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Abstract

Modern large language models (LLMs) are
adept at performing various text generation
tasks when prompted with instructions de-
signed for specific objectives. These abilities
can enhance the quality of text produced by
automatic speech recognition (ASR), enabling
the selection of words that are more seman-
tically accurate. However, relying solely on
LLMs to correct errors in ASR predictions
may lead to unintended word generations or
modifications that do not accurately reflect the
speech input. In this work, we propose a novel
ASR model that integrates the text generation
capabilities of LLMs, while ensuring proper
alignment with speech inputs. Specifically, our
model is built on the attention-based encoder-
decoder (AED) structure, with the LLM serving
as a front-end feature extractor for the decoder.
The decoder is trained to predict words from the
LLM-derived features, where cross-attention
accounts for aligning these features with the
speech encodings from the encoder. We also
design an effective prompting strategy that uses
a hypothesized text sequence to extract linguis-
tic information beneficial for performing ASR.
Experimental results demonstrate that our pro-
posed model outperforms conventional AED-
based models across major ASR tasks.

1 Introduction

In the field of natural language processing (NLP),
the pre-training of language models (LMs) has be-
come a dominant paradigm. This process involves
training LMs on vast amounts of text data using
self-supervised objectives (Devlin et al., 2019; Rad-
ford et al., 2018), enabling the acquisition of versa-
tile linguistic representations that enhance the per-
formance across various downstream tasks (Wang
et al., 2018; Gao et al., 2021). In light of the re-
markable success in NLP, pre-trained LMs have
increasingly been adopted for speech processing
tasks. Particularly in end-to-end automatic speech

recognition (ASR), the linguistic knowledge from
pre-trained LMs has proven beneficial in generating
accurate textual outputs (Salazar et al., 2020; Fu-
tami et al., 2020; Yi et al., 2021; Zheng et al., 2021;
Deng et al., 2022; Higuchi et al., 2022), providing
semantic and morphosyntax information (Tenney
et al., 2019) — often challenging to capture in
end-to-end ASR training with limited transcription
data.

Recent focus has centered on the use of rapidly
advancing pre-trained large LMs (LLMs) (Radford
et al., 2019; Brown et al., 2020; Scao et al., 2022;
Wei et al., 2022b; Touvron et al., 2023a; Chowd-
hery et al., 2023; OpenAl, 2023), which have
demonstrated exceptional versatility in perform-
ing diverse text generation tasks with little or even
no task-specific training data. LLMs have shown
promising results in improving end-to-end ASR
performance when used in traditional LM-based
decoding methods, such as shallow fusion (Hu
et al., 2023) and rescoring (Udagawa et al., 2022;
Chen et al., 2023b; Ma et al., 2023a,b; Yang et al.,
2023). To fully utilize the inherent capabilities
of LLMs, numerous studies have explored effec-
tive strategies for directly adapting them to pro-
cess speech inputs (Wang et al., 2023; Zhang et al.,
2023; Chen et al., 2023a; Wu et al., 2023b; Ruben-
stein et al., 2023; Deshmukh et al., 2023; Nach-
mani et al., 2024; Yu et al., 2024; Fathullah et al.,
2024). Nonetheless, this adaptation often requires
fine-tuning the LL.Ms, which can be computation-
ally expensive and typically requires an additional
mechanism to condense speech inputs into a more
manageable length. A more straightforward ap-
proach is to prompt LLMs to correct grammatical
errors (Wu et al., 2023a; Fang et al., 2023) in ASR
hypotheses, but the absence of speech information
can lead to hallucinations or overcorrections, gen-
erating words not present in the speech input.

In this work, we present a novel end-to-end ASR
model that efficiently utilizes an LLM to achieve



accurate text generation. The proposed model
is based on the attention-based encoder-decoder
(AED) architecture, constructed using the joint
connectionist temporal classification (CTC) and
attention framework (Watanabe et al., 2017). The
core component of our model is the LLM-guided
decoder, which augments the original decoder by
employing a fixed-parameter LLM to serve as a
front-end feature extractor. This integration allows
the decoder to directly leverage the powerful text
generation capabilities of the LLM. Additionally,
the cross-attention mechanism facilitates the align-
ment of the LLM-derived features with the speech
information embedded by the encoder. To optimize
the extraction of linguistic features beneficial for
the decoder, we also design an effective prompting
strategy for the LLM, using a hypothesized text
sequence generated through CTC decoding.

2 Background

This section outlines the key model formulations es-
sential for understanding the proposed integration
of LLMs into end-to-end ASR. First, we discuss
an instruction-tuned LL.M, emphasizing its prompt-
based controllability. Subsequently, we describe an
end-to-end ASR model based on the AED architec-
ture and its combination with CTC.

2.1 Instruction-Tuned LLM

The recent LLMs possess the capability to be
“prompted” to execute specific tasks. This involves
providing instructions or contexts that influence
the subsequent output generated by the model, al-
lowing users to flexibly control the model’s be-
havior depending on the need. Additionally, ad-
vancements in instruction fine-tuning have further
enhanced the LLMs’ potential for performing zero-
shot task transfer, which helps to produce more
precise responses without requiring task-specific
retraining or fine-tuning (Wei et al., 2022a; Ouyang
et al., 2022; Chung et al., 2024).

We focus on Llama2-Chat, an instruction-tuned
version of Llama2 (Touvron et al., 2023b), as a
pre-trained LLLM used in this work. We hereafter
refer to this chat model as “Llama2” for brevity.
Llama2, consisting of deep Transformer decoder-
based layers (Vaswani et al., 2017; Radford et al.,
2018), outputs a D'"™-dimensional hidden vector
e, at a token position n as

e, = Llama2( W™ | W'  W.,), (1)
—~— M~ =~

Instruction User Input Response

where Wi"s ¢ VN™ is an N'™-length instruc-
tion sequence that specifies the details of a task;
Wwus" ¢ PN* is an N''-length user input se-
quence that serves as the given input for the task;
W = (w, € VIn = 1,---,N) is an N-length
response sequence generated by the LLM; and V
is the vocabulary of Llama2. The previous tokens
are represented as W.,, = (wo, - -+ , wp—1), where
wo = <s>is a start-of-sentence symbol. Typically,
the prefix, combining T/ and WU, is referred to
as a prompt, which guides the model to generate
responses W in a specific manner. See the Llama2
input in Fig. 1 for example input sequences.

Llama2 computes the likelihood of a target se-
quence W as

N+1

p(W|WinS,Wusr) — Hp(wn|W<mWins’Wusr)’

n=1
2
where wy 41 = </s> is an end-of-sentence sym-
bol. The probability of generating w,, in Eq. (2) is
computed using the output e,, from Eq. (1) as

(W | Wy, WS TWUST) = o(Linpim_y | (en)),

3
where Linpim_, | (+) projects a D'"™_dimensional
feature vector to a logit, and o(-) represents the
softmax function.

2.2 Joint CTC/Attention End-to-End ASR

Let O € RT*F denote a T-length input speech se-
quence with F'-dimensional acoustic features and
W € VN represent the corresponding target se-
quence'. End-to-end ASR aims to directly map
O to W by modeling the posterior distribution of
p(W|O) using a single deep neural network.

AED (Chorowski et al., 2015; Chan et al., 2016)
formulates end-to-end ASR using a probabilistic
chain rule as

N+1
PP W10) & ] p(walWen,0). (4
n=1
The token emission probability in Eq. (4) is com-
puted as

H = (hy,--- ,hy/) = Encoder(O), Q)
p(wp|Wep, O) = Decoder(We,,, H), (6)
where Encoder(+) first down-samples O (i.e., T" =

T'/4) and then converts it into a sequence of D3'-
dimensional hidden vectors H. Decoder(-) repre-

"Throughout this work, we consistently use the common
vocabulary V of Llama?2 for tokenizing text sequences.
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Figure 1: Overview of proposed end-to-end ASR model guided by instruction-tuned LLM, i.e., Llama2(-Chat). We
construct a joint CTC/attention-based model, employing Llama?2 as a front-end feature extractor for the decoder
network. During inference, given a hypothesis W generated via CTC decoding, Llama2 is tasked to perform
grammatical error correction through precise prompting. The decoder network then produces an output sequence
W, using text embeddings derived from Llama2 and aligning them with speech information via cross-attention.

sents autoregressive decoder layers, followed by a
linear layer and the softmax function, which map
to the output vocabulary, V U {</s>}. Here, the
decoder is equipped with the cross-attention mech-
anism for aligning each token in W, to the en-
coder output H. The AED model is optimized by
minimizing the negative log-likelihood of Eq. (4),
Eaed LA log paed (W‘O)

CTC (Graves and Jaitly, 2014) formulates end-
to-end ASR by evaluating all possible alignments
between O and W. To align the sequences at the
frame level, W is augmented by allowing repeated
occurrences of the same token and inserting a blank
symbol <b>. Let A = (ax € V U {<b>}|t =
1,---,T") be an alignment sequence, and CTC
models the posterior distribution of p(W]O) as

.
prewio)2 Y [[e@lo),

AeB-L(W) t=1

where B : A — W is a collapsing function that
removes repeated tokens and blank symbols in A,
and B~ (W) represents a set of all possible align-
ments compatible with W. Using the encoder out-
put A from Eq. (5), the token emission probability
in Eq. (7) is computed as

p(a:|0) = CTC(hy), (8)

where CTC(-) represents a linear layer that maps to
the output vocabulary of CTC, V U {@}. The CTC
model is optimized by minimizing the negative log-
likelihood of Eq. (7), L€ £ — log p<t¢(W]0).

AED and CTC can be effectively combined to
enhance robustness during training and inference
processes of end-to-end ASR (Kim et al., 2017;
Watanabe et al., 2017). The objective function of

the joint model is defined as a linear interpolation
of £t and £39 as

Ectc—aed — )\ﬁctc + (1 . )\)ﬁaed, 9)

where A (0 < A < 1) is a tunable weight. Joint de-
coding is performed using a one-pass beam search,
with CTC serving as a secondary score and the au-
toregressive decoder in AED primarily handles hy-
pothesis expansion and end detection. The score of
a hypothesis W is calculated using Eqgs. (4) and (7)
as £ log p¢(W]0)+(1—¢) log p?*4(W|0), where
& (0 <€ <1)is atunable weight to define the im-
portance of each score. See Hori et al. (2017) for a
detailed decoding algorithm.

3 End-to-End Speech Recognition Guided
by Instruction-Tuned LLM

Overview Figure 1 illustrates the proposed end-
to-end ASR framework, which is specifically de-
signed to leverage the text generation capabilities
of an LLM, while ensuring proper alignment with
speech information. This is achieved through the in-
tegration of an LLM-guided decoder into the joint
CTC/attention framework (described in Sec. 2.2),
where the LLM serves as a front-end feature extrac-
tor for the decoder, and the cross-attention mech-
anism within the decoder aligns the LLM-derived



features with the speech information embedded
by the encoder. The LLM-guided decoder allows
for accurate text generation by effectively incor-
porating the LLM knowledge, where the align-
ment with the speech information prevents hallu-
cinations (e.g., the generation of unspoken words),
which can be associated with standalone LLM out-
puts. To optimally derive linguistic features that
facilitate the text generation process in the decoder,
we capitalize on the LLM’s potential as a zero-
shot grammatical error correction model (Wu et al.,
2023a; Fang et al., 2023; Yang et al., 2023), de-
signing an effective prompting strategy that uses a
hypothesized output sequence obtained by CTC.

The following subsections delve into the details
of the proposed model, presenting a precise for-
mulation that substantiates the effectiveness of our
model design, which is followed by descriptions of
training and inference strategies.

3.1 Formulation

The proposed model formulates end-to-end ASR
by factorizing the posterior distribution p(W|O) as

p(W0)= > p(W[W,0)p(W|0), (10)
WeH(W)

where W € VM is an M -length hypothesized out-
put sequence, and H (W) represents a set of all
possible output sequences compatible with W. In
other words, (W) comprises sequences that are
prone to be misrecognized from input speech O,
with T derived from p(W|0). In Eq. (10), we
further factorize p(W|W, O) by applying a proba-
bilistic chain rule as

N+1

H p(wn’W7 W<TL7 O)

n=1

p(WW,0) = (11
Eq. (11) follows the same formulation as AED in
Eq. (4), but it additionally conditions the token
emission probability on the hypothesized output w.
Intuitively, Eq. (11) is interpreted as a model that
estimates each current token based on previously
predicted tokens W, while also correcting errors
present in the hypothesized output sequence W.
The token emission probability in Eq. (11) is
modeled similarly to the AED architecture, with a
modification to the decoder (i.e., Eq. (6)) as

e, = Llama2(W™"s, W, W_,,), (12)
p(wn!W, Wen, O)
= LLMGuidedDecoder(ey, - - - ,e,, H), (13)

where H is the encoder output, as derived from
Eq. (5). In Eq. (12), the Llama2 output e,, is ob-
tained as in Eq. (1), where a hypothesized output
sequence is used as the user input, i.e., W"S" = W,
accompanied by an instruction T¥™"* that directs the
LLM toward the grammatical error correction task
(see Appendix B.4 for the actual prompt). Such
a prompting strategy is expected to facilitate the
modeling of Eq. (11). Eq. (13) represents the LLM-
guided decoder, the key component of the proposed
model, which is identical to the standard decoder in
Eq. (6) but takes the Llama2 outputs (eq, - - ,e;,)
as input to align them with the encoder output H.

3.2 Inference

The most probable output sequence W is estimated
by solving Eq. (10) as

= argmax Z

WeH(W)
~ argmax p(W|W’, O),
W

p(W|W,0)p(W|0), (14)

(15)

where W' = argmax p(W|O).
w

(16)

To handle the intractable summation over W in
Eq. (14), we apply the Viterbi approximation with
respect to p(W|0O), which results in Egs. (15)
and (16). The search process in Eq. (16) is imple-
mented by the best path decoding of CTC (Graves
et al., 2006) using Eq. (8), which first finds the
most probable alignment A by concatenating the
most active tokens at each time frame, a; —
argmax,, p(a¢|O), and then obtains W' by ap-
plying the collapsing function to A as W' =
B(fl) Eq. (15) is solved by performing the joint
CTCl/attention decoding (Hori et al., 2017; Watan-
abe et al., 2017) using scores derived from Egs. (7)
and (11), which results in the final output sequence
W. See Appendix A for the pseudocode of the
proposed inference algorithm.

3.3 Training

The training process for the proposed model un-
folds in two steps:

1. Train a joint CTC/attention model using
Lete2ed ag described in Eq. (9); and

2. Using the Encoder(:) and CTC(-) trained in
Step 1 and the pre-trained Llama2(-), train
LLMGuidedDecoder(+) in Eq. (13). Here, the
LLM-guided decoder is only trained while the
parameters of the other models remain fixed.



We freeze all the pre-trained networks in Step 2 not
only to enhance training efficiency but also to en-
able the LLM-guided decoder to focus exclusively
on aligning LLM-derived features with the speech
information from the encoder.

In Step 2, the objective function of the proposed
model is defined by the negative log-likelihood of
Eq. (10) expanded with Eq. (11),

N+1
—log > ][ pwaW,Wen,0)p(W[0O) (17
WeH (W) n=1
N+1
~ —logEy ,0v10) |:H p(wn|W, Wen, O)

n=1

18)

N+1
< _EWwp(VV\O) |:10g H p(wn|W, Wen, O) . (19)

n=1

A rlim-dec

The intractable marginalization over W in Eq. (17)
is approximated by computing the expectation with
respect to the sampling distribution based on the
probability distribution of p(1¥|O), which results
in Eq. (18). By applying Jensen’s inequality, the
upper bound of Eq. (18) is derived to define the
model’s objective function £'™9ec in Eq. (19).
Practically, £''™-4¢¢ is computed in a manner sim-
ilar to the AED loss £2¢9, calculating the cross-
entropy losses at each token prediction. The sam-
pling process of W in Eq. (19) is implemented
by running the encoder in “training mode” (with
dropout enabled) and performing the best path de-
coding of CTC, which is a similar strategy utilized
in uncertainty estimation (Gal and Ghahramani,
2016; Vyas et al., 2019).

4 Additional Related Work

LLMs with Speech Input  Prior studies have ex-
plored the incorporation of speech information in
LLMs (Wang et al., 2023; Deshmukh et al., 2023),
primarily focusing on enabling LLMs to accept
speech input. In Wang et al. (2023), a single, shared
decoder-only LLM has shown promising potential
for being trained on both speech and text tasks.
Similarly, other studies have successfully adapted
pre-trained LLMs for speech tasks by designing
an effective module for converting speech into the
input space of LLMs. This process encodes speech
into discrete tokens, typically derived from pre-
trained acoustic models (Zhang et al., 2023; Ruben-
stein et al., 2023). Alternatively, pre-trained ASR
models are employed to compress speech into a
more manageable length (Chen et al., 2023a; Nach-
mani et al., 2024; Wu et al., 2023b; Yu et al., 2024;

Fathullah et al., 2024). Our approach to leveraging
LLMs for speech tasks is related to these studies,
but differs conceptually in that we do not seek to
directly adapt LLMs to speech. Instead, the pro-
posed model is designed to extract linguistic infor-
mation from LLMs that contributes to improving
ASR performance, without requiring fine-tuning or
modifications to pre-trained LLMs.

LM Integration in End-to-End ASR It has
been a widely adopted practice to use separate
LMs to improve the performance of end-to-end
ASR systems. The traditional approach includes
rescoring (Mikolov et al., 2010; Chan et al., 2016),
which applies an LM score to the top [V-best hy-
potheses generated by an ASR model. More ad-
vanced methods include incorporating LMs into
beam search or directly into the model architec-
tures, through techniques like shallow fusion (Han-
nun et al., 2014; Gulcehre et al., 2015), deep fu-
sion (Gulcehre et al., 2015), and cold fusion (Sri-
ram et al., 2018; Shan et al., 2019). These conven-
tional approaches mainly focus on enhancing ASR
models with LM information at the output proba-
bility or feature level. Our approach, in contrast,
integrates an LLM into the input of the decoder to
guide the text generation process. Nonetheless, we
show that the proposed model remains compatible
with conventional LM integration techniques.

Two-Pass End-to-End ASR In ASR, it is com-
mon to employ a second-pass model to refine out-
puts produced by a first-pass model (Sundermeyer
et al., 2015; Chan et al., 2016; Kannan et al., 2018;
Salazar et al., 2020). Recent advances in deep
learning have enabled an ASR model to train both
the first-pass and second-pass models in an end-
to-end fashion, introducing an additional structure
that refines a first-pass sequence (Xia et al., 2017;
Wang et al., 2022; Higuchi et al., 2023b). The two-
pass end-to-end ASR framework (Sainath et al.,
2019) involves training a transducer-based model
in conjunction with an attention decoder, which is
specifically optimized to rescore hypotheses gen-
erated during transducer decoding. Additionally,
acoustic embeddings from the encoder can help
facilitate the training of the rescoring decoder (Hu
et al., 2020). The proposed formulation in Eq. (10)
shares similarities with these two-pass approaches.
However, it differs in that the decoder does not
specifically deliberate on hypotheses to generate
an output sequence. Instead, it leverages a hypoth-
esis to derive linguistic information from the LLM,



while learning to align this knowledge with speech
information from the encoder output.

5 Experimental Setup

We used the ESPnet toolkit (Watanabe et al., 2018)
for conducting our experiments, and all the codes
and recipes will be publicly available for repro-
ducibility.

Data We examined the effectiveness of our pro-
posed approach on English ASR tasks, using var-
ious corpora spanning different amounts of data
and domains, including LibriSpeech (LS) (Panay-
otov et al., 2015), TED-LIUM?2 (TED2) (Rousseau
et al., 2014), and CoVoST2 (CV2) (Wang et al.,
2021). In addition to the full 960-hour training set
in LS (LS-960), we used the 100-hour set (LS-100)
to explore a lower-resource scenario and conduct
further investigations and analyses. We specifically
used CV2 for training models with punctuation and
casing preserved, as this can be crucial for the LLM
to accurately capture linguistic information. Full
dataset descriptions and pre-processing details are
in Appendix B.1.

Modeling We developed our baseline models
within the joint CTC/attention framework (as de-
tailed in Sec. 2.2), which used the Conformer-based
architecture (Gulati et al., 2020; Guo et al., 2021).
This baseline model also corresponds to the joint
CTCl/attention model trained in Step 1 in Sec. 3.3.
The proposed model was constructed by substi-
tuting the decoder of the baseline model with our
LLM-guided decoder (as described in Step 2 in
Sec. 3.3). For the LLM, we used Llama2-Chat with
7B parameters (Touvron et al., 2023b), which was
accessed through the HuggingFace library (Wolf
et al., 2020). Full descriptions of model sizes, net-
work architectures, and hyperparameters are in Ap-
pendix B.2.

Training and Decoding We primarily followed
training/decoding configurations provided by the
ESPnet recipes for each dataset. We set A (in
Eq. (9)) to 0.3 during baseline model training. For
both the baseline and proposed models, we con-
sistently set the score weight £ to 0.3 during the
joint CTC/attention decoding, unless specified oth-
erwise. The beam size B was set to either 1 or 20.
Notably, with B = 1, the influence of the LLM
is more directly reflected in the proposed models.
Descriptions of detailed configurations are in Ap-
pendix B.3.

Prompting We heuristically designed a prompt
to guide Llama?2 in performing grammatical error
correction, setting W (in Eq. (12)) to “You will
be provided with a statement in quotes. Correct the
wrong words and provide your revised version.”.
The specific format used and the process of deter-
mining the prompt are described in Appendix B.4.

Evaluation We measured ASR performance us-
ing the word error rate (WER). We also used the
bootstrap method (Davison and Hinkley, 1997) to
measure the statistical significance of the perfor-
mance gains, which computes 95% confidence in-
tervals for the difference in per-sample WER on a
test set between the baseline and proposed models.
Detailed configurations for computing the confi-
dence intervals are provided in Appendix C.

6 Results and Analyses
6.1 Main Results

Table 1 presents a comparison of the baseline and
proposed models across all the tasks, evaluating
their performance based on the WER.> The A
results represent the CTC decoding performance,
with £ set to 1.0 to rely solely on the CTC score.
Setting & to 0.3 for the joint decoding resulted in
overall improvements across the tasks (A@ vs. A1).
The proposed model, featuring the LLM-guided
decoder, achieved the best overall performance
among the results with B = 1 (A0, A1 vs. A2).
This indicates the successful incorporation of the
LLM capabilities into the text generation process,
while only requiring the retraining of minimal pa-
rameters (e.g., 18.8M). In the proposed inference
algorithm, as described in Sec. 3.2, the CTC decod-
ing results (A@) served as inputs to Llama2 (i.e., W
in Eq. (12)). Thus, the gains from A@ suggest that
the proposed model effectively used the LLM to
recover errors in the hypothesized outputs, as mod-
eled in Eq. (11). We analyze the significance of
the LLM in Sec. 6.2. In CV2, the proposed model
demonstrated a notably higher level of improve-
ment compared to those observed in the other tasks,
particularly considering the gains from the CTC
decoding results in A@. We attribute this to the use
of unnormalized written-style text, which enabled
the LLM to extract precise linguistic information.

Note that our results from the joint CTC/attention mod-
els do not fully replicate the recent results reported in ESP-
net (Peng et al., 2023). We attribute this discrepancy to the
use of the Llama2 vocabulary in Eq. (6), which may not be
optimal for end-to-end ASR training (Higuchi et al., 2023a).



LibriSpeech-100h LibriSpeech-960h TED-LIUM2 CoVoST2

Dev WER Test WER Dev WER Test WER Dev  Test Dev  Test
ID Model B ¢ clean other clean other clean other clean other WER WER WER WER
A0 Joint CTC/Attention 1 1.0 93 216 97 222 3.0 7.3 32 7.3 10.0 9.3 237 263
A1 Joint CTC/Attention 1 03 99 206 107 21.1 32 6.5 34 6.7 11.6 8.8 189 21.8
A2 +LLM-Guided Decoder 1 03 67 175 73 179 2.6 6.9 2.8 7.0 9.5 7.8 15.6 18.1
A3 Joint CTC/Attention 20 03 72 175 75 18.0 23 5.7 2.6 5.7 9.4 7.8 16.2 184
A4 + LLM-Guided Decoder 20 03 62 165 6.7 169 2.6 6.8 2.8 7.0 7.6 7.2 150 169

Table 1: WERs [%] (|) of our models with LLM-guided decoder compared to joint CTC/attention baselines. B and
¢ denote the beam size and score weight, respectively, the parameters used during the joint CTC/attention decoding.

Dev WER
B=1 B =20
ID Model clean other clean other
-- Joint CTC/Attn. (A1, A3) 99 206 72 17.5
-- + LLM-Guided Dec. (A2, A4) 6.7 175 6.2 16.5
B1 w/oLLM 9.3 207 7.1 17.8
B2  w/o Prompt 9.3 19.7 6.5 16.7
B3 w/ Mismatched Task Inst. 6.8 17.8 6.5 16.8

Table 2: Ablation studies on LS-100, validating effec-
tiveness of LLM and prompt in our proposed model.

When we set B to 20, the proposed model con-
sistently outperformed the baseline across all tasks
except for LS-960 (A3 vs. A4). Beam search de-
coding did not yield any performance gains in LS-
960, potentially because Llama2 is more confident
in its predictions for common and generic words
within its vocabulary. Notably, we observed that
our model generally struggles to recognize infre-
quent words (e.g., personal names), which are con-
sidered long-tail words rarely encountered during
the pre-training process of Llama2. We further
discuss these observations in Sec. 6.3.

For most of the tasks, we confirmed the signifi-
cance of our performance gains by calculating the
confidence intervals. The proposed model exhib-
ited marginal improvements on LS-960, suggesting
that the dataset already contained adequate text
data for the model to accurately model the text gen-
eration process, thus reducing the reliance on the
LLM. See Appendix C for detailed results.

6.2 Ablation Study

We conducted several ablation studies for the pro-
posed model to assess the effectiveness of both the
use of the LLM and the prompt. Table 2 presents
the results of these ablation studies, evaluated by
the WER on the LS-100 task.

Importance of LLM We ablated the LLM from
the proposed model (B1), where, in Step 2 of the
training process in Sec. 3.3, we trained the decoder
from scratch but without using Llama?2 as its front
end. Compared to the baseline results (A1, A3),
this modified training resulted in improvements in
the “clean” set. However, there was a slight de-
cline in performance on the “other” set, indicating
a decrease in generalizability. With the integration
of the LLM, the proposed model achieved signif-
icantly better results with superior generalization
ability (A2, A4 vs. B1).

Influence of Prompt First, we trained the LLM-
guided decoder by removing the prompt from the
Llama2 input (B2), i.e., setting W"* = & and
W = @ in Eq. (12). While this modification re-
sulted in modest gains compared to the baseline
model (A1, A3 vs. B2), it adversely affected the
performance of the proposed model (A2, A4 vs.
B2). Next, we trained the LLM-guided decoder
with a task instruction that diverged from grammat-
ical error correction (B3), adapting W™ to specify
a translation task. See Appendix B.4 for the ac-
tual prompt used. The modified prompt yielded
improvements over the baseline model (A1, A3 vs.
B3), but the proposed model with the proper prompt
demonstrated superior performance (A2, A4 vs. B2).
The findings from B2 and B3 suggest that designing
an appropriate prompt is crucial in our model to
effectively leverage the LLM’s capabilities, thereby
optimizing its ability to extract linguistic informa-
tion aligned with the target task.

6.3 Error Analysis with Decoding Example

Table 3 presents actual decoding results obtained
from the baseline and proposed models on the LS
test-other set. Comparing the results from the first
utterance, it is observed that the CTC decoding (A)
generated non-words that can sound similar to the
reference words. By performing the joint decod-



Joint CTC/Attn. (AQ)
Joint CTC/Attn. (A1)
+ LLM-Guided Dec. (A2)

Reference

... by the passion of sympathy it had crd
... by the passion of sympathy it had crumbled her into as many creases as an old glowed distended bluff
... by the passion of sympathy it had crumpled her into as many creases as an old glazed distended glove

... by the passion of sympathy it had crumpled her into as many creases as an old glazed distended glove

her into as many creases as an all glazed distended glo

Joint CTC/Attn. (A1)
+ LLM-Guided Dec. (A2)

Reference

ransom was pleased with the vision of that trinity
frances was pleased with the vision of that remedy it must be repeated that he was very provincial

ransom was pleased with the vision of that remedy it must be repeated that he was very provincial

it must be repeated that he was very provincible

Table 3: Decoded samples (with speaker ID of 6128-63244) in LS test-other set. Red indicates incorrect words.

Dev WER Test WER
Integration Method clean other clean other
Joint CTC/Atten. (A3) 72 175 75 18.0
+ Shallow Fusion 64 17.1 70 175
+ Rescoring 61 156 64 16.1
+ Zero-Shot GEC 13.8 228 134 233

+ LLM-Guided Dec. (A4) 6.2 165 6.7 16.9

Table 4: WERSs [%] ({) for joint CTC/attention model
using various LLM integration methods on LS-100.

Test WER
Model LS-100 LS-960 TED2 CV2
Joint CTC/Atten. (A3) 75/18.0 26/57 78 18.4
+ Rescoring 64/16.1 23/51 73 15.8
+ LLM-Guided Dec. (A4) 6.7/169 28/70 72 16.9
+ Rescoring 58/151 24/6.0 6.8 14.5

Table 5: WERs [%] ({) for proposed model across all
ASR tasks, enhanced with LLM-based rescoring.

ing (A1), the baseline model effectively considered
dependencies among subword outputs, resulting
in the formation of actual words; however, some
words remained contextually inappropriate. In con-
trast, the proposed model (A2), guided by the LLM,
succeeded in generating accurate and semantically
appropriate words. Analyzing the results from the
second utterance, the proposed model predicted
words more accurately than the baseline (A1 vs.
A2), consistent with the observations from the first
example. However, it is noteworthy that the model
faced difficulties in properly recognizing the per-
sonal name “ransom.” This tendency was similarly
observed in other tasks as well.

6.4 Comparison with Conventional Language
Model Integration Methods

Conventional approaches to integrating a sepa-
rate LM during the inference of end-to-end ASR
have also shown promising results when using
LLMs (Udagawa et al., 2022; Hu et al., 2023). Ta-
ble 4 presents WERs for the LS-100 task, reporting
the performance of the baseline joint CTC/attention

model when decoded using an LLM (i.e., Llama?2).
Specifically, we compare results obtained by per-
forming shallow fusion, rescoring, and zero-shot
grammatical error correction (GEC). Detailed de-
scriptions for each method are in Appendix D.
Looking at the results, both shallow fusion and
rescoring resulted in notable performance improve-
ments, with rescoring yielding larger gains than
the proposed approach. Zero-shot GEC appeared
to be challenging, as the LLM tended to produce
hallucinations or overcorrections. These issues led
to generating words not present in the speech in-
put, indicating a need for a dedicated mechanism to
align the LLM outputs with the speech information.

As the above-mentioned methods are specifically
designed for use during inference, they can com-
plement the proposed model, which integrates the
LLM directly into the decoder network. To validate
this, we focus on combining our model with the
most promising rescoring method. Table 5 shows
the results on all the tasks, demonstrating that the
LLM-based rescoring further enhanced the perfor-
mance of our proposed model.

7 Conclusion

We proposed to use an instruction-tuned LLM for
guiding the text generation process in end-to-end
ASR. Employing the LLM as a front-end module
in the decoder, our model leveraged the LLM’s
powerful text generation capabilities, while cross-
attention facilitated the alignment of LLM-derived
features with the speech inputs. Additionally, we
designed a prompting strategy to extract linguis-
tic features beneficial for the decoder, utilizing a
hypothesized output sequence generated via CTC
decoding. Experimental results confirmed the effec-
tiveness of the LLM, with the proposed model out-
performing the joint CTC/attention baseline across
major ASR tasks. Further investigations revealed
the limitation of our model in recognizing domain-
specific words and highlighted that our approach
complements traditional LM integration methods.



Limitations

High Computational Cost A key limitation of
the proposed model is its high computational re-
quirements. This is due to the intensive forward
computations in the LLLM, which has large model
size and carries out autoregressive sequence genera-
tion with a complexity of O(N'" + NU" + N). Al-
though our approach reduces computational costs
by eliminating the need for backward propagation
through the LLM, it still requires a GPU with a
large memory size (e.g., a single A100 with 40GB)
for both the training and decoding phases. See Ap-
pendix E for a comparison of inference speeds. Fu-
ture research should explore the application of com-
pressed or lightweight LLMs, which are currently
active areas of study in the field of NLP (Hsieh
et al., 2023; Zhu et al., 2023; Ma et al., 2024).

Suboptimal Prompt We also recognize that the
prompt used in our model is not ideal, as it was de-
signed heuristically based on our empirical observa-
tions (refer to Appendix B.4) within the constraints
of limited computing budgets. To further improve
the proposed model, the prompt can be extended to
enable few-shot in-context learning (Brown et al.,
2020) or zero-shot reasoning (Kojima et al., 2022)
for grammatical error correction, which has proven
effective in previous studies (Ma et al., 2023b; Yang
et al., 2023). This approach could bias the LLM
more closely to the target domain, potentially ad-
dressing the issue of recognizing domain-specific
words (as discussed in Secs. 6.1 and 6.3). Alterna-
tively, if computational resources allow for more
intensive backward computations, the prompt can
be optimized jointly with the decoder by using a
soft prompt (Lester et al., 2021; Song et al., 2023).

Non-Streaming Finally, we note that the pro-
posed model is not suited for online streaming
scenarios, as it requires a full-sentence hypothe-
sis for the input to the LLM (i.e., W in Eq. (12)).
It is not particularly problematic for utterance-level
ASR tasks. However, the proposed models face
challenges in real-time applications like spoken di-
alogue systems that require immediate interaction.
A viable solution to overcoming this limitation is to
implement a two-pass streaming system (Sainath
et al., 2019). Here, the encoder with CTC is built
as a streaming model to produce real-time outputs,
while the LLM-guided decoder operates after the
utterance ends to refine the initial results.
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Algorithm 1 Inference algorithm
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2:
3
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

14:
15:

16:
17:
18:
19:

Input:
(0] > Input speech
I3 > Score weight for joint decoding

B > Beam size

function BESTPATHDECODING(H )
// Obtain the most probable alignment using Eq. (8)
A« (at = argmax,, pla|O)|t=1,-- ,T)
W'« B(A)
return W’

function JOINTCTCATTDECODING(H, W', ¢, B)
// Initialize a hypothesis set
Q)
// Define the score function, where the CTC score is
/I computed using Eqs. (7) and (8) and the attention
/I score is computed using Egs. (11) to (13)
SCORE(") = & log p™*(-/0)+(1—&) log p(-[IW", O)
Q < BEAMSEARCH(B, SCORE(+))
W < argmax(2)
return W

H <+ Encoder(O)

W' < BESTPATHDECODING(H)

W < JOINTCTCATTDECODING(H, W', £, B)
return W
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Pseudocode for Proposed Inference
Algorithm

Algorithm 1 presents the pseudocode for the pro-
posed inference algorithm, as described in Sec. 3.2.
The search process of Eq. (16) is implemented by
BESTPATHDECODING(-) (line 17) and Eq. (14)

is

implemented by JOINTCTCATTDECODING(-)

(line 18). The joint decoding process is the same

as

that in the baseline CTC/attention model, except
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Data Split #hours #utterances
train-clean-100 100 28k
Trainin train-clean-360 360 104k
& train-other-500 500 149k
train-960 960 281k
Development dev-clean 5.4 2703
CVEIOPMENt  jev-other 5.1 2864
Evaluation test-clean 54 2620
auatio test-other 53 2939

Table 6: Dataset description of LibriSpeech.

Data Split #hours #utterances
Training Train 207 93k
Development Dev 1.6 507
Evaluation Test 2.6 1155

Table 7: Dataset description of TED-LIUM?2

that the score computation (line 12) is based on the
LLM-guided decoder (Eq. (4) vs. Eq. (11)).

B Reproducibility

This section provides additional details on the ex-
perimental settings for reproducibility.

B.1 Data

B.1.1 Dataset Descriptions

LibriSpeech (LS) LS (Panayotov et al., 2015)
consists of utterances derived from read English
audiobooks. Table 6 lists the statistics for data
splits included in LS. Each data split is categorized
as “clean” or “other” based on the audio quality.
The official development (dev-clean and dev-other)
and evaluation (test-clean and test-other) sets were
used for tuning hyper-parameters and evaluating
performance, respectively. Data preparation was
done using the ESPnet2 recipes”.

TED-LIUM2 (TED2) TED?2 (Rousseau et al.,
2014) contains utterances from English TED Talks.
Table 7 lists the statistics for data splits included
in TED2. The official development (Dev) and
evaluation (7est) sets were used for tuning hyper-
parameters and evaluating performance, respec-
tively. Data preparation was done using the ES-
Pnet2 recipe”.
3h’ctps://gi’d’1ub.com/espnet/espnet/tree/mas’cer/
egs2/{librispeech, librispeech_1003}/asr1

4https ://github.com/espnet/espnet/tree/master/
egs2/tedlium2/asr1
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Data Split #hours #utterances
Training Train 407 272k
Development Dev 22 13k
Evaluation Test 25 16k

Table 8: Dataset description of CoVoST2 (En—X).

CoVoST2 (CV2) CV2 (Wang et al., 2021) is a
corpus designed for speech translation tasks, de-
rived from the Common Voice project (Ardila et al.,
2020). We used CV2 as an English ASR task by
exclusively extracting source speech-text data from
the “En—X” task. Table 8 lists the statistics for
data splits of CV2 used in our experiments. The of-
ficial development (Dev) and evaluation (7est) sets
were used for tuning hyper-parameters and evalu-
ating performance, respectively. Data preparation
was done using the ESPnet2 recipe”.

B.1.2 Pre-Processing

The transcriptions provided by the above corpora,
except for CV2, are normalized by default, where
punctuation was removed, and casing was standard-
1zed to lowercase. For CV2, we used unnormalized
transcriptions during training, with punctuation and
casing preserved. During the evaluation on CV2,
we removed punctuation from both the reference
and hypothesis before computing the WER. All the
text tokenization was done using the vocabulary of
Llama2, where the vocabulary size |V| was 32k.

B.2 Modeling Details

The encoder, Encoder(-) in Eq. (5), consisted of
two convolutional neural network (CNN) layers
followed by a stack of 12 Conformer encoder
blocks (Gulati et al., 2020). Each CNN layer had
256 channels, a kernel size of 3 x 3, and a stride
size of 2, which resulted in down-sampling the in-
put length by a factor of 4 (i.e., T/ = T'/4). In
each encoder block, the number of head Dhed,
the dimension of a self-attention layer D2, the
dimension of a feed-forward network Df, and the
kernel size were set to (4, 256, 1024, 31) for LS-
100, TED2, and CV2; and (8, 512, 2048, 31) for
LS-960. The decoder, Decoder(-) in Eq. (6), was
a stack of 6 Transformer decoder blocks (Vaswani
et al., 2017), where (D"4, Das" . D) were set to
(4, 256, 2048) for LS-100, TED2, and CV2; and

5https: //github.com/espnet/espnet/tree/master/
egs2/covost2/asri
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Task Network #params
Encoder + CTC 29.1M
Decoder 25.9M

LS-100/TED2/CV2 LLMGuidedDecoder 18.8M
Llama2 6.7B
Encoder + CTC 99.6M
Decoder 58.0M

L8-960 LLMGuidedDecoder ~ 43.7M
Llama2 6.7B

Table 9: Number of parameters in model components.

Hyperparameter Value
Hidden dropout rate 0.1
Attention dropout rate 0.1
Activation dropout rate 0.1

LR scheduling
Peak learning rate
Warmup steps

Noam (Vaswani et al., 2017)
best of {1.5,2.0} x 1073
best of {15k, 40k}

Adam betas (0.9, 0.999)
Adam epsilon 1078
Weight decay rate 1076

Table 10: Training hyperparameters.

(8, 512, 2048) for LS-960. The LLM-guided de-
coder, LLMGuidedDecoder(+) in Eq. (13), shared
the same architecture as Decoder(-), but the em-
bedding layer was replaced by a linear layer that
converts the Llama2 output e, € RP " o a
D?"-dimensional vector, without positional encod-
ing. The LLM used in the LLM-guided decoder,
Llama2(-) in Eq. (12), was Llama2(-Chat) (Tou-
vron et al., 2023b), which was downloaded from
the HuggingFace library®. The dimension of the
self-attention layer in Llama2 D"™ was 4096.

Table 9 lists the parameter counts for each model
component. The baseline model contained 55.0M
total and trainable parameters for LS-100, TED2,
and CV2, and 157.7M for LS-960. The proposed
model contained 6.7B total parameters for LS-100,
TED2, and CV2, and 6.8B for LLS-960. The train-
able parameters were 18.8M for LS-100, TED2,
and CV2, and 43.7M for LS-960.

B.3 Training and Decoding Configurations

All the models were implemented and trained
using ESPnet (Watanabe et al., 2018) and Py-
Torch (Paszke et al., 2019)8. The baseline mod-
els were trained up to 50 epochs (i.e., Step 1 in

6h’ctps ://huggingface.co/meta-1lama/
Llama-2-7b-chat-hf

"https://github.com/espnet/espnet

8https ://github.com/pytorch/pytorch
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Sec. 3.3), and subsequently, the proposed mod-
els with the LLM-guided decoder were trained up
to 50 epochs for L.S-100, and 25 epochs for the
other tasks (i.e., Step 2 in Sec. 3.3). We augmented
speech data using speed perturbation (Ko et al.,
2015) with a factor of 3 and SpecAugment (Park
et al., 2019, 2020). For the hyperparameters in
SpecAugment, we set the number of frequency and
time masks to 2 and 5, and the size of frequency
and time masks to 27 and 0.057". See Table 10 for
other training hyperparameters. After training, a
final model was obtained for evaluation by aver-
aging model parameters over ten checkpoints with
the best validation accuracy.

The baseline models were trained on four V100
(16GB) GPUs for 1 to 3 days, depending on the
task. Decoding was performed using a single V100
GPU. The proposed models were trained on a sin-
gle A100 (40GB) GPU for 1 to 6 days, depending
on the task. Decoding was performed using a single
A100 GPU.

B.4 Prompt Details

We followed the prompting format of Llama2 de-
scribed in Touvron et al. (2023b), which resulted
in the following prompt.

,

<s>[INST] <<SYS>>

You will be provided with a statement
in quotes. Correct the wrong words and
provide your revised version.

<</SYS>>

“${ASR_HYPOTHESIS}” [/INST]

Here, ${ASR_HYPOTHESIS?} corresponds to the hy-
pothesized output sequence W (= WUS") obtained
via CTC decoding. As specified in the task instruc-
tion, we enclosed the hypothesis in double quota-
tion marks. This has been found crucial for the
model to accurately identify the target sequence,
as certain sequences have been observed to cause
misinterpretations. For example, in CV2, a user
input sequence like “Do you know anything about
it?” led the LLM to produce a generic response.
We heuristically adjusted the prompt by using
Llama?2 exclusively to perform zero-shot grammat-
ical error correction on ASR hypotheses, as dis-
cussed in Sec. 6.4. Through qualitative observa-
tion, we selected a prompt that adhered accurately
to the specified task and minimized hallucinations,
such as unnecessary rephrasing and the insertion of
unspoken words, from the initial hypothesis. Ad-
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Confidence Intervals [AWER]

Experiments LS-100 LS-960 TED2 Cv2
A1 vs. A2 (2.21%,2.82%)  (—0.32%,0.11%)  (0.66%,1.51%) (3.44%,3.91%)
A3 vs. A4 (0.54%,0.90%) (—1.99%,—1.24%) (0.23%,0.84%) (0.94%,1.52%)

Table 11: Confidence intervals calculated for test WER differences between baseline and proposed models. The

experiment IDs correspond to those defined in Table 1.

ditionally, we aimed to keep the prompt concise to
reduce memory usage during training.

In Table 2, experiment B3 was conducted by
using the following prompt.

<s>[INST] <<SYS>>

You will be provided with a statement in
quotes, and your task is to translate it
into Japanese.

<</SYS>>

“${ASR_HYPOTHESIS}” [/INST]

\. J

C Confidence Intervals

We calculated the confidence intervals based on the
bootstrap method, using the tool provided by Ferrer
and Riera. Here, 95% confidence intervals were
calculated for the difference in per-sample WER
(AWER) on a test set between the baseline and
proposed models, setting the number of bootstrap
samples at 1000. Table 11 lists the confidence inter-
vals calculated on the results presented in Table 1.
If a confidence interval excludes the value 0.0, we
can reject the null hypothesis that the two models
have the same performance.

D Language Model Integration Methods

This section describes the LM integration tech-
niques used to obtain the results in Tables 4 and 5.

D.1 Shallow Fusion

Shallow fusion was implemented by incorporating
an LM score into the scoring process (i.e., line
12 in Algorithm 1) during the joint CTC/attention
decoding. The LM score was computed using the
Llama?2 probability in Eq. (2) as

log p'm(W) £ Jog p(W\Wi”s, whsn), (20)

where we specified W using the same prompt
used in the proposed model (see Appendix B.4).
Similarly, we used the CTC decoding results (A® in
Table 1) for W', During beam search, the score
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of an output sequence W was computed as
log p(W|0) = £log p™<(W10)
+ (1 - &) logp™(W0)
+ ylog p™ (W), (21)

where v represents the weight for the LM score,
and we tuned ~ from {0.1,0.3,0.5,0.7,1.0}.

D.2 Rescoring

Rescoring was implemented by using the LM score
to rerank the hypotheses, i.e., {2 in Algorithm 1,
obtained from the joint decoding. Specifically, the
top- K hypotheses were first extracted from §2 to
form €)', and then the most probable sequence W
was selected from Q' as

W = argmax (5 log p=*¢(W|0)
wesy
+ (1 —¢)log p**(W]0)
+w logp"“(W)>, (22)

where w denotes the weight for the LM score de-
rived from Eq. (20). Unlike shallow fusion, we
computed the LM score in Eq. (22) without the
prompt, setting both 'S and WY to @, as it
did not affect the performance. We tuned K from
{5,10,15} and w from {0.1,0.3,0.5,0.7,1.0},
where K = 10 and w = 0.5 consistently deliv-
ered reasonable results across all tasks.

D.3 Zero-Shot Grammatical Error Correction

Zero-shot grammatical error correction was con-
ducted by evaluating the outputs of the standalone
LLM, which were generated based on the Llama2
probability in Eq. (2). For W™, we specified the
same task instruction used in the proposed model
(see Appendix B.4). For W"" we used the results
from the joint CTC/attention model (A3 in Table 1).
During the generation process, we configured the
maximum output sequence length to 512. We also
performed the beam search decoding with a beam
size tuned from {5, 10, 20}, where we did not em-



Model B RTF

Joint CTC/Attention (A1) 1 0.147
+ LLM-Guided Decoder (A2) 1 0.222
Joint CTC/Attention (A3) 20 0.194

+ LLM-Guided Decoder (A4) 20 1.193

Table 12: RTF ({) of our model with LLM-guided de-
coder compared to joint CTC/attention baseline.

ploy any sampling strategies. To ensure Llama2
exclusively generates its corrected sequence, we
appended a double quotation mark (") immediately
after the prompt. This was based on observations
that the model frequently encloses its corrected
sequences within double quotation marks.

E Inference Speed Comparison

Table 12 compares the inference speeds of the base-
line and proposed models, using the real-time fac-
tor (RTF). RTF was measured on the LS test-other
set using a single A100 GPU with a batchsize of 1.
These results represent the average values obtained
from three separate runs.

17



	Introduction
	Background
	Instruction-Tuned LLM
	Joint CTC/Attention End-to-End ASR

	End-to-End Speech Recognition Guided by Instruction-Tuned LLM
	Formulation
	Inference
	Training

	Additional Related Work
	Experimental Setup
	Results and Analyses
	Main Results
	Ablation Study
	Error Analysis with Decoding Example
	Comparison with Conventional Language Model Integration Methods

	Conclusion
	Pseudocode for Proposed Inference Algorithm
	Reproducibility
	Data
	Dataset Descriptions
	Pre-Processing

	Modeling Details
	Training and Decoding Configurations
	Prompt Details

	Confidence Intervals
	Language Model Integration Methods
	Shallow Fusion
	Rescoring
	Zero-Shot Grammatical Error Correction

	Inference Speed Comparison

