

POINT-AND-CLICK: A PROCEDURAL BENCHMARK FOR 2D ADVENTURE PUZZLE SOLVING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Point-and-click adventure games offer an ideal platform for testing multimodal
 012 large language model agents on long-horizon reasoning, commonsense knowl-
 013 edge, and language-perception grounding. Such games demand creative, compo-
 014 sitional reasoning and the deduction of implicit goals. However, existing bench-
 015 marks provide limited support for compositional and generative puzzles, and often
 016 suffer from data contamination. To bridge this gap, we present Point-and-Click,
 017 a benchmark for 2D adventure games that procedurally generates rich puzzles
 018 and provides ground-truth solutions for evaluation. The environment instantiates
 019 controllable directed acyclic graphs of puzzle dependencies over primitives like
 020 keys/locks, codes, and pattern matching, spanning an exponentially scaling num-
 021 ber of layouts with tunable difficulty. Experiments reveal the limitations of cur-
 022 rent multimodal LLM/VLM agents on this benchmark. We hope Point-and-Click
 023 serves as a rigorous testbed for progress on general-purpose embodied reasoning
 024 and implicit goal deduction in interactive environments.

1 INTRODUCTION

029 Humans excel at solving complex puzzles in interactive environments by combining **long-horizon**
 030 **planning, commonsense knowledge, and perception-grounded reasoning**. A classic example
 031 is the point-and-click adventure game, where a player must explore a scene, collect and combine
 032 objects, and deduce how to use them to achieve an implicit goal (e.g. escaping a room). Such games
 033 require the player to interpret visual cues, recall or acquire knowledge about object uses, and plan
 034 multi-step solutions – all without an explicit instruction. They therefore present an ideal challenge
 035 for multimodal intelligent agents that aim to mimic human problem-solving.

036 Recent advances in large language models (LLMs) and vision-language models (VLMs) have
 037 yielded agents with impressive capabilities in language and vision understanding. However, it re-
 038 mains unclear whether these models possess the general reasoning ability to solve interactive puzzles
 039 that require chaining many steps and inferring hidden objectives. Existing benchmarks only scratch
 040 the surface of this question. Many focus on single-step question answering or short-horizon tasks,
 041 rather than the creative, compositional reasoning required in puzzles (Chia et al., 2024; Wang et al.,
 042 2025b). Other benchmarks, while focusing on long-chain puzzle solving, are often built from ex-
 043 isting games or static (Ahn et al., 2025; Lim et al., 2025). This risks data contamination as LLMs
 044 pretrained on large-scale internet content may have memorized solutions to published puzzles, or
 045 fails to provide controllable diversity and sufficient scaling necessary to evaluate generalization.
 046 This paper addresses these gaps by introducing Point-and-Click, a new generative benchmark de-
 047 signed to rigorously evaluate multimodal agents on complex puzzle-solving. The overview of this
 048 benchmark is shown in Figure 1.

049 In Point-and-Click, each task is a **procedurally generated** 2D adventure game room containing a
 050 network of interdependent puzzles. The agent (or player) must discover and solve these puzzles to
 051 ultimately achieve an implicit goal (such as unlocking the exit door). The environment is built to
 052 test several key abilities:

053 • Long-horizon planning: Puzzles are compositional – multiple items and clues must be
 054 found and combined in sequence to reach a solution, often spanning 10+ to 100+ steps.

Figure 1: Overview of the Point-and-Click benchmark.

083
084
085
086
087
088
089

- Commonsense and factual knowledge: The agent must leverage basic knowledge about everyday objects and their affordances (e.g. keys open locks, combinations of numbers unlock codes) to decide plausible actions.
- Language–perception grounding: Clues may be visual (pattern on a painting) or textual (a written note with a code). The agent needs to interpret visual signals and map them to game actions, grounding linguistic reasoning in perception.

090
091
092
093
094

Crucially, the goals in Point-and-Click are **implicit**. Unlike instruction-following tasks (e.g. ALFRED (Shridhar et al., 2020) where a directive is given), the agent is not told what to achieve. It must infer the objective (usually to access a locked reward or escape) by exploring the environment and recognizing what final state would constitute “success.” This implicit goal deduction is a hallmark of human puzzle-solving and a challenging new test for AI.

095
096
097
098
099
100
101
102

Our benchmark generates puzzles procedurally to ensure endless variety and zero contamination. Each puzzle instance is defined by a ground-truth causal graph (a DAG) connecting intermediate subgoals. For example, a causal graph may specify that unlocking the door requires finding a key, which in turn require other steps (decipher a clue, enter a code, etc.). By varying the graph structure and instantiating it with different objects/locations, we obtain a theoretically infinite set of puzzles that an agent cannot memorize in advance. The provided ground-truth graphs allow fine-grained evaluation of an agent’s performance (e.g. did it solve specific sub-puzzles, in what order, with which errors) rather than a coarse success/failure only.

103
104
105
106
107

In the experiments, we observe a sharp human–agent gap: the best model reaches 40/10/0% success versus humans at 100/96/64% under our simple/medium/hard experiment settings. Agents often make partial progress without completion, and CUA is the most action-efficient when progressing. Failures stem mainly from perception/attention misses, brittle riddle solving, and forgetting clues. These results reveal a pronounced difficulty cliff and motivate tighter perception–reasoning integration, persistent memory, and explicit planning over DAG-structured sub-goals.

Contributions. We introduce Point-and-Click, a procedural benchmark for evaluating multimodal agents on long-horizon puzzle-solving in 2D adventure games. (1) Unlike prior benchmarks, Point-and-Click generates a theoretically unbounded set of interactive puzzle rooms defined by controllable dependency graphs over core primitives such as keys/locks, numeric codes, and visual patterns. (2) Each instance comes with a ground-truth causal graph, enabling fine-grained evaluation beyond binary success metrics. (3) Our benchmark emphasizes implicit goal inference, compositional reasoning, and language-perception grounding, posing a rigorous challenge for current LLM- and VLM-based agents. (4) Experiments show that state-of-the-art models struggle to solve even moderately complex puzzles, highlighting the benchmark’s difficulty and its potential as a testbed for research in embodied reasoning, planning, and commonsense understanding.

2 RELATED WORK

Benchmarks for Complex Reasoning. A variety of benchmarks have been proposed to evaluate advanced reasoning in both language and multimodal settings. Some focuses on abstract visual puzzles with varying patterns based on colors, numbers, shapes, sizes, etc. (Chia et al., 2024; Estermann et al., 2024; Ghosal et al., 2025; Chollet et al., 2025). These works are further complemented with large-scale puzzlehunt benchmarks such as EnigmaEval (Wang et al., 2025a) and PuzzleWorld (Li et al., 2025) which curate complex puzzles from real competitions. Compared to traditional benchmarks, puzzle-based evaluations probe multi-step deductive reasoning and the synthesis of multimodal clues. Even state-of-the-art model achieves only $\leq 7\%$ accuracy on EnigmaEval’s normal split, despite saturating easier tasks, underscoring the need for benchmarks that test long-horizon vision–language reasoning beyond static QA or short-context settings.

Interactive Fiction and Escape-Game Environments. Research in interactive fiction (IF) games has long informed the design of complex puzzle environments. Classic text adventures pioneered open-ended puzzle solving via natural language. Jericho (Hausknecht et al., 2020) provides dozens of human-written IF games (such as Zork) and challenges agents with combinatorial action spaces and commonsense reasoning. Similarly, Microsoft’s TextWorld (Côté et al., 2018) enables generation of text-based games with controllable difficulty and state tracking, allowing systematic evaluation of an agent’s ability to solve adventure games through textual commands. This line of research sparked a surge of subsequent work (Urbanek et al., 2019; Tan et al., 2023; Ma et al., 2024; Qian et al., 2025; Phan et al., 2025). Building on text-only adventures, recent efforts integrate visual and embodied elements to create escape-room style challenges. Obstacle Tower (Juliani et al., 2019) presents a procedurally generated 3D environment where agents learn from pixels under sparse rewards to traverse a multi-level tower. ALFWorld (Shridhar et al., 2021) aligns TextWorld puzzles with the embodied ALFRED tasks, enabling agents to transfer abstract language policies to visual tasks. Recent advancements such as EscapeCraft (Wang et al., 2025b), VisEscape (Lim et al., 2025) and FlashAdventure (Ahn et al., 2025) provide 2D/3D room-escape environment where agents must explore virtual rooms, recognize objects, and use tools to unlock exits. However, these static benchmarks are built from published games, suffering from contamination and memorization as models can recall solutions from pretraining data, or lack controllable diversity or scaling, limiting their ability to test generalization and reasoning.

Procedural Puzzle and Content Generation. Procedural content generation (PCG) has been widely explored for both puzzles and environments, with growing focus on narrative-driven adventures. Early systems such as Puzzle-Dice (Fernández-Vara & Thomson, 2012) model puzzles as dependency graphs of design patterns, enabling replayable point-and-click games, while planning-based approaches such as Dart & Nelson (2012) model items as “smart terrain” with causal effects and insert these items into existing game environments. More recent work such as SPHINX (Morgan & Haahr, 2020) uses grammar-based rules to scale puzzle generation with greater expressiveness and content variety. Complementary research has tackled environment generation, from graph-grammar-based dungeon generation (Dormans, 2010; De Kegel & Haahr, 2019) to large-scale photorealistic 3D room scene synthesis (Raistrick et al., 2024; Zhou et al., 2025). Across these efforts, evaluation emphasizes solvability, variety, and user engagement. Together, this literature highlights how procedural puzzle and content generation can provide scalable, diverse, and rigorous testbeds for evaluating reasoning in adventure-style games, directly motivating our benchmark.

162 3 THE POINT-AND-CLICK BENCHMARK ENVIRONMENT 163

164 In this section, we elaborate on the details of the Point-and-Click environment. We introduce the
165 problem formulation, basic components of the environment, and the procedural generation mech-
166 anism to create puzzles. The design principle is to synthesize compositional puzzles that require
167 commonsense knowledge and multiple steps to solve, parameterize difficulty to test agents of vary-
168 ing skill, and avoid fixed data that an agent could exploit via prior pretrain knowledge.
169

170 3.1 PROBLEM FORMULATION 171

172 We model Point-and-Click as a partially observable Markov decision process (POMDP) $M = <$
173 $S, A, O, \Omega, T, R >$. The hidden state $s \in S$ encodes the puzzle’s dependency DAG $G = (V, E)$ with
174 node statuses, object/container flags and relations, code/pattern parameters, and agent inventory.
175 Actions are pure GUI mouse inputs: $A = (x, y)$ where (x, y) are screen coordinates in normalized
176 image space. The engine maps clicks to affordance-triggered interactions (e.g., opening a container,
177 picking up an item, using an item on a target). After $a_t \in A$, the environment transitions according
178 to $T(s_{t+1}|s_t, a_t)$, updating object states and advancing subgoals when preconditions are satisfied.
179 The agent then receives an observation $o_{t+1} \in \Omega$ drawn from $O(o_{t+1}|s_{t+1}, a_t)$. In our benchmark
180 Ω is the RGB framebuffer of the current view (including UI components such as navigate buttons
181 and inventory pixels), so observations are partial until the agent reveals hidden content. Dynamics
182 are deterministic by default. The reward is dense over subgoals: let Δz_{t+1} be the set of DAG nodes
183 whose status transitions to solved at $t + 1$, then
184

$$185 R(s_t, a_t) = \sum_{v \in \Delta z_{t+1}} r_v + \mathbf{1}[z_{v^*} = \text{solved}] r_{\text{goal}},$$

186 with $r_v > 0$ per achieved subgoal and a larger terminal bonus $r_{\text{goal}} \gg r_v$ when the goal node
187 v^* completes. Episodes end when a goal node v^* is solved or a budget T_{\max} is reached. The
188 agent maximizes $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)]$, $\gamma \in [0, 1]$. This formulation covers VLM-based GUI agents,
189 model-free RL from pixels, and hybrid planners that reason over beliefs about G and object states.
190

191 3.2 ENVIRONMENT BASICS 192

193 Point-and-Click presents an interactive environment that emulates the perceptual and action modal-
194 ities of human gameplay in point-and-click adventure games. At each step, the agent receives a 2D
195 visual observation and produces a mouse-click action as output.

196 The visual input is a rendered 2D scene of a single room from fixed perspectives. Each room
197 contains interactive objects such as items, clues, and containers. For example, a generated room
198 might visually depict a kitchen with cabinets, a locked box on a table, a painting on the wall, etc.,
199 depending on the puzzle. Every object maintains an internal state (e.g., a box may be locked or
200 unlocked, a painting might conceal a secret code, and an item may be intact or broken, etc.).

201 Actions are expressed entirely through mouse clicks, which can be functionally categorized as fol-
202 lows:
203

- 204 • **Examine [object]:** Inspect an object to obtain more details, such as zooming into the image
205 of a painting and revealing a hidden clue. This action tests perception and possibly yields
206 additional information.
- 207 • **Pick up [object] / Use [object] on [target]:** The agent can pick up portable items (adding
208 to the inventory) and later use or combine them with other objects. For instance, first click-
209 ing the key in the inventory then clicking the box attempt to unlock the box, or combining
210 liquid A with liquid B to obtain liquid C.
- 211 • **Open / Close / Move [object]:** Certain objects like doors, containers (drawers, cabinets)
212 can be opened or moved if not locked.
- 213 • **Enter [code]:** Input numeric or symbolic codes into interfaces such as keypads or safes by
214 clicking and changing the combination.
- 215 • **Other:** Perform context-specific interactions not captured above.

216 For each puzzle instance, the environment retains the ground-truth DAG of dependency relations
 217 and the mapping to actual in-game events. During evaluation, the agent’s interactions are monitored
 218 against the causal graph. This enables fine-grained evaluation metrics beyond simply “solved or
 219 not.” We define several metrics:

- 221 • **Success Rate:** The fraction of puzzles in a full benchmark suite where the agent suc-
 222 cessfully achieved the end goal within a given action budget . We prevent agents from
 223 brute-forcing indefinitely by assigning a time limit proportional to the ground-truth solu-
 224 tion length. This is the primary measure of an agent’s overall ability.
- 225 • **Step Completion:** We report the percentage of sub-goals in the causal graph achieved.
 226 This helps pinpoint where the agent failed, e.g., it managed to do early steps but got stuck
 227 on a particular type of puzzle.
- 228 • **Optimality:** We compare the agent’s action sequence to the optimal reference solution and
 229 count how many extra actions were taken. This measures efficiency and whether the agent
 230 wasted time on irrelevant actions.
- 231 • **Knowledge Errors:** We log specific mistakes, which indicate either lack of knowledge or
 232 exploration strategy. For example, if an agent tries to use a wrong key on a lock repeatedly,
 233 or enters random codes, that would be recorded.

235 3.3 PROCEDURAL PUZZLE GENERATION

237 The core innovation of Point-and-Click is the puzzle generator, which creates a new puzzle instance
 238 by sampling a dependency DAG and instantiating it with concrete objects and clues. The workflow
 239 is illustrated in Figure 2. At a high level, the generator works as follows:

Figure 2: Puzzle generation workflow in Point-and-Click. (1) Sample a dependency DAG from puzzle primitives (Key–Lock, Code–Lock, Pattern Match); (2) instantiate objects and layout within a procedurally generated room; (3) attach Unity components to implement point-and-click interactions. This pipeline ensures coherence, solvability, and controllable difficulty.

1. **Sample a puzzle DAG:** We define a library of puzzle primitives, each representing a basic step or mechanism with specific requirements and outcomes. For example, a Key–Lock primitive requires a key item and a locked object; solving it unlocks the object and may yield a new item. A puzzle is structured as a DAG $G(V, E)$, where each node $v \in V$ represents a puzzle step and each edge $A \rightarrow B$ indicates that the outcome of A enables B . For instance, a linear DAG might be: key opens box \rightarrow box contains clue \rightarrow clue is code to open door. More complex DAGs can include parallel sub-puzzles and merging branches. We ensure acyclicity for solvability, and control the DAG’s size and structure

270 via difficulty parameters. Available primitives can be divided into the following categories,
 271 with illustrations in Figure 3:
 272

- 273 • **Key–Lock:** A key item that unlocks a locked object (door, box, etc.). The “key” item
 274 is an abstract concept which means that opening the lock requires applying collectable
 275 items. The “key” could be a combination of multiple components, e.g., finding several
 276 fragments of a painting to form a full picture; mixing ingredients to make a tool.
- 277 • **Code–Lock:** A code (number/word/symbol) that opens a locked safe or door when
 278 entered. To open this puzzle, the player needs to observe visual clues to deduce the
 279 correct combination of code, but there is no need to collect any item into the inventory.
- 280 • **Pattern Match:** A visual or logical pattern that must be recognized (e.g. arranging
 281 symbols in the correct order, or matching a sequence). This puzzle is self-contained -
 282 the player should be able to solve it without knowledge of any other puzzles.

283 2. **Instantiate objects and layout:** Once a puzzle graph is sampled, the generator assigns
 284 concrete objects to each abstract node. For example, if one node is a Key–Lock puzzle,
 285 we might choose “key” and “locked cabinet” as the instantiation. If another node is a code
 286 puzzle, we might decide the code is a 4-digit number and hide it as a pattern in a painting on
 287 the wall. The generator has lists of possible items, locations (wall, floor, inside furniture),
 288 and hint modalities (text notes, visual patterns, riddles) to choose from. This generation
 289 process is built upon Infinigen Indoors (Raistrick et al., 2024) to leverage the automatic
 290 room layout procedure. Puzzle objects are implemented as custom assets with varying
 291 parameters that specify the details of the puzzle. If two puzzle nodes are connected in
 292 the DAG, their physical representations are linked accordingly using the constraint system.
 293 E.g., if unlocking box yields a clue for a code, the clue item (a note) is placed inside the
 294 box object in the environment.

295 3. **Implement interaction logic:** Each object instantiated in the environment is augmented
 296 with interactive behavior through Unity C# scripts. The behaviors are bound to a pre-
 297 defined set of reusable components that implement point-and-click affordances and state
 298 transitions. Concretely, we attach `Pickupable` (adds/removes an item from the
 299 inventory grid), `Lockable` (finite-state machine with `locked`→`unlocked`) to doors,
 300 drawers, and containers, `CodePanel` (token buffer + validator UI) to keypads/safes; and
 301 `PatternPanel` (grid/slider widgets with constraint checks) to pattern puzzles. The
 302 interaction system supports condition checking (e.g., does the player possess the required
 303 item?), state transitions (e.g., unlocking an object permanently), and feedback rendering
 304 (e.g. revealing a hidden clue). An inventory UI on the screen allows players to manage
 305 items, while in-world objects are annotated with metadata to control their behavior (e.g.,
 306 clickable region, lock status, associated DAG node). Critically, all interactions are auto-
 307 matically derived from the underlying puzzle DAG, ensuring that the physical behavior of
 308 the environment matches the abstract logical structure, and that every game instance is fully
 309 solvable without manual scripting. This supports scalable generation of interactive puzzle
 310 rooms with guaranteed coherence and solvability.

311
 312 Figure 3: Examples of puzzle primitives used in Point-and-Click. (a) Key–Lock: a bronze key
 313 hidden in a drawer that unlocks a cabinet; (b) Code–Lock: a safe box requiring the correct symbol
 314 code deduced from visual clues; (c) Pattern Match: a sliding block puzzle where the player must
 315 complete a visual pattern. These primitives form the building blocks of sampled puzzle DAGs.
 316
 317
 318
 319
 320
 321
 322
 323

324 One of the key advantages of our approach is its **controllability**. The generator exposes parameters
 325 that allow fine-grained adjustments of puzzle complexity and structure. We can vary the number
 326 of steps by scaling the DAG size, tune the branching factor to produce linear or parallel puzzle
 327 chains, and include or exclude specific puzzle primitives for ablation studies. This flexibility enables
 328 systematic evaluation across different settings, as well as curriculum-style protocols where agents
 329 progress from simple to increasingly complex puzzles. Because puzzles are generated procedurally,
 330 agents can be tested on an effectively unlimited stream of novel episodes, mitigating memorization
 331 or overfitting. For standardized benchmarking, we also release a fixed evaluation suite of 30 puzzle
 332 rooms at varying difficulty levels, generated with held-out seeds and unpublished solutions to ensure
 333 fairness and reproducibility.

334 In summary, Point-and-Click offers a scalable and rigorous framework for studying embodied rea-
 335 soning in interactive puzzle environments. By combining controllable generation, guaranteed solv-
 336 ability, and diverse puzzle primitives, it creates a challenging yet analyzable testbed. This allows
 337 researchers to probe fundamental capabilities of multimodal LLMs and RL agents, including long-
 338 horizon planning, commonsense reasoning, and implicit goal inference, while providing a standard-
 339 ized benchmark for fair comparison and reproducible progress.

340 4 EXPERIMENTAL RESULTS

341 4.1 EXPERIMENT SETUPS

342 We evaluate four agents in our Point-and-Click environment: (1) OpenAI’s Computer Using
 343 Agent (OpenAI, 2025), representing a hybrid-reasoning model designed for onscreen control,
 344 (2) Claude-Sonnet-4.5 with Computer-Use enabled (Anthropic, 2024), another commercial model
 345 which performs goal-directed GUI actions, (3) UI-TARS-1.57B (Qin et al., 2025), an open-source
 346 vision-language UI agent, and (4) a human baseline. For model configuration, Claude-3.7-Sonnet
 347 runs with its computer-use/agentic interface; CUA uses the official tools-computer-use API; UI-
 348 TARS follows its public release settings; and for the human baseline, participants receive identical
 349 instructions and click budgets as agents.

350 Each agent is tested on a common set of 30 puzzle instances over three difficulty splits (simple,
 351 medium, hard, with 10 puzzles each of difficulty levels from 10 steps up to 100 steps) under a
 352 fixed action budget of 10 times of the ground-truth solution steps. We report three metrics per split:
 353 Success Rate (fraction of puzzles solved within budget), Step Completion (percentage of DAG sub-
 354 goals achieved), and Optimality (extra actions over the reference solution). This setup aligns with
 355 prevailing UI-agent benchmarking practice emphasizing end-to-end task success under constrained
 356 interaction budgets.

357 4.2 BENCHMARKING RESULTS

358 Table 1 summarizes the performance metrics for each agent type. Here are the key observations:

- 359 • **Overall Success:** On *Simple* puzzles, OpenAI CUA leads with 40% success, outperforming
 360 Claude-3.7-Sonnet (20%) and UI-TARS-1.5-7B (10%). On *Medium*, both CUA and Claude
 361 tie at 10%, while UI-TARS drops to 0%. On *Hard*, all models achieve 0% success. Humans
 362 remain far ahead (100/96/64% across Simple/Medium/Hard).
- 363 • **Partial progress (Step).** CUA is strongest on *Simple* (53.00%), and retains the highest
 364 partial progress on *Hard* (12.30%), indicating it often advances several sub-goals even
 365 when it fails the full puzzle. Claude edges out others on *Medium* with the top Step score
 366 (25.80% vs. CUA 23.20%), suggesting mid-puzzle stalls rather than complete breakdowns.
 367 UI-TARS consistently trails (11.00/6.20/2.70%).
- 368 • **Efficiency (Optimality).** When models succeed or make progress, CUA is generally the
 369 most efficient: it has the best (lowest) extra-action counts on *Simple* (7.62) and *Medium*
 370 (9.95), narrowly beating Claude (9.96). On *Hard*, all methods hit the evaluation cap
 371 (10.00), consistent with timeouts or thrashing near dead-ends.
- 372 • **Difficulty cliff.** Moving from *Simple* to *Medium* produces a sharp drop: CUA falls from
 373 40% to 10% success (-30 points), Claude from 20% to 10% (-10), and UI-TARS to 0%.

Model	Difficulty	Success \uparrow	Step \uparrow	Opt. \downarrow
Claude-3.7-Sonnet (Computer-Use)	Simple	20%	31.00%	8.87
	Medium	10%	25.80%	9.96
	Hard	0%	5.20%	10.00
OpenAI CUA	Simple	40%	53.00%	7.62
	Medium	10%	23.20%	9.95
	Hard	0%	12.30%	10.00
UI-TARS-1.5-7B	Simple	10%	11.00%	9.87
	Medium	0%	6.20%	10.00
	Hard	0%	2.70%	10.00
Human Performance	Simple	100%	100.00%	3.13
	Medium	96%	98.40%	4.29
	Hard	64%	70.60%	5.58

Table 1: Point-and-Click benchmark results for agents across three difficulty tiers (Simple/Medium/Hard). Metrics: Success (fraction of puzzles solved, higher is better), Step (sub-goal completion rate, higher is better), and Optimality (extra actions vs. reference, lower is better).

Despite 0% success on *Hard*, non-zero Step scores (e.g., CUA 12.30%, Claude 5.20%) confirm that agents frequently make early progress but fail to complete multi-step dependencies.

- **Error Types:** We recorded that the LLM agents rarely made outright knowledge errors like using a wrong key on a lock more than once, indicating that they usually understood such concepts. Their errors were more from missing a hidden object or clue (perception/attention error) or from not reasoning through a riddle. Another common failure is forgetting a discovered clue after a few turns (context window issue), causing it to search again needlessly.

From these results, we can clearly see that Point-and-Click exposes a pronounced gap between current agents and humans. Even the strongest model (OpenAI CUA) solves only 40% of Simple puzzles and 10% of Medium, with 0% on Hard, while humans maintain high performance (100/96/64%). Step-level signals show that models often advance several sub-goals before stalling, and CUA is comparatively efficient when it progresses, yet all systems struggle to sustain long-horizon, dependency-laden plans under partial observability. Closing this gap will likely require stronger perception–reasoning integration (e.g., reliable counting and symbol grounding), persistent scratchpads or episodic memory to avoid revisiting solved clues, and explicit planning/search over DAG-structured sub-goals rather than myopic, step-by-step heuristics.

4.3 CASE STUDY

To illustrate typical behaviors behind the aggregate numbers in Table 1, we highlight three representative cases (full transcripts in the Appendix).

Case 1: 12-Step Key Puzzle (Success by Claude-Sonnet-4.5). The puzzle requires: find a key in on the wall, use the key to unlock a chest, inside chest find a new key, apply the key to unlock the door, with 12 clicks in total. Claude-Sonnet-4.5 handled this quite well. It navigated the room to find the key, picked it up, unlocked the chest, reasoned that the key was used to unlock the door. This shows that given a straightforward puzzle, Claude-Sonnet-4.5’s general knowledge, reasoning, and grounding accuracy suffice. The Although successful, it was *not* strictly optimal: optimal actions were 12, while Claude-Sonnet-4.5 executed 67 (i.e., $\times 4.58$ extra), reflecting the efficiency gap we see on average for Simple puzzles. This example typifies Claude-Sonnet-4.5’s Simple-set profile: comparatively strong success among models yet still incurring noticeable extra actions.

Case 2: 45-Step Puzzle (Failure of Claude-3.7-Sonnet at final step). Here the agent had to: (1) gather two ingredients, (2) craft a tool, (3) reveal a hidden compartment, (4) read a hint to open a safe, (5) use the safe’s key to exit. Claude-3.7-Sonnet (Computer-Use) progressed reliably

432 through early steps—collecting items, crafting, and opening the safe—reaching the exit with the
 433 key in inventory. However, it failed to perform the final key–door action before timeout, instead
 434 re-inspecting previously seen objects. Step completion was 93%, consistent with our observation
 435 that Claude attains the highest *Medium* Step score (25.80% on average) despite a modest success
 436 rate (10%). The failure mode aligns with “late-stage stalls”: partial plans are executed, but goal
 437 completion is missed without persistent goal tracking.

438
 439 **Case 3: Hard puzzle with symbolic perception (OpenAI CUA misuses visual cue).** In a Hard
 440 configuration, a painting displayed four symbols indicating a directional combination for a lock.
 441 OpenAI CUA correctly perceived the symbols but treated “ $\uparrow\downarrow\leftarrow\rightarrow$ ” as a literal string rather than a
 442 sequence of directional actions. After several incorrect entries and exploratory detours, it timed out
 443 having completed 27/102 sub-steps (26.5%). This mirrors the aggregate Hard-set pattern: *zero* end-
 444 to-end success across models, yet non-zero partial progress (CUA Hard Step = 12.30%), indicating
 445 that agents can perceive salient cues but often fail to ground them into the correct action semantics
 446 over longer dependency chains.

447 5 DISCUSSION

448
 449 **Implications for model design.** The failure modes suggest several concrete directions: (i)
 450 *Perception–reasoning integration*: agents need more reliable symbol grounding (e.g., mapping ar-
 451 rows or pictograms to action programs) and better object-centric perception to avoid missing small
 452 or occluded clues. (ii) *Persistent memory and state tracking*: maintaining a scratchpad or episodic
 453 memory over discovered clues and unresolved subgoals can reduce revisitation and forgetting. (iii)
 454 *Structured planning over DAGs*: explicit search or policy sketches that reason over hypothesized
 455 subgoal graphs (even when latent) may help bridge long horizons; lightweight belief updates over
 456 the latent G can prioritize information-gathering and subgoal completion. (iv) *Goal management*:
 457 agents that continuously monitor goal completion conditions (Case 2) and maintain a to-do stack are
 458 less likely to miss terminal actions. (v) *Exploration with affordances*: learning affordance models
 459 (“what can be done where”) can prune action spaces and guide clicks toward informative regions,
 460 improving both success and optimality.

461
 462 **Leakage-Safe Structural Signals.** Although our evaluation hides ground-truth graphs from
 463 agents, the structure can shape training signals without trivializing the task. For instance, subgoal
 464 completions can provide auxiliary rewards for RL from pixels; graph-consistent trajectories can su-
 465 pervise imitation or behavior cloning; and latent-graph prediction losses can regularize LLM/VLM
 466 planners to maintain and update a hypothesized dependency structure. Care must be taken to avoid
 467 revealing instance-specific solutions (e.g., by training only on procedurally generated sets disjoint
 468 from held-out seeds and by reporting generalization to unseen seeds).

469
 470 **Limitations.** Point-and-Click currently focuses on single-room, 2D, click-only interactions with
 471 deterministic dynamics. While this isolates reasoning and perception, it omits physics-heavy ma-
 472 nipulation, continuous control, and multi-room navigation. Visuals are synthetic and may privilege
 473 certain aesthetics; some clue types may induce bias if not balanced. Optimality depends on a refer-
 474 ence policy that, although computed from the graph, might not be unique; this can penalize benign
 475 detours. Finally, agents could overfit to UI layout or renderer regularities; to mitigate this, we vary
 476 seeds, layouts, and assets, and we release a fixed, held-out evaluation suite alongside protocols for
 477 generating unlimited fresh instances.

478 6 CONCLUSION

479
 480 Point-and-Click is a procedural benchmark of controllable DAG-structured puzzles (Key–Lock,
 481 Code–Lock, Pattern Match) with per-instance causal graphs for fine-grained evaluation. Results ex-
 482 poses a large human–agent gap, where models achieve partial progress without reliable completion,
 483 indicating a need for tighter perception–reasoning integration, persistent memory, and structure-
 484 aware planning. With scalable diversity, solvability, and analyzable structure, Point-and-Click pro-
 485 vides a compact yet rigorous testbed for agents that perceive, remember, and reason.

486 REFERENCES
487

488 Jaewoo Ahn, Junseo Kim, Heeseung Yun, Jaehyeon Son, Dongmin Park, Jaewoong Cho, and Gun-
489 hee Kim. Flashadventure: A benchmark for gui agents solving full story arcs in diverse adventure
490 games. In *EMNLP*, 2025.

491 Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024. URL
492 <https://www.anthropic.com/news/3-5-models-and-computer-use>.

493 Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. PuzzleVQA:
494 Diagnosing multimodal reasoning challenges of language models with abstract visual patterns. In
495 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 16259–16273, August
496 2024.

497 Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
498 A new challenge for frontier ai reasoning systems. *arXiv:2505.11831*, 2025.

499 Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
500 Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
501 environment for text-based games. In *Workshop on Computer Games*, pp. 41–75. Springer, 2018.

502 Isaac Dart and Mark J Nelson. Smart terrain causality chains for adventure-game puzzle generation.
503 In *2012 IEEE Conference on Computational Intelligence and Games (CIG)*, pp. 328–334. IEEE,
504 2012.

505 Barbara De Kegel and Mads Haahr. Towards procedural generation of narrative puzzles for ad-
506 venture games. In *International Conference on Interactive Digital Storytelling*, pp. 241–249.
507 Springer, 2019.

508 Joris Dormans. Adventures in level design: generating missions and spaces for action adventure
509 games. In *Proceedings of the 2010 workshop on procedural content generation in games*, pp.
510 1–8, 2010.

511 Benjamin Estermann, Luca A. Lanzendorfer, Yannick Niedermayr, and Roger Wattenhofer. Puzzles:
512 A benchmark for neural algorithmic reasoning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
513 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*,
514 volume 37, pp. 127059–127098, 2024.

515 Clara Fernández-Vara and Alec Thomson. Procedural generation of narrative puzzles in adventure
516 games: The puzzle-dice system. In *Proceedings of the The third workshop on Procedural Content
517 Generation in Games*, pp. 1–6, 2012.

518 Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. Algopuzzlevqa: Diagnosing
519 multimodal reasoning challenges of language models with algorithmic multimodal puzzles. In
520 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
521 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
522 9615–9632, 2025.

523 Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
524 tive fiction games: A colossal adventure. In *Proceedings of the AAAI Conference on Artificial
525 Intelligence*, volume 34, pp. 7903–7910, 2020.

526 Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
527 Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: a generalization challenge
528 in vision, control, and planning. In *Proceedings of the 28th International Joint Conference on
529 Artificial Intelligence*, pp. 2684–2691, 2019.

530 Hengzhi Li, Brendon Jiang, Alexander Naehu, Regan Song, Justin Zhang, Megan Tjandrasuwita,
531 Chanakya Ekbote, Steven-Shine Chen, Adithya Balachandran, Wei Dai, et al. Puzzleworld: A
532 benchmark for multimodal, open-ended reasoning in puzzlehunts. *arXiv:2506.06211*, 2025.

533 Seungwon Lim, Sungwoong Kim, Jihwan Yu, Sungjae Lee, Jiwan Chung, and Youngjae Yu. Vis-
534 escape: A benchmark for evaluating exploration-driven decision-making in virtual escape rooms.
535 *arXiv:2503.14427*, 2025.

540 Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng
 541 Zhang. Large language models play starcraft ii: Benchmarks and a chain of summarization ap-
 542 proach. *Advances in Neural Information Processing Systems*, 37:133386–133442, 2024.

543

544 Lilian Morgan and Mads Haahr. Honey, i'm home: an adventure game with procedurally generated
 545 narrative puzzles. In *International Conference on Interactive Digital Storytelling*, pp. 335–338.
 546 Springer, 2020.

547 OpenAI. Computer-using agent, 2025. URL <https://openai.com/index/computer-using-agent/>.

548

549 Long Phan, Mantas Mazeika, Andy Zou, and Dan Hendrycks. Textquests: How good are llms at
 550 text-based video games? *arXiv:2507.23701*, 2025.

551

552 Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He, Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui
 553 Yao, Xiaocheng Yang, Denghui Zhang, Yunzhu Li, and Heng Ji. EscapeBench: Towards advanc-
 554 ing creative intelligence of language model agents. In *Proceedings of the 63rd Annual Meeting of*
 555 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 798–820, July 2025.

556

557 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
 558 hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
 559 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
 560 Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
 561 Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui
 562 interaction with native agents. *arXiv:2501.12326*, 2025.

563

564 Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han, Hongyu
 565 Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, et al. Infinigen indoors: Photo-
 566 realistic indoor scenes using procedural generation. In *Proceedings of the IEEE/CVF Conference*
 567 *on Computer Vision and Pattern Recognition*, pp. 21783–21794, 2024.

568

569 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
 570 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
 571 for everyday tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 572 *recognition*, pp. 10740–10749, 2020.

573

574 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
 575 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
 576 *International Conference on Learning Representations*, 2021.

577

578 Qinyue Tan, Ashkan Kazemi, and Rada Mihalcea. Text-based games as a challenging benchmark
 579 for large language models. *International Conference on Learning Representations Tiny Papers*,
 580 2023.

581

582 Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim
 583 Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to speak and act in a
 584 fantasy text adventure game. In *Proceedings of the 2019 Conference on Empirical Methods in*
 585 *Natural Language Processing and the 9th International Joint Conference on Natural Language*
 586 *Processing (EMNLP-IJCNLP)*, pp. 673–683, November 2019.

587

588 Clinton J Wang, Dean Lee, Cristina Menghini, Johannes Mols, Jack Doughty, Adam Khoja, Jayson
 589 Lynch, Sean Hendryx, Summer Yue, and Dan Hendrycks. Enigmaeval: A benchmark of long
 590 multimodal reasoning challenges. *arXiv:2502.08859*, 2025a.

591

592 Ziyue Wang, Yurui Dong, Fuwen Luo, Minyuan Ruan, Zhili Cheng, Chi Chen, Peng Li, and Yang
 593 Liu. Escapercraft: A 3d room escape environment for benchmarking complex multimodal reason-
 594 ing ability. *arXiv:2503.10042*, 2025b.

595

596 Mengqi Zhou, Xipeng Wang, Yuxi Wang, and Zhaoxiang Zhang. Roomcraft: Controllable and
 597 complete 3d indoor scene generation. *arXiv:2506.22291*, 2025.

598

599

594
595
596
597
598
599
600
601
602
603
604
605
A APPENDIX642
643
644
645
646
647
Figure 4: Annotated example for Claude-Sonnet-4.5 solving key-lock puzzle in Section 4.3 Case 1.