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Abstract

Modern large language models (LLMs) are001
adept at performing various text generation002
tasks when prompted with instructions de-003
signed for specific objectives. These abilities004
can enhance the quality of text produced by005
automatic speech recognition (ASR), enabling006
the selection of words that are more seman-007
tically accurate. However, relying solely on008
LLMs to correct errors in ASR predictions009
may lead to unintended word generations or010
modifications that do not accurately reflect the011
speech input. In this work, we propose a novel012
ASR model that integrates the text generation013
capabilities of LLMs, while ensuring proper014
alignment with speech inputs. Specifically, our015
model is built on the attention-based encoder-016
decoder (AED) structure, with the LLM serving017
as a front-end feature extractor for the decoder.018
The decoder is trained to predict words from the019
LLM-derived features, where cross-attention020
accounts for aligning these features with the021
speech encodings from the encoder. We also022
design an effective prompting strategy that uses023
a hypothesized text sequence to extract linguis-024
tic information beneficial for performing ASR.025
Experimental results demonstrate that our pro-026
posed model outperforms conventional AED-027
based models across major ASR tasks.028

1 Introduction029

In the field of natural language processing (NLP),030

the pre-training of language models (LMs) has be-031

come a dominant paradigm. This process involves032

training LMs on vast amounts of text data using033

self-supervised objectives (Devlin et al., 2019; Rad-034

ford et al., 2018), enabling the acquisition of versa-035

tile linguistic representations that enhance the per-036

formance across various downstream tasks (Wang037

et al., 2018; Gao et al., 2021). In light of the re-038

markable success in NLP, pre-trained LMs have039

increasingly been adopted for speech processing040

tasks. Particularly in end-to-end automatic speech041

recognition (ASR), the linguistic knowledge from 042

pre-trained LMs has proven beneficial in generating 043

accurate textual outputs (Salazar et al., 2020; Fu- 044

tami et al., 2020; Yi et al., 2021; Zheng et al., 2021; 045

Deng et al., 2022; Higuchi et al., 2022), providing 046

semantic and morphosyntax information (Tenney 047

et al., 2019) — often challenging to capture in 048

end-to-end ASR training with limited transcription 049

data. 050

Recent focus has centered on the use of rapidly 051

advancing pre-trained large LMs (LLMs) (Radford 052

et al., 2019; Brown et al., 2020; Scao et al., 2022; 053

Wei et al., 2022b; Touvron et al., 2023a; Chowd- 054

hery et al., 2023; OpenAI, 2023), which have 055

demonstrated exceptional versatility in perform- 056

ing diverse text generation tasks with little or even 057

no task-specific training data. LLMs have shown 058

promising results in improving end-to-end ASR 059

performance when used in traditional LM-based 060

decoding methods, such as shallow fusion (Hu 061

et al., 2023) and rescoring (Udagawa et al., 2022; 062

Chen et al., 2023b; Ma et al., 2023a,b; Yang et al., 063

2023). To fully utilize the inherent capabilities 064

of LLMs, numerous studies have explored effec- 065

tive strategies for directly adapting them to pro- 066

cess speech inputs (Wang et al., 2023; Zhang et al., 067

2023; Chen et al., 2023a; Wu et al., 2023b; Ruben- 068

stein et al., 2023; Deshmukh et al., 2023; Nach- 069

mani et al., 2024; Yu et al., 2024; Fathullah et al., 070

2024). Nonetheless, this adaptation often requires 071

fine-tuning the LLMs, which can be computation- 072

ally expensive and typically requires an additional 073

mechanism to condense speech inputs into a more 074

manageable length. A more straightforward ap- 075

proach is to prompt LLMs to correct grammatical 076

errors (Wu et al., 2023a; Fang et al., 2023) in ASR 077

hypotheses, but the absence of speech information 078

can lead to hallucinations or overcorrections, gen- 079

erating words not present in the speech input. 080

In this work, we present a novel end-to-end ASR 081

model that efficiently utilizes an LLM to achieve 082
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accurate text generation. The proposed model083

is based on the attention-based encoder-decoder084

(AED) architecture, constructed using the joint085

connectionist temporal classification (CTC) and086

attention framework (Watanabe et al., 2017). The087

core component of our model is the LLM-guided088

decoder, which augments the original decoder by089

employing a fixed-parameter LLM to serve as a090

front-end feature extractor. This integration allows091

the decoder to directly leverage the powerful text092

generation capabilities of the LLM. Additionally,093

the cross-attention mechanism facilitates the align-094

ment of the LLM-derived features with the speech095

information embedded by the encoder. To optimize096

the extraction of linguistic features beneficial for097

the decoder, we also design an effective prompting098

strategy for the LLM, using a hypothesized text099

sequence generated through CTC decoding.100

2 Background101

This section outlines the key model formulations es-102

sential for understanding the proposed integration103

of LLMs into end-to-end ASR. First, we discuss104

an instruction-tuned LLM, emphasizing its prompt-105

based controllability. Subsequently, we describe an106

end-to-end ASR model based on the AED architec-107

ture and its combination with CTC.108

2.1 Instruction-Tuned LLM109

The recent LLMs possess the capability to be110

“prompted” to execute specific tasks. This involves111

providing instructions or contexts that influence112

the subsequent output generated by the model, al-113

lowing users to flexibly control the model’s be-114

havior depending on the need. Additionally, ad-115

vancements in instruction fine-tuning have further116

enhanced the LLMs’ potential for performing zero-117

shot task transfer, which helps to produce more118

precise responses without requiring task-specific119

retraining or fine-tuning (Wei et al., 2022a; Ouyang120

et al., 2022; Chung et al., 2024).121

We focus on Llama2-Chat, an instruction-tuned122

version of Llama2 (Touvron et al., 2023b), as a123

pre-trained LLM used in this work. We hereafter124

refer to this chat model as “Llama2” for brevity.125

Llama2, consisting of deep Transformer decoder-126

based layers (Vaswani et al., 2017; Radford et al.,127

2018), outputs a Dllm-dimensional hidden vector128

en at a token position n as129

en = Llama2( W ins︸︷︷︸
Instruction

, W usr︸ ︷︷ ︸
User Input

, W<n︸︷︷︸
Response

), (1)130

where W ins ∈ VN ins
is an N ins-length instruc- 131

tion sequence that specifies the details of a task; 132

W usr ∈ VNusr
is an Nusr-length user input se- 133

quence that serves as the given input for the task; 134

W = (wn ∈ V|n = 1, · · · , N) is an N -length 135

response sequence generated by the LLM; and V 136

is the vocabulary of Llama2. The previous tokens 137

are represented as W<n = (w0, · · · , wn−1), where 138

w0 = <s> is a start-of-sentence symbol. Typically, 139

the prefix, combining W ins and W usr, is referred to 140

as a prompt, which guides the model to generate 141

responses W in a specific manner. See the Llama2 142

input in Fig. 1 for example input sequences. 143

Llama2 computes the likelihood of a target se- 144

quence W as 145

p(W |W ins,W usr) =

N+1∏
n=1

p(wn|W<n,W
ins,W usr),

(2) 146

where wN+1 = </s> is an end-of-sentence sym- 147

bol. The probability of generating wn in Eq. (2) is 148

computed using the output en from Eq. (1) as 149

p(wn|W<n,W
ins,W usr) = σ(LinDllm→|V|(en)),

(3) 150

where LinDllm→|V|(·) projects a Dllm-dimensional 151

feature vector to a logit, and σ(·) represents the 152

softmax function. 153

2.2 Joint CTC/Attention End-to-End ASR 154

Let O ∈ RT×F denote a T -length input speech se- 155

quence with F -dimensional acoustic features and 156

W ∈ VN represent the corresponding target se- 157

quence1. End-to-end ASR aims to directly map 158

O to W by modeling the posterior distribution of 159

p(W |O) using a single deep neural network. 160

AED (Chorowski et al., 2015; Chan et al., 2016) 161

formulates end-to-end ASR using a probabilistic 162

chain rule as 163

paed(W |O) ≜
N+1∏
n=1

p(wn|W<n, O). (4) 164

The token emission probability in Eq. (4) is com- 165

puted as 166

H = (h1, · · · ,hT ′) = Encoder(O), (5) 167

p(wn|W<n, O) = Decoder(W<n, H), (6) 168

where Encoder(·) first down-samples O (i.e., T ′ = 169

T/4) and then converts it into a sequence of Dasr- 170

dimensional hidden vectors H . Decoder(·) repre- 171

1Throughout this work, we consistently use the common
vocabulary V of Llama2 for tokenizing text sequences.
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[s] Bread is made from flour.

Llama2

Correct the given statement.

Instruction User Input

Bread is made from flower. 〈s〉

LLM-Guided 
Decoder

O

CTC

Encoder

: Initialized using pre-trained parameters and remain fixed

W usr

Bread is made from flour. 〈/s〉

Response

W

Bread is made from flower.W̃

W ins

Figure 1: Overview of proposed end-to-end ASR model guided by instruction-tuned LLM, i.e., Llama2(-Chat). We
construct a joint CTC/attention-based model, employing Llama2 as a front-end feature extractor for the decoder
network. During inference, given a hypothesis W̃ generated via CTC decoding, Llama2 is tasked to perform
grammatical error correction through precise prompting. The decoder network then produces an output sequence
W , using text embeddings derived from Llama2 and aligning them with speech information via cross-attention.

sents autoregressive decoder layers, followed by a172

linear layer and the softmax function, which map173

to the output vocabulary, V ∪ {</s>}. Here, the174

decoder is equipped with the cross-attention mech-175

anism for aligning each token in W<n to the en-176

coder output H . The AED model is optimized by177

minimizing the negative log-likelihood of Eq. (4),178

Laed ≜ − log paed(W |O).179

CTC (Graves and Jaitly, 2014) formulates end-180

to-end ASR by evaluating all possible alignments181

between O and W . To align the sequences at the182

frame level, W is augmented by allowing repeated183

occurrences of the same token and inserting a blank184

symbol <b>. Let A = (at ∈ V ∪ {<b>}|t =185

1, · · · , T ′) be an alignment sequence, and CTC186

models the posterior distribution of p(W |O) as187

pctc(W |O) ≜
∑

A∈B−1(W )

T ′∏
t=1

p(at|O), (7)188

where B : A 7→ W is a collapsing function that189

removes repeated tokens and blank symbols in A,190

and B−1(W ) represents a set of all possible align-191

ments compatible with W . Using the encoder out-192

put H from Eq. (5), the token emission probability193

in Eq. (7) is computed as194

p(at|O) = CTC(ht), (8)195

where CTC(·) represents a linear layer that maps to196

the output vocabulary of CTC, V ∪ {∅}. The CTC197

model is optimized by minimizing the negative log-198

likelihood of Eq. (7), Lctc ≜ − log pctc(W |O).199

AED and CTC can be effectively combined to 200

enhance robustness during training and inference 201

processes of end-to-end ASR (Kim et al., 2017; 202

Watanabe et al., 2017). The objective function of 203

the joint model is defined as a linear interpolation 204

of Lctc and Laed as 205

Lctc-aed = λLctc + (1− λ)Laed, (9) 206

where λ (0 ≤ λ ≤ 1) is a tunable weight. Joint de- 207

coding is performed using a one-pass beam search, 208

with CTC serving as a secondary score and the au- 209

toregressive decoder in AED primarily handles hy- 210

pothesis expansion and end detection. The score of 211

a hypothesis Ŵ is calculated using Eqs. (4) and (7) 212

as ξ log pctc(Ŵ |O)+(1−ξ) log paed(Ŵ |O), where 213

ξ (0 ≤ ξ ≤ 1) is a tunable weight to define the im- 214

portance of each score. See Hori et al. (2017) for a 215

detailed decoding algorithm. 216

3 End-to-End Speech Recognition Guided 217

by Instruction-Tuned LLM 218

Overview Figure 1 illustrates the proposed end- 219

to-end ASR framework, which is specifically de- 220

signed to leverage the text generation capabilities 221

of an LLM, while ensuring proper alignment with 222

speech information. This is achieved through the in- 223

tegration of an LLM-guided decoder into the joint 224

CTC/attention framework (described in Sec. 2.2), 225

where the LLM serves as a front-end feature extrac- 226

tor for the decoder, and the cross-attention mech- 227

anism within the decoder aligns the LLM-derived 228
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features with the speech information embedded229

by the encoder. The LLM-guided decoder allows230

for accurate text generation by effectively incor-231

porating the LLM knowledge, where the align-232

ment with the speech information prevents hallu-233

cinations (e.g., the generation of unspoken words),234

which can be associated with standalone LLM out-235

puts. To optimally derive linguistic features that236

facilitate the text generation process in the decoder,237

we capitalize on the LLM’s potential as a zero-238

shot grammatical error correction model (Wu et al.,239

2023a; Fang et al., 2023; Yang et al., 2023), de-240

signing an effective prompting strategy that uses a241

hypothesized output sequence obtained by CTC.242

The following subsections delve into the details243

of the proposed model, presenting a precise for-244

mulation that substantiates the effectiveness of our245

model design, which is followed by descriptions of246

training and inference strategies.247

3.1 Formulation248

The proposed model formulates end-to-end ASR249

by factorizing the posterior distribution p(W |O) as250

p(W |O) =
∑

W̃∈H(W )

p(W |W̃ ,O)p(W̃ |O), (10)251

where W̃ ∈ VM is an M -length hypothesized out-252

put sequence, and H(W ) represents a set of all253

possible output sequences compatible with W . In254

other words, H(W ) comprises sequences that are255

prone to be misrecognized from input speech O,256

with W̃ derived from p(W̃ |O). In Eq. (10), we257

further factorize p(W |W̃ ,O) by applying a proba-258

bilistic chain rule as259

p(W |W̃ ,O) =

N+1∏
n=1

p(wn|W̃ ,W<n, O). (11)260

Eq. (11) follows the same formulation as AED in261

Eq. (4), but it additionally conditions the token262

emission probability on the hypothesized output W̃ .263

Intuitively, Eq. (11) is interpreted as a model that264

estimates each current token based on previously265

predicted tokens W<n, while also correcting errors266

present in the hypothesized output sequence W̃ .267

The token emission probability in Eq. (11) is268

modeled similarly to the AED architecture, with a269

modification to the decoder (i.e., Eq. (6)) as270

en = Llama2(W ins, W̃ ,W<n), (12)271

p(wn|W̃ ,W<n, O)272

= LLMGuidedDecoder(e1, · · · , en, H), (13)273

where H is the encoder output, as derived from 274

Eq. (5). In Eq. (12), the Llama2 output en is ob- 275

tained as in Eq. (1), where a hypothesized output 276

sequence is used as the user input, i.e., W usr = W̃ , 277

accompanied by an instruction W ins that directs the 278

LLM toward the grammatical error correction task 279

(see Appendix B.4 for the actual prompt). Such 280

a prompting strategy is expected to facilitate the 281

modeling of Eq. (11). Eq. (13) represents the LLM- 282

guided decoder, the key component of the proposed 283

model, which is identical to the standard decoder in 284

Eq. (6) but takes the Llama2 outputs (e1, · · · , en) 285

as input to align them with the encoder output H . 286

3.2 Inference 287

The most probable output sequence Ŵ is estimated 288

by solving Eq. (10) as 289

Ŵ = argmax
W

∑
W̃∈H(W )

p(W |W̃ ,O)p(W̃ |O), (14) 290

≈ argmax
W

p(W |W̃ ′, O), (15) 291

where W̃ ′ = argmax
W̃

p(W̃ |O). (16) 292

To handle the intractable summation over W̃ in 293

Eq. (14), we apply the Viterbi approximation with 294

respect to p(W̃ |O), which results in Eqs. (15) 295

and (16). The search process in Eq. (16) is imple- 296

mented by the best path decoding of CTC (Graves 297

et al., 2006) using Eq. (8), which first finds the 298

most probable alignment Â by concatenating the 299

most active tokens at each time frame, ât = 300

argmaxat p(at|O), and then obtains W̃ ′ by ap- 301

plying the collapsing function to Â as W̃ ′ = 302

B(Â). Eq. (15) is solved by performing the joint 303

CTC/attention decoding (Hori et al., 2017; Watan- 304

abe et al., 2017) using scores derived from Eqs. (7) 305

and (11), which results in the final output sequence 306

Ŵ . See Appendix A for the pseudocode of the 307

proposed inference algorithm. 308

3.3 Training 309

The training process for the proposed model un- 310

folds in two steps: 311

1. Train a joint CTC/attention model using 312

Lctc-aed, as described in Eq. (9); and 313

2. Using the Encoder(·) and CTC(·) trained in 314

Step 1 and the pre-trained Llama2(·), train 315

LLMGuidedDecoder(·) in Eq. (13). Here, the 316

LLM-guided decoder is only trained while the 317

parameters of the other models remain fixed. 318
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We freeze all the pre-trained networks in Step 2 not319

only to enhance training efficiency but also to en-320

able the LLM-guided decoder to focus exclusively321

on aligning LLM-derived features with the speech322

information from the encoder.323

In Step 2, the objective function of the proposed324

model is defined by the negative log-likelihood of325

Eq. (10) expanded with Eq. (11),326

− log
∑

W̃∈H(W )

N+1∏
n=1

p(wn|W̃ ,W<n, O)p(W̃ |O) (17)327

≈ − logEW̃∼p(W̃ |O)

[
N+1∏
n=1

p(wn|W̃ ,W<n, O)

]
(18)328

≤ −EW̃∼p(W̃ |O)

[
log

N+1∏
n=1

p(wn|W̃ ,W<n, O)

]
︸ ︷︷ ︸

≜Lllm-dec

. (19)329

The intractable marginalization over W̃ in Eq. (17)330

is approximated by computing the expectation with331

respect to the sampling distribution based on the332

probability distribution of p(W̃ |O), which results333

in Eq. (18). By applying Jensen’s inequality, the334

upper bound of Eq. (18) is derived to define the335

model’s objective function Lllm-dec in Eq. (19).336

Practically, Lllm-dec is computed in a manner sim-337

ilar to the AED loss Laed, calculating the cross-338

entropy losses at each token prediction. The sam-339

pling process of W̃ in Eq. (19) is implemented340

by running the encoder in “training mode” (with341

dropout enabled) and performing the best path de-342

coding of CTC, which is a similar strategy utilized343

in uncertainty estimation (Gal and Ghahramani,344

2016; Vyas et al., 2019).345

4 Additional Related Work346

LLMs with Speech Input Prior studies have ex-347

plored the incorporation of speech information in348

LLMs (Wang et al., 2023; Deshmukh et al., 2023),349

primarily focusing on enabling LLMs to accept350

speech input. In Wang et al. (2023), a single, shared351

decoder-only LLM has shown promising potential352

for being trained on both speech and text tasks.353

Similarly, other studies have successfully adapted354

pre-trained LLMs for speech tasks by designing355

an effective module for converting speech into the356

input space of LLMs. This process encodes speech357

into discrete tokens, typically derived from pre-358

trained acoustic models (Zhang et al., 2023; Ruben-359

stein et al., 2023). Alternatively, pre-trained ASR360

models are employed to compress speech into a361

more manageable length (Chen et al., 2023a; Nach-362

mani et al., 2024; Wu et al., 2023b; Yu et al., 2024;363

Fathullah et al., 2024). Our approach to leveraging 364

LLMs for speech tasks is related to these studies, 365

but differs conceptually in that we do not seek to 366

directly adapt LLMs to speech. Instead, the pro- 367

posed model is designed to extract linguistic infor- 368

mation from LLMs that contributes to improving 369

ASR performance, without requiring fine-tuning or 370

modifications to pre-trained LLMs. 371

LM Integration in End-to-End ASR It has 372

been a widely adopted practice to use separate 373

LMs to improve the performance of end-to-end 374

ASR systems. The traditional approach includes 375

rescoring (Mikolov et al., 2010; Chan et al., 2016), 376

which applies an LM score to the top N -best hy- 377

potheses generated by an ASR model. More ad- 378

vanced methods include incorporating LMs into 379

beam search or directly into the model architec- 380

tures, through techniques like shallow fusion (Han- 381

nun et al., 2014; Gulcehre et al., 2015), deep fu- 382

sion (Gulcehre et al., 2015), and cold fusion (Sri- 383

ram et al., 2018; Shan et al., 2019). These conven- 384

tional approaches mainly focus on enhancing ASR 385

models with LM information at the output proba- 386

bility or feature level. Our approach, in contrast, 387

integrates an LLM into the input of the decoder to 388

guide the text generation process. Nonetheless, we 389

show that the proposed model remains compatible 390

with conventional LM integration techniques. 391

Two-Pass End-to-End ASR In ASR, it is com- 392

mon to employ a second-pass model to refine out- 393

puts produced by a first-pass model (Sundermeyer 394

et al., 2015; Chan et al., 2016; Kannan et al., 2018; 395

Salazar et al., 2020). Recent advances in deep 396

learning have enabled an ASR model to train both 397

the first-pass and second-pass models in an end- 398

to-end fashion, introducing an additional structure 399

that refines a first-pass sequence (Xia et al., 2017; 400

Wang et al., 2022; Higuchi et al., 2023b). The two- 401

pass end-to-end ASR framework (Sainath et al., 402

2019) involves training a transducer-based model 403

in conjunction with an attention decoder, which is 404

specifically optimized to rescore hypotheses gen- 405

erated during transducer decoding. Additionally, 406

acoustic embeddings from the encoder can help 407

facilitate the training of the rescoring decoder (Hu 408

et al., 2020). The proposed formulation in Eq. (10) 409

shares similarities with these two-pass approaches. 410

However, it differs in that the decoder does not 411

specifically deliberate on hypotheses to generate 412

an output sequence. Instead, it leverages a hypoth- 413

esis to derive linguistic information from the LLM, 414
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while learning to align this knowledge with speech415

information from the encoder output.416

5 Experimental Setup417

We used the ESPnet toolkit (Watanabe et al., 2018)418

for conducting our experiments, and all the codes419

and recipes will be publicly available for repro-420

ducibility.421

Data We examined the effectiveness of our pro-422

posed approach on English ASR tasks, using var-423

ious corpora spanning different amounts of data424

and domains, including LibriSpeech (LS) (Panay-425

otov et al., 2015), TED-LIUM2 (TED2) (Rousseau426

et al., 2014), and CoVoST2 (CV2) (Wang et al.,427

2021). In addition to the full 960-hour training set428

in LS (LS-960), we used the 100-hour set (LS-100)429

to explore a lower-resource scenario and conduct430

further investigations and analyses. We specifically431

used CV2 for training models with punctuation and432

casing preserved, as this can be crucial for the LLM433

to accurately capture linguistic information. Full434

dataset descriptions and pre-processing details are435

in Appendix B.1.436

Modeling We developed our baseline models437

within the joint CTC/attention framework (as de-438

tailed in Sec. 2.2), which used the Conformer-based439

architecture (Gulati et al., 2020; Guo et al., 2021).440

This baseline model also corresponds to the joint441

CTC/attention model trained in Step 1 in Sec. 3.3.442

The proposed model was constructed by substi-443

tuting the decoder of the baseline model with our444

LLM-guided decoder (as described in Step 2 in445

Sec. 3.3). For the LLM, we used Llama2-Chat with446

7B parameters (Touvron et al., 2023b), which was447

accessed through the HuggingFace library (Wolf448

et al., 2020). Full descriptions of model sizes, net-449

work architectures, and hyperparameters are in Ap-450

pendix B.2.451

Training and Decoding We primarily followed452

training/decoding configurations provided by the453

ESPnet recipes for each dataset. We set λ (in454

Eq. (9)) to 0.3 during baseline model training. For455

both the baseline and proposed models, we con-456

sistently set the score weight ξ to 0.3 during the457

joint CTC/attention decoding, unless specified oth-458

erwise. The beam size B was set to either 1 or 20.459

Notably, with B = 1, the influence of the LLM460

is more directly reflected in the proposed models.461

Descriptions of detailed configurations are in Ap-462

pendix B.3.463

Prompting We heuristically designed a prompt 464

to guide Llama2 in performing grammatical error 465

correction, setting W ins (in Eq. (12)) to “You will 466

be provided with a statement in quotes. Correct the 467

wrong words and provide your revised version.”. 468

The specific format used and the process of deter- 469

mining the prompt are described in Appendix B.4. 470

Evaluation We measured ASR performance us- 471

ing the word error rate (WER). We also used the 472

bootstrap method (Davison and Hinkley, 1997) to 473

measure the statistical significance of the perfor- 474

mance gains, which computes 95% confidence in- 475

tervals for the difference in per-sample WER on a 476

test set between the baseline and proposed models. 477

Detailed configurations for computing the confi- 478

dence intervals are provided in Appendix C. 479

6 Results and Analyses 480

6.1 Main Results 481

Table 1 presents a comparison of the baseline and 482

proposed models across all the tasks, evaluating 483

their performance based on the WER.2 The A0 484

results represent the CTC decoding performance, 485

with ξ set to 1.0 to rely solely on the CTC score. 486

Setting ξ to 0.3 for the joint decoding resulted in 487

overall improvements across the tasks (A0 vs. A1). 488

The proposed model, featuring the LLM-guided 489

decoder, achieved the best overall performance 490

among the results with B = 1 (A0, A1 vs. A2). 491

This indicates the successful incorporation of the 492

LLM capabilities into the text generation process, 493

while only requiring the retraining of minimal pa- 494

rameters (e.g., 18.8M). In the proposed inference 495

algorithm, as described in Sec. 3.2, the CTC decod- 496

ing results (A0) served as inputs to Llama2 (i.e., W̃ 497

in Eq. (12)). Thus, the gains from A0 suggest that 498

the proposed model effectively used the LLM to 499

recover errors in the hypothesized outputs, as mod- 500

eled in Eq. (11). We analyze the significance of 501

the LLM in Sec. 6.2. In CV2, the proposed model 502

demonstrated a notably higher level of improve- 503

ment compared to those observed in the other tasks, 504

particularly considering the gains from the CTC 505

decoding results in A0. We attribute this to the use 506

of unnormalized written-style text, which enabled 507

the LLM to extract precise linguistic information. 508

2Note that our results from the joint CTC/attention mod-
els do not fully replicate the recent results reported in ESP-
net (Peng et al., 2023). We attribute this discrepancy to the
use of the Llama2 vocabulary in Eq. (6), which may not be
optimal for end-to-end ASR training (Higuchi et al., 2023a).
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LibriSpeech-100h LibriSpeech-960h TED-LIUM2 CoVoST2

Dev WER Test WER Dev WER Test WER Dev
WER

Test
WER

Dev
WER

Test
WERID Model B ξ clean other clean other clean other clean other

A0 Joint CTC/Attention 1 1.0 9.3 21.6 9.7 22.2 3.0 7.3 3.2 7.3 10.0 9.3 23.7 26.3

A1 Joint CTC/Attention 1 0.3 9.9 20.6 10.7 21.1 3.2 6.5 3.4 6.7 11.6 8.8 18.9 21.8
A2 + LLM-Guided Decoder 1 0.3 6.7 17.5 7.3 17.9 2.6 6.9 2.8 7.0 9.5 7.8 15.6 18.1

A3 Joint CTC/Attention 20 0.3 7.2 17.5 7.5 18.0 2.3 5.7 2.6 5.7 9.4 7.8 16.2 18.4
A4 + LLM-Guided Decoder 20 0.3 6.2 16.5 6.7 16.9 2.6 6.8 2.8 7.0 7.6 7.2 15.0 16.9

Table 1: WERs [%] (↓) of our models with LLM-guided decoder compared to joint CTC/attention baselines. B and
ξ denote the beam size and score weight, respectively, the parameters used during the joint CTC/attention decoding.

Dev WER

B = 1 B = 20

ID Model clean other clean other

-- Joint CTC/Attn. (A1, A3) 9.9 20.6 7.2 17.5

-- + LLM-Guided Dec. (A2, A4) 6.7 17.5 6.2 16.5
B1 w/o LLM 9.3 20.7 7.1 17.8
B2 w/o Prompt 9.3 19.7 6.5 16.7
B3 w/ Mismatched Task Inst. 6.8 17.8 6.5 16.8

Table 2: Ablation studies on LS-100, validating effec-
tiveness of LLM and prompt in our proposed model.

When we set B to 20, the proposed model con-509

sistently outperformed the baseline across all tasks510

except for LS-960 (A3 vs. A4). Beam search de-511

coding did not yield any performance gains in LS-512

960, potentially because Llama2 is more confident513

in its predictions for common and generic words514

within its vocabulary. Notably, we observed that515

our model generally struggles to recognize infre-516

quent words (e.g., personal names), which are con-517

sidered long-tail words rarely encountered during518

the pre-training process of Llama2. We further519

discuss these observations in Sec. 6.3.520

For most of the tasks, we confirmed the signifi-521

cance of our performance gains by calculating the522

confidence intervals. The proposed model exhib-523

ited marginal improvements on LS-960, suggesting524

that the dataset already contained adequate text525

data for the model to accurately model the text gen-526

eration process, thus reducing the reliance on the527

LLM. See Appendix C for detailed results.528

6.2 Ablation Study529

We conducted several ablation studies for the pro-530

posed model to assess the effectiveness of both the531

use of the LLM and the prompt. Table 2 presents532

the results of these ablation studies, evaluated by533

the WER on the LS-100 task.534

Importance of LLM We ablated the LLM from 535

the proposed model (B1), where, in Step 2 of the 536

training process in Sec. 3.3, we trained the decoder 537

from scratch but without using Llama2 as its front 538

end. Compared to the baseline results (A1, A3), 539

this modified training resulted in improvements in 540

the “clean” set. However, there was a slight de- 541

cline in performance on the “other” set, indicating 542

a decrease in generalizability. With the integration 543

of the LLM, the proposed model achieved signif- 544

icantly better results with superior generalization 545

ability (A2, A4 vs. B1). 546

Influence of Prompt First, we trained the LLM- 547

guided decoder by removing the prompt from the 548

Llama2 input (B2), i.e., setting W ins = ∅ and 549

W̃ = ∅ in Eq. (12). While this modification re- 550

sulted in modest gains compared to the baseline 551

model (A1, A3 vs. B2), it adversely affected the 552

performance of the proposed model (A2, A4 vs. 553

B2). Next, we trained the LLM-guided decoder 554

with a task instruction that diverged from grammat- 555

ical error correction (B3), adapting W ins to specify 556

a translation task. See Appendix B.4 for the ac- 557

tual prompt used. The modified prompt yielded 558

improvements over the baseline model (A1, A3 vs. 559

B3), but the proposed model with the proper prompt 560

demonstrated superior performance (A2, A4 vs. B2). 561

The findings from B2 and B3 suggest that designing 562

an appropriate prompt is crucial in our model to 563

effectively leverage the LLM’s capabilities, thereby 564

optimizing its ability to extract linguistic informa- 565

tion aligned with the target task. 566

6.3 Error Analysis with Decoding Example 567

Table 3 presents actual decoding results obtained 568

from the baseline and proposed models on the LS 569

test-other set. Comparing the results from the first 570

utterance, it is observed that the CTC decoding (A0) 571

generated non-words that can sound similar to the 572

reference words. By performing the joint decod- 573
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Joint CTC/Attn. (A0) ... by the passion of sympathy it had crd her into as many creases as an all glazed distended glo
Joint CTC/Attn. (A1) ... by the passion of sympathy it had crumbled her into as many creases as an old glowed distended bluff
+ LLM-Guided Dec. (A2) ... by the passion of sympathy it had crumpled her into as many creases as an old glazed distended glove

Reference ... by the passion of sympathy it had crumpled her into as many creases as an old glazed distended glove

Joint CTC/Attn. (A1) ransom was pleased with the vision of that trinity it must be repeated that he was very provincible
+ LLM-Guided Dec. (A2) frances was pleased with the vision of that remedy it must be repeated that he was very provincial

Reference ransom was pleased with the vision of that remedy it must be repeated that he was very provincial

Table 3: Decoded samples (with speaker ID of 6128-63244) in LS test-other set. Red indicates incorrect words.

Dev WER Test WER

Integration Method clean other clean other

Joint CTC/Atten. (A3) 7.2 17.5 7.5 18.0
+ Shallow Fusion 6.4 17.1 7.0 17.5
+ Rescoring 6.1 15.6 6.4 16.1
+ Zero-Shot GEC 13.8 22.8 13.4 23.3

+ LLM-Guided Dec. (A4) 6.2 16.5 6.7 16.9

Table 4: WERs [%] (↓) for joint CTC/attention model
using various LLM integration methods on LS-100.

Test WER

Model LS-100 LS-960 TED2 CV2

Joint CTC/Atten. (A3) 7.5 / 18.0 2.6 / 5.7 7.8 18.4
+ Rescoring 6.4 / 16.1 2.3 / 5.1 7.3 15.8
+ LLM-Guided Dec. (A4) 6.7 / 16.9 2.8 / 7.0 7.2 16.9

+ Rescoring 5.8 / 15.1 2.4 / 6.0 6.8 14.5

Table 5: WERs [%] (↓) for proposed model across all
ASR tasks, enhanced with LLM-based rescoring.

ing (A1), the baseline model effectively considered574

dependencies among subword outputs, resulting575

in the formation of actual words; however, some576

words remained contextually inappropriate. In con-577

trast, the proposed model (A2), guided by the LLM,578

succeeded in generating accurate and semantically579

appropriate words. Analyzing the results from the580

second utterance, the proposed model predicted581

words more accurately than the baseline (A1 vs.582

A2), consistent with the observations from the first583

example. However, it is noteworthy that the model584

faced difficulties in properly recognizing the per-585

sonal name “ransom.” This tendency was similarly586

observed in other tasks as well.587

6.4 Comparison with Conventional Language588

Model Integration Methods589

Conventional approaches to integrating a sepa-590

rate LM during the inference of end-to-end ASR591

have also shown promising results when using592

LLMs (Udagawa et al., 2022; Hu et al., 2023). Ta-593

ble 4 presents WERs for the LS-100 task, reporting594

the performance of the baseline joint CTC/attention595

model when decoded using an LLM (i.e., Llama2). 596

Specifically, we compare results obtained by per- 597

forming shallow fusion, rescoring, and zero-shot 598

grammatical error correction (GEC). Detailed de- 599

scriptions for each method are in Appendix D. 600

Looking at the results, both shallow fusion and 601

rescoring resulted in notable performance improve- 602

ments, with rescoring yielding larger gains than 603

the proposed approach. Zero-shot GEC appeared 604

to be challenging, as the LLM tended to produce 605

hallucinations or overcorrections. These issues led 606

to generating words not present in the speech in- 607

put, indicating a need for a dedicated mechanism to 608

align the LLM outputs with the speech information. 609

As the above-mentioned methods are specifically 610

designed for use during inference, they can com- 611

plement the proposed model, which integrates the 612

LLM directly into the decoder network. To validate 613

this, we focus on combining our model with the 614

most promising rescoring method. Table 5 shows 615

the results on all the tasks, demonstrating that the 616

LLM-based rescoring further enhanced the perfor- 617

mance of our proposed model. 618

7 Conclusion 619

We proposed to use an instruction-tuned LLM for 620

guiding the text generation process in end-to-end 621

ASR. Employing the LLM as a front-end module 622

in the decoder, our model leveraged the LLM’s 623

powerful text generation capabilities, while cross- 624

attention facilitated the alignment of LLM-derived 625

features with the speech inputs. Additionally, we 626

designed a prompting strategy to extract linguis- 627

tic features beneficial for the decoder, utilizing a 628

hypothesized output sequence generated via CTC 629

decoding. Experimental results confirmed the effec- 630

tiveness of the LLM, with the proposed model out- 631

performing the joint CTC/attention baseline across 632

major ASR tasks. Further investigations revealed 633

the limitation of our model in recognizing domain- 634

specific words and highlighted that our approach 635

complements traditional LM integration methods. 636
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Limitations637

High Computational Cost A key limitation of638

the proposed model is its high computational re-639

quirements. This is due to the intensive forward640

computations in the LLM, which has large model641

size and carries out autoregressive sequence genera-642

tion with a complexity of O(N ins+Nusr+N). Al-643

though our approach reduces computational costs644

by eliminating the need for backward propagation645

through the LLM, it still requires a GPU with a646

large memory size (e.g., a single A100 with 40GB)647

for both the training and decoding phases. See Ap-648

pendix E for a comparison of inference speeds. Fu-649

ture research should explore the application of com-650

pressed or lightweight LLMs, which are currently651

active areas of study in the field of NLP (Hsieh652

et al., 2023; Zhu et al., 2023; Ma et al., 2024).653

Suboptimal Prompt We also recognize that the654

prompt used in our model is not ideal, as it was de-655

signed heuristically based on our empirical observa-656

tions (refer to Appendix B.4) within the constraints657

of limited computing budgets. To further improve658

the proposed model, the prompt can be extended to659

enable few-shot in-context learning (Brown et al.,660

2020) or zero-shot reasoning (Kojima et al., 2022)661

for grammatical error correction, which has proven662

effective in previous studies (Ma et al., 2023b; Yang663

et al., 2023). This approach could bias the LLM664

more closely to the target domain, potentially ad-665

dressing the issue of recognizing domain-specific666

words (as discussed in Secs. 6.1 and 6.3). Alterna-667

tively, if computational resources allow for more668

intensive backward computations, the prompt can669

be optimized jointly with the decoder by using a670

soft prompt (Lester et al., 2021; Song et al., 2023).671

Non-Streaming Finally, we note that the pro-672

posed model is not suited for online streaming673

scenarios, as it requires a full-sentence hypothe-674

sis for the input to the LLM (i.e., W̃ in Eq. (12)).675

It is not particularly problematic for utterance-level676

ASR tasks. However, the proposed models face677

challenges in real-time applications like spoken di-678

alogue systems that require immediate interaction.679

A viable solution to overcoming this limitation is to680

implement a two-pass streaming system (Sainath681

et al., 2019). Here, the encoder with CTC is built682

as a streaming model to produce real-time outputs,683

while the LLM-guided decoder operates after the684

utterance ends to refine the initial results.685
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Data Split #hours #utterances

Training

train-clean-100 100 28k
train-clean-360 360 104k
train-other-500 500 149k

train-960 960 281k

Development
dev-clean 5.4 2703
dev-other 5.1 2864

Evaluation
test-clean 5.4 2620
test-other 5.3 2939

Table 6: Dataset description of LibriSpeech.

Data Split #hours #utterances

Training Train 207 93k

Development Dev 1.6 507

Evaluation Test 2.6 1155

Table 7: Dataset description of TED-LIUM2

that the score computation (line 12) is based on the1162

LLM-guided decoder (Eq. (4) vs. Eq. (11)).1163

B Reproducibility1164

This section provides additional details on the ex-1165

perimental settings for reproducibility.1166

B.1 Data1167

B.1.1 Dataset Descriptions1168

LibriSpeech (LS) LS (Panayotov et al., 2015)1169

consists of utterances derived from read English1170

audiobooks. Table 6 lists the statistics for data1171

splits included in LS. Each data split is categorized1172

as “clean” or “other” based on the audio quality.1173

The official development (dev-clean and dev-other)1174

and evaluation (test-clean and test-other) sets were1175

used for tuning hyper-parameters and evaluating1176

performance, respectively. Data preparation was1177

done using the ESPnet2 recipes3.1178

TED-LIUM2 (TED2) TED2 (Rousseau et al.,1179

2014) contains utterances from English TED Talks.1180

Table 7 lists the statistics for data splits included1181

in TED2. The official development (Dev) and1182

evaluation (Test) sets were used for tuning hyper-1183

parameters and evaluating performance, respec-1184

tively. Data preparation was done using the ES-1185

Pnet2 recipe4.1186

3https://github.com/espnet/espnet/tree/master/
egs2/{librispeech,librispeech_100}/asr1

4https://github.com/espnet/espnet/tree/master/
egs2/tedlium2/asr1

Data Split #hours #utterances

Training Train 407 272k

Development Dev 22 13k

Evaluation Test 25 16k

Table 8: Dataset description of CoVoST2 (En→X).

CoVoST2 (CV2) CV2 (Wang et al., 2021) is a 1187

corpus designed for speech translation tasks, de- 1188

rived from the Common Voice project (Ardila et al., 1189

2020). We used CV2 as an English ASR task by 1190

exclusively extracting source speech-text data from 1191

the “En→X” task. Table 8 lists the statistics for 1192

data splits of CV2 used in our experiments. The of- 1193

ficial development (Dev) and evaluation (Test) sets 1194

were used for tuning hyper-parameters and evalu- 1195

ating performance, respectively. Data preparation 1196

was done using the ESPnet2 recipe5. 1197

B.1.2 Pre-Processing 1198

The transcriptions provided by the above corpora, 1199

except for CV2, are normalized by default, where 1200

punctuation was removed, and casing was standard- 1201

ized to lowercase. For CV2, we used unnormalized 1202

transcriptions during training, with punctuation and 1203

casing preserved. During the evaluation on CV2, 1204

we removed punctuation from both the reference 1205

and hypothesis before computing the WER. All the 1206

text tokenization was done using the vocabulary of 1207

Llama2, where the vocabulary size |V| was 32k. 1208

B.2 Modeling Details 1209

The encoder, Encoder(·) in Eq. (5), consisted of 1210

two convolutional neural network (CNN) layers 1211

followed by a stack of 12 Conformer encoder 1212

blocks (Gulati et al., 2020). Each CNN layer had 1213

256 channels, a kernel size of 3 × 3, and a stride 1214

size of 2, which resulted in down-sampling the in- 1215

put length by a factor of 4 (i.e., T ′ = T/4). In 1216

each encoder block, the number of head Dhead, 1217

the dimension of a self-attention layer Dasr, the 1218

dimension of a feed-forward network Dff , and the 1219

kernel size were set to (4, 256, 1024, 31) for LS- 1220

100, TED2, and CV2; and (8, 512, 2048, 31) for 1221

LS-960. The decoder, Decoder(·) in Eq. (6), was 1222

a stack of 6 Transformer decoder blocks (Vaswani 1223

et al., 2017), where (Dhead, Dasr, Dff) were set to 1224

(4, 256, 2048) for LS-100, TED2, and CV2; and 1225

5https://github.com/espnet/espnet/tree/master/
egs2/covost2/asr1
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Task Network #params

LS-100 / TED2 / CV2

Encoder + CTC 29.1M
Decoder 25.9M
LLMGuidedDecoder 18.8M
Llama2 6.7B

LS-960

Encoder + CTC 99.6M
Decoder 58.0M
LLMGuidedDecoder 43.7M
Llama2 6.7B

Table 9: Number of parameters in model components.

Hyperparameter Value

Hidden dropout rate 0.1
Attention dropout rate 0.1
Activation dropout rate 0.1
LR scheduling Noam (Vaswani et al., 2017)
Peak learning rate best of {1.5, 2.0} × 10−3

Warmup steps best of {15k, 40k}
Adam betas (0.9, 0.999)
Adam epsilon 10−8

Weight decay rate 10−6

Table 10: Training hyperparameters.

(8, 512, 2048) for LS-960. The LLM-guided de-1226

coder, LLMGuidedDecoder(·) in Eq. (13), shared1227

the same architecture as Decoder(·), but the em-1228

bedding layer was replaced by a linear layer that1229

converts the Llama2 output en ∈ RDllm
to a1230

Dasr-dimensional vector, without positional encod-1231

ing. The LLM used in the LLM-guided decoder,1232

Llama2(·) in Eq. (12), was Llama2(-Chat) (Tou-1233

vron et al., 2023b), which was downloaded from1234

the HuggingFace library6. The dimension of the1235

self-attention layer in Llama2 Dllm was 4096.1236

Table 9 lists the parameter counts for each model1237

component. The baseline model contained 55.0M1238

total and trainable parameters for LS-100, TED2,1239

and CV2, and 157.7M for LS-960. The proposed1240

model contained 6.7B total parameters for LS-100,1241

TED2, and CV2, and 6.8B for LS-960. The train-1242

able parameters were 18.8M for LS-100, TED2,1243

and CV2, and 43.7M for LS-960.1244

B.3 Training and Decoding Configurations1245

All the models were implemented and trained1246

using ESPnet (Watanabe et al., 2018)7 and Py-1247

Torch (Paszke et al., 2019)8. The baseline mod-1248

els were trained up to 50 epochs (i.e., Step 1 in1249

6https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

7https://github.com/espnet/espnet
8https://github.com/pytorch/pytorch

Sec. 3.3), and subsequently, the proposed mod- 1250

els with the LLM-guided decoder were trained up 1251

to 50 epochs for LS-100, and 25 epochs for the 1252

other tasks (i.e., Step 2 in Sec. 3.3). We augmented 1253

speech data using speed perturbation (Ko et al., 1254

2015) with a factor of 3 and SpecAugment (Park 1255

et al., 2019, 2020). For the hyperparameters in 1256

SpecAugment, we set the number of frequency and 1257

time masks to 2 and 5, and the size of frequency 1258

and time masks to 27 and 0.05T . See Table 10 for 1259

other training hyperparameters. After training, a 1260

final model was obtained for evaluation by aver- 1261

aging model parameters over ten checkpoints with 1262

the best validation accuracy. 1263

The baseline models were trained on four V100 1264

(16GB) GPUs for 1 to 3 days, depending on the 1265

task. Decoding was performed using a single V100 1266

GPU. The proposed models were trained on a sin- 1267

gle A100 (40GB) GPU for 1 to 6 days, depending 1268

on the task. Decoding was performed using a single 1269

A100 GPU. 1270

B.4 Prompt Details 1271

We followed the prompting format of Llama2 de- 1272

scribed in Touvron et al. (2023b), which resulted 1273

in the following prompt. 1274

<s>[INST] <<SYS>>
You will be provided with a statement
in quotes. Correct the wrong words and
provide your revised version.
<</SYS>>

“${ASR_HYPOTHESIS}” [/INST]

1275

Here, ${ASR_HYPOTHESIS} corresponds to the hy- 1276

pothesized output sequence W̃ (= W usr) obtained 1277

via CTC decoding. As specified in the task instruc- 1278

tion, we enclosed the hypothesis in double quota- 1279

tion marks. This has been found crucial for the 1280

model to accurately identify the target sequence, 1281

as certain sequences have been observed to cause 1282

misinterpretations. For example, in CV2, a user 1283

input sequence like “Do you know anything about 1284

it?” led the LLM to produce a generic response. 1285

We heuristically adjusted the prompt by using 1286

Llama2 exclusively to perform zero-shot grammat- 1287

ical error correction on ASR hypotheses, as dis- 1288

cussed in Sec. 6.4. Through qualitative observa- 1289

tion, we selected a prompt that adhered accurately 1290

to the specified task and minimized hallucinations, 1291

such as unnecessary rephrasing and the insertion of 1292

unspoken words, from the initial hypothesis. Ad- 1293
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Confidence Intervals [∆WER]

Experiments LS-100 LS-960 TED2 CV2

A1 vs. A2 (2.21%, 2.82%) (−0.32%, 0.11%) (0.66%, 1.51%) (3.44%, 3.91%)
A3 vs. A4 (0.54%, 0.90%) (−1.99%,−1.24%) (0.23%, 0.84%) (0.94%, 1.52%)

Table 11: Confidence intervals calculated for test WER differences between baseline and proposed models. The
experiment IDs correspond to those defined in Table 1.

ditionally, we aimed to keep the prompt concise to1294

reduce memory usage during training.1295

In Table 2, experiment B3 was conducted by1296

using the following prompt.1297

<s>[INST] <<SYS>>
You will be provided with a statement in
quotes, and your task is to translate it
into Japanese.
<</SYS>>

“${ASR_HYPOTHESIS}” [/INST]

1298

C Confidence Intervals1299

We calculated the confidence intervals based on the1300

bootstrap method, using the tool provided by Ferrer1301

and Riera. Here, 95% confidence intervals were1302

calculated for the difference in per-sample WER1303

(∆WER) on a test set between the baseline and1304

proposed models, setting the number of bootstrap1305

samples at 1000. Table 11 lists the confidence inter-1306

vals calculated on the results presented in Table 1.1307

If a confidence interval excludes the value 0.0, we1308

can reject the null hypothesis that the two models1309

have the same performance.1310

D Language Model Integration Methods1311

This section describes the LM integration tech-1312

niques used to obtain the results in Tables 4 and 5.1313

D.1 Shallow Fusion1314

Shallow fusion was implemented by incorporating1315

an LM score into the scoring process (i.e., line1316

12 in Algorithm 1) during the joint CTC/attention1317

decoding. The LM score was computed using the1318

Llama2 probability in Eq. (2) as1319

log plm(W ) ≜ log p(W |W ins,W usr), (20)1320

where we specified W ins using the same prompt1321

used in the proposed model (see Appendix B.4).1322

Similarly, we used the CTC decoding results (A0 in1323

Table 1) for W usr. During beam search, the score1324

of an output sequence W was computed as 1325

log p(W |O) = ξ log pctc(W |O) 1326

+ (1− ξ) log paed(W |O) 1327

+ γ log plm(W ), (21) 1328

where γ represents the weight for the LM score, 1329

and we tuned γ from {0.1, 0.3, 0.5, 0.7, 1.0}. 1330

D.2 Rescoring 1331

Rescoring was implemented by using the LM score 1332

to rerank the hypotheses, i.e., Ω in Algorithm 1, 1333

obtained from the joint decoding. Specifically, the 1334

top-K hypotheses were first extracted from Ω to 1335

form Ω′, and then the most probable sequence Ŵ 1336

was selected from Ω′ as 1337

Ŵ = argmax
W∈Ω′

(
ξ log pctc(W |O) 1338

+ (1− ξ) log paed(W |O) 1339

+ ω log plm(W )
)
, (22) 1340

where ω denotes the weight for the LM score de- 1341

rived from Eq. (20). Unlike shallow fusion, we 1342

computed the LM score in Eq. (22) without the 1343

prompt, setting both W ins and W usr to ∅, as it 1344

did not affect the performance. We tuned K from 1345

{5, 10, 15} and ω from {0.1, 0.3, 0.5, 0.7, 1.0}, 1346

where K = 10 and ω = 0.5 consistently deliv- 1347

ered reasonable results across all tasks. 1348

D.3 Zero-Shot Grammatical Error Correction 1349

Zero-shot grammatical error correction was con- 1350

ducted by evaluating the outputs of the standalone 1351

LLM, which were generated based on the Llama2 1352

probability in Eq. (2). For W ins, we specified the 1353

same task instruction used in the proposed model 1354

(see Appendix B.4). For W usr, we used the results 1355

from the joint CTC/attention model (A3 in Table 1). 1356

During the generation process, we configured the 1357

maximum output sequence length to 512. We also 1358

performed the beam search decoding with a beam 1359

size tuned from {5, 10, 20}, where we did not em- 1360
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Model B RTF

Joint CTC/Attention (A1) 1 0.147
+ LLM-Guided Decoder (A2) 1 0.222

Joint CTC/Attention (A3) 20 0.194
+ LLM-Guided Decoder (A4) 20 1.193

Table 12: RTF (↓) of our model with LLM-guided de-
coder compared to joint CTC/attention baseline.

ploy any sampling strategies. To ensure Llama21361

exclusively generates its corrected sequence, we1362

appended a double quotation mark (") immediately1363

after the prompt. This was based on observations1364

that the model frequently encloses its corrected1365

sequences within double quotation marks.1366

E Inference Speed Comparison1367

Table 12 compares the inference speeds of the base-1368

line and proposed models, using the real-time fac-1369

tor (RTF). RTF was measured on the LS test-other1370

set using a single A100 GPU with a batchsize of 1.1371

These results represent the average values obtained1372

from three separate runs.1373
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