
Hot Pluggable Federated Learning

Lei Shen†, ⋆ Zhenheng Tang†, ⋆ Lijun Wu♮ Yonggang Zhang†

Xiaowen Chu♯ Tao Qin♮ Bo Han†
† Department of Computer Science, Hong Kong Baptist University

♮ Microsoft Research
♯ DSA Thrust, The Hong Kong University of Science and Technology (Guangzhou)

{cslshen, zhtang, ygzhang, bhanml}@comp.hkbu.edu.hk
apeterswu@gmail.com xwchu@ust.hk {taoqin}@microsoft.com

Abstract

Personalized federated learning (PFL) achieves high performance by assuming
clients only meet test data locally, which is not held in many generic federated
learning (GFL) scenarios. In this work, we show that Personalized models (PMs)
can be used to enhance GFL. However, storing and selecting whole models requires
impractical computation and communication costs. Inspired by model components
that attempt to edit a sub-model for specific purposes, we design an efficient and ef-
fective framework named Hot-Pluggable Federated Learning (HPFL). Specifically,
clients individually train personalized plug-in modules based on a shared backbone,
and upload them with a plug-in marker on the server modular store. In inference
stage, an accurate selection algorithm allows clients to identify and retrieve suitable
plug-in modules from the modular store to enhance their generalization perfor-
mance on the target data distribution. Furthermore, we provide differential privacy
protection during the selection with theoretical guarantee. Our comprehensive
experiments and ablation studies demonstrate that HPFL significantly outperforms
state-of-the-art GFL and PFL algorithms. Additionally, we empirically show
HPFL’s remarkable potential to resolve other practical FL problems such as contin-
ual federated learning and discuss its possible applications in one-shot FL, anarchic
FL, and FL plug-in market. Our work is the first attempt towards improving GFL
performance through a selecting mechanism with personalized plug-ins.

1 Introduction

The performance of generic federated learning (GFL) [7] suffers from data heterogeneity [7, 28, 40,
30, 67, 9], where clients have different data distributions. Personalized federated learning [63, 10, 9]
(PFL) assumes that clients only need to inference on local test data, which has similar distributions to
local training datasets. To this end, PFL prioritize fitting on local datasets while absorbing knowledge
from the global training data. Due to this property, PFL gets rid of data heterogeneity, as the training
convergence is not severely disturbed by the client drift [40, 30, 29, 9].

Table 1: Test accuracy on GFL and PFL of personalized
models, with ResNet-18 and CIFAR-10.

Algorithm FedAvg FedPer FedRep FedRoD

Problem GFL PFL GFL PFL GFL PFL GFL PFL

Accuracy 81.5 92.5 74.1 95.8 85.1 95.6 85.3 94.3

However, in real-world scenarios, FL users may
encounter test data different from local train-
ing data [44, 47, 25, 67], but which may appear
in other training data. For example, when one
traveling abroad, the personal map app might
recommend entirely different restaurants from

⋆ Equal Contribution. Correspondence to Bo Han (bhanml@comp.hkbu.edu.hk).

International Workshop on Federated Foundation Models In Conjunction with NeurIPS 2024 (FL@FM-NeurIPS
2024).

their residence. In such situation, models trained on local restaurant and personal data can make
better recommendations 1. In GFL, clients encounter test data of others, instead of only their own test
data as in PFL [63, 10, 9]. In such realistic cases, PFL algorithms lose their general performance,
as they prioritize fitting local datasets with the personalized models. As Table 1 shows, advanced
PFL algorithms FedPer [2], FedRep [10] and FedRoD [9] perform well in PFL, but performance
collapses in GFL, where personalized clients encounter all test data. This performance gap motivates
us following fundamental questions:

Whether a global model (GM) is compulsorily needed in GFL? Is it possible to
enhance GFL with personalized models (PMs) trained in PFL?

To explore this problem, our core idea is to select suitable PMs for inference on clients according to
incoming test data. However, this naive solution leads to privacy concerns, large system overheads
and poor scalability. To this end, inspired by model components [58, 52], we propose a general
and effective framework named Hot-Pluggable Federated Learning (HPFL) to practically solve the
problems applying PMs in GFL settings.

As shown in Figure 1, HPFL splits the model into two parts: a backbone (also called feature extractor)
and a plug-in module. The backbone can be trained using any FL algorithm or initialized as a
pre-trained backbone. Clients train plug-ins based on local datasets and upload them with the
according plug-in markers to the server store. During inference, test data passes the backbone, and a
suitable plug-in is selected to complete the inference. There are two ways to implement retrieving
plug-ins in HPFL, α: Clients upload task markers to the server and select the appropriate module; β:
Clients download all plug-in markers to select. α is suitable for situations where clients have limited
computation ability, as it selects and completes final inference on the server; While β reduces the
computation burden on the server. To protect the privacy, we provide differential privacy protection
on communicated features during the selection with theoretical guarantee.

Our contributions are summarized as follows:

• We identify a substantial performance advantage of PFL over GFL, and leverage it to boost
the GFL performance. As far as we know, this is the first work that enhances GFL through
learning, sharing and selecting plug-ins, instead of classic paradigm with a single model.

• We propose a general, efficient and effective framework HPFL to utilize PMs in GFL
(Section 4). And we add noise on communicated markers to provide differential privacy
protection with theoretical guarantee (Section 4.4).

• We conduct comprehensive experiments and ablation studies on four datasets and three
neural networks to demonstrate the effectiveness of HPFL (Section 5).

• We show the remarkable potential of HPFL in federated continual learning (Section 5.4) and
discuss HPFL’s possible applications in one-shot FL, anarchic FL and FL plug-in market
(Section 6).

2 Related Works

Generic Federated Learning. To address the data heterogeneity problem, FedProx [40] and
MOON [38] propose to add regularization terms to mitigate the negative effect caused by data hetero-
geneity. Some methods explicitly or implicitly modify uploaded gradients to alleviate the gradient
dissimilarity [70, 30, 68]. Some works share intermediate features [26, 20, 68] or extra data [67] to
reduce client drift. Different from these works, we attempt to enhance the GFL performance with
personalized models.

Personalized Federated Learning. PFL exploits personalizing client models to better suit local het-
erogeneous training data. Meta-learning [15], knowledge distillation [83, 37], adaptive regularization
and model mixtures [19, 12, 11] are used to enhance personal knowledge learning of models. Some
works [41, 36] allow clients to learn different PM structures. KNN-per [49] constructs PMs by replac-
ing classifiers with non-parametric methods based on local datasets. FedRep [10] and FedRoD [9]
propose to learn a global feature extractor and personalized classifiers. While FedRoD conducts
inference with different classifiers, they are manually switched according to the prior knowledge

1More real-world examples of GFL-PM problems are provided in Appendix F.1.

2

about the source of test data, which is also impractical in real-world FL. All of these works only
consider PMs in PFL settings, which is impractical in real-world FL, because clients might meet
various test data. To address this problem, HPFL select suitable PMs according to the test data during
the test time,

Test-time adaptation & domain adaptation methods in FL. Some works [53, 43] focus on general-
izing a federated model trained on multiple source domains to unseen target domains. FedTHE [27]
discussed test-time distribution shift of PMs, which is similar to but different from generalizing
on global test data. These methods enhance federated models by better training schemes, which is
orthogonal to our method. Different from them, HPFL is the first FL framework that flexibly selects
PMs for inference. Due to the limited space, we leave a more detailed discussion of the literature in
Appendix A.

3 Preliminary

3.1 Generic FL
The GFL aims to make M clients collaboratively learn a global model parameterized as θ. Each
client has its local data distribution Dm. Thus, the local objective function Lm(θ) on client m is also
different. The global optimization object of GFL is defined as [30, 72, 67]:

min
θ∈Rd

LG(θ) =

M∑
m=1

pmLm(θ) =

M∑
m=1

pmEξm∼Dmℓ(f(θ, ξm), ξm), (1)

where ξm ∼ Dm is the data sampled from Dm, f(θ, ξm) is the prediction, d is the number of model
parameters, pm > 0 and

∑M
m=1 pm = 1. Usually, pm = nm

N , where nm denotes the number of client
m’s samples and N =

∑M
m=1 nm. GM refers to the model obtained from optimizing GFL.

3.2 Personalized FL
Different from the object function of GFL, the PFL aims to learn multiple personalized models which
fit well on different datasets individually: [37, 9, 39]:

min
Ω,θ1,...,θM

LP (Ω, θ1, ..., θM) =

M∑
m=1

pmEξm∼Dmℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM), (2)

where R is a regularizer [9] that varies with different algorithms, Ω is used to collaborate clients.
We call each obtained locally personalized model θm as PM.

4 HPFL: Hot-Pluggable Federated Learning

In this section, we will first introduce the design of HPFL in Section 4.1 with the Algorithm 1. Then, we
illustrate that directly selecting PM faces some fatal obstacles, including the large system overheads
and privacy concerns in Section 4.2. Lastly, the selection method is introduced in Section 4.3.

4.1 Design of HPFL

Training the complete model θ. First, HPFL obtains a model θ that performs well (not as good as
PMs in PFL) on all client datasets with any GFL algorithm . Thus, the model θ owns a backbone
g that can extract general features from all client datasets. Due to the limited space, we chose the
classic GFL algorithm FedAvg [50] in our experiments. Future works can explore other advanced
GFL algorithms to learn a better θ.

Training personalized plug-in module θρm. Usually, after training, early layers of a model learn
more general features than late layers [81, 4], while late layers are more specific to some particular
datasets. Inspired by this, HPFL decomposes the model as fm = ρ ◦ g for each client m. As shown in
Figure 1, g is a feature extractor, and ρ is a model head that outputs the final model prediction.

Clients can design a new personal plug-in module ρm (or say model head) different from the original
head ρ, based on different computation characteristics. Then, with the frozen general feature extractor
g, each client individually trains personalized ρm on local data Dm by optimizing:

min
θρ
m

LP (θm) = Eξm∼Dmℓ(ρm ◦ g(ξm), ξm). (3)

3

Module store
on the Server

Clients Test data

(2) Inference

…

Final Output

(1) Personalizing Plug-in Module

Add Noise
&Upload

Selection Download
selected plug-in

…

New incoming
client

…

Data flow

Communication Plug-in or task marker

Noised marker Freezed backbone

Plug-in module

Add noise

Figure 1: The framework of HPFL.

Now, each client obtains a PM fm = ρm ◦ g, which enhances the generalization performance of
ρm ◦ g on Dm, which is usually better than original GM f = ρ ◦ g due to the personalization. Thus,
the PMs θpflm can be constructed by θg and θρm, inference becomes as f(θpflm , ξm) = ρm ◦ g(ξm).

Inference and selecting plug-in module. In HPFL, we define some plug-in marker Hm that will be

exploited to select plug-in module . When training θρm, Hm are collected by clients and uploaded to
the server. Note that as a general framework, HPFL does not limit the specific form of Hm, which
depends on the selection method. As the first attempt in this paradigm, We introduce a distance-based
selection method in Section 4.3.

4.2 Problems of Directly Selecting PM

With PMs Θ = {Ωpfl, θpfl1 , ..., θpflM } = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM), an intuitive idea is to
choose PM i based on the similarity between its local data Di and the input data ξm ∼ Dm, thus the
selection function is implemented as: s = Sξ(Θ, ξm,H) = argmini∈M d(Di, ξm), where d(·, ·) is
any distance measure, then infer as f(θpfls , ξm). However, accessing data of other clients will cause
privacy concerns. Moreover, communicating the whole model parameter θm is impractical due to
large system overhead, especially for large language models and many clients.

4.3 Selection Methods

Decomposing the model also avoids accessing the raw data ξm ∼ Dm. With the shared feature
extractor g, we can select the ρm based on the intermediate features hm = g(ξm) rather than ξm
itself to avoid leading raw data. Several studies have exploited the sharing of intermediate features to
improve FL [21, 42, 48, 41].

Distance based methods. Intuitively, now that each ρm is trained based on local features hm, we
only need to compare the similarity between hm and htest = g(ξtest), where ξtest is the data that
needs testing. Now, the select problem turns into:

Sdist(d, htest, ĥ1, ..., ĥM) = argmin
m∈M

d(ĥm, ĥtest), (4)

in which ĥm and ĥtest are noised hm and htest, which are illustrated in the next section. In this
selection method, the plug-in marker Hm = ĥm. In HPFL, we utilize Maximum Mean Discrepancy
(MMD) distance [46] to measure the distance between plug-in markers and noised features of test
data (task marker). We also exploit other distance measures like SVCCA [55], CKA [32] and
out-of-distribution confidence based selection methods and provide results in Appendix D.

4.4 Privacy Protection

4

Algorithm 1 HPFL.
Initialization: server distributes the initial model θ0

to all clients.
1. Training the complete model θ:
for each round r = 0, 1, · · · , R do

server samples a set of clients Sr ⊆ {1, ...,M}.
server communicates θr to clients m ∈ Sr .
for each client m ∈ Sr in parallel do
Cr+1
m ← LocalTraining(Dm, θr) (GFL) .

end for
θr+1 ← ServerUpdate(Cr+1

m |m ∈ Sr) (GFL).
end for

2. Training personalized plug-in module θρm:
for each client m ∈M in parallel do do

Clients share and freeze the θg ,
Clients design personalized θρm.

Training θρm with object function 3 (PFL).
Obtaining plug-in markerHm (e.g. noised

features explained in Section 4.3 in detail.)

for plug-in selection.
Upload θρm andHm to server.

end for
Server stores θρm andHm.

HPFL Inference(θg,Dtest):
i← SelectPlugIn(Dtest, θ

g,H).
Get output← ρi ◦ g(ξ|ξ ∼ Dtest).

Differential Privacy. In HPFL, plug-in mark-
ers (noised features of training data) and task
markers (noised features of test data) are shared
for selecting. To protect the privacy, following
differential privacy (DP) [1, 5, 74, 78], we add
Gaussian noises as ĥ = (h + κ ∗ υ)/(1 + κ)
for both hm and htest where υ ∼ N (µm, σm),
in which ĥm = (hm + κ ∗ υ)/(1 + κ), where
υ ∼ N (µm, σm) is the noise to enhance privacy
protection. The µm and σm are mean and vari-
ance of features hm, κ is a coefficient control-
ling the relative magnitude between Gaussian
noise and the features. The following theorem
shows that the raw data is protected by our noise
mechanism with (ϵ, δ)-DP. The detailed proof
of Theorem 4.1 is shown in Appendix 3.

Theorem 4.1. For the procedure of obtaining
and sharing markers H(xm) = (g(xm) + κ ∗
υ)/(1 + κ), (ϵ, δ)-DP holds if the ϵ, δ con-
forms to any of the two conditions: (1) ∀ϵ, δ ∈

(0, 1), ϵ ≥ O

(√
2ln(1.25/(κ∗σm))

δ

)
; (2) ∀0 <

δ < 1/2− e−3ϵ/
√
2πϵ, ϵ ≥ O(1

2(κ∗σm)2).

Model Inversion Attack. Besides theoretical
analysis of DP protection HPFL, we also empir-
ically verify the safety of sharing noised plug-in
markers against the model inversion attack [85].
The failed reconstruction (in Appendix E.2)
of raw data demonstrate that HPFL can defend
model inversion attacks successfully.

5 Experiments

5.1 Experimental Setup

Federated Datasets and Models. We conduct experiments on four commonly used image clas-
sification datasets in FL, including CIFAR-10 [33], CIFAR-100 [33], Fashion-MNIST [75], and
Tiny-ImageNet [35], with Latent Dirichlet Sampling (Dir) partition method (α = 0.1, 0.05) to simulate
data heterogeneity following [22, 38, 48, 67]. We also evaluate the scalability of our proposed meth-
ods with different numbers of clients (M = 10, 100). We implement our algorithm and experiments
based on the popular FL framework FedML [22, 64]. We train ResNet-18 [23], MobileNet [24] and
a simple-CNN on all datasets. We run all algorithms for 1000 communication rounds, with 1 local
epoch per round. Hyper-parameters and more details are explained in Appendix C.

Baselines and Metrics. We compare HPFL with GFL algorithms FedAvg [50], FedSAM [54];
advanced PFL algorithms including FedPer [3], FedRep [10], PerFedMask [57]; FedRoD [9] both for
GFL and PFL; and a test-time adaption method FedTHE [27]. For all algorithms, we validate the
learned global model (GM) on the global test dataset (GFL), the personalized models (PM) on the
personalized dataset (PFL), and PMs on GFL. More specifically, our new GFL-PM test setting is: for
all clients, we randomly assign the local test data encountered by the clients with equal probability, i.e.
∀i, j ∈ {1, ...,M}, P r(Dtest

i = Dtest,PFL
j) = 1/M , where Dtest,PFL

j is test data IID with local
training data on client j as local test data in PFL. More details about metrics are stated in Appendix C.

5.2 Experiment Results

HPFL consistently outperforms baselines in PM on GFL while comparable with classic PFL
methods in classic personalized setting. As shown in Table 2, in GFL-PM setting, HPFL excels
above all methods and most by a large margin, even surpasses accuracies in GFL-GM in most cases,

5

Table 2: Experiment results. Noisy coefficient κ=1. §: we focus more on GFL setting. Numbers in ForestGreen
highlight highest values in GFL setting. *: FedAvg fine-tunes the whole model instead of partial model as in
HPFL; FedSAM fine-tunes partial model as in HPFL; For these two methods, we only list the best performance in
Ep = 1 & 10 and denote which epochs get the values in subscript. Plug-in selection is implemented with MMD.
Ep denotes the epoch of fine-tuning.

Clients 10 (sample 50% each round) 100 (5% each round)

Non-IID Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05)

Test Set GFL§ PFL GFL§ PFL GFL§ PFL GFL§ PFL

Method/Model GM PM PM GM PM PM GM PM PM GM PM PM

CIFAR-10

FedAvg Ep = 1 & 10∗ 81.5 - 92.8(10) 62.4 - 96.1(1) 73.6 - 91.6(10) 47.9 - 93.4(10)

FedPer 74.1 40.9 95.8 58.7 27.3 96.4 44.5 20.6 89.7 24.0 14.3 89.9
FedRoD 85.3 41.6 94.3 67.6 26.8 96.9 74.0 20.1 87.4 66.7 15.6 91.2
FedRep 85.1 51.3 95.6 73.2 30.2 85.3 66.5 27.4 89.3 59.2 20.4 89.1

PerFedMask Ep = 5 57.8 23.4 83.1 31.8 15.1 83.1 53.8 15.6 82.1 35.0 12.5 87.6
FedTHE 86.2 64.4 93.4 68.7 31.1 85.7 75.0 23.8 90.8 66.9 44.5 90.1

FedSAM Ep = 1 & 10∗ 84.5 47.8(1) 96.0 65.4 33.2(1) 96.7(10) 50.4 36.6(1) 90.3(10) 36.6 23.3(1) 91.3(10)

HPFL Ep = 1 81.5 95.4 95.4 62.4 96.0 96.0 73.6 88.6 94.9 47.9 82.2 93.9
HPFL Ep = 10 81.5 95.7 95.7 62.4 96.3 96.3 73.6 85.7 95.7 47.9 81.8 95.3

FMNIST

FedAvg Ep = 1 & 10∗ 86.0 - 98.2(10) 76.1 - 99.1 90.2 - 97.8(10) 86.1 - 98.4(10)

FedPer 73.5 39.0 87.5 64.1 27.5 99.1 69.0 29.1 95.9 44.8 22.6 96.8
FedRoD 87.4 44.1 98.1 72.5 29.3 98.9 88.9 47.0 98.5 84.8 35.3 98.2
FedRep 87.0 43.0 97.5 74.7 39.5 98.0 88.2 72.4 97.9 84.4 59.6 98.3

PerFedMask Ep = 5 80.1 30.8 95.8 47.6 27.1 96.9 89.3 23.0 93.5 91.9 21.3 96.5
FedTHE 87.9 69.4 96.8 70.7 55.4 98.5 88.5 83.1 97.5 84.7 74.6 97.6

FedSAM Ep = 1 & 10∗ 89.3 53.8(1) 98.5 77.2 36.6(1) 99.4 86.3 76.9(1) 98.5(10) 85.2 70.8(1) 98.6(10)

HPFL(MMD) Ep = 1 86.0 98.3 98.3 76.1 99.0 99.1 90.2 97.6 97.9 86.1 81.4 98.1
HPFL(MMD) Ep = 10 86.0 98.4 98.4 76.1 99.1 99.2 90.2 97.9 98.8 86.1 74.1 98.7

CIFAR-100

FedAvg Ep = 1 & 10∗ 69.1 - 79.5(1) 65.3 - 80.9(10) 59.7 - 66.7(10) 47.9 - 75.1(10)

FedRoD 69.4 32.5 77.2 67.0 23.6 78.5 52.8 11.2 55.4 48.4 7.3 66.3
FedRep 68.4 42.6 72.4 65.0 37.3 81.2 47.9 18.6 56.5 43.3 14.1 65.3

PerFedMask Ep = 5 47.3 7.0 40.0 49.4 7.0 39.7 41.7 3.8 35.8 42.1 3.6 35.2
FedTHE 69.9 24.8 74.9 67.0 18.3 79.6 53.3 14.8 61.2 48.4 13.2 70.3

FedSAM Ep = 1 & 10∗ 68.4 57.4(1) 85.6(10) 64.1 43.0(1) 88.8(10) 41.3 27.3(1) 71.1(10) 34.8 18.4(1) 77.3(10)

HPFL(MMD) Ep = 1 68.6 74.8 83.3 65.3 75.8 87.4 59.7 63.8 81.2 47.9 72.3 84.1
HPFL(MMD) Ep = 10 68.6 72.2 85.7 65.3 73.9 88.8 59.7 55.7 84.1 47.9 70.9 86.4

Tiny-ImageNet-200

FedAvg Ep = 1 & 10∗ 56.5 - 69.5(1) 54.9 - 75.3(1) 47.2 - 67.5(10) 42.1 - 68.9(10)

FedPer 16.3 0.5 0.5 13.4 0.5 0.5 2.4 1.8 23.5 1.3 25.1 1.0
FedRoD 57.5 26.1 68.5 55.3 12.9 52.9 48.6 49.3 9.6 43.7 5.9 53.7
FedRep 56.1 28.7 55.4 54.5 31.8 69.6 46.4 18.6 52.5 40.3 12.8 58.6

PerFedMask Ep = 5 26.9 6.6 35.9 23.2 4.2 31.3 29.9 1.9 23.5 18.7 1.6 32.6
FedTHE 57.4 19.0 64.3 55.5 17.4 75.7 49.1 15.9 63.0 44.5 9.2 64.0

FedSAM Ep = 1 & 10∗ 57.0 48.6(1) 75.1(10) 55.0 42.1(1) 78.2(10) 43.8 30.4(1) 69.3(10) 38.0 21.1(10) 72.0
HPFL(MMD) Ep = 1 56.5 51.9 70.8 54.9 58.5 74.7 47.2 50.7 71.3 42.1 47.1 74.7
HPFL(MMD) Ep = 10 56.5 50.9 73.7 54.9 58.8 77.0 47.2 48.0 73.2 42.1 43.9 76.5

while baselines perform poorly due to a lack of adaption to test data. We attribute the significant
performance gain to adaptation to test data implemented with precise plug-in selection, which we
discuss in Section 5.3. It is worth noting that FedTHE also attempts to adapt its model using test data,
but only with the ensemble of its locally personalized and global classifier, thus ignores knowledge
from other clients and underperforms HPFL. In terms of GFL-GM accuracy, HPFL actually shares
the same GM with GFL backbone training method (in our case, i.e. FedAvg), so its GFL-GM
accuracy is exactly the same as that of FedAvg and outperforms the classic PFL algorithms focusing
on PFL performance like FedPer [3]. As for PFL-PM accuracy, our proposed method HPFL reports
comparable results to the PFL baselines.

HPFL maintains fairly excellent robustness against non-IID degree. As shown in Table 2, the
accuracy of HPFL is not only highest in GFL-PM, but also increases when the heterogeneity increases
from Dir(0.1) to Dir(0.05) in a similar way as in PFL-PM in some cases. From this phenomenon,
we infer that HPFL exploits local information from clients to ensemble a model in the form of plug-
ins. The server holds these local information in the form of plug-ins instead of fusing these local
knowledge in a single model, thus prevents the original local information from being corrupted in
model aggregation as it occurs in highly heterogeneous data, and maintains a robustness against
non-IID, which is a common issue in Federated Learning.

6

HPFL has excellent scalability in terms of performance in accuracy. HPFL adopts a one-client-
one-plug method to better modify final inference models according to the data distribution of clients’
local data. In this way, HPFL has inherent ability to allow more clients to come and go freely in the
FL system. From Table 2, we observe that other PFL methods met extreme problems when dealing
with the situation that the number of clients was larger (M=100), with most of the accuracies lower
than 30% on CIFAR-10, 20% on CIFAR-100. However, though with a little decay in accuracy, HPFL
is still applicable in the situation where the system included larger number of clients.

Table 3: Accuracy of different κ

κ 0 1 10 100 1000

Accuracy 95.4 95.4 95.4 95.4 95.4

A win-win deal: Efforts to protect privacy is not contradictory to the performance of HPFL. In
HPFL, clients share plug-in markers with the server, which may raise privacy concern. To protect
clients from the risk of data breaches during communication or improper storage on the server, we
add noise to the plug-in markers. However, we surprisingly found that noise will not damage the
performance of HPFL as shown in Table 3. We attribute the robustness toward noise to robust selection
method of HPFL, which we study later in Section 5.3. Discussions and experimental results about the
privacy risk against HPFL are shown in Appendix E.

1 5 9 13 17

65
70
75
80
85
90
95

A
cc

ur
ac

y
(%

)

PFL Ep = 1
PFL Ep = 10
MMD Ep = 1
MMD Ep = 10
GFL

Figure 2: Accuracy with different numbers of plug-in layers. X-axis represents the number of layers in
ResNet-18 for plug-ins.

C
lie

nt
 ID

 = 0 = 1 = 10 = 100 = 1000

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.40

0.60

0.80

0.40

0.60

0.80

0.40

0.60

0.80

Figure 3: Selection score maps with different noise coefficients. Blocks with green anchor mean the
corresponding client selects the plug-in and download it. Blocks with green anchor lying in diagonal
indicate that clients choose plug-ins of themselves when met their own test data, which conforms to
the aim of selection methods. X-axis represents Plug-in ID.

5.3 Selection Accuracy

The more flexible the models are, the better? As shown in Figure 2 and Figure 5, the accuracy of
HPFL continuously decreases with the increasing number of plug-in layers, we propose two possible
reasons leading to the phenomenon: (1) local clients’ samples are not sufficient for training big-scale
plugs, resulting severe overfitting issue, and (2) The selection methods may not be suitable for
markers from middle layers. However, according to Table 2, we believe that fine-tuning larger
plug-ins does not lead to such a performance degradation, because FedAvg fine-tunes on the whole
model without significant performance loss. Therefore, it is natural to give attention to the potential

7

C
lie

nt
 ID

layer 1 # layer 5 # layer 9 # layer 13 # layer 17

0.25

0.50

0.75

1.00

0.25

0.30

0.35

0.40

0.23

0.25

0.28

0.30

0.33

0.20

0.25

0.30

0.20

0.30

0.40

Figure 4: Selection score maps with different numbers of layers in ResNet-18 plug-ins own. X-axis
represents Plug-in ID.

trouble large plug-ins may cause in plug-in selection. In Section 5.3, we conduct experiments to
testify the speculation that the performance loss when increasing the plug-in layer is mainly due to
the degradation of plug-in selection.

For further study, we may conduct experiments to testify these two conjectures. Once the conjectures
are testified, we will try to find ways to solve these two problems. However, despite the difficulty of
choosing, large plug-ins also multiply the computation time and resources needed in training them,
the network bandwidth required to transmit them, and so on. As a result, large plug-ins are generally
not good options in HPFL from our perspective.

Table 4: # marker dimensions versus # plug-ins layers on CIFAR-10.

plug-ins layers 1 3 4 5 6

marker dimensions 512 512×4×4
(8,192)

256×8×8
(16,384)

128×16×16
(32,768)

64×32×32
(131,072)

Plug-in ID

C
lie

nt
 ID

layer=1 layer=3 layer=4 layer=5 layer=6

0.25

0.50

0.75

0.50

1.00

0.20

0.30

0.40

0.20

0.30

0.40

0.20

0.40

0.60

Figure 5: Selection score maps with different numbers of plug-in layers on CIFAR-10 (α = 0.05)

Plug-in selection plays an important role in HPFL, so here we study how it gets affected by the
magnitude of noise added on features and the number of plug-in layers. Experiments in this section
are carried out with α=0.1, M=10 on CIFAR-10 dataset.

We observed the expected phenomenon conforming to our conjecture in Section 5.2 that it is harder
for selection methods to correctly select plug-ins with more layers. With the increasing number of
plug-in layers, the score map gradually changes. However, until it actually influences the result of
selection, the performance of HPFL gets unaffected.

Observed from Figure 3, despite the slight variation in the heatmaps of MMD score with the noise
coefficient, selecting plug-in with the lowest MMD score instead of combining plug-ins with MMD
score adds robustness towards noise to HPFL. We shows the accuracies under different κ in Table 3.

Table 5: Results of FCL

Naive FCL
GM PM

FCL under HPFL
GM PM

69.5 58.4 62.2 80.9

5.4 Federated Continual Learning

Federated continual learning (FCL) [79] is a new problem where clients join FL training after initial
training. The trained model must retain previous dataset knowledge and perform well on data from
newly arrived clients. HPFL can address the forgetting problem of FCL by preserving previous

8

training knowledge in a personalized plug-in and providing it for client inference as shown in Table 5.
It is an application of HPFL on the temporal scale, where clients collaboratively learn models that
generalize well over time.

We conduct an experiment to display the potential of HPFL to solve catastrophic forgetting met in FCL.
We first displayed the catastrophic forgetting issue in naive FCL. Then we utilized HPFL to solve this
problem. Suppose we had 10 clients in the FL system. We first trained 500 epochs on client 0-4 with
FedAvg, and then we trained another 500 epochs on client 5-9. We trained the backbone of HPFL and
the global model of naive FCL in Nvidia V100 GPU and the rest of the experiment on Nvidia A100.
For naive FCL, We had to adjust the learning rate to 0.05 when training on client 5-9 during 500-1000
epoch in case of training divergence. For FCL under HPFL, we froze the backbone of the model
after training 500 epochs on client 0-4 and training 5 plug-ins on client 0-4 for 1 epoch, respectively.
Then we kept training on client 5-9 with the invariant backbone, after another 500 epochs, we trained
5 plug-ins on client 5-9, respectively. From Table 6, we observe that the accuracy of naive FCL
significantly drops from 78.6 to 52.8, showing that training on clients 5-9 during 500-1000 rounds
makes the global model severely forget the knowledge about clients 0-4. We show a promising way
of using HPFL to mitigate this problem. When met a new task, HPFL allows clients to quickly adapt
to their local data by fine-tuning only a few epochs and uploading the plug-in to the server, like what
happened at the 500 round in our experiment. After training in some new tasks, it is about time
to conduct inference on all clients, we train plug-ins on new tasks, as we do on clients 5-9 in our
experiment, and select plug-ins for every client. In that case, we are able to select and download
the plug-ins better suited for test data with similar distribution, instead of having no choice but to
use a global model having forgotten the knowledge of previous tasks. As is shown in Table 6, our
experiment shows HPFL can significantly outperform naive FCL in GFL and mitigate the catastrophic
forgetting issue in FCL.

Table 6: catastrophic forgetting issue in Naive FCL.

Algorithm Naive FCL (500R) Naive FCL (1000R)

Test data data from Client 0-4

Method/Model GM

Accuracy 78.6 52.8 (↓ 25.8)

6 Applications

Federated Continual Learning. As discussed in Section 5.4, HPFL effectively addresses the
forgetting problem in FCL by preserving knowledge without loss and retrieving when needed.

One-shot FL. With an average backbone such as a pre-trained model, HPFL can train plug-ins in a
single communication round, immediately proceeding to inference. This approach also accommodates
new clients joining the FL system.

Anarchic FL. HPFL supports the dynamic in anarchic FL [77], where clients join and leave unpre-
dictably. It operates without the need for immediate aggregation, thus allows clients to train and
upload plug-ins asynchronously without disturbing server operations or model convergence with stale
updates.

FL plug-in market. HPFL provides the possibility of constructing a more free and transparent model
market, and customers can have better confidence knowing the plug-in they are purchasing is able
to meet their requirements with a fair plug-in selection mechanism. Plug-in providers can obtain
commercial benefits from this market.

7 Conclusion

In this paper, we explore how to improve the generalization performance when PMs meet test data
from other clients. We formalize the SFL to bridge the GFL and PFL together. Then, We propose
HPFL to practically solve the SFL. We verify the effectiveness and robustness of HPFL through
comprehensive experiments. And we further experimentally verify the remarkable potential of HPFL
to resolve other practical FL problems like FCL. Future work can consider to explore new plug-in
selection methods, or applying HPFL into more FL related problems.

9

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[2] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary. Federated learning with
personalization layers. CoRR, abs/1912.00818, 2019.

[3] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary. Federated learning with
personalization layers. CoRR, abs/1912.00818, 2019.

[4] Y. M. Asano, C. Rupprecht, and A. Vedaldi. A critical analysis of self-supervision, or what we
can learn from a single image. In ICLR, 2020.

[5] B. Balle and Y.-X. Wang. Improving the gaussian mechanism for differential privacy: Analytical
calibration and optimal denoising. In International Conference on Machine Learning, pages
394–403. PMLR, 2018.

[6] W. Bao, T. Wei, H. Wang, and J. He. Adaptive test-time personalization for federated learning.
Advances in Neural Information Processing Systems, 36, 2024.

[7] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv e-prints,
page arXiv:1602.05629, Feb. 2016.

[8] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr. Cronus: Robust and heterogeneous
collaborative learning with black-box knowledge transfer. arXiv preprint arXiv:1912.11279,
2019.

[9] H.-Y. Chen and W.-L. Chao. On bridging generic and personalized federated learning for image
classification. In International Conference on Learning Representations, 2021.

[10] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai. Exploiting shared representations
for personalized federated learning. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 2089–2099. PMLR, 18–24 Jul 2021.

[11] Y. Deng, M. M. Kamani, and M. Mahdavi. Adaptive personalized federated learning, 2020.

[12] C. T. Dinh, N. H. Tran, and T. D. Nguyen. Personalized federated learning with moreau
envelopes, 2020.

[13] C. Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pages 1–12. Springer, 2006.

[14] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[15] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948, 2020.

[16] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. CoRR, abs/1703.03400, 2017.

[17] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients - how easy is it
to break privacy in federated learning? In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
16937–16947. Curran Associates, Inc., 2020.

[18] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. In
International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.

[19] F. Hanzely and P. Richtárik. Federated learning of a mixture of global and local models, 2020.

10

[20] W. Hao, M. El-Khamy, J. Lee, J. Zhang, K. J. Liang, C. Chen, and L. C. Duke. Towards
fair federated learning with zero-shot data augmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3310–3319, 2021.

[21] C. He, M. Annavaram, and S. Avestimehr. Group knowledge transfer: Federated learning of
large cnns at the edge. In Advances in Neural Information Processing Systems 34, 2020.

[22] C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu, L. Shen,
P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr. Fedml: A re-
search library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518,
2020.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

[25] T.-M. H. Hsu, H. Qi, and M. Brown. Federated visual classification with real-world data
distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pages 76–92. Springer, 2020.

[26] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim. Communication-efficient on-device
machine learning: Federated distillation and augmentation under non-iid private data. NeurIPS,
2018.

[27] L. Jiang and T. Lin. Test-time robust personalization for federated learning. In International
Conference on Learning Representations (ICLR), 2023.

[28] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977, 2019.

[29] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[30] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. arXiv preprint arXiv:1910.06378, 2019.

[31] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017.

[32] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 3519–3529. PMLR, 09–15 Jun 2019.

[33] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
Report, 2009.

[34] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Proceedings of the
22nd International Conference on Neural Information Processing Systems, NIPS’09, page
2331–2339, Red Hook, NY, USA, 2009. Curran Associates Inc.

[35] Y. Le and X. S. Yang. Tiny imagenet visual recognition challenge. 2015.

[36] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li. Lotteryfl: Empower edge intelli-
gence with personalized and communication-efficient federated learning. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC), pages 68–79, 2021.

11

[37] D. Li and J. Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

[38] Q. Li, B. He, and D. Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10713–10722,
2021.

[39] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through
personalization. In ICML, 2021.

[40] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. In Proceedings of Machine Learning and Systems, volume 2, pages
429–450, 2020.

[41] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent, R. Salakhutdinov, and L.-P.
Morency. Think locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523, 2020.

[42] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for robust model fusion in
federated learning. In NeurIPS, 2020.

[43] Q. Liu, C. Chen, J. Qin, Q. Dou, and P.-A. Heng. Feddg: Federated domain generalization on
medical image segmentation via episodic learning in continuous frequency space, 2021.

[44] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu, and Q. Yang.
Fedvision: An online visual object detection platform powered by federated learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 13172–13179,
2020.

[45] Z. Liu, Y. Chen, H. Yu, Y. Liu, and L. Cui. Gtg-shapley: Efficient and accurate participant
contribution evaluation in federated learning. ACM Trans. Intell. Syst. Technol., 13(4), may
2022.

[46] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint adaptation
networks. In International conference on machine learning, pages 2208–2217. PMLR, 2017.

[47] J. Luo, X. Wu, Y. Luo, A. Huang, Y. Huang, Y. Liu, and Q. Yang. Real-world image datasets
for federated learning. arXiv preprint arXiv:1910.11089, 2019.

[48] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng. No fear of heterogeneity: Classifier
calibration for federated learning with non-iid data. Advances in Neural Information Processing
Systems, 34:5972–5984, 2021.

[49] O. Marfoq, G. Neglia, R. Vidal, and L. Kameni. Personalized federated learning through local
memorization. In International Conference on Machine Learning, pages 15070–15092. PMLR,
2022.

[50] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282, 2017.

[51] K. L. Ng, Z. Chen, Z. Liu, H. Yu, Y. Liu, and Q. Yang. A multi-player game for studying
federated learning incentive schemes. In IJCAI International Joint Conference on Artificial
Intelligence, page 5279, 2020.

[52] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, et al. In-context learning and induction heads. arXiv preprint arXiv:2209.11895,
2022.

[53] X. Peng, Z. Huang, Y. Zhu, and K. Saenko. Federated adversarial domain adaptation. In
International Conference on Learning Representations, 2019.

[54] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu. Generalized federated learning via sharpness
aware minimization. In International Conference on Machine Learning, pages 18250–18280.
PMLR, 2022.

12

[55] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector canonical
correlation analysis for deep learning dynamics and interpretability. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[56] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pas-
canu, and R. Hadsell. Progressive Neural Networks. arXiv e-prints, page arXiv:1606.04671,
June 2016.

[57] M. Setayesh, X. Li, and V. W.S. Wong. Perfedmask: Personalized federated learning with
optimized masking vectors. In Proc. of International Conference on Learning Representations
(ICLR), Kigali, Rwanda, May 2023.

[58] H. Shah, A. Ilyas, and A. Madry. Decomposing and editing predictions by modeling model
computation. arXiv preprint arXiv:2404.11534, 2024.

[59] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik. Personalized federated learning using
hypernetworks. In ICML, 2021.

[60] M. Shin, C. Hwang, J. Kim, J. Park, M. Bennis, and S.-L. Kim. Xor mixup: Privacy-preserving
data augmentation for one-shot federated learning. arXiv preprint arXiv:2006.05148, 2020.

[61] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pages 1310–1321, 2015.

[62] R. H. L. Sim, Y. Zhang, M. C. Chan, and B. K. H. Low. Collaborative machine learning
with incentive-aware model rewards. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

[63] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. Federated multi-task learning.
Advances in neural information processing systems, 30, 2017.

[64] Z. Tang, X. Chu, R. Y. Ran, S. Lee, S. Shi, Y. Zhang, Y. Wang, A. Q. Liang, S. Avestimehr, and
C. He. Fedml parrot: A scalable federated learning system via heterogeneity-aware scheduling
on sequential and hierarchical training. arXiv preprint arXiv:2303.01778, 2023.

[65] Z. Tang, S. Shi, B. Li, and X. Chu. Gossipfl: A decentralized federated learning framework
with sparsified and adaptive communication. IEEE Transactions on Parallel and Distributed
Systems, pages 1–13, 2022.

[66] Z. Tang, Y. Wang, X. He, L. Zhang, X. Pan, Q. Wang, R. Zeng, K. Zhao, S. Shi, B. He, et al.
Fusionai: Decentralized training and deploying llms with massive consumer-level gpus. arXiv
preprint arXiv:2309.01172, 2023.

[67] Z. Tang, Y. Zhang, S. Shi, X. He, B. Han, and X. Chu. Virtual homogeneity learning: Defending
against data heterogeneity in federated learning. In ICML, volume 162 of Proceedings of
Machine Learning Research, pages 21111–21132. PMLR, 17–23 Jul 2022.

[68] Z. Tang, Y. Zhang, S. Shi, X. Tian, T. Liu, B. Han, and X. Chu. Fedimpro: Measuring and
improving client update in federated learning. In The Twelfth International Conference on
Learning Representations, 2024.

[69] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei. Ldp-fed: Federated learning with
local differential privacy. In Proceedings of the third ACM international workshop on edge
systems, analytics and networking, pages 61–66, 2020.

[70] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency problem
in heterogeneous federated optimization. In Advances in Neural Information Processing Systems,
volume 33, pages 7611–7623, 2020.

[71] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, and H. V. Poor.
Federated learning with differential privacy: Algorithms and performance analysis. IEEE
transactions on information forensics and security, 15:3454–3469, 2020.

13

[72] B. E. Woodworth, K. K. Patel, and N. Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

[73] Q. Wu, K. He, and X. Chen. Personalized federated learning for intelligent iot applications: A
cloud-edge based framework. IEEE Open Journal of the Computer Society, 1:35–44, 2020.

[74] Z. Wu, Q. Li, and B. He. A coupled design of exploiting record similarity for practical vertical
federated learning. Advances in Neural Information Processing Systems, 35:21087–21100,
2022.

[75] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[76] C. Xie, S. Koyejo, and I. Gupta. Asynchronous Federated Optimization. arXiv e-prints, page
arXiv:1903.03934, Mar. 2019.

[77] H. Yang, X. Zhang, P. Khanduri, and J. Liu. Anarchic federated learning. In Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 25331–25363. PMLR, 17–23 Jul 2022.

[78] Z. Yang, Y. Zhang, Y. Zheng, X. Tian, H. Peng, T. Liu, and B. Han. Fedfed: Feature distillation
against data heterogeneity in federated learning. Advances in Neural Information Processing
Systems, 36, 2024.

[79] J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang. Federated continual learning with
weighted inter-client transfer. In Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 12073–12086.
PMLR, 18–24 Jul 2021.

[80] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable
networks. In International Conference on Learning Representations, 2018.

[81] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems, 2014.

[82] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and Q. Yang. A sustainable
incentive scheme for federated learning. IEEE Intelligent Systems, 35(4):58–69, 2020.

[83] T. Yu, E. Bagdasaryan, and V. Shmatikov. Salvaging federated learning by local adaptation.
arXiv preprint arXiv:2002.04758, 2020.

[84] R. Zeng, C. Zeng, X. Wang, B. Li, and X. Chu. Incentive mechanisms in federated learning and
game-theoretical approach. IEEE Network, pages 1–7, 2022.

[85] N. Zhao, Z. Wu, R. W. Lau, and S. Lin. What makes instance discrimination good for transfer
learning? In International Conference on Learning Representations, 2020.

[86] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. Asynchronous
stochastic gradient descent with delay compensation. In ICML. JMLR, 2017.

14

Appendix

A More Related Work

A.1 Generic Federated Learning

The convergence problem of FL with high non-IID data distribution has always been an important
problem in improving the performance of models trained with FL. To resolve this problem, Fed-
Prox [40] and MOON [38] propose to add new model regularization terms to mitigate the client
drift caused by data heterogeneity. There are also some methods modifying the uploaded gradient
to alleviate the dissimilarity of gradients [70, 30, 65, 66]. With a level of privacy protection, some
works propose to share intermediate features [26, 20] or extra data [67, 60, 42] to reduce the gradient
variance.

A.2 Personalized Federated Learning

Different from the GFL methods that aim to directly reduce the gradient dissimilarity, PFL exploits
the heterogeneous data to personalize client models to better suit the local training data.

Recently, several works have proposed to apply Model-Agnostic Meta-Learning [16] to Feder-
ated Learning for faster adaptation on local training data in clients. The Model-Agnostic Meta-
Learning [16] (MAML) aims to meta-learn a global model, which will be broadcasted to different
users to learn a local model adapted to different datasets. Per-FedAvg [15] makes use of MAML
to learn personalized models more efficiently. It first finds an initial global shared model with
second-order gradient information, and then the global model is fine-tuned by local models with only
several iterations to suit the local datasets.

Knowledge distillation is also used to promote efficient local adaptation of personalized models [83].
Specifically, a federated teacher model GT and an adapted student model GS are defined with the
same structure. GS is initialized with GT , which has been trained through a common dataset shared
across clients. And GS is trained by local private datasets. However, in this method, the global
model GT won’t get optimized as time goes on. It is more like a local fine-tuning technology rather
than federated learning. Some works [19, 12, 11] utilize some regularization and adaptive model
mixture to learn personalized models. FedMD [37] proposes a federated learning framework based on
knowledge distillation using a shared dataset, on which clients transfer knowledge through mimicking
the outputs of other client models. With knowledge distillation, it allows clients to independently
design their own model architectures with their local private datasets.

In addition to the expected performance of personalized models, there are also works aiming at
addressing the problems personalized models may meet when applied in reality. Ditto [39] adds the
regularizer measuring the difference between personalized models and the global model into the
objective functions to guarantee both the fairness and robustness of personalized models.

Apart from the usability of personalized models, the accessibility of personalized models is also a
key consideration when it comes to real-world applications. Considering the situations where clients
have heterogeneous environments like datasets, hardware, software, and the Internet, there are too
many unpredictable situations in the real world blocking the access of personalized models. To
solve these problems, some works [73, 36] propose to allow clients to learn different personalized
model structures. LotteryFL [36] proposes to let clients individually learn a lottery model, which is a
subset of the global model. During the communication, these lottery models will be shared between
servers and clients. Without the requirement of communicating a global model, this method can
significantly reduce the communication cost in its training process. pFedHN [59] also makes clients
learn a sub-model based on the global model.

Recently, there have also been many works exploring personalizing parts of models instead of the
whole model to improve the performance of personalized models. LG-FedAvg [41] proposes to share
the upper layers (model head) in the DNN and personalize the bottom layers (base model), which
will not be averaged during the training. It utilizes personalized base models to output different local
features in different clients, on which the global model head will be collaboratively trained through
the FedAvg. Conversely, FedRep [10] proposes to learn a global feature extractor and personalized

15

classifiers. FedRoD [9] proposes a two-predictor framework in which clients train different model
heads to switch between GFL and PFL.

Different from their work, Our framework considers a more challenging FL setting, i.e. every client
may meet OOD test data from other clients. Moreover, instead of improving the performance of the
model itself, we consider more about how clients collaborate to handle the unpredictable test data.

A.3 Incentive Mechanism

The purpose of FL collaboration among clients is the improvement of model performance on the
test data. Therefore, it is important to know how much performance gain can be obtained after FL
collaboration [18, 45, 62]. Furthermore, there should be a well-designed incentive mechanism [51,
82, 84] that motivates clients to join FL. Our modular store essentially provides a market economy to
let clients autonomously choose and download the needed plug module. The higher the generalization
performance of the plug-in module, the more favorable it is. Therefore, the incentive mechanism of
the modular store is naturally connected with the practical benefits of the plug-in module.

A.4 Federated Continual Learning

Continual learning (CL) [31] is to learn different tasks sequentially. Some former tasks are inac-
cessible after training. Thus, when training subsequent tasks, the machine learning model may
forget previous tasks. EWC [31] finds the model parameters that are good for both previous and
subsequent tasks using the Fisher Information Matrix. Progressive Neural Network approach [56] is
to increasingly construct the model during the training. Thus, the newly added parameters can learn
the new tasks, while the old parameters can remember the old tasks. DEN [80] dynamically decides
the model capacity to learn a compact overlapping knowledge sharing among tasks.

Federated Continual Learning (FCL) [79] is a new problem where, after FL training on some clients,
there are some other clients that come and join the FL training. The trained model needs to avoid
forgetting the previous dataset while performing well on the later dataset with data from newly arrived
clients. We use a simple example to show that HPFL is naturally suitable to address the forgetting
problem of FCL. Our plug-in can not only be seen as a personalized part of the model helping clients
do inference on test data but also considered as a container preserving knowledge obtained from
training. So it is natural to think we can store the knowledge in the previous dataset and access it
whenever we are in need. In fact, it can be seen as an application of HPFL on the temporal scale.
Most of the works in FL talk about many clients in a single period of time, i.e. Federated Learning
in the spatial scale. FCL itself can be seen as a problem that happens at Federated Learning within
the temporal scale: clients from different times collaboratively learn models that can generalize well
on circumstances varied with time. We experimentally verified the potential of HPFL to address the
forgetting problem of FCL in Section 5.4. Details about that experiment and more discussion are
presented in Appendix ??.

A.5 Asynchronous FL

Asynchronous FL (Async-FL) [76] means to ease the constraint of the synchronous communication
mechanism of classic federated optimization schemes [50]. In Async-FL, clients may download the
global model from and return gradients to the server at different times. Thus, the server may receive
a stale model update, causing unstable convergence. Such a staleness problem has long existed in the
distributed machine learning area [34, 86]. Stale updates are usually controlled by some staleness
coefficients [76] or compensated by [86] other newer gradients. Anarchic FL [77] can be seen as
a more extreme version of Async-FL. In Anarchic FL, clients can decide to download and upload
the models at any time, not controlled by the server at all. To this end, HPFL naturally allows this
kind of working paradigm since once an average backbone, which can be obtained from pre-trained
models or summoning several active clients to train, is accessible, any aggregation operation is not in
demand for HPFL, so the server doesn’t rely on timely respond of client and won’t be disturbed by
stale model update. Once a plug-in is updated by the client, the plug-in can be utilized to do inference
on appropriate test data without concern that the parameter of the model will change over time.

16

A.6 Test-adaptation & Domain Adaptation Methods in FL

There also emerge works that aim to adapt or generalize to new unseen clients with seen or unseen data
distribution. FADA [53] utilize domain adaptation to tackle with seen target distribution. However,
their method requires target domain data to train an adversarial model and thus cannot handle the
situation where the target domain is unknown. FedDG [43] first proposed a novel setting where a
federated model trained on multiple distributed source domains is required to generalize on unseen
target domains. However, these methods all aim to train a unified global model for adaptation or
generalization to new clients. As far as we know, HPFL is the first FL framework to directly exploit
PMs to achieve this goal. FedTHE & FedTHE+ [27] discuss test-time distribution shift, which is
similar to our problem setting. However, we narrow down the category of distribution shift to apply
to the GFL setting and perform much better in our proposed circumstance, while their method mainly
aims at dealing with unknown distribution shift. This is also the differences between our work and all
methods applying TTA directly on local client training, therefore we only experimentally compare
FedTHE and our work, as FedTHE significantly outperforms this type of works. TTPFL [6] proposed
using unlabelled test data from new clients to personalize global model by adaptively learning each
module in the personalized models on unlabelled test data. However, we pay little attention to how
to obtain personalized model, which is done simply with fine-tuning in our experiments, instead
we concentrate on how to make use of all clients’ personalized models collaboratively. Therefore,
personalized models learned in [6] can also be utilized in HPFL to further boost its performance.

B Proof

B.1 Differential Privacy

In this section, we prove that our protection scheme in Section 4.3 can provide (ϵ, δ)-DP Privacy
guarantee for the transmitted markers, and will not leak the information about the raw data. To prove
this conclusion, we first introduce the Gaussian mechanism of Differential Privacy [14]:
Theorem B.1. ∀(ϵ, δ) ∈ (0, 1), the Gaussian mechanism M(x) = f(x) + N(0, σ2) provides
(ϵ, δ)-DP privacy protection with

δ = ∆2

√
2ln(1.25/σ).

According to [5], the traditional Gaussian mechanism can be extended to Theorem 4 to support ϵ > 1.

Theorem B.2. ∀ϵ > 0 and 0 < δ < 1/2 − e−3ϵ/
√
2πϵ, the Gaussian mechanism M(x) =

f(x) +N(0, σ2) provides (ϵ, δ)-DP privacy protection with

σ ≥ ∆2/
√
2ϵ.

With Theorem B.1, we can estimate the magnitude of Gaussian noise needed to be apply with certain
function as 0 < ϵ < 1. Then, we found that for our protection scheme g in section 4.3, we have:
Theorem B.3. ∀(ϵ, δ) ∈ (0, 1), if

ϵ = O

(√
2ln(1.25/κ ∗ σm)

δ

)
, the procedure g is (ϵ, δ)-DP.

Proof. First, we calculate L2 sensitivity ∆2 in our protection scheme g in Section 4.3.

Assumption B.4. Let f(·) be the backbone (also called as feature extractor) , x is local data extracted
from local training data D, i.e. x ∈ D, then f(x) is the raw features, we have

∀x ∈ D,−C < f(x) < C,where C is a constant.

Assumption 1 is often assumed in protecting gradient with DP as in [1, 61], then

∆2f = maxx,x′ ||f(x)− f(x′)| |2 < 4C2

17

Recalled from Section 4.3, with µm and σ2
m separately denote the mean and variance of the raw

features, and κ denotes the noisy coefficient, our protection scheme is formed as

M(x) =
(
f(x) + κ ∗ N (µm, σ2

m))
/
(1+κ) = 1/(1+κ)∗f(x)+κ/(1+κ)∗µm+N (0, κ2 ∗σ2

m)

The bound of µm can be obtained with the definition of mean:

−C < µm = E
x∈Dm

(f(x)) < C

Denote g(x) = 1/(1 + κ) ∗ f(x) + κ/(1 + κ) ∗ µm, we have

∀x ∈ D,−C < g(x) = 1/(1 + κ) ∗ f(x) + κ/(1 + κ) ∗ µm < C

Therefore,

∆2g = maxx,x′ ||f(x)− f(x′)| | < 4C2. (5)

Derived from Theorem B.1, Lemma B.5 is obtained:

Lemma B.5. ∀(ϵ, δ) ∈ (0, 1), the procedure g is (ϵ, δ)−DP if

σ > ∆2g

√
2ln(1.25/ϵ)

δ

By rearranging variables in Lemma B.5, we have Lemma B.6:

Lemma B.6. ∀(ϵ, δ) ∈ (0, 1), for

ϵ > ∆2g

√
2ln(1.25/σ)

δ

, the procedure g is (ϵ, δ)-DP with M(x) = f(x) +N(0, σ2)

Here our Gaussian mechanism’s σ = κ ∗ σm, therefore we have

Theorem B.7. ∀(ϵ, δ) ∈ (0, 1), for

ϵ > ∆2g

√
2ln(1.25/δ)

σ
= 4C2

√
2ln(1.25/δ)

κ ∗ σm
,

the procedure g is (ϵ, δ)-DP,

which completes the proof.

With Theorem B.2, we can estimate the magnitude of Gaussian noise needed to be apply with certain
function as ϵ > 1. Then, we found that for our protection scheme g in section 4.3, we have:

Theorem B.8. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, if

ϵ ≥ O(
1

2(κ ∗ σm)2
)

, the procedure g is (ϵ, δ)-DP.

18

Proof. According to Equation 5, it holds

∆2g < 4C2.

Then, According to Theorem B.2,

Lemma B.9. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, the procedure g is (ϵ, δ)−DP if

σ ≥ ∆2/
√
2ϵ = 4C2/

√
2ϵ.

By rearranging variables in Lemma B.9, we have

Theorem B.10. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, for

ϵ ≥ 16C4

2σ2
=

16C4

2(κ ∗ σm)2
(6)

the procedure g is (ϵ, δ)-DP,

which completes the proof.

Combining Theorem B.3 and Theorem B.8, we get

Theorem 4.1. For the procedure of obtaining and sharing markers H(xm) = (g(xm) + κ ∗
υ)/(1 + κ), (ϵ, δ)-DP holds if the ϵ, δ conforms to any of the two conditions: (1) ∀ϵ, δ ∈ (0, 1), ϵ ≥

O

(√
2ln(1.25/(κ∗σm))

δ

)
; (2) ∀0 < δ < 1/2− e−3ϵ/

√
2πϵ, ϵ ≥ O(1

2(κ∗σm)2).

C Experiment Configuration

C.1 Hardware and Software Configuration

We conduct experiments using NVIDIA A100 40GB GPU, AMD EPYC 7742 64-Core Processor
Units. The operating system is Ubuntu 20.04.1 LTS. The pytorch version is 1.12.1. The numpy
version is 1.23.2. The cuda version is 12.0.

C.2 Implement of Simplified Metrics and Proof

The original metric under the GFL-PM setting in classification tasks should be:

Accuracy (Ω, θ1, . . . , θM) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T (f (θi, ξm) , ξm) (7)

where T (·, ·) is the function judging whether the prediction of the model is the same with the real
label, specifically

T (prediction, sample) = 1(predciton = ysample) (8)

where ysample is the label of sample. f (θi, ξm) is the prediction of the model used in final inference
on client i for the sample ξm, the model is parameterized with θi. And our way of determining
personalized model using when inferencing on client i is to select from all the plug-ins, i.e. the PMs
obtained from optimizing on local data: Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM),
so we have

θi = θpflCi(ξm,i),m ∈ 1, 2, ...,M (9)

where Ci(ξm, i) is the selection made for client i based on test data ξm and client i. Ci is the selection
algorithm of the client i.

For traditional personalized methods, the clients will only use personalized models trained locally,
i.e.

Ci(ξm, i) = i (10)

19

substitute Equation 10 into Equation 9, we have

θi = θpflCi(ξm,i) = θpfli (11)

then substitute Equation 11 into Equation 7, we have

Accuracy (Ω, θ1, . . . , θM) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T (f (θi, ξm) , ξm)

=
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpfli , ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

N∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

EξD∼D[T
(
f
(
θpfli , ξD

)
, ξD

)
]︸ ︷︷ ︸

accuracy of PM in client i on global data

(12)

Equation 12 represents the averaged accuracy of all personalized models on the global dataset, so
we can calculate the averaged accuracy of all personalized models on the global dataset as the metrics
of simplified metrics instead of original complicated metrics 7; while for our proposed methods HPFL,
because all clients have same selection method C

Ci(ξm, i) = argmax
n

g (ξn, ξm) = C(ξm) (13)

the origin metric turns into

Accuracy (Ω, θ1, . . . , θM) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼DmT
(
f
(
θargmaxn g(ξn,ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
m=1

pmEξm∼DmT
(
f
(
θpflC(ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

N

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

20

=

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpflC(ξm), ξj

)
, ξj

)
=

M∑
i=1

pi Eξi∼DiT
(
f
(
θpflC(ξi)

, ξj

)
, ξj

)
︸ ︷︷ ︸

accuracy of PM selected by client i on its own data

, (14)

Equation 14 represents the averaged accuracy of clients testing on their own personalized dataset
with models equipped with their selected plug-ins based on their own data, weighted with number of
samples in data on clients. With these simplification of metrics, we can more efficiently test GFL-PM
performance of both the traditional personalized methods (FedPer, FedRoD, FedRep) and HPFL.

C.3 Hyper-parameters

We use SGD without momentum as the optimizer for all experiments, with a batch size of 128 and
weight decay of 0.0001. The learning rate is set as 0.1 for both the training of the global model
and the fine-tuning on local datasets. The main results shown in Tabel 2 are conducted with 1-layer
plug-ins (i.e. only classifier).

Special hyperparameters of some baseline methods are :

FedRep: Local personalize epoch is set as 1.

PerFedMask: The partition percent of validation is 0.1, personalized fine-tuning epoch Ep after
calculating mask is set as 5 as the official implementation did.

FedTHE: We follow the official implementation: the smoothing factor of test history descriptor main-
tained by the Exponential Moving Average (EMA) α equals 0.1; the smoothing factor interpolating
the test feature and the test history descriptor β equals 0.3.

FedSAM: We follow the official implementation: the parameters for SAM minimizers ρ = 0.1 ,
η = 0.

C.4 Extra Explanation on Experiments

Due to the limited space of the main text, we show a more detailed explanation of the experiment in
this section.

For the construction of the personalized test dataset, to make the training data and test data of a client
have the same distribution following the settings of most PFL methods [10], we count the number of
samples Strain(c,m) in each class c of training data of client m and split test data of that clients in
that distribution (which means client m have Strain(c,m)∑N

m=1

∑C
c=1 Strain(c,m)

×
∑M

m=1

∑C
c=1 Stest(c,m) test

samples in class c, here C denotes the number of classes in overall dataset, M denotes the number of
clients in the FL system), Figure 6 and Figure 7 shows that the data partition of training data and test
data are almost identical as expected in PFL.

To report the best result of all baseline methods, we report the accuracy of their best inference
global model on global data during the whole training process. For our method, we also use the best
inference model as the backbone of HPFL for fair comparison.

D Extra Experiment Results

Due to the limited space of the main text, we show more experiment results in this section.

D.1 More Results about Backbone Training Methods

As long as the used GFL methods are able to train a strong general feature extractor, HPFL is able
to utilize the feature extractor to train the personalized plug-ins and extract features. We conduct

21

0 1 2 3 4 5 6 7 8 9
Class

0
1

2
3

4
5

6
7

8
9

C
lie

nt
 ID

4 1 4 1 2947 37 1 0 100 3866

380 1441 116 465 0 0 0 0 341 705

0 0 328 2761 280 2817 0 0 0 0

1233 8 0 23 1721 0 0 99 0 18

0 89 252 8 52 484 0 0 174 1

3345 3032 0 0 0 0 0 0 0 0

0 4 4206 27 0 0 3962 0 0 0

0 393 0 674 0 0 1029 347 0 410

38 11 94 486 0 5 1 4549 0 0

0 21 0 555 0 1657 7 5 4385 0

Class matrix of trainning data (=0.1)

0 1 2 3 4 5 6 7 8 9
Class

0
1

2
3

4
5

6
7

8
9

C
lie

nt
 ID

0 0 0 0 589 7 0 0 20 773

76 288 23 93 0 0 0 0 68 141

0 0 66 552 56 563 0 0 0 0

247 2 0 5 344 0 0 19 0 3

0 17 51 1 11 97 0 0 35 1

669 607 0 0 0 0 0 0 0 0

0 1 841 6 0 0 792 0 0 0

0 78 0 134 0 0 206 70 0 82

8 2 19 98 0 1 0 910 0 0

0 5 0 111 0 332 2 1 877 0

Class matrix of test data (=0.1)

Figure 6: Data partitioning on CIFAR-10 (α=0.1)

0 1 2 3 4 5 6 7 8 9
Class

0
1

2
3

4
5

6
7

8
9

C
lie

nt
 ID

1 1 3 109 0 1 0 0 1 26

57 155 3 99 0 0 0 0 35 4608

0 0 24 3490 98 3403 0 0 0 0

600 0 0 953 1217 0 0 2 0 0

0 1 15 0 3684 125 0 0 3604 0

4342 679 0 0 0 0 0 0 0 0

0 4153 3536 0 0 0 0 0 0 0

0 0 1419 0 0 0 4999 0 0 0

0 11 0 208 1 0 1 4998 0 0

0 0 0 141 0 1471 0 0 1360 366

Class matrix of trainning data (=0.05)

0 1 2 3 4 5 6 7 8 9
Class

0
1

2
3

4
5

6
7

8
9

C
lie

nt
 ID

0 0 0 21 0 0 0 0 0 5

11 31 1 20 0 0 0 0 7 921

0 0 4 698 19 680 0 0 0 0

120 0 0 191 244 0 0 0 0 0

0 0 4 0 736 25 0 0 721 0

869 136 0 0 0 0 0 0 0 0

0 830 707 0 0 0 0 0 0 0

0 0 284 0 0 0 999 0 0 0

0 3 0 41 1 0 1 1000 0 0

0 0 0 29 0 295 0 0 272 74

Class matrix of test data (=0.05)

Figure 7: Data partitioning on CIFAR-10 (α=0.05)

experiments using FedRoD to testify HPFL’s compatibility with other GFL methods. The results are
given in Table 7. Number of clients equal M = 10, local fine-tuning epoch Ep = 10, local datasets
are partitioned in Dir(0.1). Other settings remain the same as the main experiments in Table 2.

From the overall performance of HPFL(FedRoD), we can see that HPFL using FedRoD as its backbone
training method is comparable to that using FedAvg, which confirms HPFL is compatible with the
GFL methods other than FedAvg. We also observe an interesting fact that even if FedRoD shows
excellent performance in GFL-GM (surpasses FedAvg in many datasets and settings), fine-tuning the
backbone trained with it is not advantageous as shown in PFL-PM (only comparable with fine-tuning
on the backbone trained with FedAvg). From this phenomenon, we presume the advantage of FedRoD
in GFL-GM should mainly be attributed to its global head trained with a class-balanced loss instead
of its backbone.

E Discussion on Privacy Problem

As HPFL requires local clients to share auxiliary information on local data and plug-ins to help
inference, it may raise concern about data privacy of HPFL. We attempt to analyze the risk of privacy
leakage in HPFL respectively from sharing auxiliary information and plug-ins.

E.1 Privacy Risks of Sharing Plug-ins

In HPFL, we ask local clients to upload part of their personalized models to the server, which means
every personalized model is possibly accessible to all clients. This potential sharing with other
clients will raise concerns about the risk of privacy leakage. However, in classic Federated Learning

22

Table 7: Ablation study of backbone training methods.

Clients 10 (sample 50% each round)

Non-IID Dir(0.1)

Test Setting GFL-PM

Method HPFL(FedAvg) HPFL(FedRoD)

CIFAR-10

CIFAR-10
GFL-GM 81.5 85.3 (↑ 3.8)

GFL-PM 95.7 96.0 (↑ 0.3)

PFL-PM 95.7 96.0 (↑ 0.3)

FMNIST

FMNIST
GFL-GM 86.0 87.9 (↑ 1.9)

GFL-PM 98.4 98.4 (↑ 0)

PFL-PM 98.4 98.4 (↑ 0)

CIFAR-100

CIFAR-100
GFL-GM 68.6 69.9 (↑ 1.3)

GFL-PM 72.2 68.5 (↓ 3.7)

PFL-PM 85.7 85.5 (↓ 0.2)

Tiny-ImageNet-200

Tiny-ImageNet-200
GFL-GM 56.5 57.4 (↑ 0.9)

GFL-PM 50.9 56.0 (↑ 5.1)

PFL-PM 73.7 74.7 (↑ 1.0)

algorithms like FedAvg, there also exists similar behavior of sharing global model, and it is difficult
to recover training samples from the final model shared over the whole FL system. Instead, research
shows that it is possible to recover training data of clients from gradients transmitted to the server
[17], which will not happen in HPFL except for the training period of the backbone model, which
is able to be solved with regular privacy protect techniques like differential privacy (DP) which is
widely used to protect potential privacy risks of GFL algorithms, and not a special problem of HPFL.
Even extreme concern on potential privacy risk of storing plug-ins in the server can be solved by
only requesting plug-ins after selection, clients providing the plug-ins can ask the server to delete the
plug-ins after sending the plug-ins to the clients in need.

E.2 Privacy Risks of Sharing Auxiliary Information

Since HPFL asks clients to share auxiliary information with the server, once data breach happens in
the communication period between clients and the server or the information is not properly kept in
the server, the leaked information may lead to attacks, such as feature inversion attacks. Here we
resorted image reconstruction by feature inversion method in [85] to check whether the raw image
can be reconstructed by inverting the representation through the pretrained global backbone model
parameters, exploring whether data privacy will be threatened if both auxiliary information and
backbone model is leaked. To handle this risk of privacy leakage, here we propose three ways to
prevent the problem: (1) add noise to the features; (2) use the averaged feature to select the plug-ins;
(3) use model-based selection methods like OOD.

Adding noise to transmitted information is often practiced in the Federated Learning called
Differential Privacy(DP), which is utilized to protect gradient against Differential attacks. Inspired
by DP, we attempt to add noise to the transmitted auxiliary information, and below we use the same
recovery method to recover the original image from the markers. More specifically, we add Gaussian
noise to protect the features from privacy risk, which is a commonly-adopted method for (ϵ, δ)-DP.
Plenty of previous works [48, 37, 20, 8] transmit noised features to exchange auxiliary information
without privacy leakage. As DP used in Federated Learning is mainly for protecting FL system
from differential attacks (also called membership inference attacks) [13, 71, 69], which attempt to
get information on membership based on differences between models in different rounds. HPFL

23

doesn’t involve multiple rounds communication except for traditional GFL backbone training phase.
Therefore, differential attack raise no additional privacy risks to protect from in HPFL, and there is
not need for HPFL to protect privacy with differential privacy. To this end, we leave out detailed
discussion of differential privacy in our paper.

Using the averaged feature to select the plug-ins is a practical way of protecting privacy as practiced
in [48], inspired by their work, we attempted to select plug-ins with the average of all features on
local clients. However, we assumed that simply averaging all features leads to the lack of information
to select plug-ins properly, thus degrades the performance of HPFL. Therefore, we tried to divide the
features into groups and take the average in every group. With enough samples in every group, we
maintain a good performance as shown in Table 8.

Table 8: Accuracy of Different average group on CIFAR-10.

of raw features in every group 3 10

Ep 1 10 1 10

α = 0.1,M = 10

Accuracy 81.5 80.1 76.8 79.1

α = 0.05,M = 10

Accuracy 96.0 96.1 87.6 86.1

α = 0.1,M = 100

Accuracy 81.4 83.8 76.8 75.3

Utilizing model-based selection methods like OOD to select the plug-ins, due to these methods
avoid sharing direct information about raw data or features, they are exposed to less risk of data
leakage. It is more difficult for the attacker to attack the clients with the model parameters than
with the data information due to less information contained in it, which can be proved by the data
processing inequality [50].

F Real-world Application

F.1 Real-world GM-PFL

To better illustrate the GFL-PM setting we propose and demonstrate its importance, we give some
examples exhibiting the significance of our proposed set-up below:

Case 1: Some clients may have insufficient computing resources or local training data to fine-tune a
deep learning model in a cross-device setting. In these situations, training distribution can be regarded
as an empty set ∅. In this way, the client cannot get a personalized model by locally fine-tuning the
global model. In traditional GFL and PFL setting, the client has no choice but to adopt the global
model and endure the lack of personalization. This problem is caused by the mismatch of training
data distribution and test data distribution, as assumed in our proposed set-up, and is solvable with
our proposed method HPFL by exploiting personalized plug-ins from other clients.

Case 2: A car with a personalized automated driving system (ADS) has driven out of the previous
city it used to be. It requires to personalize on geometric data from the present city it is now in
for improving the performance of the ADS in this new city. Classic GFL and PFL in this situation
leave the ADS no option but to collect the geometric data and personalize on it after the collection
completes, and accept the temporary performance loss using the previous personalized model before
finishing the new personalization, since the distribution of test data has greatly changed. It’s another
example where the discrepancy between training data (geometric data from the previous city) and
test data (geometric data from the present city) threatens the availability of FL systems. While with
our proposed method designed to solve the problem, the ADS can attempt to access the plug-ins from
car owners living in the present city.

Case 3: Imagine a person is traveling from a high latitude area to an equatorial region, and the
recommender system on their phone is supported by federated learning. If the recommender system

24

uses the personalized model trained when in the high latitude area, it will continue to prompt thick
down jackets for the person, which is clearly an unexpected and unreasonable recommendation. With
our method, one can get the same recommendation as the local people with plug-ins on their phones
without time to fine-tune the model again.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: [NA]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

26

Justification: We provide proof of our theoretical results for lower bound of PM with GFL
in Appendix and differential privacy in Appendix
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detailedly describe every component of our method and experiment setup
in Section 4 and Section 5.1, respectively. And we have uploaded our experiment codes for
checking reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

27

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please refers to the uploaded supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential privacy risk of our work, propose a protection scheme
against the risk and provide both theoretical guarantee 4.4 and empirical verification E.2 for
our privacy protection scheme.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

29

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose any risks for misusing.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper has cites each dataset, baseline, model properly. Our citations for
all existing assets used in this work obey CC-BY 4.0.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

30

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

31

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Works
	Preliminary
	Generic FL
	Personalized FL

	HPFL: Hot-Pluggable Federated Learning
	Design of HPFL
	Problems of Directly Selecting PM
	Selection Methods
	Privacy Protection

	Experiments
	Experimental Setup
	Experiment Results
	Selection Accuracy
	Federated Continual Learning

	Applications
	Conclusion
	More Related Work
	Generic Federated Learning
	Personalized Federated Learning
	Incentive Mechanism
	Federated Continual Learning
	Asynchronous FL
	Test-adaptation & Domain Adaptation Methods in FL

	Proof
	Differential Privacy

	Experiment Configuration
	Hardware and Software Configuration
	Implement of Simplified Metrics and Proof
	Hyper-parameters
	Extra Explanation on Experiments

	Extra Experiment Results
	More Results about Backbone Training Methods

	Discussion on Privacy Problem
	Privacy Risks of Sharing Plug-ins
	Privacy Risks of Sharing Auxiliary Information

	Real-world Application
	Real-world GM-PFL

