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Abstract

Motivated by the problem of compressing point sets into as few bits as possible
while maintaining information about approximate distances between points, we
construct random nonlinear maps φℓ that compress point sets in the following
way. For a point set S, the map φℓ : Rd → N−1/2{−1, 1}N has the property
that storing φℓ(S) (a sketch of S) allows one to report squared distances between
points up to some multiplicative (1± ϵ) error with high probability. The maps φℓ

are the ℓ-fold composition of a certain type of random feature mapping.
Compared to existing techniques, our maps offer several advantages. The standard
method for compressing point sets by random mappings relies on the Johnson-
Lindenstrauss lemma and involves compressing point sets with a random linear
map. The main advantage of our maps φℓ over random linear maps is that ours
map point sets directly into the discrete cube N−1/2{−1, 1}N and so there is no
additional step needed to convert the sketch to bits. For some range of parameters,
our maps φℓ produce sketches using fewer bits of storage space. We validate the
method with experiments, including an application to nearest neighbor search.

1 Introduction

Random projection is a commonly used method to lower the dimension of a set of points while
maintaining important properties of the data [30]. The random projection method involves mapping
a high-dimensional set of points in Rd to a lower dimensional subspace by some random projection
matrix in such a way that the pairwise distances and inner products between points are approximately
preserved. The random projection method has many applications to data analysis and a variety of
prominent algorithms [11, 17, 5, 8] including nearest neighbor search [13, 12].

The theoretical foundation of random projection is the Johnson-Lindenstrauss lemma which states
that a random orthogonal projection to a lower dimensional subspace has the property of preserving
pairwise distances and inner products [16]. Later it was observed [9, 13] that one can alternatively
take the projection matrix to be a matrix with i.i.d. Gaussian N(0, 1) entries.
Lemma 1 ([9, 13, 30]). Let each entry of an d× k matrix R be chosen independently from N(0, 1).
Let v = 1√

k
RTu for u ∈ Rd. Then for any ϵ > 0, P

(∣∣∥v∥2 − ∥u∥2
∣∣ ≥ ϵ∥u∥2

)
< 2e−(ϵ2−ϵ3)k/4.

A corollary of the above lemma is that if an arbitrary set of n points in Rd is mapped by the random
projection matrix R to Rk where k = Θ(ϵ−2 log n), then the squared distances between pairs of
points are distorted by a factor of at most (1± ϵ) with high probability. The projected points are thus
a lower dimensional representation of the original point set and this lowering of the dimension offers
two main advantages. The first is that algorithms that were originally intended to be performed on
the original point set can now instead be performed on the lower dimensional points.
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The second main advantage of the lower dimensional representation is a reduction in the cost of data
storage. The Johnson-Lindenstrauss lemma shows that random projection of a point set S produces
a data structure (called a sketch) that can be used to report the squared distances between pairs of
points up to a multiplicative (1± ϵ) error. The size of the sketch of course depends on both |S| and
ϵ. From this viewpoint, it is natural to ask what is the minimum number of bits of such a sketch?
The Johnson-Lindenstrauss lemma gives an upper bound on the size of such a sketch as follows:
Any set of n points S can be projected to Rk where k = Θ(ϵ−2 log n) while distorting pairwise
squared distances by a factor of at most (1 ± ϵ). The projected data points are real-valued, and
thus the projected data points needs to be encoded into bits in such a way that guarantees squared
distances are preserved. One way to convert to bits is to use an epsilon-net for the unit ball in Rk: In
order to preserve squared distances up to a multiplicative (1±ϵ) error, it suffices to preserve squared
distances up to an additive m2ϵ error where m is the minimum distance between pairs of points in
S. By identifying each projected point with the closest point in an m2ϵ-net, we can produce a sketch
with Θ

(
nϵ−2 log n log(1/m2ϵ)

)
bits.1

While the Johnson-Lindenstrauss lemma shows that efficient sketches can be obtained by mapping
the points to a lower dimensional space with a random linear mapping (the projection), it is natural
to ask if there are other types of random maps (in particular, possibly nonlinear maps) which are
able to produce sketches with a smaller number of bits. Our main result shows that this is possible
in certain cases by using the composition of random feature maps. We state our main result first
for sets of points contained in the unit sphere Sd−1 and at the end of this section we include the
extension to subsets of the unit ball.

Theorem 2. Let S ⊂ Sd−1 with |S| = n ≥ 2. Let m = minx,y∈S,x ̸=y ∥x − y∥ and
ℓ = ⌈log2 log2 4

m⌉ ≥ 1. Let ϵ > 0 and assume that ϵ < minx,y∈S,x ̸=y 1−|⟨x, y⟩|. Then the random
map φℓ : Sd−1 → 1√

N
{−1, 1}N with N = Θ

(
logn
ϵ2 (log 1

m )2 log2(π/
√
2)
)

(defined in the proof of
Theorem 5 and independent of S except through parameters n, d,m and minx,y∈S,x ̸=y 1− |⟨x, y⟩|)
satisfies the following with probability at least (1 − 2

n )
ℓ: φℓ(S) is a sketch of S that allows one to

recover all squared distances between pairs of points in S up to a multiplicative (1 ± ϵ) error. The
number of bits of the sketch is Θ

(
n logn

ϵ2 (log 1
m )2 log2(π/

√
2)
)
.

The proof of Theorem 2 is explained in Section 3 and the final details of the proof are in Appendix A.
We explain how the map φℓ is constructed in the next subsection and the role of the parameter ℓ is
discussed in Section 1.2. The main advantage of the map φℓ is that it maps the point set S directly
into the discrete cube and thus there is no need to convert the sketch to bits after performing the
random mapping. Furthermore, the map φℓ produces sketches with asymptotically fewer bits than
those obtained using the Johnson-Lindenstrauss lemma if (log( 1

m ))2 log2(π/
√
2) = o

(
log( 1

m2ϵ )
)
.

This is equivalent to the condition that (log( 1
m ))2 log2(π/

√
2) = o

(
log( 1ϵ )

)
.

Furthermore, the sketch φℓ(S) has the desired properties “with high probability”. The probability
that the sketch succeeds is (1− 2/n)ℓ and we claim that this quantity approaches one for all useful
choices of the parameters: First of all, we recall that in all applications of Theorem 2, we should
take n = Ω(d). We also take ϵ = Ω(d−1/2) (ignoring logarithmic factors) because otherwise the
target dimension N is larger than d and then a sketch based on an ϵ-net (as above, but without random
projection) for S would be better, by having bitlength nd (up to logarithmic factors). The assumption
that ϵ < 1 − |⟨x, y⟩| for all x, y, x ̸= y means that ϵ < m2 and so 1/m < ϵ−1/2 = O(d1/4). This
means that ℓ = O(log2 log2 d) and so (1− 2/n)ℓ = Ω(1− 2/d)ℓ approaches one.

We remark that it might be possible to replace the assumption in Theorem 2 that ϵ < 1− |⟨x, y⟩| for
all x, y ∈ S, x ̸= y by the weaker assumption that ϵ < 1− ⟨x, y⟩ = 1

2∥x− y∥2. The reason that an
assumption of this sort is necessary is that, because we are trying to produce sketches which allow
recovery of squared distances, pairs of points with very small distance are difficult to deal with. As
a result, we need to assume for technical reasons that the accuracy parameter ϵ is smaller then (half)
the minimum squared distance, i.e. ϵ < 1 − ⟨x, y⟩. There is an inherent symmetry in the maps φℓ

that we use which makes it convenient to use the stronger assumption that ϵ < 1− |⟨x, y⟩|.

1Since the points are in the unit ball, for any δ > 0, approximating distances to within additive error δ/6
gives approximation of squared distances to within additive error δ. So the size of the epsilon net is, up to a
constant, (1/m2ϵ)ϵ

−2 logn. This gives Θ
(
log(1/m2ϵ)ϵ−2 logn

)
bits per point
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We are able to extend our main result to deal with not only sets of points contained in the unit sphere,
but also any set of points in the unit ball. For a point x in the unit ball Bd we use x̂ to denote x/∥x∥.

Theorem 3. Let S ⊂ Bd with |S| = n ≥ 2 and set ρ = minx∈S ∥x∥2. Let m = minx,y∈S,x ̸=y ∥x̂−
ŷ∥ and ℓ = ⌈log2 log2 4

m⌉ ≥ 1. Let ϵ > 0 and assume that ϵ < minx,y∈S,x ̸=y 1 − |⟨x̂, ŷ⟩|. Then
the random map φℓ : S

d−1 → 1√
N
{−1, 1}N with N = Θ

(
logn
ϵ2 (log 1

m )2 log2(π/
√
2)
)

(defined in the
proof of Theorem 5 and independent of S except through parameters n, d,m and minx,y∈S,x ̸=y 1−
|⟨x̂, ŷ⟩|) satisfies the following with probability at least (1− 2

n )
ℓ: φℓ(Ŝ) and the norm of each point

in S up to an additive ±ρm2ϵ/48 error is a sketch of S that allows one to recover all squared
distances between pairs of points in S up to a multiplicative (1± ϵ) error. Moreover the number of

bits of the sketch is Θ
(

n logn
ϵ2

(
log 1

m

)2 log2(π/
√
2)
+ n log 1

ρm2ϵ

)
.

The proof of Theorem 2 is explained in Section 3 and the final details of the proof are in Appendix A.
The number of bits of the sketches in the above theorem depend on the parameter m which is the
minimum distance between pairs of points after all points have been normalized to have unit norm.
Thus, it is more complicated to compare the number of bits of our sketches to the sketches obtained
using the Johnson-Lindenstrauss lemma because the Johnson-Lindenstrauss sketches do not rely on
any normalization step. However, as in the case of point sets on Sd−1, there is a large family of
point sets in Bd for which our sketching technique produces sketches with a fewer number of bits.

1.1 The maps φℓ and the recovery of ∥x− y∥2 by φℓ(x) and φℓ(y)

In this section we summarize the construction of the maps φℓ which are used in Theorem 2 and
formally analyzed in Theorem 5 and how they can be used to recover squared distances between
points. Let f(t) = 2

π arcsin(t) and g(t) = sin(πt2 ). So f : [−1, 1] → [−1, 1] is the inverse of
g : [−1, 1] → [−1, 1]. For ℓ ∈ N+, let fℓ be the function f composed with itself ℓ times and similar
for gℓ. Notice that for any ℓ ∈ N+, fℓ : [−1, 1] → [−1, 1] is the inverse of gℓ : [−1, 1] → [−1, 1].

For simplicity in the rest of the introduction we assume all points are normalized to be on the unit
sphere Sd−1. We define the sign function as

sign(t) =

{
1 if t ≥ 0

−1 if t < 0.

The maps φℓ will be defined as the composition of ℓ maps of the following form. Set D ∈ N+. Let
Zi, 1 ≤ i ≤ D be i.i.d. standard Gaussian random vectors in Rd. Let φD : Rd → RD be defined by

φD(x)i := D−1/2 sign(⟨x, Zi⟩)

where φD(x)i is the ith coordinate of φD(x).2

The maps φℓ are now defined as the ℓ-fold composition of maps of the type φD. That is, for some
integers D1, D2, . . . , Dℓ, we let φ1 : Sd−1 → D

−1/2
1 {−1, 1}D1 be defined by φ1(x) = φD(x).

For j ∈ {1, . . . , ℓ − 1}, we let φj+1(x) = φDj+1(φj(x)). Therefore, the map φℓ maps Sd−1 to
D

−1/2
ℓ {−1, 1}Dℓ . To avoid writing the double subscript we write the final dimension of the map as

Dℓ = N . We remark that the map φℓ can also be defined as a standard neural network with ℓ hidden
layers using activation function sign(t) and having all weights be i.i.d. standard Gaussian random
variables.

It was shown in [26] that for x, y ∈ Sd−1, E sign(⟨x, Z1⟩) sign(⟨y, Z1⟩) = f(⟨x, y⟩). Since
⟨φD(x), φD(y)⟩ is a sum of D independent copies of D−1 sign(⟨x, Z⟩) sign(⟨y, Z⟩) we get that
E⟨φD(x), φD(y)⟩ = f(⟨x, y⟩).
Now we can explain how one recovers pairwise distances between points in S from φℓ(S). Let S
be a set of n points in Sd−1 ⊂ Rd. As in Theorem 2, we map S by φℓ : S

d−1 → N−1/2{−1, 1}N .
Here ℓ is some parameter which is chosen based on S that is explained below and N is chosen based
on the desired ϵ error of the sketch. If the remaining integers D1, . . . , Dℓ−1 are chosen properly,

2We remark that the map φD is often referred to as a random feature map, see [28, 7, 26].
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then we show that ⟨φℓ(x), φℓ(y)⟩ is a good approximation of fℓ(⟨x, y⟩) (Corollary 4). Since gℓ is the
inverse of fℓ this implies that gℓ(⟨φℓ(x), φℓ(y)⟩) should be a good approximation of ⟨x, y⟩. By the
polarization identity, this implies that 2 − 2gℓ(⟨φℓ(x), φℓ(y)⟩) should be a good approximation of
∥x− y∥2. So recovering ∥x− y∥2 from φℓ(S) simply involves calculating 2− 2gℓ(⟨φℓ(x), φℓ(y)⟩).
In the next section we explain why this mapping and recovery scheme leads to good error guarantees.

1.2 Intuition behind the construction

Now that we have defined the maps φℓ we can explain the idea behind using maps of this form. The
reason why this type of map is useful has to do with the behavior of the derivative of the function gℓ
near t = 1. As previously mentioned, the map φℓ has the property that for all x, y ∈ S,

|⟨φℓ(x), φℓ(y)⟩ − fℓ(⟨x, y⟩)| < δ (1)

for some δ depending on N . Now when we want to recover ∥x− y∥2 based on φℓ(x) and φℓ(y), by
the polarization identity, we use 2 − 2gℓ(⟨φℓ(x), φℓ(y)⟩) as an estimate of ∥x − y∥2. The additive
error of the approximation of ∥x− y∥2 by 2− 2gℓ(⟨φℓ(x), φℓ(y)⟩) depends on the error in Eq. (1)
as well as the derivative of gℓ near the point fℓ(⟨x, y⟩). The function gℓ has the property that its
derivative approaches zero as t approaches one and so the additive error of the approximation of
∥x − y∥2 by 2 − 2gℓ(⟨φℓ(x), φℓ(y)⟩) gets smaller the closer fℓ(⟨x, y⟩) (and thus ⟨x, y⟩) is to one,
i.e., the closer ∥x − y∥2 is to zero. (This is quantified in Theorem 6, specifically the exponent
approaching 2 in the additive error) The effect that this has is that we actually approximate ∥x−y∥2
up to a multiplicative error.

The role of the parameter ℓ in this construction is in controlling the rate at which g′ℓ(t) approaches
zero as t approaches one. If there are pairs x, y such that ∥x − y∥2 is very small then we need the
derivative to approach zero very quickly. This can be done by increasing the parameter ℓ; the rate at
which g′ℓ approaches zero is faster for larger values of ℓ (see Theorem 7 in Appendix B). It turns out
that the correct choice of ℓ is ⌈log2 log2 r⌉ where r is approximately the reciprocal of the minimum
distance between pairs of points in S (see Theorem 2). Because of the connection with standard
neural networks with ℓ hidden layers mentioned in Section 1.1, we refer to the parameter ℓ as the
number of layers of the random mapping.

We remark that the function gℓ(t) has the property that its derivative can be as large as ≈ (π2 )
ℓ when

t is near zero (see Lemma 8 in Appendix B). The effect that this has is that our algorithm leads to
worse approximation of ∥x − y∥2 when ⟨x, y⟩ is close to zero if ℓ is large. However, this loss in
accuracy is made up for by increasing N by only a relatively small amount and the gain in accuracy
when ⟨x, y⟩ is close to one outweighs the loss in accuracy when ⟨x, y⟩ is close to zero.

1.3 Previous variations on random projection

Our compression method is similar to random projection in that they both involve compressing a set
of points by randomly mapping it to a lower dimensional space. A number of other papers have also
suggested variations on random projection where a different random mapping is used. In some, the
random mapping is still linear. In others, they use a linear mapping followed by some quantization
step. The main difference in our method is that it is more fundamentally non-linear due to the fact
that it is a “deep” composition of non-linear maps.

One of the standard versions of random projection involves mapping points by a random Gaussian
matrix. It was later shown that other types of random matrices work equally well. [1, 3, 30, 23]. In
particular, the “binary” version of the Johnson-Lindenstrauss lemma due to [1] (where the entries
of the matrix are all either +1 or −1) is particularly important for the following reason. As dis-
cussed in [15], an alternate way to convert sketches obtained by the Johnson-Lindenstrauss lemma
to bits is possible if the points have bounded integer coordinates and one uses the binary variant of
Johnson-Lindenstrauss lemma. This approach is somewhat incomparable to our setting because of
the integrality assumption.

Another variation on the random projection technique is to apply a quantization step after the pro-
jection which further reduces the cost of storing the data points [6, 21, 24, 29, 4, 10, 18, 25, 32].
A particularly relevant version of quantization is “sign random projections” [6]. Sign random pro-
jections are the same as the 1-layer maps φ1. They were used to estimate angles between points in
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[6] and used to estimate inner products between points in [22]. Therefore, the main novelty of our
technique is the idea of composing multiple such maps.

1.4 Distance compression beyond random mappings

Random mappings are of course not the only way to compress a data set. Here we compare our
method to compression techniques that use methods other than random mappings. These methods
tend to be more complicated algorithmically but as we explain below, can produce sketches with
fewer bits.

Given a set of n points in the unit ball in Rd, what is the minimum number of bits of a sketch which
allows one to recover all pairwise distances up to a multiplicative (1± ϵ) error? As explained above,
the Johnson-Lindenstrauss lemma shows that O

(
ϵ−2n log n log(1/m2ϵ)

)
bits suffice. However, this

is not the optimal number of bits. It was recently shown in [14, 15] that if the points are contained in
the unit ball and m is the minimum distance between points, then O

(
ϵ−2n log n+ n log log(1/m)

)
bits suffice. The additive error version of this question was answered in [2]. Previous to the result of
[14, 15], the best known result was that O

(
ϵ−2n log n log(1/m)

)
bits suffice [19]. These two results,

however, use sketching techniques that differ from the sketches obtained by the random projection
technique in a fundamental way. Random projection compresses the data set “point by point” in
the sense that the compression process is applied to each point independently from the others. In
contrast, the sketches in [15] and [19] must compress the entire data set simultaneously.

Another way of stating this distinction is that “point by point” methods (such as random projection)
satisfy the requirements of the one-way communication version of this sketching problem while the
methods used in [15] and [19] do not. In the one-way communication version of the sketching prob-
lem, Alice holds half of the data points and Bob holds the other half. Alice sends a message to
Bob using as few bits as possible. Bob then must report distances between pairs of points where
one point in the pair is known by Alice and the other by Bob. The one-way communication version
of the sketching problem asks one to determine the minimum number of bits of Alice’s message.
It was shown in [27] that if the points are in the unit ball and the minimum distance is m, then
Ω
(
ϵ−2n log(n/δ) log(1/m)

)
bits are required for the one-way communication version of the prob-

lem if the sketch is required to be successful with probability at least 1− δ.

Any sketching algorithm which compresses the data set point by point satisfies the requirements of
the one-way communication variant of the sketching problem. We therefore know that sketching
algorithms which compress the data set point by point cannot produce sketches with the optimal
number of bits. However, there are several advantages to sketching algorithms of this sort. One
advantage is that they are generally simpler and easier to implement. Another is that if one wants to
add additional points to the data set, the entire sketching algorithm does not need to be re-run.

Our sketching algorithm from Theorem 2 also has the property that it compresses the data set point
by point. Furthermore, the number of bits of our sketch almost matches the lower bound from [27].
The dominant term in the bound from Theorem 2 is Θ(ϵ−2n log n(log(1/m))2 log2(π/

√
2)). Thus

our number of bits matches the lower bound from [27] up to the power on the log(1/m) term. This
motivates the question of whether some variation on our sketching technique can reduce this power.

1.5 Outline of the paper and notation

Section 2 contains the construction of the maps φℓ and quantifies the error in the approximation of
fℓ(⟨x, y⟩) by ⟨φℓ(x), φℓ(y)⟩. Then in Section 3 we explain how the proof of Theorems 2 and 3
is completed. This amounts to showing how ⟨φℓ(x), φℓ(y)⟩ allows one to estimate ∥x − y∥2 and
quantifying the error of the estimation. Some of the details are deferred to the appendix. Finally,
Section 4 contains experimental results, including an application to nearest neighbor search.

For x ∈ Rd \{0} we use x̂ to denote x/∥x∥. For x, y ∈ Sd−1, the polarization identity states that
2− 2⟨x, y⟩ = ∥x− y∥2; for arbitrary x, y ∈ Rd, it states that ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ = ∥x− y∥2.
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2 The construction of the maps φℓ

The purpose of this section is to prove the following result, Corollary 4, which shows a bound on the
error of the approximation of fℓ(⟨x, y⟩) by ⟨φℓ(x), φℓ(y)⟩ for all pairs x, y in a set of n points. The
error in this approximation depends on the dimension Dℓ of the image space of φℓ. In particular,
we show how large Dℓ needs to be in order to guarantee with high probability that ⟨φℓ(x), φℓ(y)⟩ is
equal to fℓ(⟨x, y⟩) up to some additive error δ for all pairs x, y.

We recall the definitions of the functions fℓ and gℓ: Let f(t) = 2
π arcsin(t) and g(t) = sin(πt2 ). For

ℓ ∈ N+, let fℓ be the function f composed with itself ℓ times and similar for gℓ. Notice that for any
ℓ ∈ N+, fℓ : [−1, 1] → [−1, 1] is the inverse of gℓ : [−1, 1] → [−1, 1].

Corollary 4. Let S ⊂ Sd−1 with |S| = n ≥ 2. Let r := maxx,y∈S,x ̸=y
2√

1−|⟨x,y⟩|
. Let ℓ ∈ N+.

Let δ > 0 be such that δ < 2
r2 . Then there exists a random map φℓ : Rd → D

−1/2
ℓ {−1, 1}Dℓ

(independent of S except through parameters n, d, r) such that with probability (1− 1
n )

ℓ it satisfies∣∣⟨φℓ(x), φℓ(y)⟩ − fℓ(⟨x, y⟩)
∣∣ < δ

for all x, y ∈ S, where Dℓ ≤ ⌈ 24 logn
δ2 ⌉.

The above corollary follows immediately from the following theorem which also determines a bound
on the error of the approximation accuracy not only of fℓ(⟨x, y⟩) by ⟨φℓ(x), φℓ(y)⟩, but also the
approximation accuracy of fj(⟨x, y⟩) by ⟨φj(x), φj(y)⟩ for all j ∈ {1, . . . , ℓ}.

Theorem 5. Let S ⊂ Sd−1 with |S| = n ≥ 2. Let r := maxx,y∈S,x ̸=y
2√

1−|⟨x,y⟩|
. Let ℓ ∈ N+.

Let δ > 0 be such that δ < 2
r2 . Then there exist random maps φj : Rd → D

−1/2
j {−1, 1}Dj ,

j ∈ {1, . . . , ℓ} (independent of S except through parameters n, d, r) such that for all j ∈ {1, . . . , ℓ},
with probability at least (1− 2

n )
j , φj satisfies∣∣⟨φj(x), φj(y)⟩ − fj(⟨x, y⟩)

∣∣ < δ

2ℓ−jr3((2/3)j−(2/3)ℓ)
(2)

for all x, y ∈ S, where Dj ≤
⌈
24·22(ℓ−j)r6((2/3)

j−(2/3)ℓ) logn
δ2

⌉
.

Proof. The maps φj will be compositions of maps of the following form. Set D ∈ N+. Let Zi,
1 ≤ i ≤ D be i.i.d. standard Gaussian random vectors in Rd. Let φD : Rd → RD be defined by

φD(x)i := D−1/2 sign(⟨x, Zi⟩),

where φD(x)i is the ith coordinate of φD(x). A direct calculation, see [26], shows that
E⟨φD(x), φD(y)⟩ = f(⟨x, y⟩). Furthermore, ∥φD(x)∥ = 1 for all x ∈ Rd.

First we use this construction to define φ1. We let φ1 = φD1 where D1 is chosen below. Using
Hoeffding’s inequality, for all x, y ∈ S,

P
(∣∣∣⟨φ(x), φ(y)⟩ − f(⟨x, y⟩)

∣∣∣ > δ

2ℓ−1r3((2/3)−(2/3)ℓ)

)
= P

(∣∣∣D1⟨φ(x), φ(y)⟩ −D1f(⟨x, y⟩)
∣∣∣ > D1δ

2ℓ−1r3((2/3)−(2/3)ℓ)

)
≤ 2 exp

(
− D1δ

2

2 · 22(ℓ−1)r6((2/3)−(2/3)ℓ)

)
.

We set D1 =
⌈
6·22(ℓ−1)r6((2/3)−(2/3)ℓ) logn

δ2

⌉
. This means that the above probability is less than 2/n3

and that φ1 satisfies the conditions of the theorem with probability at least 1−
(
n
2

)
2
n3 ≥ 1− 1/n ≥

1− 2/n.

Now assume that the required map exists for some j ≥ 1. We will show that it exists for j + 1.
So there exists a map φj : Rd → D

−1/2
j {−1, 1}Dj which satisfies Eq. (2) with probability at least

6



(1− 2
n )

j . Let φj+1 be defined by φj+1(x) = φDj+1
(
φj(x)

)
where Dj+1 will be chosen at the end

of the proof. We will show that, conditioned on the event that φj does satisfy Eq. (2), the probability
that φj+1 satisfies Eq. (2) is at least 1 − 2

n . So assume that φj does satisfy Eq. (2). Recall that we
want to show that ⟨φj+1(x), φj+1(y)⟩ is a good estimate of fj+1(⟨x, y⟩). We have by [26] that

E⟨φj+1(x), φj+1(y)⟩ = f(⟨φj(x), φj(y)⟩),
i.e., ⟨φj+1(x), φj+1(y)⟩ is an unbiased estimator of f(⟨φj(x), φj(y)⟩). By the triangle inequality,∣∣⟨φj+1(x), φj+1(y)⟩ − fj+1(⟨x, y⟩)

∣∣
≤

∣∣⟨φj+1(x), φj+1(y)⟩ − f(⟨φj(x), φj(y)⟩)
∣∣+ ∣∣f(⟨φj(x), φj(y)⟩)− f(fj(⟨x, y⟩))

∣∣. (3)
First we give a bound on the second term in Eq. (3). We are assuming that φj satisfies Eq. (2), i.e.,
that for all x, y ∈ S, ∣∣⟨φj(x), φj(y)⟩ − fj(⟨x, y⟩)

∣∣ ≤ δ

2ℓ−jr3((2/3)j−(2/3)ℓ)
.

So to get a bound on the second term in Eq. (3) we need to get an upper bound on the derivative of
f in the interval between ⟨φj(x), φj(y)⟩ and fj(⟨x, y⟩). We claim for all pairs x, y ∈ S, x ̸= y, the
derivative of f in the interval between ⟨φj(x), φj(y)⟩ and fj(⟨x, y⟩) is upper bounded by r(2/3)

j

.

Let t be in the closed interval between ⟨φj(x), φj(y)⟩ and fj(⟨x, y⟩). By definition of φj and fj
this implies |t| ≤ 1. We also have |t| ≤ |fj(⟨x, y⟩)|+ δ/2ℓ−jr3((2/3)

j−(2/3)ℓ) ≤ |fj(⟨x, y⟩)|+ δ by
Eq. (2) and the fact that r ≥ 2 by definition. Thus,

1− |t| ≥ 1− |fj(⟨x, y⟩)| − δ

≥ (1− |⟨x, y⟩|)(2/3)
j

− δ by Lemma 10 in Appendix B

≥ (1− |⟨x, y⟩|)(2/3)j

2
by δ <

2

r2
≤ (1− |⟨x, y⟩|)

2
≤ (1− |⟨x, y⟩|)(2/3)j

2
.

Using this and |t| ≤ 1, we get

f ′(t) =
2

π
√
1− t2

≤ 2

π
√

1− |t|
≤ 2

√
2

π
(√

1− |⟨x, y⟩|
)(2/3)j ≤ 2

√
2r(2/3)

j

π
< r(2/3)

j

.

We have shown that the derivative of f in the interval between ⟨φj(x), φj(y)⟩ and fj(⟨x, y⟩) is
upper bounded by r(2/3)

j

. This combined with Eq. (2) and the fact that the derivative of f is positive
implies that ∣∣∣f(⟨φj(x), φj(y)⟩)− f(fj(⟨x, y⟩))

∣∣∣ ≤ r(2/3)
j δ

2ℓ−jr3((2/3)j−(2/3)ℓ)

=
δ

2 · 2ℓ−(j+1)r3((2/3)j+1−(2/3)ℓ)
,

where the equality above uses that 3
(
(2/3)j − (2/3)ℓ

)
=

∑ℓ−1
i=j (2/3)

j .

Now we deal with the first term in Eq. (3). Using Hoeffding’s inequality,

P
(∣∣⟨φj+1(x), φj+1(y)⟩ − fj+1(⟨x, y⟩)

∣∣ > δ

2 · 2ℓ−(j+1)r3((2/3)j+1−(2/3)ℓ)

)
= P

(∣∣Dj+1⟨φj+1(x), φj+1(y)⟩ −Dj+1fj+1(⟨x, y⟩)
∣∣ > Dj+1δ

2 · 2ℓ−(j+1)r3((2/3)j+1−(2/3)ℓ)

)
≤ 2 exp

(
− δ2Dj+1

8 · 22(ℓ−(j+1))r6((2/3)j+1−(2/3)ℓ)

)
.

We set Dj+1 = ⌈ 24·22(ℓ−(j+1))r6((2/3)
j+1−(2/3)ℓ) logn

δ2 ⌉. This means that the above probability is less
than 2/n3. So, using Eq. (3) and the previously established bound on the second term in Eq. (3), we
have shown that for any pair x, y ∈ S,∣∣∣⟨φj+1(x), φj+1(y)⟩ − fj+1(⟨x, y⟩)

∣∣∣ < δ

2ℓ−(j+1)r3((2/3)j+1−(2/3)ℓ)

with probability at least 1− 2
n3 . So, conditioned on the event that φj satisfies Eq. (2), φj+1 satisfies

Eq. (2) with probability at least 1 − 2
n . Since the probability that φj+1 satisfies Eq. (2) is greater

than or equal to the probability that both φj+1 and φj satisfy Eq. (2), this means that the probability
that φj+1 satisfies Eq. (2) is at least (1− 2

n )
j+1.
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Figure 1: The left, resp. right figure shows the average over 4000 trials of the value of ϵ such that
2− 2g1(⟨φ1(x), φ1(y)⟩) and 2− 2g2(⟨φ2(x), φ2(y)⟩) approximate ∥x− y∥2 up to a multiplicative
(1± ϵ) error when the input dimension is 2, resp. 2000.

3 The recovery of ∥x− y∥2 by φℓ(x) and φℓ(y)

Here we explain how the proofs of the main theorems, Theorems 2 and 3 are completed. This is
done in two steps. Recall that we showed in Corollary 4 that ⟨φℓ(x), φℓ(y)⟩ is a good approximation
of fℓ(⟨x, y⟩) for all pairs x, y ∈ S. The first step is Theorem 6 which shows that gℓ(⟨φℓ(x), φℓ(y)⟩)
is a good approximation of ⟨x, y⟩. The reason this is true is because gℓ is the inverse of fℓ. So the
proof of Theorem 6 uses facts about the derivative of gℓ (in particular Theorem 7 in Appendix B)
to show that the bound on the error of the approximation of fℓ(⟨x, y⟩) by ⟨φℓ(x), φℓ(y)⟩ implies a
bound on the error of the approximation of ⟨x, y⟩ by gℓ(⟨φℓ(x), φℓ(y)⟩) (Theorem 6).

The second step is to set ℓ = ⌈log2 log2 4
m⌉ where m is the minimum distance between pairs of

distinct points in S and then show using the polarization identity that the error bound established in
Theorem 6 implies the error bounds in Theorems 2 and 3. The proof of the following theorem and
the proof that Theorems 2 and 3 follow from Theorem 6 are in Appendix A.
Theorem 6. Let S ⊂ Sd−1 with |S| = n. Let ℓ ∈ N+ and ϵ > 0 and assume that ϵ satisfies ϵ <
1− |⟨x, y⟩| for all x, y ∈ S with x ̸= y. Then the random map φℓ : S

d−1 → N−1/2{−1, 1}N from
Theorem 5 satisfies that, with probability at least (1 − 2/n)ℓ, for all x, y ∈ S, gℓ(⟨φℓ(x), φℓ(y)⟩)
is equal to ⟨x, y⟩ up to an additive ±ϵ∥x − y∥2−2−ℓ+1

error where N =
⌈
48(π/

√
2)2ℓ logn
ϵ2

⌉
.

Equivalently, for all x, y ∈ S, 2 − 2gℓ(⟨φℓ(x), φℓ(y)⟩) is equal to ∥x − y∥2 up to an additive
±ϵ∥x− y∥2−2−ℓ+1

error.

4 Experiments

The main goal of our experiments is to validate the idea of composing multiple random feature maps.
Our main results show that better error guarantees can be obtained by composing multiple random
feature maps. This is demonstrated by the additive error term ±ϵ∥x − y∥2−2−ℓ+1

in Theorem 6
which is smaller for larger values of ℓ as long as ∥x− y∥ < 1. Recall that we refer to the parameter
ℓ as the number of layers of the random mapping. In our experiments, we will focus on comparing
the one layer maps φ1 to the two layer maps φ2. First we do a simple experiment to determine more
specifically under what conditions we should expect two layers to outperform one. Then we apply
the maps to nearest neighbor search and again compare the performance of one layer to two layers.

4.1 Two layers vs. one layer

As already mentioned, Theorem 6 indicates that the additive error obtained by the one layer map
is proportional to ∥x − y∥ and the additive error obtained by the two layer map is proportional to
∥x − y∥3/2. Therefore, two layers should give better error estimates than one layer when ∥x − y∥
is sufficiently small. Our first experiment answers the following question; how small must ∥x− y∥

8



Figure 2: Average over 500 trials of the number of true k nearest neighbors of X0 in D recovered
from φ1(D), φ2(D), and GD where G is an i.i.d. Gaussian random matrix.

be so that two layers outperform one? We consider pairs of points x, y ∈ Sd−1 where ∥x − y∥
ranges from .01 to .1. We will see in this experiment that the input dimension has little to no effect
and so we can without loss of generality assume d = 2. In the d = 2 case we take x = (1, 0) and
y = (a,

√
1− a2) where a is chosen so that ∥x− y∥ ranges from .01 to .1 in increments of .005, see

Fig. 1. We map x, y by both maps φ1 and φ2 where the output dimension of both maps is 1000 and
φ2 first maps to {−1, 1}6000. In Fig. 1 we plot the average over 4000 trials of the value of ϵ such that
2− 2g1(⟨φ1(x), φ1(y)⟩) and 2− 2g2(⟨φ2(x), φ2(y)⟩) approximate ∥x− y∥2 up to a multiplicative
(1± ϵ) error. We see in Fig. 1 that the two layer map gives a better approximation of ∥x− y∥2 when
∥x−y∥ ≤ .06 and the one layer map gives a better approximation of ∥x−y∥2 when ∥x−y∥ > .06.
From a practical perspective, this means that the one layer map may often outperform the two layer
map because most real world datasets have few points at this small of a distance. However, very
large datasets may be more likely to have distances in the range where two layers is better. We do
this same experiment when d = 2000 except for d = 2000 we choose the input points randomly:
We let x be uniform on Sd−1 and set y = z/∥z∥ where z = x+ (dist/

√
d)N(0, Id) and dist ranges

from .01 to .1. With this choice, E ∥x − y∥ ≈ dist. Because there is no dependence on the input
dimension in our error bounds, we expect the error to depend on ∥x− y∥ but not d, which is verified
in Fig. 1.

4.2 Two layers vs. one layer; nearest neighbor search

Given a set of points and a query point, nearest neighbor search is the task of finding the points
that are closest to the given query point. Nearest neighbor search is used in many applications to
solve regression/classification problems. Before performing nearest neighbor search, some dimen-
sionality reduction or compression method can be used to reduce the computational cost. We test
the performance of our maps φℓ for this task.

Again we focus on ℓ = 1, 2. Given a data set D and a query point X ∈ D, we first map D by φ1 and
φ2 to N−1/2{−1, 1}N . We then calculate the k nearest neighbors of X according to the compressed
data and compare how many of the true k nearest neighbors of X in D are recovered.

Randomly generated data. We let X0 (the query point) be a uniform random vector on the unit sphere
S2. Then for i ∈ {1, 2, . . . , 100}, we let Yi = X0 + (4/5)(i/200)N(0, I3) where N(0, I3) ⊂ R3

is from the multivariate normal distribution (and the Yi are independent). The constants are chosen
so that E ∥X0 − Yi∥ ≈ i/200. Then the data D is defined to be X0 along with {Yi/∥Yi∥}i∈{1,100}.
We map D by φ1 and φ2 where the output dimension ranges from 23 to 213 and φ2 first maps to the
space of dimension six times the output dimension. We also map D by a standard Gaussian random
matrix to Rd with the same range of output dimensions. The average number of k nearest neighbors
recovered is shown in Fig. 2. As is to be expected based on the previous experiment, two layers
generally outperform one. We remark that the accuracy of our maps is not meant to be compared to
the accuracy of the Gaussian random matrix because that mapping uses full precision real numbers
and does not convert to bits.
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Figure 3: Average over 10 independent trials and over all 179 query points of the number of true k
nearest neighbors of 179 query points in RCV1 recovered from φ1(D), φ2(D), and GD where G is
an i.i.d. Gaussian random matrix.

Real data. We perform a similar experiment with the RCV1 dataset [20]. The RCV1 data set
consists of 804414 samples and 47236 features. We only consider the first 23149 samples which
have been previously designated as the training set. As query points, we select all data points which
have at least one neighbor at distance less than .05. There are 179 such points. The RCV1 dataset
consists of unit norm vectors. This is our data set D. We map D by φ1 and φ2 where the output
dimension ranges from 23 to 211 and φ2 first maps to the space of dimension six times the output
dimension. We also map D by a standard Gaussian random matrix to Rd with the same range of
output dimensions. The average number of k nearest neighbors recovered is shown in Fig. 3. We see
that in the case k = 1, the two layer map outperforms the one layer map when the output dimension
is sufficiently large. This again confirms expectations based on Fig. 1. In the k = 4 case, the one
layer map is superior. This is likely due to the fact that while our query points all have at least
one neighbor at distance at most .05, the other three out of the four nearest neighbors may be at a
significantly greater distance. Therefore, again considering Fig. 1, it is not surprising that the one
layer map gives a better approximation of the four nearest neighbors.

5 Conclusion

We introduced a new method for compressing point sets while maintaining information about ap-
proximate distances between pairs of points. The method compresses point sets using a composition
φℓ of ℓ random feature mappings. The main advantage of composing multiple feature maps is that,
rather than approximating pairwise distances up to an additive ϵ error, our maps accomplish the more
difficult task of approximating the distances up to a multiplicative (1± ϵ) error. The reason that we
get multiplicative rather than additive error guarantees is a direct result of composing multiple ran-
dom feature maps and has to do with the behavior of the derivative of the function gℓ (introduced
in Section 1.1) near t = 1. We also validate the idea of composing multiple random feature maps
experimentally.
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A Proofs of Theorems 2, 3, and 6

Proof of Theorem 6. We will actually prove the stronger result that with probability at least (1 −
2/n)ℓ, for all x, y ∈ S, gℓ(⟨φℓ(x), φℓ(y)⟩) is equal to ⟨x, y⟩ up to an additive ±ϵ(2−2|⟨x, y⟩|)1−2−ℓ

error. This statement implies the theorem statement by the polarization identity.

Set δ = (ϵ/
√
2)(

√
2/π)ℓ in Theorem 5. One can check that the assumption that ϵ < 1− |⟨x, y⟩| for

all x, y ∈ S with x ̸= y implies that δ < 2/r2 for all x, y ∈ S with x ̸= y as required by Theorem 5.
From Theorem 5, the map φℓ : Rd → 1√

N
{−1, 1}N satisfies, with probability at least (1 − 2/n)ℓ,

that ∣∣⟨φℓ(x), φℓ(y)⟩ − fℓ(⟨x, y⟩)
∣∣ < (ϵ/

√
2)(

√
2/π)ℓ (4)

for all x, y ∈ S where N =
⌈
48(π/

√
2)2ℓ logn
ϵ2

⌉
. Now assume that φℓ does satisfy Eq. (4) for all

x, y ∈ S. Since gℓ
(
fℓ(t)

)
= t for all t ∈ [−1, 1], Eq. (4) implies that gℓ(⟨φℓ(x), φℓ(y)⟩) should be

a good approximation of ⟨x, y⟩. In particular, we claim that for all x, y ∈ S, gℓ(⟨φℓ(x), φℓ(y)⟩) is
equal to ⟨x, y⟩ up to an additive error of ±ϵ(2− 2|⟨x, y⟩|)1−2−ℓ

. In order to show this we first need
to get a bound on the derivative of gℓ in the interval between ⟨φℓ(x), φℓ(y)⟩ and fℓ(⟨x, y⟩).
Let t be in the interval between ⟨φℓ(x), φℓ(y)⟩ and fℓ(⟨x, y⟩). By Theorem 7,

g′ℓ(t) ≤
πℓ

2
ℓ+1
2

(
2− 2gℓ(|t|)

)1−2−ℓ

.

By Eq. (4), we have that
∣∣|fℓ(⟨x, y⟩)| − |t|

∣∣ ≤
√
2ϵ(

√
2

π )ℓ. By Lemma 8 this means that
gℓ
(
|fℓ(⟨x, y⟩)|

)
− gℓ(|t|) ≤

√
2ϵ(

√
2/π)ℓ(π/2)ℓ ≤ ϵ, i.e. that gℓ(|t|) ≥ gℓ

(
|fℓ(⟨x, y⟩)|

)
− ϵ. Since

f is an odd function, fℓ(t) is also an odd function and so gℓ
(
|fℓ(⟨x, y⟩)|

)
= gℓ

(
fℓ(|⟨x, y⟩|)

)
=

|⟨x, y⟩|. So we have shown that gℓ(|t|) ≥ |⟨x, y⟩| − ϵ. Since ϵ < 1 − |⟨x, y⟩|, we have that
2− 2gℓ(|t|) ≤ 2− 2|⟨x, y⟩|+ 2ϵ < 2(2− 2|⟨x, y⟩|). Using that 21−2−ℓ ≤ 2, this means that

g′ℓ(t) ≤
πℓ

2
ℓ+1
2

(
2− 2gℓ(|t|)

)1−2−ℓ

≤
√
2

(
π√
2

)ℓ

(2− 2|⟨x, y⟩|)1−2−ℓ

.

This bound on the derivative along with the fact that g′ℓ(t) > 0 and Eq. (4) means that∣∣∣gℓ(⟨φℓ(x), φℓ(y)⟩
)
− gℓ

(
fℓ(⟨x, y⟩)

)∣∣∣ < ϵ
(
2− 2|⟨x, y⟩|

)1−2−ℓ

.

Since gℓ
(
fℓ(⟨x, y⟩)

)
= ⟨x, y⟩, the theorem follows.

Now that we have established the above result, we can prove Theorems 2 and 3. We restate the
theorems from the intro for the sake of readability.

Theorem 2. Let S ⊂ Sd−1 with |S| = n ≥ 2. Let m = minx,y∈S,x ̸=y ∥x − y∥ and
ℓ = ⌈log2 log2 4

m⌉ ≥ 1. Let ϵ > 0 and assume that ϵ < minx,y∈S,x ̸=y 1−|⟨x, y⟩|. Then the random
map φℓ : Sd−1 → 1√

N
{−1, 1}N with N = Θ

(
logn
ϵ2 (log 1

m )2 log2(π/
√
2)
)

(defined in the proof of
Theorem 5 and independent of S except through parameters n, d,m and minx,y∈S,x ̸=y 1− |⟨x, y⟩|)
satisfies the following with probability at least (1 − 2

n )
ℓ: φℓ(S) is a sketch of S that allows one to

recover all squared distances between pairs of points in S up to a multiplicative (1 ± ϵ) error. The
number of bits of the sketch is Θ

(
n logn

ϵ2 (log 1
m )2 log2(π/

√
2)
)
.

Proof. Let φℓ : S
d−1 → N−1/2{−1, 1}N be the map from Theorem 5 that by Theorem 6 satisfies,

with probability at least (1 − 2/n)ℓ, that 2 − 2gℓ(⟨φℓ(x), φℓ(y)⟩) is equal to ∥x − y∥2 up to an
additive ±(ϵ/4)∥x − y∥2−2−ℓ+1

error for all x, y ∈ S with N =
⌈
768(π/

√
2)2ℓ logn
ϵ2

⌉
. Now assume

that φℓ does satisfy this condition for all x, y ∈ S. We have

∥x− y∥−2−ℓ+1

≤ (1/m)2
−ℓ+1

=
(
(1/m)2

−ℓ)2 ≤
(
(1/m)

1
log2(4/m)

)2
< 4.
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This means that we actually estimate ∥x−y∥2 up to an additive ±ϵ∥x−y∥2 error, i.e., a multiplicative
(1± ϵ) error. We have(

π√
2

)2ℓ

≤
(

π√
2

)2(1+log2 log2
4
m )

=

(
π2

2

)
2
2 log2(

π√
2
) log2 log2(

4
m )

=
π2

2

(
log2

4

m

)2 log2
π√
2

so the result follows.

The above theorem shows that given a set of points S ⊂ Rd, there exists an appropriate choice of ℓ
and N so that the random map φℓ : Sd−1 → N−1/2{−1, 1}N satisfies, with high probability, that
φℓ(S) is a sketch of S that allows one to recover all squared distances between points in S up to a
multiplicative (1± ϵ) error. The next theorem shows that this same sketching algorithm also works
for point sets that do not necessarily consist of unit norm points provided that the sketch also stores
the approximate norms of points in S.
Theorem 3. Let S ⊂ Bd with |S| = n ≥ 2 and set ρ = minx∈S ∥x∥2. Let m = minx,y∈S,x ̸=y ∥x̂−
ŷ∥ and ℓ = ⌈log2 log2 4

m⌉ ≥ 1. Let ϵ > 0 and assume that ϵ < minx,y∈S,x ̸=y 1 − |⟨x̂, ŷ⟩|. Then
the random map φℓ : S

d−1 → 1√
N
{−1, 1}N with N = Θ

(
logn
ϵ2 (log 1

m )2 log2(π/
√
2)
)

(defined in the
proof of Theorem 5 and independent of S except through parameters n, d,m and minx,y∈S,x ̸=y 1−
|⟨x̂, ŷ⟩|) satisfies the following with probability at least (1− 2

n )
ℓ: φℓ(Ŝ) and the norm of each point

in S up to an additive ±ρm2ϵ/48 error is a sketch of S that allows one to recover all squared
distances between pairs of points in S up to a multiplicative (1± ϵ) error. Moreover the number of

bits of the sketch is Θ
(

n logn
ϵ2

(
log 1

m

)2 log2(π/
√
2)
+ n log 1

ρm2ϵ

)
.

Proof. For each x ∈ S, let nx be an approximation of ∥x∥ up to an additive ±ρm2ϵ/48 error.

First we claim that in order to recover squared distances up to a multiplicative (1 ± ϵ) error, it
suffices to recover squared distances to an additive ±ϵ∥x∥∥y∥∥x̂ − ŷ∥2 error. The reason is that
for any x, y ∈ Rd, we can prove the inequality ϵ∥x∥∥y∥∥x̂ − ŷ∥2 ≤ ϵ∥x − y∥2 by observing that
∥x∥∥y∥∥x̂−ŷ∥2 = ∥x∥∥y∥(2−2⟨x̂, ŷ⟩) = 2∥x∥∥y∥−2⟨x, y⟩ ≤ ∥x∥2+∥y∥2−2⟨x, y⟩ = ∥x−y∥2.

Now let Ŝ = {x̂ : x ∈ S}. Let φℓ : Sd−1 → N−1/2{−1, 1}N with N = Θ
(

(π/
√
2)2ℓ logn
ϵ2

)
be the map from Theorem 5 that by Theorem 6 satisfies, with probability at least (1 − 2/n)ℓ, that
gℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) is equal to ⟨x̂, ŷ⟩ up to an additive ±(ϵ/32)(2 − 2|⟨x̂, ŷ⟩|)1−2−ℓ

error for all
x̂, ŷ ∈ Ŝ. Assume that φℓ does satisfy this condition for all x̂, ŷ ∈ Ŝ. Notice that this implies
that gℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) is equal to ⟨x̂, ŷ⟩ up to an additive ±(ϵ/32)(2 − 2⟨x̂, ŷ⟩)1−2−ℓ

error for all
x̂, ŷ ∈ Ŝ. We have

(2− 2⟨x̂, ŷ⟩)−2−ℓ

≤ (1/m)2
−ℓ+1

=
(
(1/m)2

−ℓ)2 ≤
(
(1/m)

1
log2(4/m)

)2
< 4.

This means that gℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) is equal to ⟨x̂, ŷ⟩ up to an additive ±(ϵ/8)(2− 2⟨x̂, ŷ⟩) error for
all x̂, ŷ ∈ Ŝ, i.e., an additive ±(ϵ/8)∥x̂− ŷ∥2 error. For any x, y ∈ S,

nxnygℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) ≤
(
∥x∥+ ρm2ϵ/48

)(
∥y∥+ ρm2ϵ/48

)(
⟨x̂, ŷ⟩+ (ϵ/8)∥x̂− ŷ∥2

)
≤ ⟨x, y⟩+ (ϵ/4)∥x∥∥y∥∥x̂− ŷ∥2

where the second inequality uses the definition of ρ and m. We can also show that

nxnygℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) ≥ ⟨x, y⟩ − (ϵ/4)∥x∥∥y∥∥x̂− ŷ∥2.

This means that nxnygℓ(⟨φℓ(x̂), φℓ(ŷ)⟩) approximates ⟨x, y⟩ up to an additive ±(ϵ/4)∥x∥∥y∥∥x̂−
ŷ∥2 error. Since nx approximates ∥x∥ up to an additive ±(ϵ/24)minx,y∈S ∥x∥∥y∥∥x̂ − ŷ∥2 error
this means that n2

x approximates ∥x∥2 up to at least an additive ±(ϵ/4)∥x∥∥y∥∥x̂− ŷ∥2 error. Now
this means that

n2
x + n2

y − 2nxnygℓ(⟨φℓ(x̂), φℓ(ŷ)⟩)
approximates

∥x∥2 + ∥y∥2 − 2⟨x, y⟩ = ∥x− y∥2

up to an additive ±ϵ∥x∥∥y∥∥x̂− ŷ∥2 error.
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Storing all the norms of the points up to an additive ±ρ error requires log(1/ρ) bits per point.

We have
(π/

√
2)2ℓ ≤ (π/

√
2)2(1+log2 log2 r) = (π2/2)22 log2(π/

√
2) log2 log2 r = (π2/2)(log2 r)

2 log2(π/
√
2)

so the result follows.

B Technical lemmas

Theorem 7. For all t ∈ [0, 1],

g′ℓ
(
fℓ(t)

)
≤ πℓ

2
ℓ+1
2

(2− 2t)1−2−ℓ

.

This implies that for all t ∈ [0, 1],

g′ℓ(t) ≤
πℓ

2
ℓ+1
2

(
2− 2gℓ(t)

)1−2−ℓ

.

and that for all t ∈ [−1, 1],

g′ℓ(t) ≤
πℓ

2
ℓ+1
2

(
2− 2gℓ(|t|)

)1−2−ℓ

.

Proof. We start by proving the first claim.

We will use the inequality

1− f(t) =
2

π
arccos(t) ≤

√
1− t for t ∈ [0, 1], (5)

which follows by finding critical points of
√
1− t − 2

π arccos(t). Now this enables us to prove by
induction that

1− fℓ(t) ≤ (2− 2t)2
−ℓ

for t ∈ [0, 1]

for all ℓ ∈ N+. The base case ℓ = 1 is (using Eq. (5))

1− f(t) =
2

π
arccos(t) ≤

√
1− t ≤

√
2− 2t.

The induction step again uses Eq. (5) and also uses that fℓ−1(t) ∈ [0, 1] if t ∈ [0, 1]. For all
t ∈ [0, 1], we have

1− fℓ(t) = 1− f(fℓ−1(t))

≤
√
1− fℓ−1(t)

≤
√

(2− 2t)2−ℓ+1

= (2− 2t)2
−ℓ

.

So 1− fℓ(t) ≤ (2− 2t)2
−ℓ

for t ∈ [0, 1] follows.

Now we will prove the first theorem claim by induction. The base case is

g′
(
f(t)

)
=

π

2
cos

(
arcsin(t)

)
=

π

2

√
1− t2 ≤ π

2

√
2− 2t.

Now for the induction step, assume that the first theorem claim holds for fℓ−1. We first need to
establish that for all t ∈ [−1, 1],

g′
(
fℓ(t)

)
=

π

2
cos

(
(π/2)fℓ(t)

)
=

π

2
cos

(
arcsin(fℓ−1(t))

)
=

π

2

√
1− (fℓ−1(t))2

≤ π√
2

√
1− fℓ−1(t) by fℓ−1(t) ≤ 1

≤ π√
2
(2− 2t)2

−ℓ

.
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Using the chain rule, g′ℓ(t) = g′(t)g′ℓ−1

(
g(t)

)
. So for all t ∈ [0, 1],

g′ℓ
(
fℓ(t)

)
= g′

(
fℓ(t)

)
g′ℓ−1

(
g(fℓ(t))

)
= g′

(
fℓ(t)

)
g′ℓ−1

(
fℓ−1(t)

)
≤ π√

2
(2− 2t)2

−ℓ πℓ−1

2
ℓ
2

(2− 2t)1−2−ℓ+1

=
πℓ

2
ℓ+1
2

(2− 2t)1−2−ℓ

.

The second claim follows by plugging in gℓ(t) into the first claim. The third claim follows by
observing that if t ∈ [−1, 0], then g′ℓ(t) = g′ℓ(|t|) since g′ℓ is an even function (by the fact that gℓ is
odd.)

Lemma 8. For all t ∈ [−1, 1], 0 ≤ g′ℓ(t) ≤ (π/2)ℓ.

Proof. By induction. When ℓ = 1, g′(t) = π
2 cos(πt2 ) ∈ [0, π/2] when t ∈ [−1, 1]. For the

induction step, we need to use the fact that gℓ−1(t) ∈ [−1, 1] when t ∈ [−1, 1]. Using this,

g′ℓ(t) = g′
(
gℓ−1(t)

)
g′ℓ−1(t) =

π

2
cos

(π
2
gℓ−1(t)

)
g′ℓ−1(t) ∈ [0, (π/2)ℓ].

Lemma 9. |fℓ(t)| ≤ |t| for all t ∈ [−1, 1] and all ℓ ∈ N+.

Proof. Since fℓ(−t) = −fℓ(t) for all t ∈ [−1, 1], it suffices to prove that fℓ(t) ≤ t for all t ∈ [0, 1].
The claim follows by induction in ℓ.

Lemma 10. For all ℓ ∈ N and t ∈ [−1, 1], 1− |fℓ(t)| ≥ (1− |t|)(2/3)ℓ .

Proof. Since fℓ(−t) = −fℓ(t), it suffices to show that 1− fℓ(t) ≥ (1− t)(2/3)
ℓ

for all t ∈ [0, 1].

To prove that 1−f(t) ≥ (1− t)2/3 we will use that arccos(t) ≥ π(1−t)1/2

2(1+t)1/6
for all t ∈ [0, 1] as shown

in [31, Remark 2.1]. Now we have 1 − f(t) = 2
π arccos(t) ≥ (1−t)1/2

(1+t)1/6
. The result now follows

since 1
(1+t)1/6

≥ (1 − t)1/6 for all t ∈ (−1, 1]. This is the base case. The induction step uses the
fact that for all t ∈ [0, 1], fℓ(t) ∈ [0, 1]. Using this and the base case proven above,

1− fℓ+1(t) ≥
(
1− fℓ(t)

)2/3 ≥
(
(1− t)(2/3)

ℓ)2/3
= (1− t)(2/3)

ℓ+1

.
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methods are better. We also point out that experiments back up the theoretical results.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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Answer: [Yes]

Justification: All theorems include a complete proof. Some of the details of the proofs of
the main results are deferred to the first appendix. But we give a short overview of how the
proof is completed in the first two paragraphs of Section 3.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.
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taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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versions (if applicable).
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We ran experiments on a standard laptop and do not think it is necessary to
report compute time because we are not including code in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our research has no immediate negative applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our models/data do not pose such a risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations for all pre-existing models. And we also cite the paper
that first introduced the dataset that we use (RCV1)
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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