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ABSTRACT

Point-and-click adventure games offer an ideal platform for testing multimodal
large language model agents on long-horizon reasoning, commonsense knowl-
edge, and language-perception grounding. Such games demand creative, compo-
sitional reasoning and the deduction of implicit goals. However, existing bench-
marks provide limited support for compositional and generative puzzles, and often
suffer from data contamination. To bridge this gap, we present Point-and-Click,
a benchmark for 2D adventure games that procedurally generates rich puzzles
and provides ground-truth solutions for evaluation. The environment instantiates
controllable directed acyclic graphs of puzzle dependencies over primitives like
keys/locks, codes, and pattern matching, spanning an exponentially scaling num-
ber of layouts with tunable difficulty. Experiments reveal the limitations of cur-
rent multimodal LLM/VLM agents on this benchmark. We hope Point-and-Click
serves as a rigorous testbed for progress on general-purpose embodied reasoning
and implicit goal deduction in interactive environments.

1 INTRODUCTION

Humans excel at solving complex puzzles in interactive environments by combining long-horizon
planning, commonsense knowledge, and perception-grounded reasoning. A classic example
is the point-and-click adventure game, where a player must explore a scene, collect and combine
objects, and deduce how to use them to achieve an implicit goal (e.g. escaping a room). Such games
require the player to interpret visual cues, recall or acquire knowledge about object uses, and plan
multi-step solutions – all without an explicit instruction. They therefore present an ideal challenge
for multimodal intelligent agents that aim to mimic human problem-solving.

Recent advances in large language models (LLMs) and vision-language models (VLMs) have
yielded agents with impressive capabilities in language and vision understanding. However, it re-
mains unclear whether these models possess the general reasoning ability to solve interactive puzzles
that require chaining many steps and inferring hidden objectives. Existing benchmarks only scratch
the surface of this question. Many focus on single-step question answering or short-horizon tasks,
rather than the creative, compositional reasoning required in puzzles (Chia et al., 2024; Wang et al.,
2025b). Other benchmarks, while focusing on long-chain puzzle solving, are often built from ex-
isting games or static (Ahn et al., 2025; Lim et al., 2025). This risks data contamination as LLMs
pretrained on large-scale internet content may have memorized solutions to published puzzles, or
fails to provide controllable diversity and sufficient scaling necessary to evaluate generalization.
This paper addresses these gaps by introducing Point-and-Click, a new generative benchmark de-
signed to rigorously evaluate multimodal agents on complex puzzle-solving. The overview of this
benchmark is shown in Figure 1.

In Point-and-Click, each task is a procedurally generated 2D adventure game room containing a
network of interdependent puzzles. The agent (or player) must discover and solve these puzzles to
ultimately achieve an implicit goal (such as unlocking the exit door). The environment is built to
test several key abilities:

• Long-horizon planning: Puzzles are compositional – multiple items and clues must be
found and combined in sequence to reach a solution, often spanning 10+ to 100+ steps.
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(c) Evaluation Metrics(b) Puzzle Primitives

Success Rate: Fraction of puzzles solved within a limited 
action budget, reflecting the agent’s overall ability

Step Completion: Percentage of sub-goals in the puzzle 
graph achieved, showing where progress stalls.

Optimality: Extra actions taken compared to the optimal 
solution, measuring efficiency.

Knowledge Errors: Logged mistakes such as wrong key 
use or random code entry, revealing gaps in knowledge.

(a) A sample game view

“ I see a cabinet with a sliding 
tile puzzle on the door.”

“Solving the puzzle should 
unlock the compartment.”

“Some slots seem empty – 
maybe other pieces are hidden.”

“I should explore drawers to 
collect missing fragments.

Figure 1: Overview of the Point-and-Click benchmark.

• Commonsense and factual knowledge: The agent must leverage basic knowledge about
everyday objects and their affordances (e.g. keys open locks, combinations of numbers
unlock codes) to decide plausible actions.

• Language–perception grounding: Clues may be visual (pattern on a painting) or textual (a
written note with a code). The agent needs to interpret visual signals and map them to game
actions, grounding linguistic reasoning in perception.

Crucially, the goals in Point-and-Click are implicit. Unlike instruction-following tasks (e.g. AL-
FRED (Shridhar et al., 2020) where a directive is given), the agent is not told what to achieve. It must
infer the objective (usually to access a locked reward or escape) by exploring the environment and
recognizing what final state would constitute “success.” This implicit goal deduction is a hallmark
of human puzzle-solving and a challenging new test for AI.

Our benchmark generates puzzles procedurally to ensure endless variety and zero contamination.
Each puzzle instance is defined by a ground-truth causal graph (a DAG) connecting intermediate
subgoals. For example, a causal graph may specify that unlocking the door requires finding a key,
which in turn require other steps (decipher a clue, enter a code, etc.). By varying the graph structure
and instantiating it with different objects/locations, we obtain a theoretically infinite set of puzzles
that an agent cannot memorize in advance. The provided ground-truth graphs allow fine-grained
evaluation of an agent’s performance (e.g. did it solve specific sub-puzzles, in what order, with
which errors) rather than a coarse success/failure only.

In the experiments, we observe a sharp human–agent gap: the best model reaches 40/10/0% success
versus humans at 100/96/64%. Agents often make partial progress without completion, and CUA is
the most action-efficient when progressing Failures stem mainly from perception/attention misses,
brittle riddle solving, and forgetting clues. These results reveal a pronounced difficulty cliff and
motivate tighter perception–reasoning integration, persistent memory, and explicit planning over
DAG-structured sub-goals.
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Contributions. We introduce Point-and-Click, a procedural benchmark for evaluating multimodal
agents on long-horizon puzzle-solving in 2D adventure games. (1) Unlike prior benchmarks, Point-
and-Click generates a theoretically unbounded set of interactive puzzle rooms defined by control-
lable dependency graphs over core primitives such as keys/locks, numeric codes, and visual pat-
terns. (2) Each instance comes with a ground-truth causal graph, enabling fine-grained evaluation
beyond binary success metrics. (3) Our benchmark emphasizes implicit goal inference, composi-
tional reasoning, and language-perception grounding, posing a rigorous challenge for current LLM-
and VLM-based agents. (4) Experiments show that state-of-the-art models struggle to solve even
moderately complex puzzles, highlighting the benchmark’s difficulty and its potential as a testbed
for research in embodied reasoning, planning, and commonsense understanding.

2 RELATED WORK

Benchmarks for Complex Reasoning. A variety of benchmarks have been proposed to evaluate
advanced reasoning in both language and multimodal settings. Some focuses on abstract visual puz-
zles with varying patterns based on colors, numbers, shapes, sizes, etc. (Chia et al., 2024; Estermann
et al., 2024; Ghosal et al., 2025; Chollet et al., 2025). These works are further complemented with
large-scale puzzlehunt benchmarks such as EnigmaEval (Wang et al., 2025a) and PuzzleWorld (Li
et al., 2025) which curate complex puzzles from real competitions. Compared to traditional bench-
marks, puzzle-based evaluations probe multi-step deductive reasoning and the synthesis of multi-
modal clues. Even state-of-the-art model achieves only ≤ 7% accuracy on EnigmaEval’s normal
split, despite saturating easier tasks, underscoring the need for benchmarks that test long-horizon
vision–language reasoning beyond static QA or short-context settings.

Interactive Fiction and Escape-Game Environments. Research in interactive fiction (IF) games
has long informed the design of complex puzzle environments. Classic text adventures pioneered
open-ended puzzle solving via natural language. Jericho (Hausknecht et al., 2020) provides dozens
of human-written IF games (such as Zork) and challenges agents with combinatorial action spaces
and commonsense reasoning. Similarly, Microsoft’s TextWorld (Côté et al., 2018) enables genera-
tion of text-based games with controllable difficulty and state tracking, allowing systematic evalua-
tion of an agent’s ability to solve adventure games through textual commands. This line of research
sparked a surge of subsequent work (Urbanek et al., 2019; Tan et al., 2023; Ma et al., 2024; Qian
et al., 2025; Phan et al., 2025). Building on text-only adventures, recent efforts integrate visual and
embodied elements to create escape-room style challenges. Obstacle Tower (Juliani et al., 2019)
presents a procedurally generated 3D environment where agents learn from pixels under sparse re-
wards to traverse a multi-level tower. ALFWorld (Shridhar et al., 2021) aligns TextWorld puzzles
with the embodied ALFRED tasks, enabling agents to transfer abstract language policies to visual
tasks. Recent advancements such as EscapeCraft (Wang et al., 2025b), VisEscape (Lim et al., 2025)
and FlashAdventure (Ahn et al., 2025) provide 2D/3D room-escape environment where agents must
explore virtual rooms, recognize objects, and use tools to unlock exits. However, these static bench-
marks are built from published games, suffering from contamination and memorization as models
can recall solutions from pretraining data, or lack controllable diversity or scaling, limiting their
ability to test generalization and reasoning.

Procedural Puzzle and Content Generation. Procedural content generation (PCG) has been
widely explored for both puzzles and environments, with growing focus on narrative-driven ad-
ventures. Early systems such as Puzzle-Dice (Fernández-Vara & Thomson, 2012) model puzzles as
dependency graphs of design patterns, enabling replayable point-and-click games, while planning-
based approaches such as Dart & Nelson (2012) model items as “smart terrain” with causal effects
and insert these items into existing game environments. More recent work such as SPHINX (Mor-
gan & Haahr, 2020) uses grammar-based rules to scale puzzle generation with greater expressive-
ness and content variety. Complementary research has tackled environment generation, from graph-
grammar–based dungeon generation (Dormans, 2010; De Kegel & Haahr, 2019) to large-scale pho-
torealistic 3D room scene synthesis (Raistrick et al., 2024; Zhou et al., 2025). Across these efforts,
evaluation emphasizes solvability, variety, and user engagement. Together, this literature highlights
how procedural puzzle and content generation can provide scalable, diverse, and rigorous testbeds
for evaluating reasoning in adventure-style games, directly motivating our benchmark.
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3 THE POINT-AND-CLICK BENCHMARK ENVIRONMENT

In this section, we elaborate on the details of the Point-and-Click environment. We introduce the
problem formulation, basic components of the environment, and the procedural generation mech-
anism to create puzzles. The design principle is to synthesize compositional puzzles that require
commonsense knowledge and multiple steps to solve, parameterize difficulty to test agents of vary-
ing skill, and avoid fixed data that an agent could exploit via prior pretrain knowledge.

3.1 PROBLEM FORMULATION

We model Point-and-Click as a partially observable Markov decision process (POMDP) M =<
S,A,O,Ω, T,R >. The hidden state s ∈ S encodes the puzzle’s dependency DAG G = (V,E) with
node statuses, object/container flags and relations, code/pattern parameters, and agent inventory.
Actions are pure GUI mouse inputs: A = (x, y) where (x, y) are screen coordinates in normalized
image space. The engine maps clicks to affordance-triggered interactions (e.g., opening a container,
picking up an item, using an item on a target). After at ∈ A, the environment transitions according
to T (st+1|st, at), updating object states and advancing subgoals when preconditions are satisfied.
The agent then receives an observation ot+1 ∈ Ω drawn from O(ot+1|st+1, at). In our benchmark
Ω is the RGB framebuffer of the current view (including UI components such as navigate buttons
and inventory pixels), so observations are partial until the agent reveals hidden content. Dynamics
are deterministic by default. The reward is dense over subgoals: let ∆zt+1 be the set of DAG nodes
whose status transitions to solved at t+ 1, then

R(st, at) =
∑

v∈∆zt+1

rv + 1[zv⋆ = solved]rgoal,

with rv > 0 per achieved subgoal and a larger terminal bonus rgoal ≫ rv when the goal node
v⋆ completes. Episodes end when a goal node v⋆ is solved or a budget Tmax is reached. The
agent maximizes E[

∑∞
t=0 γ

tR(st, at)], γ ∈ [0, 1). This formulation covers VLM-based GUI agents,
model-free RL from pixels, and hybrid planners that reason over beliefs about G and object states.

3.2 ENVIRONMENT BASICS

Point-and-Click presents an interactive environment that emulates the perceptual and action modal-
ities of human gameplay in point-and-click adventure games. At each step, the agent receives a 2D
visual observation and produces a mouse-click action as output.

The visual input is a rendered 2D scene of a single room from fixed perspectives. Each room
contains interactive objects such as items, clues, and containers. For example, a generated room
might visually depict a kitchen with cabinets, a locked box on a table, a painting on the wall, etc.,
depending on the puzzle. Every object maintains an internal state (e.g., a box may be locked or
unlocked, a painting might conceal a secret code, and an item may be intact or broken, etc.).

Actions are expressed entirely through mouse clicks, which can be functionally categorized as fol-
lows:

• Examine [object]: Inspect an object to obtain more details, such as zooming into the image
of a painting and revealing a hidden clue. This action tests perception and possibly yields
additional information.

• Pick up [object] / Use [object] on [target]: The agent can pick up portable items (adding
to the inventory) and later use or combine them with other objects. For instance, first click-
ing the key in the inventory then clicking the box attempt to unlock the box, or combining
liquid A with liquid B to obtain liquid C.

• Open / Close / Move [object]: Certain objects like doors, containers (drawers, cabinets)
can be opened or moved if not locked.

• Enter [code]: Input numeric or symbolic codes into interfaces such as keypads or safes by
clicking and changing the combination.

• Other: Perform context-specific interactions not captured above.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For each puzzle instance, the environment retains the ground-truth DAG of dependency relations
and the mapping to actual in-game events. During evaluation, the agent’s interactions are monitored
against the causal graph. This enables fine-grained evaluation metrics beyond simply “solved or
not.” We define several metrics:

• Success Rate: The fraction of puzzles in a full benchmark suite where the agent suc-
cessfully achieved the end goal within a given action budget . We prevent agents from
brute-forcing indefinitely by assigning a time limit proportional to the ground-truth solu-
tion length. This is the primary measure of an agent’s overall ability.

• Step Completion: We report the percentage of sub-goals in the causal graph achieved.
This helps pinpoint where the agent failed, e.g., it managed to do early steps but got stuck
on a particular type of puzzle.

• Optimality: We compare the agent’s action sequence to the optimal reference solution and
count how many extra actions were taken. This measures efficiency and whether the agent
wasted time on irrelevant actions.

• Knowledge Errors: We log specific mistakes, which indicate either lack of knowledge or
exploration strategy. For example, if an agent tries to use a wrong key on a lock repeatedly,
or enters random codes, that would be recorded.

3.3 PROCEDURAL PUZZLE GENERATION

The core innovation of Point-and-Click is the puzzle generator, which creates a new puzzle instance
by sampling a dependency DAG and instantiating it with concrete objects and clues. The workflow
is illustrated in Figure 2. At a high level, the generator works as follows:

Step 1 Step 2 Step 3

Sample dependency graph from 
puzzle primitives (ensures acyclicity, 
tunable size/branching.

Assign concrete objects, positions, 
and clue modalities (integrated with 
Infinigen Indoors)

Attach Unity C# components (Lockable, 
Pickupable, CodePanel, PatternPanel) to 
implement interactions

Drawer Shelf

Key Cabinet

public class Pickupable : 
MonoBehaviour {
    public string itemId = 
"key.bronze";
    void OnMouseDown() {
        Inventory.I.Add(itemId);
        gameObject.SetActive(false); 
}}

Drawer

CabinetCode

Door

Key

Sampler

Figure 2: Puzzle generation workflow in Point-and-Click. (1) Sample a dependency DAG from
puzzle primitives (Key–Lock, Code–Lock, Pattern Match); (2) instantiate objects and layout within
a procedurally generated room; (3) attach Unity components to implement point-and-click interac-
tions. This pipeline ensures coherence, solvability, and controllable difficulty.

1. Sample a puzzle DAG: We define a library of puzzle primitives, each representing a basic
step or mechanism with specific requirements and outcomes. For example, a Key–Lock
primitive requires a key item and a locked object; solving it unlocks the object and may
yield a new item. A puzzle is structured as a DAG G(V,E), where each node v ∈ V
represents a puzzle step and each edge A → B indicates that the outcome of A enables
B. For instance, a linear DAG might be: key opens box → box contains clue → clue is
code to open door. More complex DAGs can include parallel sub-puzzles and merging
branches. We ensure acyclicity for solvability, and control the DAG’s size and structure

5
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via difficulty parameters. Available primitives can be divided into the following categories,
with illustrations in Figure 3:

• Key–Lock: A key item that unlocks a locked object (door, box, etc.). The “key” item
is an abstract concept which means that opening the lock requires applying collectable
items. The “key” could be a combination of multiple components, e.g., finding several
fragments of a painting to form a full picture; mixing ingredients to make a tool.

• Code–Lock: A code (number/word/symbol) that opens a locked safe or door when
entered. To open this puzzle, the player needs to observe visual clues to deduce the
correct combination of code, but there is no need to collect any item into the inventory.

• Pattern Match: A visual or logical pattern that must be recognized (e.g. arranging
symbols in the correct order, or matching a sequence). This puzzle is self-contained -
the player should be able to solve it without knowledge of any other puzzles.

2. Instantiate objects and layout: Once a puzzle graph is sampled, the generator assigns
concrete objects to each abstract node. For example, if one node is a Key–Lock puzzle,
we might choose “key” and “locked cabinet” as the instantiation. If another node is a code
puzzle, we might decide the code is a 4-digit number and hide it as a pattern in a painting on
the wall. The generator has lists of possible items, locations (wall, floor, inside furniture),
and hint modalities (text notes, visual patterns, riddles) to choose from. This generation
process is built upon Infinigen Indoors (Raistrick et al., 2024) to leverage the automatic
room layout procedure. Puzzle objects are implemented as custom assets with varying
parameters that specify the details of the puzzle. If two puzzle nodes are connected in
the DAG, their physical representations are linked accordingly using the constraint system.
E.g., if unlocking box yields a clue for a code, the clue item (a note) is placed inside the
box object in the environment.

3. Implement interaction logic: Each object instantiated in the environment is augmented
with interactive behavior through Unity C# scripts. The behaviors are bound to a pre-
defined set of reusable components that implement point-and-click affordances and state
transitions. Concretely, we attach Pickupable (adds/removes an item from the in-
ventory grid), Lockable (finite-state machine with locked→unlocked) to doors,
drawers, and containers, CodePanel (token buffer + validator UI) to keypads/safes; and
PatternPanel (grid/slider widgets with constraint checks) to pattern puzzles. The in-
teraction system supports condition checking (e.g., does the player possess the required
item?), state transitions (e.g., unlocking an object permanently), and feedback rendering
(e.g. revealing a hidden clue). An inventory UI on the screen allows players to manage
items, while in-world objects are annotated with metadata to control their behavior (e.g.,
clickable region, lock status, associated DAG node). Critically, all interactions are auto-
matically derived from the underlying puzzle DAG, ensuring that the physical behavior of
the environment matches the abstract logical structure, and that every game instance is fully
solvable without manual scripting. This supports scalable generation of interactive puzzle
rooms with guaranteed coherence and solvability.

(a) (b) (c)

Figure 3: Examples of puzzle primitives used in Point-and-Click. (a) Key–Lock: a bronze key
hidden in a drawer that unlocks a cabinet; (b) Code–Lock: a safe box requiring the correct symbol
code deduced from visual clues; (c) Pattern Match: a sliding block puzzle where the player must
complete a visual pattern. These primitives form the building blocks of sampled puzzle DAGs.
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One of the key advantages of our approach is its controllability. The generator exposes parameters
that allow fine-grained adjustments of puzzle complexity and structure. We can vary the number
of steps by scaling the DAG size, tune the branching factor to produce linear or parallel puzzle
chains, and include or exclude specific puzzle primitives for ablation studies. This flexibility enables
systematic evaluation across different settings, as well as curriculum-style protocols where agents
progress from simple to increasingly complex puzzles. Because puzzles are generated procedurally,
agents can be tested on an effectively unlimited stream of novel episodes, mitigating memorization
or overfitting. For standardized benchmarking, we also release a fixed evaluation suite of 30 puzzle
rooms at varying difficulty levels, generated with held-out seeds and unpublished solutions to ensure
fairness and reproducibility.

In summary, Point-and-Click offers a scalable and rigorous framework for studying embodied rea-
soning in interactive puzzle environments. By combining controllable generation, guaranteed solv-
ability, and diverse puzzle primitives, it creates a challenging yet analyzable testbed. This allows
researchers to probe fundamental capabilities of multimodal LLMs and RL agents, including long-
horizon planning, commonsense reasoning, and implicit goal inference, while providing a standard-
ized benchmark for fair comparison and reproducible progress.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUPS

We evaluate four agents in our Point-and-Click environment: (1) OpenAI’s Computer-Using Agent
(CUA) (OpenAI, 2025), representing a state-of-the-art hybrid-reasoning model designed for on-
screen control, (2) Claude-3.7-Sonnet with Computer-Use enabled (Anthropic, 2024), another com-
mercial model which performs goal-directed GUI actions, (3) UI-TARS-1.57B (Qin et al., 2025), an
open-source vision-language UI agent, and (4) a human baseline. For model configuration, Claude-
3.7-Sonnet runs with its computer-use/agentic interface; CUA uses the official tools-computer-use
API; UI-TARS follows its public release settings; and for the human baseline, participants receive
identical instructions and click budgets as agents.

Each agent is tested on a common set of 30 puzzle instances over three difficulty splits (simple,
medium, hard, with 10 puzzles each of difficulty levels from 10 steps up to 100 steps) under a fixed
action budget. We report three metrics per split: Success Rate (fraction of puzzles solved within
budget), Step Completion (percentage of DAG sub-goals achieved), and Optimality (extra actions
over the reference solution). This setup aligns with prevailing UI-agent benchmarking practice
emphasizing end-to-end task success under constrained interaction budgets.

4.2 BENCHMARKING RESULTS

Table 1 summarizes the performance metrics for each agent type. Here are the key observations:

• Overall Success: On Simple puzzles, OpenAI CUA leads with 40% success, outperforming
Claude-3.7-Sonnet (20%) and UI-TARS-1.5-7B (10%). On Medium, both CUA and Claude
tie at 10%, while UI-TARS drops to 0%. On Hard, all models achieve 0% success. Humans
remain far ahead (100/96/64% across Simple/Medium/Hard).

• Partial progress (Step). CUA is strongest on Simple (53.00%), and retains the highest
partial progress on Hard (12.30%), indicating it often advances several sub-goals even
when it fails the full puzzle. Claude edges out others on Medium with the top Step score
(25.80% vs. CUA 23.20%), suggesting mid-puzzle stalls rather than complete breakdowns.
UI-TARS consistently trails (11.00/6.20/2.70%).

• Efficiency (Optimality). When models succeed or make progress, CUA is generally the
most efficient: it has the best (lowest) extra-action counts on Simple (7.62) and Medium
(9.95), narrowly beating Claude (9.96). On Hard, all methods hit the evaluation cap
(10.00), consistent with timeouts or thrashing near dead-ends.

• Difficulty cliff. Moving from Simple to Medium produces a sharp drop: CUA falls from
40% to 10% success (–30 points), Claude from 20% to 10% (–10), and UI-TARS to 0%.
Despite 0% success on Hard, non-zero Step scores (e.g., CUA 12.30%, Claude 5.20%)
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Model Difficulty Success ↑ Step ↑ Opt. ↓

Claude-3.7-Sonnet
(Computer-Use)

Simple 20% 31.00% 8.87
Medium 10% 25.80% 9.96
Hard 0% 5.20% 10.00

OpenAI CUA
Simple 40% 53.00% 7.62
Medium 10% 23.20% 9.95
Hard 0% 12.30% 10.00

UI-TARS-1.5-7B
Simple 10% 11.00% 9.87
Medium 0% 6.20% 10.00
Hard 0% 2.70% 10.00

Human Performance
Simple 100% 100.00% 3.13
Medium 96% 98.40% 4.29
Hard 64% 70.60% 5.58

Table 1: Point-and-Click benchmark results for agents across three difficulty tiers (Sim-
ple/Medium/Hard). Metrics: Success (fraction of puzzles solved, higher is better), Step (sub-goal
completion rate, higher is better), and Optimality (extra actions vs. reference, lower is better).

confirm that agents frequently make early progress but fail to complete multi-step depen-
dencies.

• Error Types: We recorded that the LLM agents rarely made outright knowledge errors like
using a wrong key on a lock more than once, indicating that they usually understood such
concepts. Their errors were more from missing a hidden object or clue (perception/attention
error) or from not reasoning through a riddle. Another common failure is forgetting a dis-
covered clue after a few turns (context window issue), causing it to search again needlessly.

From these results, we can clearly see that Point-and-Click exposes a pronounced gap between
current agents and humans. Even the strongest model (OpenAI CUA) solves only 40% of Sim-
ple puzzles and 10% of Medium, with 0% on Hard, while humans maintain high performance
(100/96/64%). Step-level signals show that models often advance several sub-goals before stalling,
and CUA is comparatively efficient when it progresses, yet all systems struggle to sustain long-
horizon, dependency-laden plans under partial observability. Closing this gap will likely require
stronger perception–reasoning integration (e.g., reliable counting and symbol grounding), persistent
scratchpads or episodic memory to avoid revisiting solved clues, and explicit planning/search over
DAG-structured sub-goals rather than myopic, step-by-step heuristics.

4.3 CASE STUDY

To illustrate typical behaviors behind the aggregate numbers in Table 1, we highlight three represen-
tative cases (full transcripts in the Appendix).

Case 1: 16-Step Puzzle (Success by OpenAI CUA). The puzzle requires: find a key in a drawer
(drawer was closed but not locked), use the key to unlock a chest, inside chest find a paper that
gives a code, enter code to unlock door, with 16 clicks in total. OpenAI CUA handled this quite
well. It opened the drawer, picked up the key, unlocked the chest, reasoned the clue. This shows
that given a straightforward puzzle, OpenAI CUA’s general knowledge and reasoning can suffice.
Although successful, it was not strictly optimal: optimal actions were 16, while CUA executed 72
(i.e., ×5.38 extra), reflecting the efficiency gap we see on average for Simple puzzles (Opt. = 7.62
for CUA). This example typifies CUA’s Simple-set profile: comparatively strongest success among
models (40%) yet still incurring noticeable extra actions.

Case 2: 45-Step Puzzle (Failure of Claude-3.7-Sonnet at final step). Here the agent had to:
(1) gather two ingredients, (2) craft a tool, (3) reveal a hidden compartment, (4) read a hint to
open a safe, (5) use the safe’s key to exit. Claude-3.7-Sonnet (Computer-Use) progressed reliably
through early steps—collecting items, crafting, and opening the safe—reaching the exit with the
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key in inventory. However, it failed to perform the final key–door action before timeout, instead
re-inspecting previously seen objects. Step completion was 93%, consistent with our observation
that Claude attains the highest Medium Step score (25.80% on average) despite a modest success
rate (10%). The failure mode aligns with “late-stage stalls”: partial plans are executed, but goal
completion is missed without persistent goal tracking.

Case 3: Hard puzzle with symbolic perception (OpenAI CUA misuses visual cue). In a Hard
configuration, a painting displayed four symbols indicating a directional combination for a lock.
OpenAI CUA correctly perceived the symbols but treated “↑↓←→” as a literal string rather than a
sequence of directional actions. After several incorrect entries and exploratory detours, it timed out
having completed 27/102 sub-steps (26.5%). This mirrors the aggregate Hard-set pattern: zero end-
to-end success across models, yet non-zero partial progress (CUA Hard Step = 12.30%), indicating
that agents can perceive salient cues but often fail to ground them into the correct action semantics
over longer dependency chains.

5 DISCUSSION

Implications for model design. The failure modes suggest several concrete directions: (i)
Perception–reasoning integration: agents need more reliable symbol grounding (e.g., mapping ar-
rows or pictograms to action programs) and better object-centric perception to avoid missing small
or occluded clues. (ii) Persistent memory and state tracking: maintaining a scratchpad or episodic
memory over discovered clues and unresolved subgoals can reduce revisitation and forgetting. (iii)
Structured planning over DAGs: explicit search or policy sketches that reason over hypothesized
subgoal graphs (even when latent) may help bridge long horizons; lightweight belief updates over
the latent G can prioritize information-gathering and subgoal completion. (iv) Goal management:
agents that continuously monitor goal completion conditions (Case 2) and maintain a to-do stack are
less likely to miss terminal actions. (v) Exploration with affordances: learning affordance models
(“what can be done where”) can prune action spaces and guide clicks toward informative regions,
improving both success and optimality.

Leakage-Safe Structural Signals. Although our evaluation hides ground-truth graphs from
agents, the structure can shape training signals without trivializing the task. For instance, subgoal
completions can provide auxiliary rewards for RL from pixels; graph-consistent trajectories can su-
pervise imitation or behavior cloning; and latent-graph prediction losses can regularize LLM/VLM
planners to maintain and update a hypothesized dependency structure. Care must be taken to avoid
revealing instance-specific solutions (e.g., by training only on procedurally generated sets disjoint
from held-out seeds and by reporting generalization to unseen seeds).

Limitations. Point-and-Click currently focuses on single-room, 2D, click-only interactions with
deterministic dynamics. While this isolates reasoning and perception, it omits physics-heavy ma-
nipulation, continuous control, and multi-room navigation. Visuals are synthetic and may privilege
certain aesthetics; some clue types may induce bias if not balanced. Optimality depends on a refer-
ence policy that, although computed from the graph, might not be unique; this can penalize benign
detours. Finally, agents could overfit to UI layout or renderer regularities; to mitigate this, we vary
seeds, layouts, and assets, and we release a fixed, held-out evaluation suite alongside protocols for
generating unlimited fresh instances.

6 CONCLUSION

Point-and-Click is a procedural benchmark of controllable DAG-structured puzzles (Key–Lock,
Code–Lock, Pattern Match) with per-instance causal graphs for fine-grained evaluation. Results ex-
poses a large human–agent gap, where models achieve partial progress without reliable completion,
indicating a need for tighter perception–reasoning integration, persistent memory, and structure-
aware planning. With scalable diversity, solvability, and analyzable structure, Point-and-Click pro-
vides a compact yet rigorous testbed for agents that perceive, remember, and reason.
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Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Isaac Dart and Mark J Nelson. Smart terrain causality chains for adventure-game puzzle generation.
In 2012 IEEE Conference on Computational Intelligence and Games (CIG), pp. 328–334. IEEE,
2012.

Barbara De Kegel and Mads Haahr. Towards procedural generation of narrative puzzles for ad-
venture games. In International Conference on Interactive Digital Storytelling, pp. 241–249.
Springer, 2019.

Joris Dormans. Adventures in level design: generating missions and spaces for action adventure
games. In Proceedings of the 2010 workshop on procedural content generation in games, pp.
1–8, 2010.

Benjamin Estermann, Luca A. Lanzendörfer, Yannick Niedermayr, and Roger Wattenhofer. Puzzles:
A benchmark for neural algorithmic reasoning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,
volume 37, pp. 127059–127098, 2024.

Clara Fernández-Vara and Alec Thomson. Procedural generation of narrative puzzles in adventure
games: The puzzle-dice system. In Proceedings of the The third workshop on Procedural Content
Generation in Games, pp. 1–6, 2012.

Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. Algopuzzlevqa: Diagnosing
multimodal reasoning challenges of language models with algorithmic multimodal puzzles. In
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
9615–9632, 2025.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
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