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Abstract

Organic optoelectronic materials are a promising avenue for next-generation elec-
tronic devices due to their solution processability, mechanical flexibility, and
tunable electronic properties. In particular, near-infrared (NIR) sensitive molecules
have unique applications in night-vision equipment and biomedical imaging.
Molecular engineering has played a crucial role in developing non-fullerene accep-
tors (NFAs) such as the Y-series molecules, which have significantly improved the
power conversion efficiency (PCE) of solar cells and enhanced spectral coverage
in the NIR region. However, systematically designing molecules with targeted
optoelectronic properties while ensuring synthetic accessibility remains a challenge.
To address this, we leverage structural priors from domain-focused, patent-mined
datasets of organic electronic molecules using a symmetry-aware fragment decom-
position algorithm and a fragment-constrained Monte Carlo Tree Search (MCTS)
generator. Our approach generates candidates that retain symmetry constraints
from the patent dataset, while also exhibiting red-shifted absorption, as validated
by TD-DFT calculations.

1 Introduction

Organic optoelectronic materials have emerged as promising candidates for next-generation elec-
tronic devices, particularly in the fields of organic photodiodes (OPDs) and organic photovoltaics
(OPVs). These materials offer unique advantages such as solution processability, mechanical flexi-
bility, and tunable electronic properties, making them attractive alternatives to traditional inorganic
semiconductors [58, 37, 54]. Of particular interest are low-bandgap π-conjugated organic molecules
and polymers sensitive to near-infrared (NIR) wavelengths, which can harvest a broader portion
of the solar spectrum, extending beyond the visible range. These NIR-sensitive materials have
found diverse applications, from military night-vision equipment to biomedical imaging devices and
semi-transparent photovoltaics [65, 38, 36, 64]. The optimization of molecular structures, especially
the design of improved donor–acceptor (D-A) systems, has led to substantial progress in the power
conversion efficiency (PCE) of OPV devices. Over the past decade, PCE has increased from around
5% to over 19% for single-junction devices [42]. This advancement is largely attributed to the
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development of non-fullerene acceptors (NFAs), which offer more tunability of energy levels and
absorption spectra through molecular engineering, than fullerene acceptors (FAs) [66]. The Y-series
family of NFAs (Y1 through Y6) has been a particularly promising class of molecules [67], which
has sparked several follow-up designs and derivatives [24]. These improvements highlight the role
of molecular design in enhancing device performance and the potential for further advancements
through innovative approaches to materials discovery.

Over the past half-decade, generative models have received tremendous attention in molecular design
[52, 14], using a variety of algorithms and molecular representations [53, 5, 21, 30, 48, 43, 27, 16].
However, without special attention to synthetic accessibility, off-the-shelf models often generate non-
synthesizable designs [18]. Several existing approaches incorporate knowledge about synthesizability
into generative models, either implicitly or explicitly.

Implicit approaches typically work by 1) biasing the objective function for property optimization
with an additional synthesizability term, 2) applying a synthesizability filter post-hoc to generated
candidates, or 3) constraining the training dataset using combinatorial enumerations of molecular
fragments (for example, symmetric attachments as a proxy for synthetic accessibility). 1 and 2 often
use approximate score functions such as SAscore [15], SCScore [10], or retrosynthesis tools like
ASKCOS [11] or AiZynthFinder [20] to quantify synthesizability. In 1, multi-objective optimization
is sensitive to the choice of the loss function’s functional form, which if not done appropriately can
lead to a compromise in other property objectives. In 2, a key assumption is that a sufficiently large
portion of generated candidates are synthesizable, an assumption often proven false, as demonstrated
in Figure S10 of Gao and Coley [18]. Additionally, the scoring functions themselves have specific
definitions that make them more suitable for certain situations than others, limiting their universality.
SAscore for instance is designed for biologically relevant molecules such as drug-like molecules, and
might be less applicable for other chemical spaces such as organic electronics [15]. In 3, a downside
is that the heuristics used to design the training dataset might not be reflected in the generations
unless more explicit constraints are injected into the models.

Explicit methods of incorporating synthesizability on the other hand, do not suffer from limitations
of scoring functions, or generations not satisfying prior constraints. They typically either embed
pre-specified synthetic reaction templates [19, 23, 61, 59], or machine-learned reaction prediction
algorithms [6, 7] into the generation grammar to constrain the scope of generation. While both reduce
the possibility of chemically infeasible outcomes, reaction templates significantly limit the breadth of
the search space, and reaction prediction algorithms could be prone to error propagation in multi-step
synthetic routes [18]. This case of multi-step pathways is common in organic electronics systems
[56]. Some recent works at the intersection of organic electronics and synthesizability include Kwak
et al. [31], Li and Tabor [35], Westermayr et al. [63].

In this paper, we develop a simple, and more universally applicable approach to incorporate an
approximate form of synthesizability into the generation process, and demonstrate its utility for
organic electronics applications by generating low-bandgap molecules. Building on previous work on
extracting datasets from published patents, our method is based on the fact that molecules reported
in published patents are likely to be synthetically accessible, and when extracted based on domain-
focused keyword queries made on the text, are also high-performance for domain-relevant properties
[57]. The chemical fragments that make up a molecule, and the symmetry in their attachments contain
key information about the precursors and synthetic pathways used to make the molecule. To utilize
this information effectively during generation, we develop:

1. A fragment decomposition algorithm that extracts fragments and their reactive positions
from patent-mined structures, preserving symmetry information.

2. A generation algorithm based on Monte Carlo Tree Search (MCTS) [28, 12, 60] that
constrains the generated molecules to contain only the previously extracted fragments
attached at their reactive positions, while satisfying symmetry requirements.

We evaluate our method on two chemical spaces of different sizes, a smaller, focused space of
Y6-derivatives [67], and a much larger space of patent-mined fragment derivatives [57]. We employ
Time-Dependent Density Functional Theory (TD-DFT) to obtain our “ground-truth” bandgaps for
training and evaluation. Our generated candidates retain symmetry constraints from the patent dataset
while also exhibiting red-shifted absorption.
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2 Methods

2.1 Fragment Identity, Connectivity and Symmetry

Previous work by Subramanian et al. [57] developed an automated pipeline to mine USPTO patents
and create domain-focused unsupervised datasets of molecular structures. These patent-derived
molecules likely possess two important characteristics: high performance (justifying the invest-
ment in a patent application) and synthetic accessibility. Consequently, the fragments present in
these structures, along with their reactive positions (points of connectivity), potentially correlate
with both synthetic accessibility and domain-specific properties. Moreover, the symmetry of re-
active positions relative to each other encodes information about the synthetic pathways used to
create these molecules. To effectively leverage this structural and synthetic information, we have
developed a two-stage method: Fragment Decomposition: We designed an algorithm that ex-
tracts fragments and their reactive positions from patent-mined structures, while marking each
reactive position in a way that faithfully represents the identity of the substructure attached to
it. This preserves important contextual information about molecular connectivity. It is this con-
nectivity and identity-preserving property that we refer to as "symmetry" throughout this paper.
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Figure 1: Fragments to initialize MCTS (a) Editable Y6
core with marked positions. (b) Fragment decomposition
algorithm to obtain fragments from patent dataset. Vocab-
ulary dictionary is first created by breaking one-bond at
a time, and labeling the resulting fragments with unique
integer values. Recursive decomposition of the starting
molecule is then performed. Reactive positions are la-
beled with values corresponding to the broken fragment’s
identity. The leaf nodes (shaded in green) represent the fi-
nal set of fragments obtained after decomposition. Me, Th,
and Ph represent methyl, thiophene, and phenyl groups,
respectively.

Constrained Generation: We imple-
mented a generation algorithm based
on MCTS that constrains the output to
molecules composed solely of patent-
extracted fragments. These fragments are
attached at their corresponding reactive
positions while adhering to the symme-
try requirements observed in the original
patent structures. This approach aims to
maintain synthetic feasibility while ex-
ploring novel molecular configurations.
By combining these two components, we
aim to create a framework for generat-
ing molecules that are not only likely
to be synthetically accessible but also
tailored to the specific property require-
ments of organic electronic materials.
This method leverages the information
embedded in patent-derived structures to
guide the exploration of chemical space
towards promising and realizable candi-
dates.

2.1.1 Fragment Decomposition

We developed a fragment decomposi-
tion algorithm that preserves connectivity
and symmetry information from patent
molecules. We achieve this through a
recursive application of RDKit reaction
SMARTS [32]. More details are pro-
vided in the following paragraphs, and
an illustrative example is shown in Fig-
ure 1(b).

A reaction SMARTS string is first de-
fined to indicate what types of bonds
must be deleted during decomposition.
For our purpose, we defined this so that
single bonds connecting an aromatic ring
with an aliphatic chain, or an aromatic
ring to another aromatic ring are matched.
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The algorithm consists of two steps: 1) creation of fragment vocabulary, 2) fragment decomposition
and assignment of reactive sites.

In step 1, the reaction SMARTS is applied to the molecule to get all possible fragments that are
obtainable from deletion of one bond in the molecule. The vocabulary of unique fragments is created,
and each is assigned a unique ID. For the IDs, we use numbers [0, N) where N is the number of
fragments in the vocabulary. Details on how this is actually represented in our code implementation
are given in SI Section A.5.

In step 2, the original molecule is recursively decomposed with one-bond deletions to form a binary
tree. After every application of the reaction SMARTS, the reactive positions (positions at which bond
deletion was performed) on the fragment are labeled using the ID of the fragment which was attached
before the bond was broken. This preserves information about the identity of the fragment which was
connected at the reactive position. The two fragments are then checked for a match with the reaction
SMARTS to see if further decomposition is possible. If possible, the same series of steps described
above is performed on the fragment. Otherwise, the fragment is a leaf node on the binary tree, and is
added to the list of final fragments.

Finally, memoization [44] can be used to prevent redundant decompositions of the same fragment.
We memoize computations in a hash table during tree creation, and reuse previously performed
computations. Figure 1 illustrates this process of fragment decomposition on an example molecule.

2.1.2 Generation with MCTS

We frame the problem of designing a molecule as a series of building block/molecular fragment
choices. MCTS is an efficient method of navigating large exploration spaces, that learns to optimize
a chosen reward function by iteratively updating value estimates for action choices in the tree
[28, 12, 60, 55]. Since our objective is to design low-bandgap molecules, our reward function of
choice is the negative bandgap as predicted by Chemprop [25], a message-passing neural network
(MPNN) architecture that we trained on labels obtained from TD-DFT calculations. While more
details about TD-DFT calculations are provided in Section 2.4.1, we note here that our use of the
term "bandgap" throughout this paper refers to the lowest-energy singlet vertical excitation energies.
Each iteration of the MCTS algorithm consists of four sequential steps: selection, expansion, rollout,
and backpropagation. The selection step starts with the root node and traverses the already explored
portions of the tree to reach a leaf node. In our work, the path from the root node to the leaf node
represents the construction of a molecular structure, where each node corresponds to a partial or
complete structure. We follow the standard Upper Confidence Bound applied to Trees (UCT) policy
[28] to choose an action at each timestep of traversal.

at = argmax
a∈At

Qt−1(a) + c

√
log(Np

t−1)

Nt−1(a)


where at is the action at timestep t, At is the set of action choices available at timestep t, Qt−1(a) is
the action value function of action a before timestep t, Nt−1(a) is the number of times the action a
has been chosen before timestep t, and Np

t−1 is the number of times the parent node has been visited
before timestep t. The exploration coefficient c controls the exploration-exploitation trade-off, i.e.,
the larger its value, the higher the exploration.

If the leaf node is not a terminal action, the expansion step enumerates possible next states and
expands the tree with new nodes, one of which is then chosen at random. In the rollout step, a
random policy is followed until the molecular generation process is terminated. Finally, the quality
of the end state is evaluated and is assigned a scalar reward value. The reward is backpropagated
through the tree branch to update the value functions of each visited node.

A detailed description of the Markov Decision Process defined for MCTS is given in Section
2.3. The Y6 case does not involve patent-mined fragments, and hence symmetry and reactive
position considerations are greatly simplified. However, in the patent-mined fragments case, these
considerations need to be incorporated into the generation grammar. Only fragments obtained from
the fragment decomposition algorithm (described in Section 2.1.1) are utilized in the generation
process, and fragment attachments are made only to reactive position markers. Identically marked
positions are attached with fragments of identical identities, while differently marked positions are
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attached with fragments of different identities, thereby preserving the connection symmetry as was
present in the patent structure.

a b c d e

Figure 2: Features of MCTS training and DFT validation (a) Bandgap and similarity penalty as a
function of iteration. Values shown are the weighted contributions to the reward function. With every
iteration, the constrained optimization becomes more challenging resulting in less optimal candidates.
(b) Representative reward evolution during training for one MCTS repetition. (c) Pruning of tree
during training. The tree is expanded to contain deeper choices such as end-groups and side-chains
only if their rewards are promising. This can be seen by shift towards lower predicted bandgaps as
we traverse deeper down the tree. (d) PCA of randomly sampled and property-optimized molecules
obtained from MCTS, and some popular experimental candidates. PCA is performed on Morgan
fingerprints of molecules, and colors of random samples are based on Chemprop-predicted bandgaps.
It can be seen that the random samples are diverse chemically and also span a range of property values,
while the MCTS optimized candidates are diverse but concentrated at lower bandgap locations of the
landscape. a, b, c, and d are plotted on Y6 MDP. (e) Histograms showing shifts in DFT histograms
in comparison to training datasets. It can be seen that MCTS-optimized Y6 and patent molecules
exhibit a large shift towards lower bandgaps compared to the patent data distribution.

2.2 Generating Chemically Diverse but Optimal Candidates

We aimed to generate a number of chemically diverse, yet also high performing candidates to increase
the likelihood of at least a subset of candidates being experimentally synthesizable. In addition,
Subramanian et al. [57] have observed empirically in their work that the proxy reward predictor has
the tendency to be adversarially attacked during training in reinforcement learning settings because
of its potential unreliability in out of domain regions. Proposing chemically diverse molecules that
have high predicted rewards can allow for an increased chance that a subset of the proposals is
in-domain for the reward predictor. The vanilla formulation of MCTS converges at a policy that
maximizes expected cumulative reward [55, 60], and hence does not guarantee chemical diversity.
To overcome this limitation, we iteratively re-train MCTS with a time-dependent reward term that
penalizes chemical similarity to high-performing molecules from previous iterations. More formally,

Ri(x) = C(x)− max
y∈Y<i

S(x, y) (1)

where Ri is the reward used for training MCTS at the ith iteration, C is the property reward function,
Y<i is the inventory of high-performing molecules collected from iterations i′ < i, and S is a function
computing similarity between molecules x and y (which we choose to be Tanimoto similarity). Figure
2(a) shows the evolution of the bandgap and similarity as a function of iteration. The point displayed
at each iteration corresponds to the molecule with the lowest bandgap from the last 100 timesteps
of MCTS training. We can see that the constrained optimization task becomes more challenging as
more molecules are appended to the inventory Y<i, resulting in an upward trend in both blue and red
curves. Figure 2(b) zooms into a single iteration and shows the bandgap and similarity curves as a
function of training step. In this case, training seems to converge after around 2,000 training steps.

2.3 Markov Decision Process

The Markov Decision Process (MDP) can be defined as a tuple of the state space S , the action space
A, the reward R, and the transition probability P . We define MDPs for our two demonstrative tasks
below.
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2.3.1 Y6 derivatives

We formulated this to be a highly focused and relatively small-sized chemical space as a test bed for
exploring the capabilities of the approach. Building a molecule involves four hierarchies of actions
to be made: 1) modification of heteroatoms and ring sizes in the Y6 core, 2) optional addition of
pi-bridges to extend conjugation in the molecule, 3) addition of terminal end-groups, and 4) addition
of alkyl chains. Many of the fragment choices included here were taken directly from suggestions
provided in Yang [67]. We provide a more formal description of the MDP below.

Let St and At denote the state and action spaces respectively at timestep t. Then, S1 is a singleton
set containing the Y6 core marked with modifiable positions shown in Figure 1(a). The first group of
actions (with action spaces A1≤t≤4) are those that modify the structure of the central Y6 core by
allowing heteroatom and ring-expansion modifications at positions marked with pos0, pos1, pos2,
and pos3.

Action spaces A5,6 allow the optional addition of pi-bridges to the positions marked by 0 to offer the
flexibility to extend conjugation in the molecule, and action space A7 is the set of allowed end-groups
that can be attached to 0 (if no pi-bridge was attached) or the newly created reactive position available
on the pi-bridge. Finally, A8 is the set of allowed alkyl chains that can be attached to 1, which
we restrict to just methyl groups to reduce the expense of conformer generation and optimization
during DFT validation later on. This is a reasonable approximation to make given that alkyl chains
are typically used to enhance solubility properties of the molecule and have a smaller influence on
optoelectronic properties in isolated molecules. However, with this simplification, we disregard the
more important role that alkyl chains play in optoelectronic properties when the molecules are in an
aggregated state [33]. All fragments used in this MDP are shown in Figure 7. State space St>1 is the
set of possible molecular structures that can be reached by applying transformations in At−1, to state
st−1.

The reward R is the negative of the property value (bandgap in eV) as predicted by the Chemprop
[25] model combined with the similarity penalty term as defined in Equation 1, and is computed
once the molecular generation process has terminated. The MDP is deterministic and hence the
transition probability is 1 for a particular state transition and 0 for all others at every timestep t, i.e.,
Pt = (δi1δi2 . . . δin) where δij is the Kronecker delta function and i is an integer ranging from 1 to
n that represents the index of the chosen action. Only element δii would be 1, and all other elements
of the vector would be 0.

Figure 2(c) and (d) showcase some features of MCTS training on the Y6 MDP. (c) demonstrates the
ability of MCTS to prune the tree, with deeper actions being expanded to only if they contribute to
lowering the bandgap. (d) is a principal component analysis (PCA) plot showing the partitioning of
molecules in the Chemprop embedding space according to Morgan fingerprints of molecules. The
MCTS optimized generations are clearly shifted towards the lower bandgap region of the embedding
landscape, while also maintaining chemical diversity. They can also be seen to be red-shifted
with respect to some popular experimental NFA molecules (see Figure 8 for a list of the chosen
experimental molecules). It is to be noted that both (c) and (d) are based on Chemprop predictions
and not DFT calculations. Validation with DFT calculations is shown in later sections.

2.3.2 Patent-Extracted Fragment Derivatives

We formulated this to be a more expansive test case with a much larger chemical space, with the
aim of discovering highly red-shifted molecules with diverse chemistries. In regimes of this size,
exhaustive enumeration of all achievable molecules becomes impractical. Building a molecule in this
environment involves three hierarchies of actions: 1) Choosing a core fragment, 2) Optional addition
of pi-bridges to the core, and 3) Addition of terminal end-groups/alkyl chains.

In this case, each reaction involves not just the choice of a fragment identity, but also the choice
of reactive position to which it has to be attached. The choice of reactive position is included as
stochasticity in the environment rather than an action choice in the tree. More details on this choice,
and a more formal description of the MDP are provided in the following paragraphs.

In this case, the breadth of the tree is very wide because of the large action space at each level of the
tree. This makes it beneficial to trade breadth for depth of the tree. We achieve this by performing
k-means clustering [40] of fragments at each hierarchy, so that chemically similar fragments occupy
the same cluster. Fragment choices are decomposed into two sequential steps of choosing a cluster,
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and choosing a fragment from the cluster. This approach retains the original grammar, but greatly
improves efficiency of MCTS convergence. The value of k was chosen arbitrarily as 100, and is a
user-defined parameter that can be adjusted. Additionally, we group end-groups and alkyl chains into
a single decision here unlike the Y6 case since we do not differentiate between them in the fragment
decomposition algorithm described in Section 2.1.1.

S1 is a singleton set containing an empty molecule, since we build the molecule from scratch in this
case. Action space A1 is the set of cluster indices of central core clusters (obtained from k-means
clustering). A2 is the set of fragment choices from the chosen cluster i, i.e., C = { f ∈ F | 1 ≤
r(f) ≤ 4;n(f) ≤ 35 }i where F is the set of fragments obtained with the fragment decomposition
algorithm described in Section 2.1.1, r(f) is the number of reactive positions in fragment f , n(f)
is the number of heavy atoms (non-hydrogen atoms) in fragment f , and Xi denotes the ith cluster
obtained from k-means clustering of set X . We placed restrictions on the number of reactive positions
and size of fragments to reduce the computational load of DFT validation.

The next group of actions contains the optional choice of pi-bridges to allow for extended conjugation
in the molecule. This again begins with the choice of a pi-bridge cluster index, followed by the
choice of fragment identity from set P = { f ∈ F | r(f) = 2;n(f) ≤ 10 }i. We allow this pi-bridge
sequence to be performed at most twice for a molecule (action spaces A3,5 are cluster choices and
A4,6 are fragment identity choices). Finally, the last group of actions, with action spaces At for
t ∈ [7, 2k + 7), attaches end-groups to all open reactive positions on the molecule, where k is the
number of unique reactive positions remaining in the molecule. This attachment is iterated as long as
the molecule does not exceed the maximum allowed size of 100 heavy atoms. Note that a maximum
of 2k steps is required as we alternate between the cluster and fragment choices. The fragment
identity choice is given by set E = { f ∈ F | r(f) = 1;n(f) ≤ 20 }i where i is the index of the
chosen cluster. State space St>1 is the set of possible molecular structures that can be reached by
applying transformations in At−1, to state st−1.

Similar to the Y6 case, reward R is the negative of Chemprop-predicted bandgap combined with
a similarity penalty as described in Equation 1. Unlike the Y6 case however, the MDP is not
deterministic here. The transitions that go from a state to a chosen fragment cluster are deterministic,
but all remaining actions along the branch have some randomness associated with them. Once an
action at corresponding to the identity of pi-bridge or end-group is chosen, the reactive position
on the current state st is sampled from a uniform distribution, and the next state st+1 is reached by
reacting the fragment at the sampled reactive position on the current state. The transition probability
is therefore defined as

Pt =

{
(δi1 δi2 · · · δin) t is odd(

1
kt

1
kt

· · · 1
kt

)
t is even

kt is the number of unique reactive positions available on state st. We chose to include this stochas-
ticity in reactive position choice for two reasons: 1) The identity and nature of a chemical fragment
typically has a higher influence on the optical properties of a molecule, than the reactive position
choice does. Hence removing the reactive position choice from the action space allowed us to limit
the depth of the tree and improve computational efficiency during training. 2) We wanted MCTS
to converge at solutions that identify optimal fragment choices but are relatively robust to choice
of reactive positions. While the precursors are determined by the fragments that are present in the
molecule, there is more flexibility in the reactive position choice, and therefore during synthetic
reaction planning.

2.4 Training Reward Predictor

2.4.1 TD-DFT Calculations

TD-DFT calculations were used as “ground-truth” labels to train our Chemprop reward predictor,
as well as to validate the bandgaps of generated candidates. Calculations were performed with the
same pipeline that we used in Subramanian et al. [57]. RDKit ETKDG [32] approach was used to
generate initial conformations, with at least 1,500 attempts. The conformers were ranked according
to their MMFF94 energies, and the 20 with the lowest energies were chosen [50]. An initial geometry
optimization was performed with semi-empirical tight-binding density functional theory (GFN2-
xTB) [2] in ORCA 4.2.0 [46]. Subsequent geometry optimizations were performed on the lowest
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Figure 3: Final generated candidates and their TD-DFT bandgaps K-means clustering was
performed on final 100 molecules from each category into 5 clusters (based on Morgan fingerprints).
The molecules shown are the lowest-bandgap molecules chosen from each cluster. (a) Y6-derivatives
MDP, (b) Patent-extracted fragments MDP. Bandgap of the last molecule is denoted with asterisk (*)
because the geometry had to be fixed before the TD-DFT calculation was performed. More details
are provided in Section A.4 of SI.

energy xTB conformers at the BP86[3]-D3[22]/def2-SVP[62] level of theory. Finally, single-point
TD-DFT calculations were performed at the ωB97X-D3[9]/def2-SVPD level of theory using the
Tamm–Dancoff approximation (TDA) [26] on the optimized geometries. Bandgaps used for reward
training were the lowest-energy singlet vertical excitation energies from the TD-DFT calculations.

a bi ii i ii iii

Figure 4: Active Learning to improve reward prediction Scatter plots showing improvement in fit
with AL iterations for (a) Y6 derivatives (b) Patent-extracted fragment derivatives. The test data in (a)
and (b) are the final sets of 100 molecules generated after all AL iterations have been completed with
the Y6 and patent-fragment MDPs respectively. In (a) and (b), the plot i corresponds to the model
pre-trained on just patent-mined dataset, and plot ii corresponds to model trained on patent dataset +
random rollouts from MCTS. Plot iii in (b) corresponds to model trained on patent dataset + random
rollouts + diversity & EI acquisition samples. More details are given in Section 2.4.2.

2.4.2 Active Learning for Data Collection

To ensure that the reward predictor is accurate in the generation domain of MCTS, we performed
iterations of active learning (AL) with a combination of acquisition functions to collect training data.
Figure 4 shows the improvement in reward predictor with each iteration of AL. Chemprop [25] was
our architecture of choice for the reward predictor. It was first pre-trained on a dataset containing
5,568 datapoints obtained from patents and labeled with TD-DFT bandgaps which we created in
Subramanian et al. [57]. The second round of training was performed on random rollouts generated
from MCTS. These two rounds were sufficient to get accurate (we chose the stopping criterion to
be an RMSE of 0.2 eV) performance on the focused Y6 chemical space, but the patent-extracted
fragment space required an additional round of training. This was done on a combination of datapoints
obtained from 1) running the iterative procedure described in Section 2.2 and choosing the best
candidate from the last 100 training steps of each iteration, and 2) choosing 100 molecules with the
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highest value of expected improvement (EI) from 10,000 randomly sampled candidates from MCTS.

EI(x) = (µ− f(x⋆)) Φ

(
µ− f(x⋆)

σ

)
+ σϕ

(
µ− f(x⋆)

σ

)
where µ is the negative of the Chemprop-predicted bandgap, and σ is the standard deviation of
predictions from the model ensemble, which is a measure of model uncertainty. Φ and ϕ are
the cumulative distribution function (CDF) and probability density function (PDF) of a normal
distribution, respectively. f(x⋆) is the highest value of predicted reward from the current batch of
candidates. While acquisition method 1 obtains a diverse set of most optimal candidates, method 2
obtains a set of optimal candidates as well as suboptimal but high-uncertainty candidates. Together,
these two acquisition methods provide training data in explorative and exploitative regimes.

3 Results and Discussion

We validated the final 100 diverse candidates obtained from each of Y6 and patent MDPs with
TD-DFT bandgap calculations. We show histograms of these bandgaps in Figure 2 (e) in comparison
to the original patent dataset, and random rollouts sampled from MCTS. It can be seen that the MCTS
optimized patent and Y6 candidates are strongly red-shifted with respect to random rollouts as well
as the patent distribution.

On the final 100 structures from each MDP, we performed k-means clustering with k = 5 based
on Morgan fingerprints of molecules to obtain the 5 most chemically diverse clusters of molecules.
We then chose the molecule with the lowest TD-DFT bandgap from each cluster. These structures
along with their bandgaps are displayed in Figure 3. It can be seen that these molecules display
structural features that are to be expected from low-bandgap molecules, such as highly conjugated
rings. Furthermore, the predicted bandgaps all fall in the NIR region of the spectrum.

In the case of Y6 derivatives, it is interesting to see a higher tendency of MCTS to generate long
polyene bridges between cores and end-groups (see the first, fourth, and fifth molecules in subfigure
(a)). Clearly, it has exploited the correlation between degree of conjugation and lowering of bandgap.
However, the presence of conical intersections (CI) in long linear polyenes is well known [17, 47]
suggesting a possibility for these MCTS-predicted molecules to be photochemically inactive. Linear
response TD-DFT has been seen to be unsuitable for accurately predicting the presence of these
points, paving way for the development of more sophisticated techniques such as spin-flip TD-DFT
(SF-TD-DFT) [34, 45]. This is hence a drawback with the complete reliance of MCTS on the accuracy
of TD-DFT predictions, but nevertheless showcases the ability of the algorithm to reliably optimize
the chosen reward.

Design strategies such as spatially separating donating and accepting fragments for a “push-pull”
effect are also known to have a lowering effect on bandgaps [49]. Among the generated patent-
derivatives, this design pattern can be seen in the first and fourth molecules of subfigure (b) which
contain electron-rich cores and electron-withdrawing end-groups. We additionally observe the
presence of highly reactive sites in some of these structures (such as hydrogen atoms on aromatic
amines of second, fourth, and fifth molecules, and chlorine atoms on the fourth molecule). We
replace the reactive positions with methyl groups and perform TD-DFT calculations on the “corrected”
structures to verify that optical properties do not drastically change even after the substitution. These
results can be found in Section A.4 of SI.

Finally, the TD-DFT bandgap calculations that we report work under the assumption of 0 K temper-
ature. Furthermore, a more realistic device-like environment would contain thin-films containing
several molecules packed together. We perform coupled MD/TD-DFT calculations on the final
10 molecules to better represent finite temperature and molecular aggregation effects. We report
absorption spectra calculated with these methods, and more details about this methodology in section
A.3 of the SI.

4 Conclusions

In this paper, we developed an approach based on the Monte Carlo Tree Search algorithm to generate
optimal low-bandgap molecules while also maintaining a degree of synthetic accessibility. We achieve
this by utilizing structural priors from a domain-focused patent-mined dataset of organic electronics
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molecules through a symmetry-aware fragment decomposition algorithm and a fragment-constrained
MCTS generator. Our generated candidates retain symmetry constraints from the patent dataset while
also exhibiting red-shifted absorption. As future extensions to this work, the optimization objective
can be augmented to include solubility (along with the inclusion of alkyl chain exploration into
the MDP) and oscillator strengths. Finally, while our approach for diverse candidate generation is
iterative, non-iterative objectives as used in GFlowNet [4] can be more efficient alternatives for the
future.
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A Appendix / supplemental material

A.1 Preprocessing of Patent-Mined Fragments

After fragment decomposition was performed, we performed some minimal preprocessing steps
to ensure that the fragments are representative of the chemical space we want to explore. We first
performed an RDKit filter, to ensure that only SMILES strings representing valid molecules are
retained, followed by an element filter, which retained only fragments containing the following
elements: C, O, N, H, Cl, Br, S, F, I, and Si. We finally removed fragments that do not contain any
aromatic atoms.

A.2 Correlation Between DFT and Experimental Bandgaps

We performed TD-DFT calculations on a subset of experimental molecules from the list shown in
Figure 7 for which we had access to experimentally measured bandgaps. We see R2 value of 0.57,
and a Spearman rank correlation coefficient (SRCC) of 0.74. While the magnitudes are not well
calibrated, the trends of experiments are well-captured by TD-DFT, making minimization a suitable
objective for MCTS as opposed to optimization for targeted bandgap values. As a future extension
of this work, it could be possible to fit a calibration function between TD-DFT and experimental
bandgaps and use the calibrated rewards for training. While it could be somewhat reasonable to
extrapolate such calibrations for the Y6 MDP, it might be more challenging to obtain representative
experimental examples for the patents MDP on which a calibration fit can be performed.

The mismatch in magnitudes between TD-DFT and experiments can be caused by several factors
including (but not limited to) 1) finite temperature effects, 2) molecular aggregation effects from
experimental values being measured on thin films, 3) inherent error in TD-DFT functional.

A.3 Finite Temperature and Aggregation Effects with Coupled MD/TD-DFT Calculations

A.3.1 Computational Methods

We combined MD simulations with TD-DFT calculations to approximate the effects of finite temper-
ature and molecular aggregation on absorption spectra. Following Kupgan et al. [29], we simulated
an amorphous morphology for the molecules. Starting with the optimized geometries presented in
the main text, we used PACKMOL [41] to pack 200 structures in a cubic box at a low density (∼
0.1 g/cm3). The OPLS-AA force field [51] was used via the LigParGen server [13]. The system was
equilibrated for 30 ns at 650 K, cooled to room temperature (300 K) at 10 K/ns, and subjected to a
30 ns production run at 300 K. All MD simulations were performed under the NPT ensemble at 1
atm, using GROMACS 2023 [1]. From the last 20 ns of the production run, we randomly selected a
molecule and included all neighboring molecules within a 5 Å radius. CHELPG charges [8] were
computed for each neighboring molecule, and TD-DFT calculations were performed for the selected
molecule with the neighboring point charges. For electronic structure calculations, we used the
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Figure 5: Correlation between TD-DFT and experimental bandgaps R2 score and Spearman rank
correlation coefficient are shown on top left.

same settings as in the main text. The absorption spectra were averaged over 10 clusters to obtain a
statistical estimate.

Two of the patent-derived molecules (the first and fifth molecules in Figure 3) contain an isocyanide
moiety, which could not be parametrized correctly using the LigParGen server. Therefore, for these
two molecules, we substituted the isocyanide (–NC) functional group with cyanide (–CN) for this
analysis. This substitution does not impact the band gap calculations significantly, with differences
in bandgaps for the optimized geometries of only 2 and 6 meV, respectively, indicating negligible
effects on the result analysis.

A.3.2 Absorption Spectra of Final Candidates
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Figure 6: Computed absorption spectra for final candidate molecules. The spectra for molecules
are ordered as shown in Figure 3 in the main text, with Y6 derivatives in the upper row and patent-
extracted fragment designs in the lower row. Solid lines represent single-point TD-DFT calculations
at the optimized geometry, while dotted lines represent statistically averaged TD-DFT spectra from
molecular clusters sampled from MD simulations. The translucent vertical lines indicate the band
gaps from the single-point calculations. The spectra are normalized so that the maximum absorption
corresponds to 1.0.
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The absorption spectra for the designed molecules are presented in Figure 6, with the Y6 derivatives
in the upper row and patent derivatives in the lower row. The vertical lines indicate the TD-DFT band
gap for the optimized geometries, as reported in Figure 3 of the main text. The MD/TD-DFT pipeline
results for the primary absorption peak locations are consistent with those from static (optimized)
TD-DFT calculations, though the MD/TD-DFT spectra exhibit broadening, likely due to thermally
accessible conformers and neighboring molecules. Note that the reddest absorption peak from
TD-DFT corresponding to the band gap might not accurately reflect the absorption spectra when its
oscillator strength is very low. This limitation, inherent to the design objective focused solely on
the band gap, indicates the need to consider transition probability in future designs. Nonetheless,
the band gap serves as a robust design objective, and this result demonstrates that our MCTS design
pipeline effectively produces low-bandgap molecules.

A.4 Structural Modifications

For the fifth molecule shown in Figure 3, we identified that errors in atomic connectivity were intro-
duced during the xTB optimization step. We fixed the geometry by bypassing the xTB optimization
step altogether. We instead directly performed BP86 DFT optimization on the five lowest energy
conformers obtained from RDKit ETKDG algorithm, and performed the TD-DFT calculation on the
lowest energy BP86 conformer.

As mentioned in Section 3, we performed TD-DFT calculations on methyl-substituted versions
of reactive molecules to confirm that the bandgap does not change significantly after substitution.
Bandgaps of second, fourth, and fifth molecules changed very minimally from 0.998, 1.09, and 1.470,
to 0.978, 1.049, and 1.470 eV respectively.

A.5 Reactive Positions in Practice

While we explain the algorithm in Section 2.1.1 using IDs belonging to [0, N), in the implementation,
we use Helium isotopes with IDs ranging from [100, 100 +N) where N is the number of fragments
in the vocabulary, to preserve reactive position identities in the RDKit Mol object. The range was
chosen arbitrarily but to be large enough so that there are no clashes in atomic mass with other
elements in the dataset.

A.6 Fragments in Y6 MDP and Experimental Comparisons
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Figure 7: Fragments used in Y6 MDP end-groups (purple) and pi-bridges (green). Core-modification
actions are implemented as string replacements, the list of which can be found in the GitHub repository.
We also omit illustrating alkyl chain actions here since methyl group is the only choice explored.
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