0060 0.5501 ± 0.0056 0.5731 ± 0.0057 0.1434 ± 0.0040 0.1969 ± 0.0046 0.1885 ± 0.0028
N-IPS 0.2383 ± 0.0066 0.2670 ± 0.0069 0.2829 ± 0.0062 0.0417 ± 0.0043 0.1024 ± 0.0051 0.0966 ± 0.0029

DR 0.4247 ± 0.0088 0.4637 ± 0.0093 0.4661 ± 0.0096 0.0571 ± 0.0021 0.1938 ± 0.0043 0.0565 ± 0.0020
N-DR 0.3089 ± 0.0088 0.3533 ± 0.0091 0.3577 ± 0.0092 0.0339 ± 0.0031 0.1219 ± 0.0039 0.0511 ± 0.0026

MRDR 0.2578 ± 0.0070 0.2639 ± 0.0071 0.2611 ± 0.0073 0.1001 ± 0.0025 0.1538 ± 0.0038 0.0156 ± 0.0021
N-MRDR 0.0622 ± 0.0065 0.0520 ± 0.0065 0.0503 ± 0.0064 0.0456 ± 0.0037 0.0672 ± 0.0038 0.0042 ± 0.0022
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Figure 2: The effect of mask numbers as interference strength on RE on six prediction matrices.

Theorem 5 gives the uniform tail bound of the N-IPS and N-DR estimators. Based on it, we can
obtain the generalization error bounds of the prediction model trained by minimizing the N-IPS and
N-DR estimators, as shown in the following Corollary 6. Define R̂† = argminR̂∈F LN

DR(R̂).

Corollary 6 (Generalization Error Bound of N-IPS and N-DR). Under the conditions in Theorem 5,
we have with probability at least 1− η,

LN
ideal(R̂

†) ≤ min
R̂∈F

LN
ideal(R̂) + µ2M|δ−δ̂|

∣∣∣ ∫ E
[∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2

]
π(g)dg

∣∣∣ · h2
+

4MpMK

h
R(F) +

5MpMKM|δ−δ̂|

h

√
2

|D|
log(

4

η
) + o(h2).

The generalization error bound of the N-IPS estimator is provided in Appendix F.

5 SEMI SYNTHETIC EXPERIMENTS

We conduct semi synthetic experiments using MovieLens 100K1 (ML-100K) dataset, focusing on the
following two research questions (RQs): RQ1. Do the proposed estimators result in more accurate
estimation for ideal loss compared to the previous estimators in the presence of neighborhood effect?
RQ2. How does the neighborhood effect strength affect the estimation accuracy?

Experimental Setup. The ML-100K dataset contains 100,000 missing-not-at-random (MNAR)
ratings from 943 users to 1,682 movies. Different from the previous experimental settings that
only consider the selection bias, we further consider the neighborhood effect. Specifically, we
denote N(u,i) be the historical user and item interactions for the neighbors of (u, i), and treatment

1https://grouplens.org/datasets/movielens/100k/
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Table 2: Performance of MSE, AUC, and NDCG@5 on three real-world datasets. The best six results
are bolded, and the best baseline is underlined.

Dataset Coat Yahoo! R3 KuaiRec

Method MSE ↓ AUC ↑ N@5 ↑ MSE ↓ AUC ↑ N@5 ↑ MSE ↓ AUC ↑ N@50 ↑
Base model (Koren et al., 2009) 0.238 0.710 0.616 0.249 0.682 0.634 0.137 0.754 0.553
+ CVIB (Wang et al., 2020) 0.222 0.722 0.635 0.257 0.683 0.645 0.103 0.769 0.563
+ DIB (Liu et al., 2021) 0.242 0.726 0.629 0.248 0.687 0.641 0.142 0.754 0.556
+ SNIPS (Schnabel et al., 2016) 0.208 0.737 0.636 0.245 0.687 0.656 0.048 0.788 0.576
+ ASIPS (Saito, 2020) 0.205 0.722 0.621 0.230 0.678 0.643 0.097 0.753 0.554
+ DAMF (Saito and Nomura, 2019) 0.218 0.734 0.643 0.245 0.697 0.656 0.097 0.775 0.572
+ DR (Saito, 2020) 0.208 0.726 0.634 0.216 0.684 0.658 0.046 0.773 0.564
+ DR-BIAS (Dai et al., 2022) 0.223 0.717 0.631 0.220 0.689 0.654 0.046 0.771 0.552
+ DR-MSE (Dai et al., 2022) 0.214 0.720 0.630 0.222 0.689 0.657 0.047 0.769 0.547
+ MR (Li et al., 2023a) 0.210 0.730 0.643 0.247 0.693 0.651 0.114 0.780 0.573
+ TDR (Li et al., 2023b) 0.229 0.710 0.634 0.234 0.674 0.662 0.134 0.769 0.573
+ TDR-JL (Li et al., 2023b) 0.216 0.734 0.639 0.248 0.684 0.654 0.121 0.771 0.560
+ SDR (Li et al., 2023d) 0.208 0.736 0.642 0.210 0.690 0.655 0.116 0.775 0.574

+ IPS (Schnabel et al., 2016) 0.214 0.718 0.626 0.221 0.681 0.644 0.097 0.752 0.554
+ N-IPS [LR, Gaussian] 0.212 0.742 0.678 0.226 0.693 0.664 0.092 0.796 0.585
+ N-IPS [LR, Epanechnikov] 0.224 0.746 0.645 0.242 0.703 0.673 0.094 0.794 0.582
+ N-IPS [NB, Gaussian] 0.206 0.744 0.648 0.196 0.693 0.658 0.049 0.785 0.579
+ N-IPS [NB, Epanechnikov] 0.210 0.753 0.646 0.197 0.685 0.653 0.047 0.755 0.562

+ DR-JL (Wang et al., 2019) 0.211 0.721 0.620 0.224 0.682 0.646 0.050 0.764 0.526
+ N-DR-JL [LR, Gaussian] 0.231 0.731 0.651 0.247 0.698 0.664 0.113 0.779 0.537
+ N-DR-JL [LR, Epanechnikov] 0.235 0.741 0.655 0.251 0.693 0.663 0.108 0.784 0.552
+ N-DR-JL [NB, Gaussian] 0.204 0.748 0.650 0.198 0.691 0.653 0.049 0.778 0.574
+ N-DR-JL [NB, Epanechnikov] 0.209 0.744 0.648 0.191 0.681 0.637 0.046 0.786 0.570

+ MRDR-JL (Guo et al., 2021) 0.214 0.721 0.631 0.215 0.686 0.650 0.047 0.777 0.554
+ N-MRDR-JL [LR, Gaussian] 0.217 0.728 0.662 0.252 0.697 0.666 0.107 0.785 0.539
+ N-MRDR-JL [LR, Epanechnikov] 0.233 0.734 0.656 0.253 0.695 0.666 0.097 0.791 0.560
+ N-MRDR-JL [NB, Gaussian] 0.208 0.742 0.651 0.206 0.694 0.663 0.045 0.793 0.583
+ N-MRDR-JL [NB, Epanechnikov] 0.207 0.756 0.635 0.194 0.690 0.644 0.044 0.802 0.587

representation is chosen from gu,i = I(
∑

(u′,i′)∈N(u,i)
ou′,i′ ≥ c) with varying c. In our experiment,

c is chosen to be the median of all
∑

(u′,i′)∈N(u,i)
ou′,i′ for simplicity.

Following the previous studies (Schnabel et al., 2016; Wang et al., 2019; Guo et al., 2021), we first
complete the full rating matrix R using Matrix Factorization (MF) (Koren et al., 2009), resulting in
ru,i ∈ {1, 2, 3, 4, 5}, and then set propensity pu,i = pαmax(0,4−ru,i) with α = 0.5 to model MNAR
effect (Wang et al., 2019; Guo et al., 2021). Next we compute gu,i for 100,000 observed MNAR
ratings and complete two full rating matrices Rg=0 and Rg=1 with ru,i(1, g) ∈ {1, 2, 3, 4, 5} using
MF, using {(u, i) | ou,i = 1, gu,i = 0} and {(u, i) | ou,i = 1, gu,i = 1} respectively.

Experimental Details. The computation of the ideal loss needs both ground truth rating matrix and
prediction rating matrix. Therefore, we first generate the following six prediction matrices R̂:

• ONE: The predicted rating matrix R̂ is identical to the true rating matrix, except that |{(u, i) |
ru,i = 5}| randomly selected true ratings of 1 are flipped to 5. This means half of the predicted fives
are true five, and half are true one.
• THREE: Same as ONE, but flipping true rating of 3.
• FOUR: Same as ONE, but flipping true rating of 4.
• ROTATE: For each predicted rating r̂u,i = ru,i − 1 when ru,i ≥ 2, and r̂u,i = 5 when ru,i = 1.
• SKEW: Predicted r̂u,i are sampled from the Gaussian distribution N (µ = ru,i, σ = (6− ru,i)/2),
and clipped to the interval [1, 5].
• CRS: Set r̂u,i = 2 if ru,i ≤ 3, otherwise, set r̂u,i = 4.

Given the way c is chosen, it is reasonable to assume that each user-item pair in the uniform data
has equal probability of having gu,i = 0 and gu,i = 1. That is, π(g) = 0.5 for g ∈ {0, 1}. Thus,
L̃ideal(R̂) = |D|−1

∑
(u,i)∈D{δ(ru,i(1, g = 0), r̂u,i) + δ(ru,i(1, g = 1), r̂u,i)}/2, where δ(·, ·) is

the mean absolute error (MAE). Following previous studies (Guo et al., 2021; Li et al., 2023b),
relative absolute error (RE) is used to measure the accuracy of the estimation, which is defined as
RE(Lest) = |L̃ideal(R̂)− Lest(R̂)|/L̃ideal(R̂), where Lest denotes the ideal loss estimation by the
estimator. The smaller the RE, the higher the estimation accuracy (see Appendix J for more details).
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Performance Analysis. We take three propensity-based estimators: IPS, DR, and MRDR as baselines
(see Section 6 for baselines introduction). The results are shown in Table 1. First, the RE of our
estimators is significantly lower compared to the corresponding previous estimators, which indicates
that our estimators are able to estimate the ideal loss accurately in the presence of neighborhood effect.
In addition, to investigate how the neighborhood effect affect the estimation error, we randomly mask
some user rows and item columns before sampling ou,i, which results in pu,i = 0 for the masked
user-item pairs. Since the total number of observed samples is constant, this will result in an increase
in the proportion of observed samples with gu,i = 1, i.e., a stronger neighborhood effect. Figure 2
shows the RE of the estimators. The proposed estimators stably outperform the previous methods in
all scenario, which verifies that our proposed estimator is robust to the neighborhood effect.

6 REAL-WORLD EXPERIMENTS

Dataset and Experiment Details. We verify the effectiveness of the proposed estimators on three
real-world datasets: Coat contains 6,960 MNAR ratings and 4,640 missing-at-random (MAR)
ratings. Yahoo! R3 contains 311,704 MNAR ratings and 54,000 MAR ratings. In addition, we
use a public large-scale fully exposed industrial dataset KuaiRec, which contains 4,676,570 video
watching ratio records from 1,411 users for 3,327 videos. We pre-specify three ways to measure the
neighborhood effect for a user-item pair in MNAR data: (1) the similar user historical behavior, (2)
the purchase history of the similar item, and (3) the interaction of similar user and item. gu,i denotes
the neighborhood numbers of the user-item pair, which is a multi-valued representation. We report
the best result of our method among the three choice (see Appendix K for more details of datasets
and the experimental protocols). MSE, AUC and NDCG@K are used for performance evaluation,
where K = 5 for Coat and Yahoo! R3 and K = 50 for KuaiRec. We adopt both the Gaussian kernel
and Epanechnikov kernel as the kernel function for implementing N-IPS, N-DR-JL, and N-MRDR.

Baselines. We take Matrix Factorization (MF) (Koren et al., 2009) as the base model and consider
the following baselines: IPS (Saito et al., 2020; Schnabel et al., 2016), SNIPS (Schnabel et al., 2016),
ASIPS (Saito, 2020), DAMF (Saito and Nomura, 2019), CVIB (Wang et al., 2020), DR (Saito,
2020), DIB (Liu et al., 2021), TDR (Li et al., 2023b), DR-BIAS (Dai et al., 2022), DR-MSE (Dai
et al., 2022), Stable-DR (Li et al., 2023d) and MR (Li et al., 2023a). In addition, we also consider
the following baseline based on joint learning: DR-JL (Wang et al., 2019), MRDR-JL (Guo et al.,
2021) and TDR-JL (Li et al., 2023b). Following previous studies (Schnabel et al., 2016; Wang et al.,
2019), for all baseline methods requiring propensity estimation, we adopt naive Bayes (NB) method
using 5% MAR ratings for training the propensity model. For our proposed methods, we also adopt
logistic regression (LR) to estimate the propensities without the usage of MAR ratings.

Real-World Debiasing Performance. Table 2 shows the performance of the baselines and our
methods on three datasets. Compared with the Naive method, the debiasing method significantly
outperforms the Naive method. In particular, the proposed methods perform similarly in the case
of adopting Gaussian kernel or Epanechnikov kernel, and are able to stably outperform the baseline
methods in all metrics. This is because that the kernel function in the estimator can provide more
smooth weights in the proposed propensity-based estimators. In addition, the proposed methods show
competitive performance whether the MAR data are accessible (NB) or not (LR) in the propensity
estimation. In addition, we provide the results with varying kernel bandwidth in Appendix K.

7 CONCLUSION

In this paper, we first formulate the neighborhood effect in RS as an interference problem in causal
inference, thereby formulating the neighborhood effect and selection bias in a unified way. Next,
a neighborhood treatment representation vector is introduced to reduce the dimension and sparsity
of the neighborhood treatments. Based on it, we reformulate the potential feedback and propose
a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood
effects. Then, we propose two novel kernel-smoothing-based neighborhood estimators for the ideal
loss, which allows the neighborhood treatment representation vector to have continuous probability
density. We systematically analyze the properties of the proposed estimators, including the bias,
variance, optimal bandwidth, and generalization error bound. In addition, we also theoretically
establish the connection between the debiasing methods considering and ignoring the neighborhood
effect. Extensive experiments are conducted on semi-synthetic and real-world data to demonstrate the
effectiveness of our approaches. A limitation of this work is that the hypothesis space G of g relies
on a prior knowledge, and it is not obvious to choose it in practice. We leave it for our future work.
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A RELATED WORK

Selection Bias. Selection bias has been widely studied in RS (Wu et al., 2022). For instance, Marlin
and Zemel (2009); Steck (2010) discussed the error-imputation-based methods, Schnabel et al. (2016)
recommended using the inverse propensity score (IPS) method for unbiased learning, and Saito
(2019) extended it to debiasing for implicit feedback. Wang et al. (2019) proposed a doubly robust
(DR) joint learning method and achieved superior performance. Subsequently, various novel model
structures and algorithms are designed to enhance the base DR method, such as Guo et al. (2021);
Dai et al. (2022); Li et al. (2023b;d), which proposed new DR methods by further reducing the bias
or variance of the DR estimator, Zhang et al. (2020) proposed multi-task learning through sharing the
parameters between the propensity and prediction model, Wang et al. (2021); Chen et al. (2021a);
Li et al. (2023c) proposed using a small uniform dataset to enhance the performance of prediction
model, and Ding et al. (2022) proposed an adversarial learning-based framework to address the
unmeasured confounders. However, a user’s feedback on an item may receive influence from the
other user-item pairs (Zheng et al., 2021). To fill this gap, Chen et al. (2021c) focuses on the task of
learning to rank (LTR), addressing position bias using implicit feedback data. They consider "other
user-item interactions" as "confounders" from a counterfactual perspective, and use embedding as
a proxy confounder to capture the influence of "other user-item interactions". Different from Chen
et al. (2021c), our paper focuses on the selection bias in the context of rating prediction, and regards
"other user-item interactions" as a new "treatment" from the perspective of interference in causal
inference. We formulate the influence of "other user-item interactions" as an interference problem in
causal inference, and introduce a treatment representation to capture the influence. On this basis, we
propose a novel ideal loss that can be used to deal with selection bias in the presence of interference.

Interference. Interference is a common problem in observational studies in causal inference, and
the effects of interference are also called spillover effects in economics or peer effects in social
sciences (Forastiere et al., 2021). Early literature focuses on the case of partial interference (Hong
and Raudenbush, 2006; Sobel, 2006; Hudgens and Halloran, 2008; Tchetgen and VanderWeele,
2012; Ferracci et al., 2014), i.e., the sample can be divided into multiple groups, with interference
between units in the same group, while units between groups are independent. Recent works have
attempted to further relax the partial interference assumption by allowing for a wide variety of
interference patterns (Ogburn and VanderWeele, 2014; Aronow and Samii, 2017), such as direct
interference (Forastiere et al., 2021), interference by contagion (Ogburn and VanderWeele, 2017),
allocational interference (Ogburn and VanderWeele, 2014), or their hybrids (Tchetgen et al., 2021).
These studies differ from ours in a number of important ways: (1) their goal is to estimate the main
effect and neighborhood effect, while our goal is to achieve unbiased learning of the prediction model
that is more challenging and need to carefully design the loss and the training algorithm to mitigate
the neighborhood effect; (2) they do not use treatment representation and the estimation does not take
into account the possible cases of continuous and multi-dimensional representations while we do.

B PROOFS OF THEOREMS 1 AND 2

Recall that pu,i(g) = P(ou,i = 1, gu,i = g|xu,i) and r̂u,i = fθ(xu,i) are functions of xu,i, δu,i(g) =
δ(r̂u,i, ru,i(1, g)), P and E denote the distribution and expectation on the target population D, and
p(·) denotes the probability density function of P.

Theorem 1 (Identifiability). Under Assumptions 1-3, LN
ideal(R̂|g) and LN

ideal(R̂) are identifiable.

Proof of Theorem 1. Since

LN
ideal(R̂) =

∫
LN
ideal(R̂|g)π(g)dg,
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it suffices to show that LN
ideal(R̂|g) is identifiable. This follows immediately from the following

equations

LN
ideal(R̂|g) = E[δ(r̂u,i, ru,i(1, g))]

= E
[
E
{
δ(r̂u,i, ru,i(1, g)) | xu,i

}]
(the law of iterated expectations)

= E
[
E
{
δ(r̂u,i, ru,i(1, g)) | xu,i, ou,i = 1, gu,i = g

}]
(Assumption 3)

= E
[
E
{
δ(r̂u,i, ru,i) | xu,i, ou,i = 1, gu,i = g

}]
(Assumption 2)

=

∫ ∫
δ(r̂u,i, ru,i)p(ru,i|xu,i, ou,i = 1, gu,i = g)p(xu,i)dru,idxu,i.

Theorem 2 (Link to selection bias). Under Assumptions 1-3,

(a) if gu,i ⊥⊥ ou,i | xu,i, Lideal(R̂) = LN
ideal(R̂).

(b) if gu,i ⊥̸⊥ ou,i | xu,i, LN
ideal(R̂)− Lideal(R̂) equals∫

E
[
E{δu,i(g)|xu,i} ·

{
p(gu,i = g|xu,i)− p(gu,i = g|xu,i, ou,i = 1)

}]
π(g)dg.

Proof of Theorem 2. For previous methods addressing selection bias without taking into account
interference, the ideal loss Lideal(R̂) is

Lideal(R̂) = E[δ(r̂u,i, ru,i(1))]
= E[E{δ(r̂u,i, ru,i(1))|xu,i}]
= E[E{δ(r̂u,i, ru,i)|xu,i, ou,i = 1}]

= E
[
E
{
δ(r̂u,i, ru,i)|xu,i, ou,i = 1, gu,i = g

}
· p(gu,i = g|xu,i, ou,i = 1)

]
= E

[
E
{
δu,i(g)|xu,i, ou,i = 1, gu,i = g

}
· p(gu,i = g|xu,i, ou,i = 1)

]
= E

[
E
{
δu,i(g)|xu,i

}
· p(gu,i = g|xu,i, ou,i = 1)

]
.

For the proposed method addressing selection bias under interference, our newly defined ideal loss
LN
ideal(R̂) is

LN
ideal(R̂) =

∫
E[δ(r̂u,i, ru,i(1, g))]π(g)dg

=

∫
E[E{δu,i(g)|xu,i}]π(g)dg

=

∫
E
[
E
{
δu,i(g)|xu,i, gu,i = g

}
· p(gu,i = g | xu,i)

]
π(g)dg

=

∫
E
[
E
{
δu,i(g)|xu,i

}
· p(gu,i = g | xu,i)

]
π(g)dg.

Theorem 2(b) follows immediately from these two rewritten equations. When gu,i ⊥⊥ ou,i | xu,i,
we have p(gu,i = g | xu,i = x, ou,i = 1) = p(gu,i = g | xu,i = x), which leads to Lideal(R̂) =

LN
ideal(R̂). This completes the proof of Theorem 2(a).

C PROOF OF THEOREM 3

Theorem 3 (Bias and Variance of N-IPS and N-DR). Under Assumptions 1-4,
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(a) the bias of the N-DR estimator is

Bias(LN
DR(R̂)) =

1

2
µ2

∫
E
[∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2
·{δu,i(g)−δ̂u,i(g)}

]
π(g)dg·h2+o(h2),

where µ2 =
∫
K(t)t2dt. The bias of the N-IPS estimator is

Bias(LN
IPS(R̂)) =

1

2
µ2

∫
E
[∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2
· δu,i(g)

]
π(g)dg · h2 + o(h2).

(b) the variance of the N-DR estimator is

V(LN
DR(R̂)) =

1

|D|h

∫
ψ(g)π(g)dg + o(

1

|D|h
),

where

ψ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · {δu,i(g)− δ̂u,i(g)}{δu,i(g′)− δ̂u,i(g

′)}π(g′)dg′

is a bounded function of g, K̄(·) =
∫
K (t)K (·+ t) dt. The variance of the N-IPS estimator is

V(LN
IPS(R̂)) =

1

|D|h

∫
φ(g)π(g)dg + o(

1

|D|h
).

where

φ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

is a bounded function of g.

Proof of Theorem 3. The Bias. We first show the bias of the N-IPS estimator, and the bias of the
N-DR estimator can be shown similarly. For a given g,

E[LN
IPS(R̂|g)] = E

[
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · pu,i(g)

]
= E

[
1

pu,i(g)
E
{
ou,i ·

1

h
K

(
gu,i − g

h

) ∣∣∣xu,i} · E{δu,i(g)|xu,i}
]

= E
[

1

pu,i(g)

∫
ou,i

1

h
K(

gu,i − g

h
)p(ou,i, gu,i|xu,i)dou,idgu,i · E{δu,i(g)|xu,i}

]
= E

[
1

pu,i(g)

∫
1

h
K(

gu,i − g

h
)p(ou,i = 1, gu,i|xu,i)dgu,i · E{δu,i(g)|xu,i}

]

15
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where the second equation follows from Assumption 3. Letting t = (gu,i − g)/h, we have gu,i =
g + ht and dgu,i = hdt, and then

E
[

1

pu,i(g)

∫
1

h
K(

gu,i − g

h
)p(ou,i = 1, gu,i|xu,i)dgu,i · E{δu,i(g)|xu,i}

]
= E

[
1

pu,i(g)

∫
K(t)p(ou,i = 1, g + ht|xu,i)dt · E{δu,i(g)|xu,i}

]
= E

[ 1

pu,i(g)

∫
K(t)

{
p(ou,i = 1, g|xu,i) +

∂p(ou,i = 1, g|xu,i)
∂g

ht

+
∂2p(ou,i = 1, g|xu,i)

∂g2

h2t2

2
+ o(h2)

}
dt · E{δu,i(g)|xu,i}

]
= E

[
1

pu,i(g)

∫
K(t)dt · p(ou,i = 1, g|xu,i) · E{δu,i(g)|xu,i}

]
+ E

[ 1

pu,i(g)

∫
K(t)tdt · ∂p(ou,i = 1, g|xu,i)

∂g
h · E{δu,i(g)|xu,i}

]
+ E

[ 1

pu,i(g)

∫
K(t)t2dt · ∂

2p(ou,i = 1, g|xu,i)
∂g2

h2

2
· E{δu,i(g)|xu,i}

]
+ o(h2)

= E [E{δu,i(g)|xu,i}] +
1

2
µ2E

[∂2p(ou,i = 1, g|xu,i)
∂g2

· δu,i(g)
]
h2 + o(h2)

= E [δu,i(g)] +
1

2
µ2E

[∂2p(ou,i = 1, g|xu,i)
∂g2

· δu,i(g)
]
h2 + o(h2)

= LN
ideal(R̂|g) + 1

2
µ2E

[∂2p(ou,i = 1, g|xu,i)
∂g2

· δu,i(g)
]
h2 + o(h2),

where the third equation is a Taylor expansion of p(ou,i = 1, g + ht|xu,i) under Assumption 4(a).
Thus, the bias of LN

IPS(R̂) is

E[LN
IPS(R̂)]− LN

ideal(R̂)

= E
[∫

g

{
LN
IPS(R̂|g)− LN

ideal(R̂|g)
}
π(g)dg

]
=

∫
g

E
{
LN
IPS(R̂|g)− LN

ideal(R̂|g)
}
π(g)dg

=
1

2
µ2

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· δu,i(g)

]
π(g)dg · h2 + o(h2).

Likewise, for a given g and δ̂u,i(g), by a similar argument of proof of the bias of N-IPS estimator,

E[LN
DR(R̂|g)]

= E

[
δu,i(g) +

I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}
h · pu,i(g)

]

= LN
ideal(R̂|g) + E

[
1

pu,i(g)
E
{
ou,i ·

1

h
K

(
gu,i − g

h

) ∣∣∣xu,i} · E{δu,i(g)− δ̂u,i(g)|xu,i}
]

= LN
ideal(R̂|g) + 1

2
µ2E

[∂2p(ou,i = 1, g|xu,i)
∂g2

· {δu,i(g)− δ̂u,i(g)}
]
h2 + o(h2).

Thus, the bias of LN
DR(R̂) is given as

1

2
µ2

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· {δu,i(g)− δ̂u,i(g)}

]
π(g)dg · h2 + o(h2).
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The Variance. Next, we calculate the variance of the proposed N-IPS and N-DR estimators. By
definition, the variance of LN

IPS(R̂) can be represented as

V{LN
IPS(R̂)}

= V{
∫

LN
IPS(R̂|g)π(g)dg}

= V

 1

|D|
∑

(u,i)∈D

∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg


=

1

|D|
V
[∫

I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

]
=

1

|D|

[
E

{(∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)2
}

−
{
E
(∫

I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)}2
]
. (A.1)

According to the above result of the bias of the N-IPS estimator,

{
E
(∫

I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)}2

=

{
LN
ideal(R̂) +

1

2
µ2

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· δu,i(g)

]
π(g)dg · h2 + o(h2)

}2

= [LN
ideal(R̂)]2 +O(h2). (A.2)

Then, we focus on analyzing the term E
{(∫ I(ou,i=1)

pu,i(g)
· 1
hK

(
gu,i−g

h

)
· δu,i(g)π(g)dg

)2
}
. Ob-

serve that

(∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)2

=

(∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)
·
(∫

I(ou,i = 1)

pu,i(g′)
· 1
h
K

(
gu,i − g′

h

)
· δu,i(g′)π(g′)dg′

)
=

∫ ∫
I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1

h2
K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)π(g)π(g′)dgdg′

Swap the order of integration and expectation leads to that

E

{(∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)2
}

=

∫ ∫
E
[

I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1

h2
K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)

]
π(g)π(g′)dgdg′.
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Let gu,i = g + ht, then gu,i − g′ = (g − g′) + ht, it follows that

E
[

I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1

h2
K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)

]
= E

[
1

pu,i(g)pu,i(g′)
· E

{
I(ou,i = 1)

1

h2
K

(
gu,i − g

h

)
K

(
gu,i − g′

h

) ∣∣∣xu,i} · E
{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}]

= E
[

1

pu,i(g)pu,i(g′)
·
∫ {

1

h
K (t)K

(
g − g′

h
+ t

)
p(ou,i = 1, g + ht|xu,i)

}
dt · E

{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}]

= E
[

1

pu,i(g)pu,i(g′)
·
∫ {

1

h
K (t)K

(
g − g′

h
+ t

)
p(ou,i = 1, g|xu,i) +O(h)t

}
dt · E

{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}]

= E
[

1

pu,i(g′)
·
∫

1

h
K (t)K

(
g − g′

h
+ t

)
dt · E

{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}] · {1 +O(h)}

= E
[

1

pu,i(g′)
·
∫

1

h
K (t)K

(
g − g′

h
+ t

)
dt · δu,i(g)δu,i(g′)

]
· {1 +O(h)}.

Denote
∫
K (t)K

(
g−g′

h + t
)
dt = K̄(g−g′

h ), then

E

{(∫
I(ou,i = 1)

pu,i(g)
· 1
h
K

(
gu,i − g

h

)
· δu,i(g)π(g)dg

)2
}

=

∫ ∫
E
[

1

pu,i(g′)
· 1
h
K̄(

g − g′

h
) · δu,i(g)δu,i(g′)

]
· {1 +O(h)}.π(g)π(g′)dgdg′

=

∫
E
[∫

1

pu,i(g′)
· 1
h
K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

]
· {1 +O(h)}.π(g)dg

≜
∫
φ(g)π(g)dg

1

h
+O(1), (A.3)

where

φ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

is a bounded function of g.

Combing equations (A.1), (A.2), and (A.3) gives that

V{LN
IPS(R̂)} =

1

|D|

[∫
φ(g)π(g)dg

1

h
+O(1)− [LN

ideal(R̂)]2 +O(h2)

]
=

1

|D|h

∫
φ(g)π(g)dg + o(

1

|D|h
).

Similarly, the variance of the N-DR estimator is given by

V(LN
DR(R̂)) =

1

|D|h

∫
ψ(g)π(g)dg + o(

1

|D|h
),

where

ψ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · {δu,i(g)− δ̂u,i(g)}{δu,i(g′)− δ̂u,i(g

′)}π(g′)dg′

is a bounded function of g.

D PROOF OF THEOREM 4

Theorem 4 (Optimal bandwidth of N-IPS and N-DR). Under Assumptions 1–4,
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(a) the optimal bandwidth for the N-IPS estimator in terms of the asymptotic mean-squared error is

h∗N−IPS =

 ∫
φ(g)π(g)dg

4|D|
(

1
2µ2

∫
E
[
∂2p(ou,i=1,gu,i=g|xu,i)

∂g2 · δu,i(g)
]
π(g)dg

)2


1/5

,

where φ(g) is defined in Theorem 3.

(b) the optimal bandwidth for the N-DR estimator in terms of the asymptotic mean-squared error is

h∗N−DR =

 ∫
ψ(g)π(g)dg

4|D|
(

1
2µ2

∫
E
[
∂2p(ou,i=1,g|xu,i)

∂g2 · {δu,i(g)− δ̂u,i(g)}
]
π(g)dg

)2


1/5

,

where ψ(g) is defined in Theorem 3.

Proof of Theorem 4. Recall that

Bias[LN
IPS(R̂)] =

1

2
µ2

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· δu,i(g)

]
π(g)dg · h2 + o(h2),

Var[LN
IPS(R̂)] =

1

|D|h

∫
φ(g)π(g)dg + o(

1

|D|h
).

The MSE of the N-IPS estimator is given as

E
[(
LN
IPS(R̂)− LN

ideal(R̂)
)2]

= (Bias)2 + Variance

=

(
1

2
µ2

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· δu,i(g)

]
π(g)dg

)2

· h4 + o(h4)

+
1

|D|h

∫
φ(g)π(g)dg + o(

1

|D|h
).

Minimizing the leading terms of the above MSE with respect to h leads to that

h∗N−IPS =

 ∫
φ(g)π(g)dg

4|D|
(

1
2µ2

∫
E
[
∂2p(ou,i=1,gu,i=g|xu,i)

∂g2 · δu,i(g)
]
π(g)dg

)2


1/5

= O(|D|−1/5).

Similarly, the optimal bandwidth for the N-DR estimator in terms of the asymptotic mean-squared
error can be obtained.

E PROOF OF THEOREM 5

Lemma 1 (McDiarmid’s inequality). Let X1, ..., Xm ∈ Xm be a set of m ≥ 1 independent random
variables and assume that there exist c1, ..., cm > 0 such that f : Xm → R satisfies the following
conditions:

|f(x1, ..., xi, ..., xm)− f(x1, ..., x
′
i, ..., xm)| ≤ ci,

for all i ∈ {1, 2, ...,m} and any points x1, ..., xm, x′i ∈ X . Let f(S) denote f(X1, ..., Xm), then for
all ϵ > 0, the following inequalities hold:

P[f(S)− E{f(S)} ≥ ϵ] ≤ exp

(
− 2ϵ2∑m

i=1 c
2
i

)
P[f(S)− E{f(S)} ≤ −ϵ] ≤ exp

(
− 2ϵ2∑m

i=1 c
2
i

)
.
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Proof. The proof can be found in Appendix D.3 of (Mohri et al., 2018).

Lemma 2. Under the conditions in Lemma 1, we have with probability at least 1− η,

|f(S)− E[f(S)]| ≤

√∑m
i=1 c

2
i

2
log(

2

η
).

In particular, if ci ≤ c for all i ∈ {1, 2, ...,m},

|f(S)− E[f(S)]| ≤ c

√
m

2
log(

2

η
).

Proof. This conclusion follows immediately by letting η = 2 exp
(
− 2ϵ2∑m

i=1 c2i

)
in Lemma 1.

Lemma 3 (Rademacher comparison lemma). Let X ∈ X be a random variable with distribution P,
X1, ..., Xm be a set of independent copies of X , F be a class of real-valued functions on X . Then
we have

E sup
f∈G

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E(f(Xi))

∣∣∣∣∣ ≤ 2E

[
Eσ∼{−1,+1}m sup

f∈G

1

m

m∑
i=1

f(Xi)σi

]
,

where σ = (σ1, ..., σm) is a Rademacher sequence.

Proof. The proof can be found in Lemma 26.2 of (Shalev-Shwartz and Ben-David, 2014).

Recall that F is the hypothesis space of prediction matrices R̂ (or prediction model fθ), the
Rademacher complexity is

R(F) = Eσ∼{−1,+1}|D| sup
fθ∈F

[ 1

|D|
∑

(u,i)∈D

σu,iδu,i(g)
]
.

Theorem 5 (Uniform Tail Bound of N-IPS and N-DR). Under Assumptions 1–5 and suppose that
K(t) ≤MK , then for all R̂ ∈ F , we have with probability at least 1− η,

(a)

sup
R̂∈F

∣∣∣LN
IPS(R̂)− E[LN

IPS(R̂)]
∣∣∣ ≤ 2MpMK

h
R(F) +

5

2

MpMKMδ

h

√
2

|D|
log(

4

η
),

(b)

sup
R̂∈F

∣∣∣LN
DR(R̂)− E[LN

DR(R̂)]
∣∣∣ ≤ 2MpMK

h
R(F) +

5

2

MpMKM|δ−δ̂|

h

√
2

|D|
log(

4

η
).

Proof of Theorem 5. We first discuss the uniform tail bound of LN
IPS(R̂), that is, we want to show

the upper bound of supR̂∈F
∣∣LN

IPS(R̂)− E{LN
IPS(R̂)}

∣∣.
Note that

sup
R̂∈F

∣∣∣LN
IPS(R̂)− E{LN

IPS(R̂)}
∣∣∣

= sup
R̂∈F

∣∣∣∣∣
∫
π(g)

[
1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}

− E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}]
dg

∣∣∣∣∣
≤

∫
π(g) sup

R̂∈F

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}

− E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}∣∣∣∣∣dg
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For all prediction model R̂ ∈ F and g, we have

1

|D|

∣∣∣∣ I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)
h · p̂u,i(g)

− I(ou′,i′ = 1) ·K ((gu′,i′ − g)/h) · δu′,i′(g)

h · p̂u′,i′(g)

∣∣∣∣ ≤ MpMδMK

h|D|
,

then applying Lemma 2 yields that with probability at least 1− η/2

sup
R̂∈F

∣∣∣∣∣E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}

− 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}∣∣∣∣∣
≤ E

[
sup
R̂∈F

∣∣∣∣∣E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}

− 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}∣∣∣∣∣
]
+
MpMδMK

2h

√
2

|D|
log(

4

η
)

≤ MpMK

h
2E[R(F)] +

MpMδMK

2h

√
2

|D|
log(

4

η
), (A.4)

where the last inequality holds by Lemma 3 and

I(ou,i = 1) ·K ((gu,i − g)/h)

h · p̂u,i(g)
≤ MpMK

h
.

Recall that

R(F) = Eσ∼{−1,+1}|D| sup
R̂∈F

[ 1

|D|
∑

(u,i)∈D

σu,iδu,i(g)
]

and let f(S) = R(F) and c = 2Mδ/|D| in Lemmas 1 and 2, by applying Lemma 2 again, we have
with probability at least 1− η/2

E[R(F)]−R(F) ≤Mδ

√
2

|D|
log(

4

η
). (A.5)

Combining inequalities (A.4) and (A.5) leads to that with probability at least 1− η

sup
R̂∈F

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}

− E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)

h · p̂u,i(g)

}∣∣∣∣∣
≤ 2MpMK

h
R(F) +

5

2

MpMKMδ

h

√
2

|D|
log(

4

η
),

which implies that the conclusion (a) by noting that
∫
π(g)dg = 1

Next, we show the uniform tail bound of LN
DR(R̂). Note that

LN
DR(R̂) = δu,i(g) +

I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}
h · p̂u,i(g)
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and

sup
R̂∈F

∣∣∣LN
DR(R̂)− E{LN

DR(R̂)}
∣∣∣

= sup
R̂∈F

∫
π(g)

[
1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}

h · p̂u,i(g)

}

− E

{
I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}

h · p̂u,i(g)

}]
dg,

which has the same form as supR̂∈F
∣∣LN

IPS(R̂) − E{LN
IPS(R̂)}

∣∣, except that δu,i(g) is replaced
by δu,i(g) − δ̂u,i. Then by a similar argument of the proof of the N-IPS estimator, we obtain the
conclusion (b).

F PROOF OF COROLLARY 6

Let
R̂† = arg min

R̂∈F
LN
DR(R̂), R̂‡ = arg min

R̂∈F
LN
IPS(R̂).

The following Corollary 6 shows the generalization bounds of the N-IPS and N-DR estimators.
Corollary 6. (Generalization Bound of N-IPS and N-DR) Under the conditions in Theorem 5, we
have with probability at least 1− η,

(a)

LN
ideal(R̂

†) ≤ min
R̂∈F

LN
ideal(R̂) + µ2M|δ−δ̂|

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg · h2 + o(h2)

+
4MpMK

h
R(F) +

5MpMKM|δ−δ̂|

h

√
2

|D|
log(

4

η
),

(b)

LN
ideal(R̂

‡) ≤ min
R̂∈F

LN
ideal(R̂) + µ2Mδ

∫
E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg · h2 + o(h2)

+
4MpMK

h
R(F) +

5MpMKMδ

h

√
2

|D|
log(

4

η
),

Proof. It suffices to show conclusion (a), since conclusion (b) can be derived from a similar argument.
Define

R̂∗ = arg min
R̂∈F

LN
ideal(R̂).

LN
ideal(R̂

†)− min
R̂∈F

LN
ideal(R̂)

= LN
ideal(R̂

†)− LN
ideal(R̂

∗)

≤ LN
ideal(R̂

†)− LN
DR(R̂

†) + LN
DR(R̂

†)− LN
DR(R̂

∗) + LN
DR(R̂

∗)− LN
ideal(R̂

∗)

≤ LN
ideal(R̂

†)− LN
DR(R̂

†) + LN
DR(R̂

∗)− LN
ideal(R̂

∗)

:= A+B,

where

A = LN
ideal(R̂

†)− LN
DR(R̂

†),

B = LN
DR(R̂

∗)− LN
ideal(R̂

∗).
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The term A can be decomposed as follows

A = LN
ideal(R̂

†)− E[LN
DR(R̂

†)] + E[LN
DR(R̂

†)]− LN
DR(R̂

†)

=
∣∣∣Bias[LN

DR(R̂
†)]

∣∣∣+ E[LN
DR(R̂

†)]− LN
DR(R̂

†)

≤
∣∣∣Bias[LN

DR(R̂
†)]

∣∣∣+ sup
R̂∈F

[
E{LN

IPS(R̂)} − LN
IPS(R̂)

]
=

1

2
µ2

∣∣∣∣∫ E
[∂2p(ou,i = 1, g|xu,i)

∂g2
· {δu,i(g)− δ̂u,i(g)}

]
π(g)dg

∣∣∣∣ · h2 + o(h2)

+ sup
R̂∈F

[
E{LN

IPS(R̂)} − LN
IPS(R̂)

]
≤ 1

2
µ2M|δ−δ̂|

∣∣∣∣∫ E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg

∣∣∣∣ · h2 + o(h2)

+ sup
R̂∈F

[
E{LN

IPS(R̂)} − LN
IPS(R̂)

]
,

the upper bound does not depend on R̂†. Likewise, the term B has the same upper bound of A, i.e.,

B ≤ 1

2
µ2M|δ−δ̂|

∣∣∣∣∫ E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg

∣∣∣∣ · h2 + o(h2)

+ sup
R̂∈F

[
E{LN

IPS(R̂)} − LN
IPS(R̂)

]
Then by Theorem 5, we have with probability at least 1− η,

A+B ≤ µ2M|δ−δ̂|

∣∣∣∣∫ E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg

∣∣∣∣ · h2 + o(h2)

+ 2 sup
R̂∈F

[
E{LN

IPS(R̂)} − LN
IPS(R̂)

]
≤ µ2M|δ−δ̂|

∣∣∣∣∫ E
[∂2p(ou,i = 1, g|xu,i)

∂g2

]
π(g)dg

∣∣∣∣ · h2 + o(h2)

+
4MpMK

h
R(F) + 5

MpMKM|δ−δ̂|

h

√
2

|D|
log(

4

η
),

which implies the conclusion (a).

G EXTENSION: MULTI-DIMENSIONAL TREATMENT REPRESENTATION

For ease of presentation, we focus on the case of univariate g in the manuscript. In this section, we
extend the univariate case and consider the case of multi-dimensional g.

Suppose that g is a q-dimensional vector denoted as g = (g1, ..., gq). In this case, the bandwidth
h = (h1, ..., hq) and the kernel function K((gu,i − g)/h) =

∏q
s=1K((gsu,i − gs)/hs), where

gu,i = (g1u,i, ..., g
q
u,i) with gsu,i being its s-th element, K(·) is the univariate kernel function such as

Epanechnikov kernel K(t) = 3
4 (1− t2)I{|t| ≤ 1} and Gaussian kernel K(t) = 1√

2π
· exp{− t2

2 } for
t ∈ R. The N-IPS and N-DR estimators are given as

LN
IPS(R̂) =

∫
LN
IPS(R̂|g)π(g)dg,

LN
DR(R̂) =

∫
LN
DR(R̂|g)π(g)dg,
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where

LN
IPS(R̂|g) = 1

|D|
∑

(u,i)∈D

I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q
s=1 hs · pu,i(g)

,

LN
DR(R̂|g) = 1

|D|
∑

(u,i)∈D

[
δ̂u,i(g) +

I(ou,i = 1) ·K ((gu,i − g)/h) · {δu,i(g)− δ̂u,i(g)}∏q
s=1 hs · pu,i(g)

]
.

We show the theoretical properties of the proposed N-IPS and N-DR estimators, extending the results
of Theorem 3, Theorem 4, Theorem 5, and Proposition 1. First, we present the bias of the N-IPS and
N-DR estimators in the setting of multi-dimension treatment representation.

Assumption 6 (Regularity conditions for kernel smoothing with multi-dimensional treatment
representation) (a) For s = 1, ..., q, hs → 0 as |D| → ∞; (b) |D|

∏q
s=1 hs → ∞ as |D| → ∞; (c)

p(ou,i = 1, gu,i = g | xu,i) is twice differentiable with respect to g = (g1, ..., gq).

Theorem 7 (Bias of N-IPS and N-DR Estimators with Multi-dimensional Treatment Representation).
Under Assumptions 1–3 and 6,

(a) the bias of the N-IPS estimator is given as

1

2
µ2

[
q∑

s=1

h2s

∫
E
{∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2s
· δu,i(g)

}
π(g)dg

]
+ o(

q∑
s=1

h2s),

where µ2 =
∫
K(t)t2dt. The bias of the N-DR estimator is given as

1

2
µ2

[
q∑

s=1

h2s

∫
E
{∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2s
·
(
δu,i(g)− δ̂u,i(g)

)}
π(g)dg

]
+ o(

q∑
s=1

h2s).

(b) The variance of the N-IPS estimator is

V(LN
IPS(R̂)) =

1

|D|
∏q

s=1 hs

∫
φ(g)π(g)dg + o(

1

|D|
∏q

s=1 hs
).

where

φ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

is a bounded function of g, K̄(g−g′

h ) =
∫ ∏q

s=1K (ts)K
(

gs−g′
s

hs
+ ts

)
dt1 · · · dtq. The variance

of the N-DR estimator is

V(LN
DR(R̂)) =

1

|D|
∏q

s=1 hs

∫
ψ(g)π(g)dg + o(

1

|D|
∏q

s=1 hs
),

where

ψ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · {δu,i(g)− δ̂u,i(g)}{δu,i(g′)− δ̂u,i(g

′)}π(g′)dg′

is a bounded function of g.

Proof of Theorem 6. We show the bias and variance of the N-IPS estimator, and the bias and variance
of the N-DR estimator can be obtained similarly.

The Bias. For a given g, by a similar argument of the proof of Theorem 3(a),

E[LN
IPS(R̂|g)] = E

[
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · pu,i(g)

]
= E

[
1

pu,i(g)

∫ q∏
s=1

1

hs
K(

gsu,i − gs

hs
)p(ou,i = 1, gu,i|xu,i)dgu,i · E{δu,i(g)|xu,i}

]
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Let ts = (gsu,i − gs)/hs for s = 1, ..., q, then gsu,i = gs + hsts, dgu,i = dg1u,i · · · dg
q
u,i =∏q

s=1 hsdt1 · · · dtq . By a Taylor expansion of p(ou,i = 1, g1 + h1t1, ..., gq + hqtq|xu,i), we have

E

[
1

pu,i(g)

∫ q∏
s=1

1

hs
K(

gsu,i − gs

hs
)p(ou,i = 1, gu,i|xu,i)dgu,i · E{δu,i(g)|xu,i}

]

= E

[
1

pu,i(g)

∫
· · ·

∫ q∏
s=1

K(ts)p(ou,i = 1, g1 + h1t1, ..., gq + hqtq|xu,i)dt1 · · · dtq · E{δu,i(g)|xu,i}

]

= E
[ 1

pu,i(g)

∫
· · ·

∫ q∏
s=1

K(ts)
{
p(ou,i = 1, g|xu,i) +

q∑
s=1

∂p(ou,i = 1, g|xu,i)
∂gs

hsts

+

q∑
s=1

q∑
s′=1

∂2p(ou,i = 1, g|xu,i)
∂gs∂gs′

hshs′tsts′

2
+ o(

q∑
s=1

h2s)
}
dt1 · · · dtq · E{δu,i(g)|xu,i}

]
= E

[
1

pu,i(g)
·

q∏
s=1

∫
K(ts)dts · p(ou,i = 1, g|xu,i) · E{δu,i(g)|xu,i}

]
+ 0

+ E
[ 1

pu,i(g)

q∑
s=1

∫
K(ts)t

2
sdts ·

∂2p(ou,i = 1, g|xu,i)
∂g2s

h2s
2

· E{δu,i(g)|xu,i}
]
+ o(

q∑
s=1

h2s)

= E [E{δu,i(g)|xu,i}] +
1

2
µ2E

[ q∑
s=1

∂2p(ou,i = 1, g|xu,i)
∂g2s

· h2s · δu,i(g)
]
+ o(

q∑
s=1

h2s)

= LN
ideal(R̂|g) + 1

2
µ2E

[ q∑
s=1

∂2p(ou,i = 1, g|xu,i)
∂g2s

· h2s · δu,i(g)
]
+ o(

q∑
s=1

h2s).

Thus, the bias of LN
IPS(R̂) is

E[LN
IPS(R̂)]−LN

ideal(R̂) =

∫
g

E
{
LN
IPS(R̂|g)− LN

ideal(R̂|g)
}
π(g)dg

=
1

2
µ2

[
q∑

s=1

h2s

∫
E
{∂2p(ou,i = 1, g|xu,i)

∂g2s
· δu,i(g)

}
π(g)dg

]
+ o(

q∑
s=1

h2s),

The Variance. The variance of LN
IPS(R̂) can be represented as

V{LN
IPS(R̂)} =

1

|D|
V
[∫

I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q
s=1 hs · pu,i(g)

π(g)dg

]
=

1

|D|

[
E

{(∫
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · pu,i(g)
π(g)dg

)2
}

−
{
E
(∫

I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q
s=1 hs · pu,i(g)

π(g)dg

)}2
]
.

By the bias of the N-IPS estimator,{
E
(∫

I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q
s=1 hs · pu,i(g)

π(g)dg

)}2

= [LN
ideal(R̂)]2 +O(

q∑
s=1

h2s) = O(1).

On the other hand, note that(∫
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · pu,i(g)
π(g)dg

)2

=

∫ ∫
I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1∏q

s=1 h
2
s

K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)π(g)π(g′)dgdg′
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Swap the order of integration and expectation leads to that

E

{(∫
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · pu,i(g)
π(g)dg

)2
}

=

∫ ∫
E
[

I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1∏q

s=1 h
2
s

K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)

]
π(g)π(g′)dgdg′.

Let gu,i = g + ht, i.e., gsu,i = gs + hsts, then gu,i − g′ = (g − g′) + ht, we have

E

[
I(ou,i = 1)

pu,i(g)pu,i(g′)
· 1∏q

s=1 h
2
s

K

(
gu,i − g

h

)
K

(
gu,i − g′

h

)
· δu,i(g)δu,i(g′)

]

= E

[
1

pu,i(g)pu,i(g′)
·
∫ {

q∏
s=1

1

h2s
K (ts)K

(
gs − g′

s

hs
+ ts

)
p(ou,i = 1, g + ht|xu,i)

}
dt1 · · · dtq

· E
{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}]

= E

[
1

pu,i(g)pu,i(g′)
·
∫ {

q∏
s=1

1

h2s
K (ts)K

(
gs − g′

s

hs
+ ts

)
p(ou,i = 1, g|xu,i) +O(

q∑
s=1

hs)

}
dt1 · · · dtq

· E
{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}]

= E

[
1

pu,i(g′)
·
∫ q∏

s=1

1

hs
K (ts)K

(
gs − g′

s

hs
+ ts

)
dt1 · · · dtq · E

{
δu,i(g)δu,i(g

′)
∣∣∣xu,i}] · {1 +O(

q∑
s=1

hs)}

= E

[
1

pu,i(g′)
·
∫ q∏

s=1

1

hs
K (ts)K

(
gs − g′

s

hs
+ ts

)
dt1 · · · dtq · δu,i(g)δu,i(g′)

]
· {1 +O(

q∑
s=1

hs)}.

Thus, define K̄(g−g′

h ) =
∫ ∏q

s=1K (ts)K
(

gs−g′
s

hs
+ ts

)
dt1 · · · dtq , then

E

{(∫
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · pu,i(g)
π(g)dg

)2
}

=

∫
E
[∫

1

pu,i(g′)
· 1∏q

s=1 hs
K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

]
· {1 +O(

q∑
s=1

hs)}.π(g)dg

≜
∫
φ(g)π(g)dg

1∏q
s=1 hs

(1 + o(1)),

where

φ(g) =

∫
1

pu,i(g′)
· K̄(

g − g′

h
) · δu,i(g)δu,i(g′)π(g′)dg′

is a bounded function of g. Therefore,

V{LN
IPS(R̂)} =

1

|D|
∏q

s=1 hs

∫
φ(g)π(g)dg + o(

1

|D|
∏q

s=1 hs
).

Theorem 8 (Optimal bandwidth of N-IPS and N-DR with Multi-dimensional Treatment Representa-
tion). Under Assumptions 1–3 and 6, and assume that h = h1 = · · · = hq , then

(a) the optimal bandwidth for the N-IPS estimator in terms of the asymptotic mean-squared error is

h∗N−IPS =

 ∫
φ(g)π(g)dg

4|D|
(

1
2µ2

∑q
s=1

∫
E
[
∂2p(ou,i=1,gu,i=g|xu,i)

∂g2
s

· δu,i(g)
]
· π(g)dg

)2


1/(4+q)

,
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where φ(g) is defined in Theorem 6.

(b) the optimal bandwidth for the N-DR estimator in terms of the asymptotic mean-squared error is

h∗N−DR =

 ∫
ψ(g)π(g)dg

4|D|
(

1
2µ2

∑q
s=1

∫
E
[
∂2p(ou,i=1,gu,i=g|xu,i)

∂g2
s

· {δu,i(g)− δ̂u,i(g)}
]
· π(g)dg

)2


1/(4+q)

,

where ψ(g) is defined in Theorem 6.

Proof of Theorem 7. This conclusion can be derived directly from a similar argument of the proof of
Theorem 4.

Then, we obtain the uniform tail bound of the N-IPS and N-DR estimators with multi-dimensional
treatment representation.
Theorem 9 (Uniform Tail Bound of N-IPS and N-DR with Multi-dimensional Treatment Represen-
tation). Under Assumptions 1–3, 5, and 6, and suppose that K(t) ≤MK , then for all R̂ ∈ F , we
have with probability at least 1− η,

(a)

sup
R̂∈F

∣∣∣E[LN
IPS(R̂)]− LN

IPS(R̂)
∣∣∣ ≤ 2Mp(MK)q∏q

s=1 hs
R(F) +

5MpMδ(MK)q

2
∏q

s=1 hs

√
2

|D|
log(

4

η
),

(b)

sup
R̂∈F

∣∣∣E[LN
DR(R̂)]− LN

DR(R̂)
∣∣∣ ≤ 2Mp(MK)q∏q

s=1 hs
R(F) +

5MpM|δ−δ̂|(MK)q

2
∏q

s=1 hs

√
2

|D|
log(

4

η
).

Proof of Theorem 8. It is sufficient to prove the uniform tail bound of LN
IPS(R̂), and the result for

LN
DR(R̂) can be derived by an exactly similar argument.

Note that

sup
R̂∈F

∣∣∣LN
IPS(R̂)− E{LN

IPS(R̂)}
∣∣∣

≤
∫
π(g) sup

R̂∈F

∣∣∣∣∣ 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}

− E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}∣∣∣∣∣dg.
For all prediction model R̂ ∈ F and g, we have
1

|D|

∣∣∣∣ I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q
s=1 hs · p̂u,i(g)

− I(ou′,i′ = 1) ·K ((gu′,i′ − g)/h) · δu′,i′(f)∏q
s=1 hs · p̂u′,i′(g)

∣∣∣∣ ≤ MpMδ(MK)q∏q
s=1 hs|D|

,

then applying Lemma 2 yields that with probability at least 1− η/2

sup
R̂∈F

∣∣∣∣∣E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}
− 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}∣∣∣∣∣
≤ E

[
sup
R̂∈F

∣∣∣∣∣E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}
− 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}∣∣∣∣∣
]

+
MpMδ(MK)q

2
∏q

s=1 hs

√
2

|D| log(
4

η
)

≤ Mp(MK)q∏q
s=1 hs

2E[R(F)] +
MpMδ(MK)q

2
∏q

s=1 hs

√
2

|D| log(
4

η
),
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where the last inequality holds by Lemma 3 and

I(ou,i = 1) ·K ((gu,i − g)/h)∏q
s=1 hs · p̂u,i(g)

≤ Mp(MK)q∏q
s=1 hs

.

Applying (A.5) yields that with probability at least 1− η

sup
R̂∈F

∣∣∣∣∣E
{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}
− 1

|D|
∑

(u,i)∈D

{
I(ou,i = 1) ·K ((gu,i − g)/h) · δu,i(g)∏q

s=1 hs · p̂u,i(g)

}∣∣∣∣∣
≤ 2Mp(MK)q∏q

s=1 hs
R(F) +

5MpMδ(MK)q

2
∏q

s=1 hs

√
2

|D| log(
4

η
),

which implies that the conclusion (a) by noting that
∫
π(g)dg = 1

Let
R† = arg min

R̂∈F
LN
IPS(R̂), R‡ = arg min

R̂∈F
LN
DR(R̂).

The following Corollary 10 shows the generalization bounds of the N-IPS and N-DR estimators.
Corollary 10. (Generalization Bound of N-IPS and N-DR with Multi-dimensional Treatment Repre-
sentation) Under the conditions in Theorem 8, we have with probability at least 1− η,

(a)

LN
ideal(R̂

†) ≤ min
R̂∈F

LN
ideal(R̂) + µ2

[
q∑

s=1

h2s

∫
E
{∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2s
· δu,i(g)

}
π(g)dg

]

+
4Mp(MK)q∏q

s=1 hs
R(F) +

5MpMδ(MK)q∏q
s=1 hs

√
2

|D|
log(

4

η
) + o(

q∑
s=1

h2s).

(b)

LN
ideal(R̂

‡) ≤ min
R̂∈F

LN
ideal(R̂) + µ2

[
q∑

s=1

h2s

∫
E
{∂2p(ou,i = 1, gu,i = g|xu,i)

∂g2s
·
(
δu,i(g)− δ̂u,i(g)

)}
π(g)dg

]

+
4Mp(MK)q∏q

s=1 hs
R(F) +

5MpM|δ−δ̂|(MK)q∏q
s=1 hs

√
2

|D|
log(

4

η
) + o(

q∑
s=1

h2s).

Proof of Proposition 2. This conclusion can be derived directly from the proof of Proposition 1.

H PSEUDO-CODES FOR PROPENSITY LEARNING, N-IPS, N-DR-JL AND
N-MRDR-JL

The learning paradigm for propensity is shown in Algorithm 1, and the learning paradigm for N-IPS,
N-DR-JL and N-MRDR-JL are shown in Algorithms 2-4. When learning the propensity model
pu,i(g), since 1

pu,i(g)
= c

P(o=1|x) ·
P(L=1)
P(L=0) ·

P(L=0|x,g)
P(L=1|x,g) ∝ 1

P(o=1|x) ·
P(L=0|x,g)
P(L=1|x,g) , therefore the well-

trained model that estimates P(L = 1 | x, g) is enough for the propensity estimation. The constant
c and P(L=1)

P(L=0) can be ignored when learning prediction and imputation model. For the N-MRDR-
JL learning algorithm, the parameter ϕg of the imputation model is optimized by minimizing the
following loss:

LN−MRDR
e (R̂|g) = |D|−1

∑
(u,i)∈D

I(ou,i = 1) · (1− pu,i(g)) ·K ((gu,i − g)/h) · (δu,i(g)− δ̂u,i(g))
2

h · p2u,i(g)
.

Compared to the LN−DR
e (R̂|g), the LN−MRDR

e (R̂|g) loss has variance reduction property.
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Algorithm 1: The Proposed Propensity Learning Algorithm

Input: the observation matrix O and the representation G.
1 Using previous methods such as logistic regression to train a model to estimate P(o = 1 | x);
2 while stopping criteria is not satisfied do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 with ou,i = 1 to generate samples{(

xuj ,ij , guj ,ij

)}J

j=1
with positive label (L = 1);

4 Uniformly sample a batch of treatments {g′
uk,ik

}Kk=1 ⊂ G to generate samples{(
xuj ,ij , g

′
uk,ik

)}
with negative label (L = 0);

5 Using gradient descent to train a logistic regression model that estimates P(L = 1 | x, g)
using the positive samples and negative samples.

6 end
Output: the well-trained model that estimates P(L = 1 | x, g).

Algorithm 2: The Proposed N-IPS Learning Algorithm

Input: the observed ratings Yo, the representation G, the pre-specified g, the pre-specified
kernel function K(·) and the pre-trained propensity model.

1 while stopping criteria is not satisfied do
2 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
3 Calculate p̂uj ,ij (g) using the propensity model ;
4 Update θ by descending along the gradient ∇θLN

IPS(R̂|g);
5 end

Output: the well-trained prediction model fθ(x).

I CASE STUDY ON A LARGE INDUSTRIAL DATASET

We conduct two experiments on a large scale industrial dataset KuaiRec to verify the existence of
the neighborhood effect. For the first experiment, we investigate whether the similarity of watching
ratio between two friend users in the social network is higher than the similarity of watching ratio
between two non-friend users. We use the small dataset in KuaiRec, which is a fully exposed
dataset containing 4,676,570 watching ratio records from 1,411 users to 3,327 videos. Meanwhile,
we also use the social network data in KuaiRec. Specifically, we first find friends for each user
in the social network and calculate the mean of the distance of their watching ratio vectors. For
example, if the friends of user U1 are U2 and U3, then the mean of the distance is calculated as
(dist(WU1

,WU2
)+ dist(WU1

,WU3
))/2, where dist(·, ·) is a distance metric and WUi

is the watching
ratio vector of user Ui. Then we randomly select non-friend user and calculate the mean of the
watching ratio vector distance between each user and his non-friend users. In our experiment, the
number of friend user and non-friend user are equal. In the above example, since the number of
friends of U1 is two, we randomly select two non-friends users of U1 and calculate the mean of the
watching ratio vector between U1 and two non-friend users. Figure 3(a) shows the experiment result.
The distances between the friend user watching ratio vectors are smaller than the distances between
the non-friend watching ratio vectors, which verifies the existence of the neighborhood effect.

For the second experiment, since (u, i) is reasonable to be viewed as the neighborhood of (u, i′), we
explore the effect of a user’s historical interaction on current behavior. For example, the videos that a
user has watched before will have an impact on the watching ratio from the user to the current video.
The intuition behind the experiment is that users who have seen better videos than the current video
are more likely to have a low watching ratio towards the current video. Specifically, we first compute
the average watching ratio of 3,327 videos based on the fully exposed small dataset and assign each
video a ranking based on that watching ratio. Meanwhile, we rank each user interaction from past to
present based on the timestamps. Next, we explore the connection between the watching ratio of the
K + 1 video seen by the user and the previous K videos. If more than half of the K videos have
higher ranking than the K + 1 video, then (u, iK+1) is denoted as a "better" user-item pair, and vice
versa as a "worse" user-item pair. Then we compute the difference between the watching ratio of the
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Algorithm 3: The Proposed N-DR-JL Learning Algorithm

Input: the observed ratings Yo, the observation matrix O, the representation G, the pre-specified
g, the pre-specified kernel function K(·) and the pre-trained propensity model.

while stopping criteria is not satisfied do
for number of steps for training the imputation model do

Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
Calculate p̂uj ,ij (g) using the propensity model;
Update ϕg by descending along the gradient ∇ϕgLN−DR

e (R̂|g);
end
for number of steps for training the prediction model do

Sample a batch of user-item pairs {(ul, il)}Ll=1 from D;
Calculate p̂ul,il(g) using the propensity model for user-item pair with oul,il = 1;
Update θ by descending along the gradient ∇θLN

DR(R̂|g);
end

end
Output: the well-trained prediction model fθ(x).

Algorithm 4: The Proposed N-MRDR-JL Learning Algorithm

Input: the observed ratings Yo, the observation matrix O, the representation G, the pre-specified
g, the pre-specified kernel function K(·) and the pre-trained propensity model.

while stopping criteria is not satisfied do
for number of steps for training the imputation model do

Sample a batch of user-item pairs {(uj , ij)}Jj=1 from O;
Calculate p̂uj ,ij (g) using the propensity model;
Update ϕg by descending along the gradient ∇ϕgLN−MRDR

e (R̂|g);
end
for number of steps for training the prediction model do

Sample a batch of user-item pairs {(ul, il)}Ll=1 from D;
Calculate p̂ul,il(g) using the propensity model for user-item pair with oul,il = 1;
Update θ by descending along the gradient ∇θLN

DR(R̂|g);
end

end
Output: the well-trained prediction model fθ(x).

"better" and "worse" user-item pair and the average watching ratio of video iK+1, respectively. Table
3 shows the mean values of the differences with varying K. Figure 3(b) shows the distribution of
the differences when K = 15. The results show that "better" user-item pairs are more likely to have
a low watching ratio, i.e., the treatment of the neighbor units (u, i′) will affect the outcome of
(u, i), which verifies the existence of the arrow from gu,i to ru,i in Figure 1.

Table 3: The mean values of the differences with varying item numbers K.

K 3 4 5 10 15 20

Items with better quality −0.048 −0.082 −0.059 −0.049 −0.070 −0.096
Items with worse quality +0.188 +0.241 +0.125 +0.138 +0.153 +0.159
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Figure 3: Empirical evidence of the existence of the neighborhood effect.

J SEMI SYNTHETIC EXPERIMENT DETAILS

Following the previous studies (Guo et al., 2021; Schnabel et al., 2016; Wang et al., 2019), we
set propensity pu,i = pαmax(0,4−ru,i) for each user-item pair. To investigate the effect of the
neighborhood effect, we randomly block-off some user rows and item columns to get the mask matrix
M. Specifically, we let mu ∼ Bern(pu),∀u ∈ U , mi ∼ Bern(pi),∀i ∈ I and mu,i = mu ·mi,
where Bern denotes the Bernoulli distribution and pu and pi are the mask ratio for user and item.
These pu and pi are set to 1 in RQ1. For RQ2, we set pu = (|U| − nu)/|U| and pi = (|I| − ni)/|I|,
where |U| and |I| are the total user number and item number and nu and ni are the mask number for
user and item, respectively. In our experiment, nu ∈ {50, 150, 250, 350} and ni = nu · |I|/|U|. Then
we obtain the propensity matrix P with pu,i = pu,i ·mu,i = pαmax(0,4−ru,i) ·mu,i. For different
mask number, we adjust p to ensure the total observed sample is 5% of the entire matrix (Schnabel
et al., 2016). The different nu and ni corresponding to the different strength of the neighborhood
effect. Next, following the previous studies (Guo et al., 2021; Wang et al., 2019) we add a uniform
distributed variable to introduce noise to obtain the estimate propensities 1

p̂u,i
= β

pu,i
+ 1−β

po
, where

β is from a uniform distribution U(0, 1) and po = 1
|D|

∑
(u,i)∈D ou,i.

K REAL-WORLD EXPERIMENT DETAILS AND MORE EXPERIMENT RESULTS

Dataset. We verify the effectiveness of the proposed estimators on three real-world datasets: Coat 2

contains 6,960 MNAR ratings and 4,640 missing-at-random (MAR) ratings. Both MNAR and MAR
ratings are from 290 users and 300 items. Yahoo! R33 contains 311,704 MNAR ratings and 54,000
MAR ratings. The MNAR ratings are from 15,400 users and 1,000 items, and the MAR ratings are
from the first 5,400 users and 1,000 items. For both datasets, ratings are binarized to 1 if ru,i ≥ 3,
and 0 otherwise. In addition, we use a public large-scale industrial dataset, KuaiRec4 (Gao et al.,
2022), which is a fully exposed dataset and contains 4,676,570 video watching ratio records from
1,411 users for 3,327 videos. The records less than 2 are set to 0, and otherwise are set to 1.

Experimental Details. All the experiments are implemented on PyTorch with Adam as the optimizer.
For all experiments, we use NVIDIA GeForce RTX 3090 as the computing resource. We tune the
learning rate in {0.005, 0.01, 0.05, 0.1}, weight decay in {1e−6, 5e−6, . . . , 5e−3, 1e−2} and the
batch size in {128, 256, 512, 1024, 2048} for Coat and {1024, 2048, 4096, 8192, 16384} for Yahoo!
R3 and KuaiRec. For bandwidth value, we tune bandwidth value in {20, 40, 60, 80, 100} for Coat,
{500, 1000, 1500, 2000, 2500} for Yahoo! R3 and {50, 75, 100, 125, 150} for KuaiRec.

Effect of Varying Bandwidth. Table 4 shows the results for N-IPS-NB with varying bandwidth on
all three datasets. The experiment result shows that the N-IPS-NB achieves the best performance
when the bandwidth is moderate, because it will ensure a proper weight for N-IPS-NB estimator.

2https://www.cs.cornell.edu/~schnabts/mnar/
3http://webscope.sandbox.yahoo.com/
4https://github.com/chongminggao/KuaiRec
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Table 4: Performance of N-IPS-NB with varying bandwidth h in Gaussian kernel on all three datasets.
The best result for each dataset is bolded.

Dataset Metrics h = 20 h = 40 h = 60 h = 80 h = 100

Coat
MSE ↓ 0.212 0.208 0.206 0.207 0.208
AUC ↑ 0.733 0.742 0.744 0.739 0.739
NDCG@5 ↑ 0.624 0.633 0.648 0.641 0.638

Dataset Metrics h = 500 h = 1000 h = 1500 h = 2000 h = 2500

Yahoo! R3
MSE ↓ 0.205 0.208 0.196 0.200 0.204
AUC ↑ 0.681 0.681 0.693 0.684 0.685
NDCG@5 ↑ 0.641 0.644 0.658 0.648 0.646

Dataset Metrics h = 50 h = 75 h = 100 h = 125 h = 150

KuaiRec
MSE ↓ 0.056 0.055 0.049 0.054 0.055
AUC ↑ 0.766 0.779 0.785 0.779 0.783
NDCG@50 ↑ 0.559 0.568 0.579 0.580 0.577
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