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Abstract

Class unlearning in neural classifiers refers to selectively removing the model’s ability to rec-
ognize a target (forget) class by reshaping the decision boundaries. This is essential when
taxonomies change, labels are corrected, or legal or ethical requirements mandate class re-
moval. The objective is to preserve performance on the remaining (retain) classes while
avoiding costly full retraining. Existing methods generally require access to the source, i.e.,
forget /retain data or a relevant surrogate dataset. This dependency limits their applicabil-
ity in scenarios where access to source data is restricted or unavailable. Even the recent
source-free class unlearning methods rely on generating samples in the data space, which is
computationally expensive and not even essential for doing class unlearning. In this work,
we propose a novel source-free class unlearning framework that enables existing unlearning
methods to operate using only the deployed model. We show that, under weak assumptions
on the forget loss with respect to logits, class unlearning can be performed source-free for
any given neural classifier by utilizing randomly generated samples within the classifier’s
intermediate space. Specifically, randomly generated embeddings classified by the model
as belonging to the forget or retain classes are sufficient for effective unlearning, regardless
of their marginal distribution. We validate our framework on four backbone architectures,
ResNet-18, ResNet-50, ViT-B/16, and Swin-T, across three benchmark datasets, CIFAR-10,
CIFAR-100, and TinyImageNet. Our experimental results show that existing class unlearn-
ing methods can operate within our source-free framework, with minimal impact on their
forgetting efficacy and retain class accuracy.

1 Introduction

Deep learning models have achieved remarkable performance across domains, but their tendency to memorize
training data makes them susceptible to privacy attacks such as membership inference attacks (Salem et al.
2018; [Shokri et al., [2017; Song et al.l [2019; [Yeom et al., [2018) and model inversion attacks (Chen et al.,
2021; [Fredrikson et al.||2015)). These risks pose serious concerns in privacy-sensitive applications, particularly
under regulations such as General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche, 2017 and
California Consumer Privacy Act (CCPA) (Goldman [2020) that mandate a "right to be forgotten', requiring
effective removal of specific data from trained models. In response, machine unlearning has emerged as a
promising direction to remove the influence of specific instances or classes without retraining from scratch.
Unlearning methods fall into model-intrinsic (Lin et al.l 2023), data-driven (Bourtoule et al.l 2021; [Hayase
et all 2020), and model-agnostic categories (Kurmanji et al.l 2023 |Chen et al., [2023; |Cotogni et al., [2023;
Cha et al., 2024), with a key distinction between exact unlearning (Bourtoule et al.l [2021; [Yan et al.,
2022) and approximate unlearning. Although recent approximate methods reduce retraining overhead, most
still require access to the forget set, the retain set, or a surrogate dataset that approximates the training
distribution.

We consider class unlearning, a practical scenario in which models must forget selected classes (Tarun et al.)
2023; [Kodge et al., 2024; |Zhou et al., 2025; |Zhang et al., [2025; Wang et al.), motivated by applications such
as face recognition, backdoor defense, data poisoning, and semantic segmentation (Chen et all 2023} |Liu
et al., [2022; [Zhou et al., |2025). This work challenges the widely held assumption that access to original
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training data is required for class unlearning. Existing source-free class-unlearning methods still recon-
struct input-level samples by training generative models, under the assumption that realistic or adversarial
surrogates are needed to approximate the decision boundaries. This design makes the unlearning pipeline
computationally heavy, tightly coupled to specific generator architectures, and in some cases dependent on
additional surrogate models or datasets. We propose a novel framework for source-free class unlearning that
operates entirely without access to original or surrogate forget and retain datasets. Our approach leverages
randomly generated embeddings in the intermediate space of the target classifier. More precisely, we gen-
erate synthetic, class-conditional synthetic embeddings by randomly sampling in the model’s intermediate
embedding space and pseudo-labeling them based on the model’s predictions. These synthetic embeddings
serve as proxies, allowing existing state-of-the-art unlearning methods to be adapted seamlessly to a fully
source-free setting. We theoretically show that these synthetic embeddings are sufficient to induce effective
decision boundary adjustments, while preserving accuracy on the retain classes.

This work enables class-level unlearning in a fully source-free setting, which is compatible with a wide
range of existing unlearning methods. Our framework successfully adapts several state-of-the-art techniques,
including Finetuning (Golatkar et al., 2020), Negative Gradient (Golatkar et al., |2020), Negative Gradient+
(Kurmanji et al., 2023), Random Labels (Hayase et all [2020), Boundary Expanding (Chen et al., 2023),
Boundary Shrink (Chen et al., 2023), DELETE (Zhou et al.l [2025), SCRUB (Kurmanji et al.l |2023), and
SCAR (Bonato et all 2024), to operate effectively without requiring access to any original training data or
relevant surrogate. Our main contributions are summarized as follows:

o We propose a novel source-free class unlearning framework that operates solely on a target model and
the label of the class to be forgotten, without requiring any access to original, surrogate, or validation
dataset. Our method generates synthetic class-conditional embeddings by sampling random vectors
within the model’s intermediate feature space and pseudo-labeling them using the model itself,
enabling the adaptation of existing unlearning methods to a fully source-free regime.

o We show that these synthetic embeddings, regardless of their marginal distribution, are sufficient
to induce the decision boundary shifts necessary for effective class unlearning. Remarkably, under
our framework, multiple state-of-the-art unlearning techniques perform equivalently well as in data-
access settings.

o We empirically validate our framework on ResNet-18, ResNet-50, ViT-B/16, and Swin-T backbones
using CIFAR-10, CIFAR-100, and TinylmageNet datasets. The results show that a wide range of
existing unlearning methods can function within our source-free setting with minimal degradation
in the unlearning performance.

2 Related Works

Class unlearning aims to remove the influence of a target class from a trained model while preserving perfor-
mance on the remaining classes. Class unlearning methods differ mainly by data access during unlearning:
availability of retain data, forget data, both, or neither.

Methods requiring both retain and forget sets. Many effective class unlearning methods assume
access to both forget and retain datasets. Distillation-based approaches such as SCalable Remembering and
Unlearning unBound (SCRUB) (Kurmanji et all |2023) guide student models via knowledge transfer and
pruning. Machine Unlearning with Dimensional Alignment (MUDA) (Seo et al.,|2025) introduces dimensional
alignment loss and a self-distillation scheme that explicitly leverages both forget and retain sets to erase the
influence of forget samples while preserving retain knowledge. The recently proposed SVD-based method
(Kodge et all 2024) performs gradient-free, single-step class unlearning by estimating retain and forget
spaces from small subsets of both datasets and suppressing class-discriminatory activations.

Retain-free methods. These approaches remove dependence on retain data and operate mainly on forget
samples. Negative Gradient reverses the estimated contribution of forget samples to the weights (Golatkar,
et al.l 2020). Boundary Shrink and Boundary Expanding techniques (Chen et all 2023) adjust decision
boundaries by contracting or expanding regions related to forget samples. Partially Blinded Unlearning
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(PBU) (Panda et al., [2025) perturbs model parameters using a Bayesian loss. Other lines estimate the
retain Hessian from forget data and model parameters (Ahmed et al., |2025)), or inject targeted label noise
to induce misclassification with minimal updates (Ye et al., |2025)). Just in Time unlearning (JiT) en-
forces local Lipschitz regularization on forget samples and their perturbations (Foster et al., 2024), while
zero-shot proxy generation synthesizes adversarial retain surrogates followed by subspace projection and
pseudo-labeling (Chen et al., |2025). From an input-sensitivity view, Machine Unlearning by Minimizing
input sensitivity (MU-Mis) minimizes the sensitivity gap between target-class and irrelevant-class logits to
withdraw forget influence with limited utility loss (Cheng et al.;2024). |Zhou et al.| (2025|) proposes DELETE,
a decoupled distillation method that suppresses the forget-class logits with a masking function and distills
dark knowledge from the frozen model to preserve remaining classes. Recently, Selective-distillation for Class
and Architecture-agnostic unleaRning (SCAR) (Bonato et al. 2024) introduced a retain-free method that
leverages Mahalanobis-guided metric learning and a distillation strategy using a surrogate out-of-distribution
dataset to preserve model performance. In addition, it proposes a source-free class unlearning variant that
requires no access to either retain or forget data, while still relying on the surrogate dataset.

Forget-free methods. Some methods operate using retain data and without direct access to forget samples.
Fine-tuning approaches update models exclusively on retain data to indirectly remove forget sample influence.
Recent work, such as RELOAD (Newatia et al.), introduces blind unlearning, which performs approximate
unlearning without access to the forget set. Instead, it leverages cached gradients from the original training
and selectively re-initializes parameters most influenced by the forget data, guided by differences between
full and retain gradients. Similarly, Unlearning With Single Pass Impair and Repair (UNSIR) (Tarun et al.
2023) operates in a zero-glance setting, where forget samples are entirely inaccessible. More precisely, it
employs a single-pass impair-repair strategy using error-maximizing noise and a small retain subset to forget
class-level information.

Source-free methods. In the source-free unlearning setting, neither forget nor retain data is available.
Chundawat et al.| (2023) proposes Min—Max noise, which adversarially perturbs weights to raise loss on for-
get classes while preserving retain accuracy, and Gated Knowledge Transfer (GKT), which distills a student
from a teacher while filtering synthetic samples linked to the forget classes. GKT, however, can over-filter
(discarding samples that still encode retain information) and exhibits generator imbalance (overproducing
forget-class samples), reducing data efficiency. To address these issues, [Zhang et al.| (2025) introduces the
Inhibited Synthesis PostFilter (ISPF) framework, combining Inhibited Synthesis to discourage the generation
of forget-class data with a PostFilter to suppress forget-class logits without discarding samples. However,
both approaches initialize and train a new model from scratch as part of the distillation process, which
incurs substantial computational overhead. [Wang et al.| proposes Data Synthesis—based Discrimination-
Aware (DSDA), which synthesizes data via Accelerated Energy-Guided Langevin Sampling and performs
unlearning through Discrimination-Aware Multitask Optimization. Despite efficiency gains, DSDA still in-
curs nontrivial computational overhead due to the recursive sampling needed to construct synthetic forget
and retain datasets. We demonstrate that synthesizing input-level data is not necessary for effective class
unlearning, and intermediate random embeddings are sufficient to reshape the decision boundaries. Building
on this insight, our proposed framework operates entirely in the intermediate embedding space by sampling
synthetic embeddings and pseudo-labeling them using the model itself. This significantly reduces computa-
tional overhead while maintaining unlearning effectiveness. Compared to recent source-free methods such
as DSDA, ISPF, and GKT, this approach avoids data generators, input reconstruction, and student-teacher
training, making it significantly more efficient.

3 Methodology

In this section, we introduce our notations, formalize the problem setting, and lay down the theoretical
foundation necessary for source-free class unlearning. Subsequently, we propose our source-free unlearning
methodology grounded on this theoretical insight.
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3.1 Notations and Problem Setup

Consider a pre-trained classifier model defined as ® = h o goe. The feature extractor e : X — R
parameterized by 6., maps input samples x € X to a d-dimensional embedding z = e(x) € R? An
intermediate transformation g : R* — R!, parameterized by 04, maps z to an [-dimensional latent embedding
g(z) € RL. Finally, the classifier head h : R — R® with parameters 0}, computes class logits h(g(z)) € RC.
We denote the space of class labels as ) = Y U Y;., where V¢ is the set of classes targeted for unlearning
(forget classes), and )Y, is the set of retain classes with Yy N Y, = 0. In this work, we primarily focus on
unlearning a single class, denoted as cy, and thus Yy = {cs} and Y = Y\ {¢y}. Under this notation, class
unlearning is defined as the process of selectively removing the model’s ability to recognize the target class
cy by reshaping the decision boundary, while preserving predictive performance on the remaining classes ).

3.2 Proposed Methodology

We assume availability of embeddings drawn from an arbitrary intermediate embedding space, such as the
output of the feature extractor e. Formally, we denote embeddings in this space as random variables z € R?,
sampled from an arbitrary distribution p,(z). These embeddings do not necessarily follow any particular
distribution from the original training data. More precisely, given a classifier model ® = h o g o e, we obtain
pseudo-labels for each embedding z; by applying the intermediate transformation and the classifier head:

9i = arg max(h(g(z))l- (1)
Using these pseudo-labels, we construct two embedding subsets including the forget set £; and the retain
set &, defined as follows:

~ N N
gf:{ziERd|yi:Cf}i:f1a ST:{ZiGRd ‘yieyr}zN:Tp (2)

where Ny and N, are the sizes of the forget and retain sets, respectively. In class unlearning methods, the
overall objective is often formulated as a combination of two components: a forget loss £y computed on
the forget set £, and a retain loss £, computed on the retain set &,. The total unlearning loss is typically
expressed as £, = Ly + AL,, where A\ controls the trade-off between forgetting and utility preservation.
The forget loss L; encourages the model to remove knowledge related to the forget class by reshaping the
decision boundary, while the retain loss £, is used to preserve performance on the retain classes and prevent
catastrophic forgetting. In the following proposition, we theoretically prove that by having access solely
to these sets of embeddings—independent of the underlying embedding distribution p,(z)—it is possible to
perform class unlearning effectively.

Assumptions: We begin by stating two assumptions regarding the forget loss function L. First, we assume
that Ly is differentiable with respect to the model’s parameters. Second, we assume monotonicity conditions
on the logits produced by the classifier head. Specifically, for every embedding z; € &;:

oL, >0 k=cy; (monotonically increasing), 3)

Ih(g(z:))lk <0 k€)Y, (monotonically decreasing),

where [h(g(z:))]x = (04)] 9(z;) denotes the logit for class k, and (0;), € R! is the k-th row of classifier
parameter matrix 6;, € RE*!.

Proposition 1 (Distribution-Agnostic Class Unlearning). Consider a trained classifier model ® = hogoe
with parameters defined as above, and assume the availability of the embedding sets £¢ and &, derived from
an arbitrary embedding distribution p,(z). Let class unlearning be performed by minimizing a forget loss
function L¢, defined over embeddings in E¢. Then, class unlearning of the target class cy can be effectively
achieved regardless of the choice of embedding distribution p,(z).

Proof. Since decision boundaries between classes are directly governed by the classifier parameters 6y,
gradient-based updates explicitly reshape these boundaries. Consider a gradient descent update at iter-
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ation j with learning rate o > 0:

o = 0 25r. g
00

Applying the chain rule, the gradient of £; with respect to (6p) is:

oL
8(9 (]) ; a (Zi)' (5)

Thus, the update for the logit of class k can be generally expressed as:

(nloa ) = o) = - 3 g csslatalP (6)

z; €€f

By substituting the monotonicity assumption into equation |§|, we have that the forget-class logit [h(g(z;))]c,
consistently decreases in response to z; € £¢, due to positive gradients. Conversely, logits corresponding to
retain classes k € ), consistently increase as their gradients are negative. Consequently, embeddings initially
assigned to the forget class are systematically reclassified toward retain classes, progressively contracting the
decision region associated with class cy. Importantly, this reasoning relies only on embeddings classified as
the forget, independent of their underlying distribution p,(z). Hence, the effectiveness of class unlearning is
guaranteed irrespective of the specific embedding distribution employed.

O

Building on Proposition [I} we propose a practical and fully source-free class unlearning framework. The
central idea is to leverage synthetic embeddings sampled from an arbitrary distribution p,(z) in the inter-
mediate embedding space, using the classifier head to form synthetic forget and retain sets. These synthetic
sets serve as surrogates for original data, enabling effective unlearning through gradient-based minimiza-
tion of the forget loss L. Figure [I] visually illustrates our proposed source-free unlearning pipeline, while
Algorithm [If summarizes the procedure in detail.

4 Experiments

4.1 Experimental Setup

We evaluate the efficacy of our proposed source-free framework by integrating it with a diverse set of state-
of-the-art class unlearning methods, tested across three widely used benchmark datasets. Experiments are
conducted using four backbone architectures, ResNet-18 (He et al., 2016), ResNet-50 (He et al. [2016)),
ViT-B/16 (Dosovitskiy et al., [2020), and Swin-T (Liu et al |2021)), although our framework is architecture-
agnostic and can be extended to other network architectures without modification.

Datasets —We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and TinylmageNet (Le & Yang), [2015). CIFAR-10 and CIFAR-100 comprise 60,000 color images of
resolution 32 x 32, split into 50,000 training and 10,000 testing samples, with 10 and 100 classes respectively.
TinyImageNet contains 110,000 images of resolution 64 x 64, distributed across 200 classes, with 100,000
samples for training and 10,000 for testing. In this work, we utilize only the test sets of these datasets to
evaluate the effectiveness of the unlearning methods within our source-free framework.

Baselines —We benchmark our approach against a comprehensive suite of methods, including classical
retraining, fine-tuning-based unlearning, and recent state-of-the-art techniques such as Boundary Shrink
(BS) (Chen et al., [2023), Boundary Expanding (BE) (Chen et al., 2023), DELETE (Zhou et all 2025),
SCRUB (Kurmanji et al., [2023), SCAR (Bonato et al. 2024), Negative Gradient (NG) (Golatkar et al.,
2020), Negative Gradient+ (NG+) (Kurmanji et al., [2023), and Random Labels (RL) (Hayase et al.| [2020).
The Original models denote ResNet-18, ResNet-50, ViT-B/16, and Swin-T architectures trained on the full
training set for 300 epochs with cosine annealing learning rate scheduling, serving as the baseline before
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Figure 1: Illustration of the proposed source-free class unlearning framework. (a) Step 1: synthetic em-
beddings are sampled randomly from an arbitrary distribution in the intermediate embedding space and
pseudo-labeled by the model to form the synthetic forget set £; and retain set &,. (b) Step 2: the subse-
quent layers of the model are updated using these embeddings by minimizing the forget loss L to forget
the target class set Yy = {c;}, while optionally preserving performance on retain classes ). through the
retain loss £,. (c¢) t-SNE of intermediate embeddings. (d) t-SNE of softmax probability before unlearning.
(e) t-SNE of softmax probability after unlearning.

unlearning. The Retrained models are trained from scratch for 200 epochs exclusively on the retain subset,
representing an upper-bound performance as they have no exposure to data from the forget set.

Evaluation Metrics —We assess unlearning performance using three primary metrics, including retain test
accuracy (A7), forget test accuracy (A%), and the Adaptive Unlearning Score (AUS) (Cotogni et al., [2023).
The objective is to maximize A%, thereby preserving retain knowledge, while minimizing A’}, indicating
effective unlearning. The AUS combines these aspects into a single scalar score that balances utility and
unlearning:

AUS — (1 (ATt A )/(1 n ‘Aifdealft _ A;nft‘ )7 (7)

where A"t is the retain test accuracy of the original model, A" ~* and A?nft are the retain and forget

test accuracies of the unlearned model respectively, and Aifdeal*t denotes the target forget accuracy (ideally
zero). Higher AUS values indicate superior unlearning performance, i.e., effective forgetting while preserving
the retain classes’ accuracy.
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Algorithm 1 Source-Free Class Unlearning Framework

Require: Pre-trained classifier model ® = hogoe, target class to forget ¢y, number of synthetic embeddings
N, embedding distribution p,(z), forget loss function £, retain loss function £,, unlearning loss function
L., learning rate o

1: Initialize: synthetic forget set £ = () and retain set &, = ()

2: fori=1to N do

3:  Sample embedding z; ~ p,(z)

4:  Obtain pseudo-label: §; = argmaxycy[h(g(z;))]k

5: if :ljz = cCf then

6: Er + & U{z;}

7. else

8: E+— & U {Zz}

9: end if

10: end for

11: for each gradient update step do

12:  Compute loss £, = Ly + AL,: compute Ly using & and L, using &,
13:  Backpropagate and update parameters 6 = (6,,0;) via 6 < 0 — aVgL,
14: end for

15: return updated model ®' = h'og'oe

4.2 Main Results

For each dataset, we conduct experiments using five independently initialized models, applying class-wise
unlearning separately to each class. Each experiment is repeated across five random seeds, and the results
reported correspond to the mean and standard deviation aggregated over all classes and seeds. To ensure
a fair comparison among unlearning methods, the number of synthetic samples generated per class matches
the size of the original training class. (see Appendix [Al for the required minimum number of synthetic
embeddings). These synthetic embeddings are sampled from the intermediate feature space immediately
preceding the model’s classification head. (see Appendix [C| for the effect of embedding distribution). The
overall performance is summarized in Table [I] and Table Across all methods, datasets, and backbone
architectures, our source-free framework consistently achieves near-complete forgetting as indicated by the
minimized forget test accuracy (A}), while maintaining strong classification accuracy on retain classes (A%).
Moreover, the AUS obtained close approximations to retraining-based baselines with full access to the retain
set. In addition, a detailed class-level evaluation of different unlearning methods within our source-free
framework is provided in Appendix [E] and anonymized code link is provided in Appendix

Impact of Embedding Location on Source-Free Unlearning —To evaluate the flexibility of our
framework, we examine how the depth at which synthetic embeddings are generated influences unlearning
performance. Specifically, we compare embeddings produced at two distinct locations: (1) immediately pre-
ceding the classifier head, which serves as our default configuration, and (2) earlier in the network, e.g., before
the final convolutional block within ResNet-18’s layer 4. As reported in Table 3] embeddings generated at
the earlier stage continue to deliver strong unlearning performance, with results closely matching those ob-
tained from embeddings sampled before the classifier head (see Table . The marginal differences observed
underscore the robustness of our method to the choice of embedding depth. Furthermore, synthetic embed-
dings consistently achieve competitive results when directly compared to original embeddings extracted from
the same intermediate layer, indicating their effectiveness as surrogate representations. Collectively, these
findings confirm that our framework supports effective unlearning at multiple depths within the network,
offering a layer-agnostic capability that enhances adaptability to diverse architectural configurations, privacy
considerations, and computational constraints, thereby broadening its practical applicability.

Impact of the Number of Synthetic Embeddings per Class on Unlearning Performance —We
investigate how the number of synthetic embeddings generated per class influences the unlearning efficacy.
To this end, the ResNet-18 trained on CIFAR-100 is considered in the main text, with additional results for
ResNet-18 on CIFAR-10 and TinyImageNet, as well as ViT-B/16 on CIFAR-10 and CIFAR-100, provided
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Table 1: Single-class unlearning performance for CIFAR-10, CIFAR-100, and TinyIlmageNet using ResNet-18 and
ResNet-50 as the base architecture. Rows highlighted in gray represent our results using synthetic embeddings, while
the corresponding non-shaded rows use original embeddings with the same method. Columns D,-free and Dj-free
indicate whether the method operates without access to the retain or forget set, respectively, with (V) denoting true
and (X) denoting false.

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet
etho free  free At 4 Ll AUS 1 ALt Al AUS ALt Ll AUS 1
ResNet-18:
Original | | 86.58+0.83 86.58+6.67 0.537+0020 | 78.16+1.07 78.16+1115 0.564+0037 | 71.30+020 71.30+1246 0.587+0.045
Retrained ‘ ‘ 86.95+1.22 0.0+0.0 1.000 + 0.005 ‘ 77.92+0.80 0.0+0.0 0.956 +0.036 ‘ 63.01+2.77 0.0+0.0 0.855 +0.029
- - X v ‘ 87.43 +1.02 0.0+0.0 1.009+0.004 | 78.20 +1.00 0.0+0.0 1.000+0.003 | 71.32+0.35 0.0+0.0 1.000 + 0.002
FT (Golatkar et al.[|2020 ‘ v v 8737+1n 0.0+0.0 1.008 +0.003 ‘ 78.29+1.04 0.0+0.0 1.001 +0.001 ‘ 71.25+0.32 0.0£0.1 0.999 + 0.001
— v X \ 87.31+1.13 0.0+0.0 1.007 +0.003 | 78.28 +1.07 0.0+0.0 1.001 +0.001 | 71.36+0.30 0.0x0.0 1.001 +0.001
NG {Colatkar et al.[[2020 ‘ / /  8T40=114  00+00  1.008=0.004 ‘ 78284105 0.0+01 10010002 ‘ 71304020 0.0+00  1.001+0000
- - v X ‘ 87.43+1.16 0.0+00 1.008 £0.004 | 78.36+1.05 0.0+0.0 1.002 £0.001 | 71.35+0.32 0.0x0.0 1.001 +0.001
RL ' 2020 ‘ v v 87.33+1n 0.0+0.0 1.008 +0.004 ‘ 78.12+1.03 0.0+0.0 1.000 + 0.001 ‘ 71.27+0.32 0.0+0.0 1.000 + 0.001
- - v X ‘ 86.29 + 1.09 0.2+04 0.996 +0.000 | 74.32+1.72 0.1+05 0.960 +0.017 | 70.24 +0.87 0.1+05 0.988 +0.010
BS ' 2023 ‘ v v 87.37+116 0.0+0.0 1.008 + 0.004 ‘ 77.27+1.05 0.5+3.2 0.987 +0.026 ‘ 70.36 +0.99 0.0+0.1 0.991 + 0.009
v X ‘ 84.72 £1.61 0.5+1.2 0.977£0.021 | 71.23+2.43 0.1+0.6 0.930+0.024 | 62.68 +2.69 1.3+21 0.902 + 0.030
BE ‘ ‘ v v 86.51+0.81 0.0£0.0 0.999 =+ 0.001 ‘ 78.02+1.10 0.0+0.0 0.999 + 0.003 ‘ 71.23+0.30 0.0+0.0 0.999 =+ 0.001
v X ‘ 87.33+£1.12 0.0+0.0 1.008 +0.004 | 78.28 +1.06 0.0+0.0 1.001 +0.001 | 71.43+0.30 0.0+0.0 1.001 + 0.000
s
DELETE ' ‘ 4 v/ 87.36+113 0.0+0.0 1.008 +0.004 ‘ 78.26 £1.07 0.0+0.0 1.001 +0.001 ‘ 71.36 +0.30 0.0+0.0 1.001 + 0.000
e X X ‘ 85.31+9.73 0.0+0.0 0.987+0.095 | 77.57+6.40 0.0+0.0 0.994+0.062 | 71.21+0.86 0.0+0.0 0.999 + 0.008
NG+ (Kurmanji ot al.||2023 ‘ v v 87.38+114 0.0+0.0 1.008 +0.004 ‘ 78.33+1.00 0.0+0.0 1.002 +0.001 ‘ 71.35+0.33 0.0+0.0 1.000 + 0.001
E— X X ‘ 87.11+1.04 0.0+0.0 1.005+0.003 | 77.52+1.06 0.0+0.0 0.994 +0.002 | 67.60+1.51 0.0+£0.4 0.963 £0.014
SCRUB ‘ 2023 ‘ v v 8745+117 0.0+0.0 1.009 + 0.004 ‘ 78.22+1.01 0.0+0.0 1.001 +0.001 ‘ 71.15+0.37 0.0+0.0 0.999 + 0.001
y X X ‘ 87.44+1.15 0.0+0.0 1.009 +0.004 | 78.34+1.09 0.0+0.0 1.002+0.002 | 71.50 +0.30 0.0+0.0 1.002 +0.001
SCAR ' ‘ 4 v/ 87.38t112 0.0+0.0 1.008 +0.004 ‘ 78.33+1.05 0.0+0.0 1.002 +0.001 ‘ 71.41 +0.30 0.0+0.0 1.001 + 0.000
ResNet-50:

Original | = - | 8828086 88.28+502 0.532+0017 | 82.62+0.79 82.62+920 0.549+0.020 | 75.914+125 759141132 0.571+0088
Retrained | | 89.03£104  0.0400  1.008+0007 | 8173099  0.0+00  0.991+0013 | 7621231  0.0+00  1.003=0.0%
< X v \ 89.40 +0.98 0.0+0.0 1.011+0.005 | 82.79+0.75 0.0+0.0 1.002 +0.001 | 75.80+1.25 0.0+0.2 0.999 + 0.003
FT (Golatkar et al{[2020 ‘ //  8898:10s  00+00 10070008 ‘ 8268077 00400 10010001 ‘ 75804120 0.0400  0.9990.001
v X ‘ 88.96 +1.66 0.0+0.0 1.005+0.013 | 82.71+0.79 0.0+0.0 1.001+0.001 | 75.97+1.24 0.0+0.0 1.001 + 0.000
NG (Golatkar et al.||2020 ‘ v v 89.04+1.10 0.0+0.0 1.008 + 0.004 ‘ 82.70 +0.79 0.0+0.0 1.001 +0.001 ‘ 75.95+1.25 0.0+0.0 1.000 + 0.000
— 4 X | 89.06+1.07 0.0+0.0 1.008 £0.003 | 82.72+0.79 0.0+0.0 1.001 +o0.001 | 75.95+1.24 0.0+0.0 1.000 +0.001
RL 2020 ‘ v v 88.92+1.04 0.0+0.0 1.006 + 0.003 ‘ 82.76 +0.78 0.0+0.0 1.001 +0.001 ‘ 75.90 + 1.22 0.0+0.0 1.000 + 0.001
v X ‘ 87.68 £1.18 0.4+09 0.990 £0.014 | 82.28 +0.94 0.0+0.1 0.997 +0.003 | 74.44 +1.67 0.1+05 0.984 £0.013
BS ' 2023 ‘ 4 v 89.24+o097 0.0+0.0 1.007 +0.003 ‘ 82.55 +0.80 0.0+0.0 0.999 + 0.001 ‘ 75.19+1.21 0.0+0.0 0.993 +0.002
- . v X \ 87.44 +1.56 0.3+0.9 0.989 +0.015 | 82.14+0.85 0.0+0.0 0.995+0.002 | 68.12+2.81 0.5+1.2 0.917 +0.021
BE ‘ ‘ 4 v/ 88.22+o086 0.0+0.0 0.999 + 0.000 ‘ 82.62+0.79 0.0+0.0 1.000 + 0.000 ‘ 75.89+1.25 0.0+0.0 1.000 + 0.000
4 X \ 88.99 +1.06 0.0+0.0 1.007 +0.003 | 82.71+0.79 0.0+0.0 1.001 +0.001 | 75.98+1.24 0.0+0.0 1.001 +0.000
DELETE ' 2025 ‘ 4 v 88.98+1.07 0.0+0.0 1.007 +0.003 ‘ 82.70 +0.79 0.0+0.0 1.001 +0.001 ‘ 75.95+1.25 0.0+0.0 1.000 + 0.000
= . X X ‘ 89.12+1.00 0.0+0.0 1.008 +0.004 | 82.78 £0.77 0.0+0.0 1.002 +0.001 | 76.24+1.06 0.0+0.0 1.001 +0.001
NG+ l 2023 ‘ 4 v/ 83.99+105 0.0+0.0 1.007 +0.003 ‘ 82.79+0.90 0.0+0.0 1.001 +0.001 ‘ 75.99 +1.23 0.0+0.0 1.001 +0.000
. = . X X \ 88.96 +0.95 0.0+0.0 1.008 +0.003 | 82.76+0.75 0.0+0.0 1.001 +0.001 | 70.65+2.51 0.3+1.0 0.944 £ 0.015
SCRUB ‘ 2023 ‘ 4 v 8911110 0.0+0.0 1.008 +0.004 ‘ 82.72+0.77 0.0+0.0 1.001 +0.001 ‘ 75.86 +1.28 0.0+0.0 0.999 + 0.001
o X X \ 89.11+1.08 0.0+0.0 1.008 +0.004 | 82.47+0.97 0.0+0.1 0.998 £0.008 | 76.01 +1.22 0.0+£0.0 1.001 +0.001
SCAR ' 2024 ‘ 4 v 89.02+1.07 0.0+0.0 1.007 £ 0.003 ‘ 82.73 +0.79 0.0+0.0 1.001 + 0.001 ‘ 76.04+1.24 0.0+0.0 1.001 +0.000

in the Appendix As illustrated in Figure [2| increasing the number of synthetic samples consistently
enhances retain class accuracy (AL) and the AUS, while reducing forget class accuracy (A}) This behavior
indicates that generating a larger set of representative embeddings more effectively approximates the decision
boundaries of the forget and retain classes, thereby improving source-free unlearning performances. Notably,
performance gains saturate beyond a certain sample size, which means that generating additional synthetic
embeddings beyond this point yields minimal improvement. This allows for efficient use of computational
resources without compromising unlearning quality.

Multi-class Unlearning Setting —Beyond the single-class unlearning setting, we evaluate whether our
source-free class-unlearning framework scale to multi-class setting on CIFAR-100 using a ResNet-18 backbone
(Table. We consider unlearning 2, 5, and 10 classes, with label sets Yy = {25, 58}, V; = {25, 58, 38, 23,96},
and Yy = {25,58,38,23,96,54,51,49,98,66}, respectively, following the CIFAR-100 setup in
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Table 2: Single-class unlearning performance for CIFAR-10, CIFAR-100, and TinylmageNet using ViT-B/16 and
Swin-T as the base architecture. Rows highlighted in gray represent our results using synthetic embeddings, while
the corresponding non-shaded rows use original embeddings with the same method. Columns D,-free and Dj-free
indicate whether the method operates without access to the retain or forget set, respectively, with (V) denoting true
and (X) denoting false.

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet
free  free ALt A‘/ 4 AUS 1 ALt A‘f 1 AUS 1 AL .A’j- 1 AUS 1
ViT-B/16:
Original ‘ - - ‘ 97.69+0.18 97.69+1.30 0.506+0.003 ‘ 87.22+026 87.22+7.83 0.535+0.023 ‘ 88.20+0.14 88.20+7.20 0.532+0.022
Retrained ‘ ~ | 98.38+021  0.0£00  1.007x0002 | 88.74+021  0.0+00  1.015+0.003 | 89.59+013  0.0+00  1.014+0.002
5 - | v X | 97.89+0.25 0.0+0.0 1.002:£0.001 | 87.29+0.27 0.0+0.0 1.001+0.001 | 88.23+0.14 0.0+0.0 1.000 +0.000
NG (Golatkar et al.[[2020 v v ‘ 97.90 +0.24 0.0+0.0 1.002+£0.001  87.30+0.27 0.0+0.0 1.001 £ 0.001 ‘ 88.23+0.14 0.0+0.0 1.000 + 0.000
- - \ v X 97.91+0.25 0.0+0.0 1.002 + 0.001 \ 87.31+0.28 0.0+0.0 1.001 +0.001 | 88.24+0.14 0.0+0.0 1.000 + 0.000
RL ‘ 2020 v v ‘ 97.93 +0.24 0.0+0.0 1.002+0.001 87.35+0.28 0.0+0.0 1.001 +0.001 ‘ 88.27+0.14 0.0+0.0 1.001 +0.001
- | v X | 97761022 0.0x00  1.00lo.001 | 87.27+027  0.0x00  1.000+0000 | 88.22:+014  0.0£00  1.000:0.000
BS ‘ 2023 v v ‘ 97.89+0.23 0.0+0.0 1.002+0.001 87.22+0.28 0.0+0.0 1.000 + 0.001 ‘ 88.08 +0.16 0.0+01 0.999 +0.001
- | v X | 9789025  0.0x00  1.002:0.001 | 87.30+027  0.0x00  1.001xo0001 | 88.23+014  0.0£00  1.000:0.000
DELETE l v v ‘ 97.91+0.25 0.0+0.0 1.002+0.001 87.32+0.27 0.0+0.0 1.001 +0.001 ‘ 88.25+0.14 0.0+0.0 1.001 +0.000
e \ X X 97.88+0.25 0.0+0.0 1.002 +0.001 \ 87.15+0.29 0.0+0.2 0.999+0.003 | 87.64+0.27 0.1+04 0.993 +0.005
NG+ ' 2023 v v ‘ 97.92+0.25 0.0+0.0 1.002+0.001  87.32+0.30 0.0+0.0 1.001 +0.001 ‘ 88.28 +0.15 0.0+0.0 1.001 +0.000
Swin-T:

Original | - — | 97.73x017 9773147 0.506+0.004 | 87.58 +0.53 87.58+9.01 0.534+0.029 | 86.18+0.00 86.18=7.59 0.538:+0.023
Retrained | - ~ | 9836+025  0.0£00  1.006+0001 | 88.89+021  0.0+00  1.013=0005 | 87.13+013  0.0400  1.010+0.002
\ v X 97.93 +0.27 0.0+0.0 1.002 +0.001 \ 87.65+0.54 0.0+0.0 1.001+0.001 | 86.21+0.10 0.0+0.0 1.000 = 0.000
NG (Golatkar et al |[2020 v v ‘ 97.64 +0.86 0.5+1.0 0.995+0.017 83.19+3.93 1.7+17 0.941 +0.047 ‘ 80.79 +4.72 1.9+1.6 0.929 +0.051
= . \ X X 97.83 +0.27 0.0+0.0 1.001 + 0.001 \ 87.60 + 0.54 0.0+0.0 1.000+0.002 | 84.46+1.19 0.0+03 0.982 +0.012
NG+ l 2023 v v ‘ 93.50+7.54 1.1+13 0.948 +0.080 86.84+0.95 0.3+038 0.990 +0.014 ‘ 85.28 +0.76 04+10 0.987 +0.014
= . \ X X 97.85+0.25 0.0+0.0 1.001 + 0.001 \ 87.73+0.47 0.0+0.0 1.001 +0.001 | 86.19+0.09 0.0+0.0 1.000 + 0.001
SCRUB l 2023 v v ‘ 97.39+1.11 0.0+0.0 0.997+0.011  87.07+0.65 0.0+0.3 0.995 -+ 0.007 ‘ 84.92+0.73 0.1+0.4 0.987 +0.008

Table 3: Single-class unlearning performance using random samples generated from layer 4 (immediately before the
last convolutional layer) of ResNet-18 as the base architecture. Rows highlighted in gray show results obtained with
synthetic embeddings.

Method D, Dy CIFAR-10 CIFAR-100 TinyImageNet

free  free ALt Atf s AUS 1 ALt A‘f 1 AUS 1 AL 4 A'f 1 AUS t
Original | - — | 86.58+0.83 86.58+6.67 0.537=0020 | 7816+1.07 78.16+1115 0.564=0.037 | 7130020 71.30+12.46 0.587+0.045
Retrained | - | 86.95+1.22 0.0400  1.00040.005 | 77.92+0.80 0.040.0 0.956+0.036 | 63.01£277  0.0£00 0.855 0,029
\ X v 87.55+1.09 0.2+09 1.007 +0.010 \ 76.80 + 4.06 02+06 0.985+0.042 | 71.72+0.33 0.6+1.2 0.998 +0.012
FT (Golatkar et al.[|2020 v v ‘ 81.03 +3.82 0.0+0.1 0.944+0.037 76.09+1.10 0.0+0.3 0.979 +0.009 ‘ 69.64 +0.46 0.0+0.0 0.983 +0.002
\ v X 87.30+1.23 0.0+0.0 1.007 +0.005 \ 78.29 +1.08 0.0+0.0 1.001+0.001 | 70.51+1.02 0.1+05 0.991 +0.011
NG (Golatkar et al {[2020 v v ‘ 87.24+1.16 0.0+0.1 1.006+0.004 76.28 +1.40 0.0+0.1 0.981 +0.011 ‘ 71.30+0.46 0.0+0.0 1.000 +0.003
- - \ 4 X 87.27+1.08 0.0+00 1.007 £ 0.003 \ 78.32+1.06 0.0+0.0 1.002 £0.001 | 71.56 +0.39 0.0+0.0 1.003 +0.001
RL ‘ 2020 v v ‘ 87.18+1.24 0.0+0.1 1.006 +0.007 77.76+1.65 0.0+0.2 0.996 +0.013 ‘ 71.62+0.45 0.0+0.0 1.003 +0.002
\ v X 77.62+15.23 0.4+038 0.905 +0.150 \ 75.97+4.21 0.1+06 0.978+0.039 | 54.84 +6.63 l4+17 0.819 +0.069
DELETE l 2025 v v ‘ 87.02+1.11 0.0+0.1 1.004+0.005 74.29+2.31 1.3+£1.4 0.948 +0.026 ‘ 68.89 +0.99 0.0+03 0.972 +0.010
S - ‘ X X 83.82+0.70 0.0+0.0 0.972 +0.010 ‘ 78.20+1.01 0.0+0.1 1.000 +0.002 | 70.41+0.44 0.0+0.0 0.991 +0.003
NG+ (Kuwrmanji et al.[[2023) | 7 7 ‘ 87.16+117  0.l=os  1.005+0007 78.18+106  0.0+02  1.0000.004 ‘ 7137043 0.0+01  1.001+0.002

2025). In our multi-class experiments, all classes in Yy are forgotten simultaneously in a single unlearning
run. Each experiment is repeated across five random seeds.

5 Conclusion

We introduced a novel source-free framework for class unlearning, which removes specific class knowledge
from a trained model without requiring access to the original training data, including forget, retain, or
surrogate sets. By leveraging the internal structure of the model to synthesize class-conditional embeddings,
we enable the adaptation of various state-of-the-art unlearning techniques to a fully source-free regime. Our
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Figure 2: Effect of the number of synthetic embeddings per class on unlearning performance. Results are
averaged over three independently trained models, with class-wise unlearning performed separately for each
class. Error bars indicate 95% confidence intervals. Experiments use the ResNet-18 architecture on the
CIFAR-100 dataset.

Table 4: Multi-class unlearning performance on CIFAR-100 using ResNet-18 as the base architecture. Rows
highlighted in gray correspond to methods applied on synthetic embeddings, while the non-shaded rows use
original embeddings. Columns D,-free and Dy-free indicate whether the method operates without access
to the retain or forget set, respectively, with (V) indicating data-free operation and (X) indicating that the
corresponding data is required.

Method D, Dy 2-Classes 5-Classes 10-Classes
free  free ALt Al AUS 1 ALt Al AUS 1 ALt AL AUS 1
Original - ‘ 78.12 £ 1.21 80.10 + 3.19  0.555 & 0.010 ‘ 78.14 £ 1.26 78.68 + 0.92 0.560 + 0.003 ‘ 78.01 + 1.31 79.58 & 0.93  0.557 £ 0.003
Retrained 80.10 0.00 1.006 78.91 0.00 1.023 78.00 0.00 1.005

78.24 £ 1.07  0.00 £ 0.00  1.001 £ 0.003
78.26 £ 1.17  0.00 £ 0.00  1.001 £ 0.001

78.63 £ 1.22  0.00 £ 0.00  1.005 £ 0.003
78.60 £ 1.18  0.00 £ 0.00  1.005 £ 0.001

78.80 &£ 1.04 0.02 £ 0.04 1.008 £ 0.004
78.88 &£ 1.17  0.02 £ 0.04 1.009 + 0.002

FT (Golatkar et al.
NG (Golatkar et al.|20:

78.37 £ 1.15  0.00 £ 0.00 1.002 £ 0.001
78.34 £ 1.12  0.00 £ 0.00 1.002 £ 0.001

78.67 £1.19  0.00 £0.00 1.005 £ 0.001 | 78.97 £ 1.20 0.00 £ 0.00  1.010 £ 0.002
78.68 £ 1.13  0.00 £ 0.00 1.005 £ 0.002 | 78.99 &£ 1.12  0.00 £ 0.00  1.010 = 0.002

v
v
X
4
X | 7825112 0.00£0.00 1.001 £ 0.002 | 78.10 = 1.07  0.00 £ 0.00  1.000 £ 0.003 | 78.62 = 1.10  0.00 £ 0.00  1.006 =+ 0.003
v | 7795+ 1.03  0.00 £0.00 0.998 + 0.003 | 76.25 = 0.81  0.04 £ 0.09  0.981 = 0.011 | 74.38 £ 1.41  0.18 £ 0.35 0.962 £ 0.014
X
v
X
v
X
4

=
=] =]

AR N NN I NN I NN Y N

78.37 £1.12  0.00 £0.00 1.002 £ 0.001 | 78.71 £ 1.14 0.00 £ 0.00  1.006 £ 0.001 | 79.01 & 1.13  0.00 £ 0.00  1.010 < 0.002

7833 £1.13 0.00 £0.00 1.002 £ 0.001 | 78.66 = 1.15  0.00 £ 0.00  1.005 + 0.001 | 78.96 + 1.14  0.66 + 1.01  1.003 % 0.010

78.47 £1.05 0.00 £ 0.00  1.003 £ 0.002
78.34 £ 1.10  0.00 £ 0.00  1.002 £ 0.001

77.61 £1.01  0.00 £0.00 0.995 £ 0.003
78.26 = 1.04  0.00 £ 0.00  1.001 £ 0.002

78.79 £1.04 0.00 £ 0.00 1.006 £ 0.003
78.63 £ 1.11  0.00 £ 0.00  1.005 £ 0.002

78.27 £1.05 0.00 £0.00 1.001 £ 0.003
78.48 £ 1.12  0.00 £ 0.00  1.003 £ 0.003

79.14 &£ 1.02  0.00 £ 0.00  1.011 £ 0.003
78.97 £ 1.13  0.00 £ 0.00  1.010 £ 0.002

78.93 £1.07  0.00 £0.00 1.009 £ 0.003
78.52 £ 1.08  0.00 £ 0.00 1.005 £ 0.004

=
3]

experiments demonstrate that the proposed approach retains high accuracy on retain classes while effectively
forgetting the target class across multiple datasets and unlearning strategies. The framework’s compatibility
with existing methods and complete independence from training data position it as a strong candidate for
class unlearning in real-world scenarios. Future work includes extending this approach to instance-level
unlearning and applying the technique to domains beyond image classification, such as language models.
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A Determining the Minimum Number of Synthetic Embeddings for Reliable Class
Coverage

In the proposed source-free settings, synthetic embeddings are generated by sampling random vectors in
the classifier’s intermediate embedding space. The underlying sampling distribution significantly influences
predicted class distribution, often causing class imbalance. To address this, we employ a class-aware rejection
sampling strategy that continues sampling until a predefined minimum number of samples is obtained for
each class. This ensures a balanced synthetic dataset and establishes a stable basis for source-free unlearning.
To guarantee sufficient representation of all target classes, we estimate the minimum number of synthetic
samples N required such that the probability of having at least one sample from a given class ¢ exceeds
a confidence threshold p. We first generate a large pilot batch {zz}f\]:"f‘" of embeddings sampled from
an arbitrary distribution in the intermediate embedding space, and obtain their predicted labels ¢;. The
empirical class probability for class ¢ is then estimated as

Nopilot
1
qc = {g; = ¢}, 8
N 2o 1= 5)

where 1{-} is the indicator function that equals one if the condition inside is true, and zero otherwise.

Assuming independent sampling, the probability that none of the N synthetic embeddings fall into class

cis (1 — q.)V. To ensure that at least one embedding belongs to class ¢ with confidence p, we require
1—(1—g.)" > p, which yields

In(1 —

N> I =p) 7

In(1—q.)

where In(1 — ¢.) < 0 ensures the inequality holds in the correct direction. This expression provides a

principled estimate for the number of synthetic embeddings required to achieve class-wise coverage with the
desired confidence level.

9)

We empirically validate this estimate by reporting the minimum number of synthetic embeddings required
to ensure, with high confidence, that at least one embedding is classified into each target class. Table
summarizes statistics computed for a ResNet-18 classifier on CIFAR-10, CIFAR-100, and TinylmageNet
datasets, using Gaussian, Laplace, and Uniform embedding distributions. We report the lower bound,
average, and upper bound for the total number of synthetic embeddings needed across all classes for each
dataset and embedding distribution. These values correspond, respectively, to the easiest, average, and most
difficult classes to cover. This analysis shows the impact of dataset complexity and embeddings distribution
on sample requirements for achieving reliable class representation in source-free unlearning.

Table 5: Estimated minimum total number of synthetic embeddings required to guarantee, with high confidence, that
a forget class is represented by at least one embedding. Results correspond to the ResNet-18 architecture evaluated
on CIFAR-10, CIFAR-100, and TinylmageNet datasets, using Gaussian, Laplace, and Uniform distributions for
embedding generation.

Embedding Lower bound Average Upper bound
Dataset o
Distribution (across classes) (across classes) (across classes)
Gaussian 32 46 55
CIFAR-10 Laplace 33 46 53
Uniform 29 48 60
Gaussian 223 494 1041
CIFAR-100 Laplace 269 483 822
Uniform 139 544 1735
Gaussian 407 990 2550
TinyImageNet Laplace 427 987 2437
Uniform 353 1011 2880
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In the worst-case scenario, where the rarest class has empirical probability ¢min, the minimum number of

synthetic embeddings needed to ensure, with confidence p, that at least one embedding belongs to this class
iS Nyorst = %. If a stricter criterion is imposed to require at least m embeddings from this rarest
class, the required number of embeddings increases significantly. This corresponds to solving

m—1
N _
1- E k qr]?ﬂin(l - qmiH>N F > p, (10)
k=0

which involves computing the cumulative distribution function of a Binomial distribution. Although no
closed-form solution exists, this inequality can be estimated numerically.

B Code

Our code is available at this repositoryﬂ

C Impact of Embedding Distribution and Sampling Strategy on Unlearning
Performance

We investigate the effect of different embedding distributions on class-wise unlearning by sampling embed-
dings from Gaussian, Laplace, and Uniform distributions. As reported in Table [6] and Table [7] the choice
of embedding distribution does impact downstream unlearning performance. Nevertheless, all three distri-
butions achieve competitive results, demonstrating near-complete forgetting alongside strong accuracy on
the retain classes. These findings highlight the robustness of our framework to variations in the sampling
strategy, as expected from the Proposition

Table 6: Effect of embedding distribution on data-free single-class unlearning performance of some of methods on
CIFAR-10, CIFAR-100, and TinyImageNet using ResNet-18 as the backbone architecture. Rows highlighted in gray
represent our results using synthetic embeddings, while the corresponding non-shaded rows use original embeddings
with the same method.

Method Embedding D, Dy CIFAR-10 CIFAR-100 TinyImageNet
h Distribution free  free At Al AUS 1t ALt AL AUS 1t ALt AL AUS t

Original ‘ ‘ ‘ 86.58+0.83 86.58 +6.67 0.537+0.020 ‘ 78.16+1.07 78.16+11.15 0.564 +0.037 ‘ 71.30+0.20 71.30+12.46  0.587 +0.045
Retrained ‘ - ‘ - - ‘ 86.95+1.17 0.0+0.0 1.004 + 0.006 ‘ 77.92+0.80 0.0+0.0 0.998 +£0.013 ‘ 63.01+2.76 0.0+0.0 0.917 +0.028
Real distribution | v X | 87.43+1.16 0.0+0.0 1.008 +0.004 | 78.36+1.05 0.0+0.0 1.002+0.001 | 71.35+0.32 0.0+0.0 1.001 +0.001
RL (fayase ot al.] 2020) Gaussian v v | 87.25x1.10 0.0+0.0 1.007+£0.003 | 77.98+1.03 0.0+0.0 0.998 +0.002 | 71.10+0.34 0.0+0.0 0.998 +0.001
ayase el an Laplace v v | 87.25+1.09 0.0+0.0 1.007 +0.003 | 78.00+1.04 0.0+0.0 0.998 +0.002 | 71.18 +0.34 0.0+0.0 0.999 + 0.001
Uniform v v | 87.30+1.12 0.0+0.0 1.007 +0.004 | 78.01+1.02 0.0+0.0 0.999+0.002 | 71.19+0.33 0.0+0.0 0.999 + 0.001
Real distribution | v X | 87.33x1.12 0.0+0.0 1.008 +0.004 | 78.28 +1.06 0.0+0.0 1.001 +0.001 | 71.43+0.30 0.0+0.0 1.001 +0.000
Gaussian v v | 87.35x1.13 0.0+0.0 1.008£0.004 | 78.25+1.07 0.0+0.1 1.001 £0.001 | 71.36+0.30 0.0+0.0 1.001 + 0.000

SLETE 5 5
DELETE {Zhou et al {[2025) Laplace v v | 87.35+1.13 0.0+0.0 1.008 +0.004 | 78.25+1.07 0.0+0.0 1.001 +0.001 | 71.36+0.30 0.0+0.0 1.001 +0.000
Uniform v v | 87.33+113 0.0+0.0 1.008 +0.004 | 78.25+1.07 0.0+0.0 1.001+0.001 | 71.35+0.30 03+1.2 0.998 £0.011
Real distribution X X | 85.31+9.73 0.0+0.0 0.987+0.095 | 77.57+6.40 0.0+0.0 0.994 +0.062 | 71.21+0.86 0.0+0.0 0.999 =+ 0.008
NG+ (Kurmangi ot aL|[2023] Gaussian v v | 87.33+1.12 0.0+0.0 1.007 +0.004 | 78.26+1.04 0.0+0.1 1.001 +0.002 | 71.29+0.36 0.0+0.1 1.000 +0.001
3 et an 3 Laplace v v | 87.35+1.13 0.0+0.0 1.008 +0.004 | 78.31+0.99 0.0+0.0 1.001+0.001 | 71.06+0.46 0.0+0.2 0.997 +0.004
Uniform v v | 87.32+1.12 0.0+0.0 1.007 +0.003 | 78.27+1.05 0.0+0.0 1.001+0.001 | 71.33+0.33 0.0+0.0 1.000 +0.001
Real distribution | X X | 87.11x1.04 0.0+0.0 1.005+0.003 | 77.52+1.06 0.0+0.0 0.994 +0.002 | 67.60+1.51 0.0+0.4 0.963 4 0.014
SCRUB (Kurmanii et al.| 2023] Gaussian v v | 87.41+1.16 0.0£0.0 1.008 +0.004 | 78.10+1.06 0.0+0.0 0.999 +0.001 | 71.02+0.42 0.0+0.0 0.997 +0.002
. an — Laplace 4 v | 8741+115 0.0+0.0 1.008 +0.004 | 78.19+1.00 0.0+0.0 1.000+0.001 | 71.11+0.37 0.0+0.0 0.998 + 0.001
Uniform v v | 8741x115 0.0+0.0 1.008 +0.004 | 78.09+1.05 0.0+0.0 0.999+0.001 | 70.88+0.35 0.0+0.0 0.996 =+ 0.001

Thttps://anonymous.4open.science/r/Source_Free_Class_Unlearning.
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Table 7: Effect of embedding distribution on data-free single-class unlearning performance of some of methods on
CIFAR-10, CIFAR-100, and TinyImageNet using ViT-B/16 as the backbone architecture. Rows highlighted in gray
represent our results using synthetic embeddings, while the corresponding non-shaded rows use original embeddings
with the same method.

Method Embedding D, Dy CIFAR-10 CIFAR-100 TinyImageNet
ctho Distribution | free  free ALt AL AUS 1 AL Al AUS 1 ALt AL AUS 1
Original ‘ - ‘ - - ‘ 97.69+0.18  97.69+1.30 0.506+0.003 ‘ 87.22+026 87.22+783 0.535+0.023 ‘ 88.20+0.14 88.20+7.29 0.532+0.022
Retrained | | | 98.38+021  0.0£00  1.007=0.002 | 88.68=£0.25  0.0+00  1.014+0003 | 89.59+013  0.0x00  1.014+0.002
Real distribution | v X ‘ 97.91+0.25 0.0+0.0 1.002+0.001 | 87.31+0.28 0.0+0.0 1.001+0.001 | 88.24+0.14 0.0+0.0 1.000 + 0.000
RL 5020 Gaussian v v 97.92+025 0.0+0.0 1.002+0.001 | 87.30+0.29 0.0+0.0 1.001 +0.001 | 88.23+0.14 0.0+0.0 1.000 +0.001
Y - Laplace v v 97.90+0.23 0.0+0.0 1.002+0.001 | 87.30+0.28 0.0+0.0 1.001+0.001 | 88.23+0.14 0.0+0.0 1.000 + 0.001
Uniform v v 97921024 0.0+0.0 1.002+0.001 | 87.29+0.28 0.0+0.0 1.001 £0.001 | 88.17+0.14 0.0+0.0 1.000 +0.001
Real distribution | v X ‘ 97.89+0.25 0.0+0.0 1.002+0.001 | 87.30+0.27 0.0+0.0 1.001+0.001 | 88.23+0.14 0.0+0.0 1.000 +0.000
- Gaussian v v 97.90 +0.25 0.0+0.0 1.002 +0.001 | 87.30+0.27 0.0+0.0 1.001 +0.001 | 88.23+0.14 2.7T+82 0.979 + 0.060
DELETE ‘ Laplace v v 97.90+0.25 0.0+0.0 1.002+0.001 | 87.24+0.26 0.0+0.0 1.001+0.001 | 88.24+0.14 0.0+0.0 1.000 + 0.000
Uniform v v 97.89+0.25 0.0+0.0 1.002+0.001 | 87.30+0.27 0.0+0.0 1.001 +0.001 | 88.24+0.14 0.0+0.0 1.000 +0.000
Real distribution X X ‘ 97.88+0.25 0.0+0.0 1.002+0.001 | 87.15+0.29 0.0+0.2 0.999+0.003 | 87.64+0.27 0.1+04 0.993 + 0.005
™ Gaussian v v 9791+o025 0.0+0.0 1.002+0.001 | 87.30+0.31 0.0+0.0 1.001 +0.001 | 88.25+0.15 0.0+0.0 1.001 +0.000
NG+ l 2023 Laplace v v 9791+o025 0.0+0.0 1.002 +0.001 | 87.29+0.31 0.0+0.0 1.001+0.001 | 88.24+0.15 0.0+0.0 1.001 +0.000
Uniform v v 97.90+0.25 0.0+0.0 1.002+0.001 | 87.30+0.30 0.0+0.0 1.001 +0.001 | 88.26+0.15 0.0+0.0 1.001 +0.000

D Impact of the Number of Synthetic Embeddings per Class on Unlearning
Performance

This part extends the ablation in Section [4| (see Figure [2)) by considering additional backbones and datasets
such as ResNet-18 on CIFAR-10 (Figure|3]), ResNet-18 on TinylmageNet (Figure, ViT-B/16 on CIFAR-10
(Figure [5]), and ViT-B/16 on CIFAR-100 (Figure @ For each setting, we vary the number of synthetic em-
beddings per class and measure retain accuracy A’, forget accuracy A?, and AUS. Across all configurations,
the trend is consistent. The pattern is consistent across configurations: increasing the number of synthetic
embeddings raises A% and AUS while reducing A’}.
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Figure 3: Effect of the number of synthetic embeddings per class on unlearning performance. Results are
averaged over three independently trained models, with class-wise unlearning performed separately for each
class. Error bars indicate 95% confidence intervals. Experiments use the ResNet-18 architecture on the
CIFAR-10 dataset.
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Figure 4: Effect of the number of synthetic embeddings per class on unlearning performance. Results are
averaged over three independently trained models, with class-wise unlearning performed separately for each
class. Error bars indicate 95% confidence intervals. Experiments use the ResNet-18 architecture on the

TinyImageNet dataset.
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Figure 5: Effect of the number of synthetic embeddings per class on unlearning performance. Results are
averaged over three independently trained models, with class-wise unlearning performed separately for each
class. Error bars indicate 95% confidence intervals. Experiments use the ViT-B/16 architecture on the

CIFAR-10 dataset.
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Figure 6: Effect of the number of synthetic embeddings per class on unlearning performance. Results are
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E Per-Class Unlearning Results on CIFAR-10

To supplement the average unlearning performance presented in Table[TJand [2] we provide a detailed per-class
evaluation in Table [8|for ResNet-18, Table El for ResNet-50, Table
These tables present class-wise unlearning metrics on CIFAR-10 using ResNet-18, ResNet-50, ViT-B/16,
and Swin-T backbones, respectively. The results illustrate variability in both unlearning effectiveness and
the retain accuracy across target classes, highlighting the impact of semantic complexity and class-specific

challenges.

[10] for ViT-B/16 and Table [11] for Swin-T.

Table 8: Single-class unlearning performance for CIFAR-10 using ResNet-18, averaged over 5 random trials. Rows
highlighted in gray represent our results using synthetic embeddings, while the corresponding non-shaded rows use
original embeddings with the same method.

Forget Class

Method ‘ Metric 0 1 5 3 4 5 6 7 8 9
ALt 86.22+0.54 85.91+0.40 86.91 +0.47 88.30+0.29 86.50 +0.50 87.43 +0.42 86.05+0.43 86.29 +0.46 86.01 +0.38 86.16+0.33
Original Aﬁ 1 89.8+1.1 92.6+0.7 83.6+0.8 71.0+2.0 87.3+0.9 78.9+08 91.4+1.0 89.2+0.7 91.7+08 90.3+1.4
AUS 1 | 0.527+0.003 0.519+0002 0.545+0002 0.585+0007 0.534+0.002 0.559+0002 0.523+0003 0.529+0.002 0.522+0002  0.525+0.004
Al 86.43 86.29 87.38 89.53 86.79 88.66 86.16 86.24 85.92 86.14
Retrained A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS 1 0.997 1.001 1.001 1.009 0.999 1.008 0.997 0.996 0.996 0.997
A:_ T 87.01+0.26 86.58 +0.13 87.82+0.17 89.64 +0.22 87.38+0.29 88.83 +0.27 86.77+0.10 86.85+0.27 86.53 +0.25 86.91+0.28
A"f 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
FT (Golatkar ot al.l 2020 AUS 1 | 1.008+0.003 1.007+0.008 1.009+0.004 1.013+0.002 1.009+0.003 1.014+0005 1.007+0.003 1.006+0.003 1.005+0.001  1.007+0.001
AL, T 86.92+0.43 86.50 +0.41 87.79+0.31 89.74 +0.30 87.26 +0.48 88.78 £0.31 86.66 +0.35 86.77+0.48 86.40 +0.43 86.88 +0.44
A*,¢ 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t  1.007+0.002 1.006+0.001  1.009+0.002 1.014+0.001 1.008+0.000 1.013+0.002 1.006+0.001  1.005+0.001  1.004+0.001  1.007 +0.001
At 86.89+0.54 86.46 +0.36 87.71+0.41 89.71+0.34 87.20+0.54 88.68 +0.43 86.59 +0.41 86.71+0.54 86.37 +0.50 86.76 +0.40
"f i 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG (Golatkar ot al AUS 1 | 1.007+0.001  1.005+0.001  1.008+0.001 1.014+0001  1.007+0.001  1.012+0001  1.005+0.001  1.004+0.002 1.004+0.001  1.006+0.001
Aﬁ, T 86.98 +0.46 86.47 +0.41 87.79+0.35 89.82+0.42 87.27+0.52 88.89+0.31 86.69 +0.33 86.77+0.46 86.46 +0.44 86.86 +0.41
’r 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t  1.008+0.001  1.006+0.000 1.009+0.002 1.015+0001 1.008+0.001  1.015+0.001  1.006+0.000  1.005+0.001 1.004+0.001  1.007 +0.001
ALt 86.99 +0.51 86.48 +0.41 87.83+0.35 89.83+0.45 87.35+0.42 88.99+0.44 86.73+0.33 86.81+0.47 86.43 +0.44 86.82+0.44
ALf 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
RL ' 2020 AUS 1 | 1.008+0.001  1.006+0.000 1.009+0.001 1.015+0.002 1.008+0.001  1.016+0.002 1.007+0.001  1.005+0.001 1.004+0.001  1.007+0.001
At 4 86.93 £ 0.46 86.38 +0.38 87.77+0.28 89.65+0.33 87.22+0.48 88.82+0.34 86.64 +0.37 86.78 +0.45 86.41 £ 0.41 86.72+0.36
A", 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t  1.007+0.002 1.005+0000 1.009+0.002 1.013+0.001 1.007+0.001 1.014+0.002 1.006+0.001  1.005+0.001  1.004+0.000  1.006 +0.001
ALt 85.31 +1.26 85.83+0.58 86.87 £ 0.57 88.18 +£0.65 85.98+0.33 87.44+0.94 85.74 +0.89 86.08 +0.55 85.45+0.52 86.06+0.34
A‘f 1 0.5+08 0.2+02 0.1+01 0.0+0.0 0.5+1.0 0.0+0.0 0.0+00 0.1+0.2 0.1+02 0.0+0.0
BS AUS 1 | 0.986+0.017  0.997+0.005 0.998+0.005 0.999+0.005 0.990+0.013 1.000+0.007 0.997+0005 0.997+0.002 0.993+0.006  0.999+0.001
At 4 86.83 +0.50 86.46 +0.37 87.70 £ 0.37 89.81+0.34 87.26+0.50 89.01 +0.32 86.62+0.37 86.77 +0.48 86.45 £0.41 86.81+0.36
A‘f 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUSt  1.006+0.001 1.005+0001 1.008+0.002 1.015+0.001 1.008+0.001 1.016+0.002 1.006+0.002 1.005+0.001 1.004+0.001  1.007 +0.001
ALt 82.40+3.28 84.66 +1.05 85.63+0.18 85.60+0.64 85.32+0.77 84.51 +1.89 84.56 +0.64 85.49 +0.57 83.78+1.71 85.23+0.61
A‘/ 1 l4+17 0.0+0.0 0.1+0.2 1.0+22 0.5+11 0.5+1.0 0.6+0.9 0.0+0.0 0.9+1.7 0.0+01
BE ‘ AUS 1 | 094940040 0.987+0.008 0.986+0004 0.964+0020 0.983+0.010 0.966+0016 0.980+0005 0.992+0.002 0.969+0.020  0.990 +0.004
At 86.01 +0.60 85.92+0.38 86.82+0.47 88.15+0.39 86.50+0.45 87.33+0.54 86.04+0.43 86.25+0.48 85.95+0.30 86.13 +0.27
A‘f 1 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t 0.998+0.002 1.000+0.000 0.999+0.001  0.999+0.001 1.000+0.001  0.999+0.002 1.000+0.000 1.000+0.000 0.999+0.001  1.000+0.001
Al 86.93+0.44 86.42+0.38 87.74+0.32 89.71+0.38 87.22+0.48 88.80+0.34 86.60 +0.32 86.74+0.46 86.41 +0.42 86.75+0.39
A 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
DELETE AUS 1 1.007 +0.001 1.005+0.000 1.008+0.002  1.014+0.001 1.007 + 0.001 1.014 £ 0.001 1.006 + 0.001 1.004 + 0.001 1.004 + 0.001 1.006 + 0.001
At 86.95 +0.46 86.44 +0.39 87.76 +£0.34 89.75+0.40 87.24+0.52 88.83+0.39 86.63+0.34 86.76 +0.48 86.43 £0.44 86.79+0.40
A‘, 1 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.0+0.0 0.0+0.0
AUS 1t  1.007+0.001  1.005+0000 1.009+0.001 1.014+0.001 1.007+0.001 1.014+0.001 1.006+0001 1.005+0.001  1.004+0.000  1.006 +0.001
ALt 86.31+1.20 86.18 +0.52 87.41+0.38 89.23 +0.30 86.99 +0.50 88.08 +0.33 85.58 +1.39 83.70+6.71 73.08 +29.61 86.60 +0.39
.A'/ N 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG+ ' AUS 1 | 1.001+0.008 1.003+0.001  1.005+0.002 1.009+0.003 1.005+0001 1.006+0.002 0.995+0.011  0.974+0.064 0.871+0.203  1.004+0.002
: Al 86.95 £ 0.49 86.45+0.41 87.82+0.34 89.79+0.42 87.27+0.54 88.82+0.32 86.63+0.33 86.77 +0.46 86.46 + 0.48 86.79+0.44
Y 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.001  1.005+0000 1.009+0.001 1.015+0.001 1.008+0.001 1.014+0.001 1.006+0001 1.005+0.001  1.005+0.001  1.006+0.001
86.48 +0.74 86.33 +0.44 87.53+0.28 89.32+0.32 86.96 +0.42 88.41+0.22 86.44 +0.23 86.69 +0.38 86.35+0.37 86.61 +0.51
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
SCRUB ' 1.003+£0.002  1.004+0.001  1.006+0.002 1.010+0.002 1.005+0.004 1.010+0.003 1.004+0.002 1.004x0.002 1.003+0.001  1.004 +0.003
i 87.01+0.46 86.54 +0.39 87.82+0.30 89.97+0.40 87.28+0.53 88.96 +0.35 86.69 +0.32 86.82+0.46 86.50£0.45 86.89+0.38
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.008+0.001  1.006+0.000 1.009+0.002 1.017+0.001  1.008+0.001  1.015+0.001  1.006+0.001  1.005+0.001  1.005+0.001  1.007+0.001
87.03 +0.47 86.50 +0.37 87.85+0.32 89.87+0.39 87.31+0.52 88.96 +0.41 86.73+0.35 86.81+0.46 86.49+0.43 86.88+0.43
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
SCAR 1.008 £0.001  1.006+0.000 1.009+0.002 1.016+0.001  1.008 0001 1.015+0002 1.007+0.001  1.005+0.001  1.005+0.001  1.007£0.001
86.97 +0.45 86.46 +0.37 87.80+0.31 89.77+0.37 87.27+0.49 88.85+0.34 86.66 +0.30 86.78 +0.46 86.46 +0.42 86.80+0.39
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.001  1.005+0.001  1.009+0.002 1.015+0.001  1.008+0.001  1.014+0.001  1.006+0.001  1.005+0.001  1.004+0.001  1.006 +0.001
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Table 9: Single-class unlearning performance for CIFAR-10 using ResNet-50, averaged over 5 random trials. Rows
highlighted in gray represent our results using synthetic embeddings, while the corresponding non-shaded rows use
original embeddings with the same method.

Forget Class

Method ‘ Metric 0 1 5 3 4 5 6 7 8 9
ALt 88.18+0.55 87.84+0.51 88.57 +0.62 89.58 +0.50 88.10+0.69 89.26+0.73 87.77+0.57 87.98 £0.71 87.73+0.83 87.74+0.63
Original A'/' 1 89.1+3.1 92.2+22 85.6+1.2 76.5+2.4 89.9+06 79.4x09 92.8+13 90.9+0.8 93.2£24 93.1+0s8
AUS T | 0.529+0.009 0.520+0.006  0.539+0.004 0.567+0.008 0.527+0.002 0.557+0.003 0.519+0.003 0.524+0.002 0.518+0.006  0.518=+0.002
ALt 88.79 88.42 89.40 91.09 89.04 90.66 87.92 88.82 87.92 88.27
Retrained Ayl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS 1 1.006 1.006 1.008 1.015 1.009 1.014 1.002 1.008 1.002 1.005
ALt 89.17+0.37 88.62+0.35 89.73+0.27 91.46 +0.49 89.39+0.27 90.64 +0.37 88.68 +0.42 88.95+0.32 88.55+0.50 88.83+0.34
Aﬁ 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
FT AUS 1 | 1.010+0.003 1.008+0.003 1.012+0.004 1.019+0.003 1.013+0.005 1.014+0005 1.009+0.003 1.010+0.005 1.008+0.004 1.011+0.004
At 88.80 +0.60 88.27+0.57 89.34 +0.60 90.92 +0.50 88.88+0.57 90.18 +0.62 88.31+0.58 88.55+0.64 88.25+0.67 88.30+0.59
A‘f 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUSt  1.006+0.002 1.004+0001 1.008+0.001 1.013+0.001 1.008+0.002 1.009+0.001 1.005+0001 1.006+0.002 1.005+0.002  1.006 +0.001
ALt 87.20+3.36 88.34+0.44 89.54 +0.42 91.24+0.20 89.09+0.40 90.54+0.35 88.534+0.37 88.67 +0.41 88.03+0.35 88.43 +0.42
A'/ 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.1+01 0.0+0.0
NG AUS T | 0.990+0.035 1.004+0.000 1.008+0.001 1.015+0.002 1.007+0.001 1.010+0.002 1.006+0.001  1.006+0.002  1.000+0.006  1.005+0.001
At 88.75 +0.62 88.19+0.55 89.35+0.62 91.18 +0.58 88.99 +0.60 90.41 +0.58 88.33 +0.60 88.61+0.65 88.29 £ 0.61 88.33+0.46
ALf 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t  1.006+0.001 1.004+0.001 1.008+0.001 1.016+0001 1.009+0001 1.012+0002 1.006+0001 1.006+0.003 1.006+0.003 1.006 +0.002
ALt 88.86 +0.60 88.25+0.55 89.38+0.60 91.14+0.54 89.02+0.58 90.30+0.59 88.39+0.59 88.59 +0.63 88.30+0.66 88.40+0.50
.A} 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1 | 1.007+0.002  1.004+0.001 1.008 + 0.001 1.016 +0.001 1.009+0.002  1.010+0.002 1.006 + 0.001 1.006 +0.003  1.006 +0.002 1.007 +0.001
L
At 88.79 +0.60 88.15+0.57 89.28 +0.62 90.93 +0.46 88.81+0.57 90.14 +0.63 88.21+0.50 88.43+0.63 88.20 +0.67 88.30+0.56
Al L 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1 1.006 +0.001  1.003 +0.001 1.007 + 0.001 1.013 +0.002 1.007 +0.001 1.009 + 0.001 1.004 + 0.001 1.004+0.002  1.005+0.002  1.006+0.001
ALt 88.15+0.70 87.73+0.51 88.18 £0.70 87.62+1.28 87.21+0.91 87.41+2.87 87.32+1.15 87.98 +0.80 87.71+0.80 87.70 +0.67
A'/L 3.8+5.2 0.0+0.0 0.3+0.6 0.0+0.0 0.0+0.0 3.7+82 0.7+1.3 0.6+1.1 04+05 0.6+1.1
BS (Chon ot al. AUS T | 0.965+0.045  0.999+0.002 0.993+0.008 0.980+0.012  0.991+0008 0.950+0.066 0.989+0.014 0.995+0.012  0.996+0.004  0.993+0.009
At 88.68+0.58 88.44+0.46 89.48+0.33 91.14+0.58 89.15+0.29 90.58 £0.32 88.66 +0.37 88.78 +0.42 88.61 +0.06 88.71+0.39
A‘f 4 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1 1.005+0.001  1.005 +0.001 1.007+0.002  1.014 +0.002 1.008 £0.002  1.01140.003 1.007+0.003 1.005+0.002 1.003+0.001  1.006+0.001
Aﬁ_ T 87.68 +0.52 87.24+0.53 88.27+0.64 86.68 +4.42 87.86+0.57 89.21 +0.68 86.89 +0.69 87.39+0.78 87.14+0.80 86.79 +0.60
’/' + 0.0+0.0 0.0+0.0 0.0+0.0 1.2+16 0.5+1.1 10.1+14.9 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS T | 0.995+0.002 0.994+0.004 0.997+0.001  0.959+0.033 0.993x0010 0.919+0107  0.991+0.003 0.994+0001  0.994+0.002  0.990+0.002
88.14 +0.58 87.81+0.50 88.51+0.61 89.47+0.55 88.08 +0.70 89.19+0.76 87.70+0.61 87.97+0.71 87.67+0.85 87.69+0.65
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.000+£0.000  1.000+0.000 0.999+0.000 0.999+0.001  1.000£0.000  0.999+0.000 0.999+0.000  1.000+0.000 0.999+0.001  1.000 +0.000
88.78 +0.60 88.17+0.56 89.33 +0.62 91.04+0.51 88.90+0.59 90.25+0.59 88.33+0.53 88.52+0.63 88.24+0.66 88.32+0.50
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
DELETE 1.006 £0.001  1.003+0.001  1.008+0.001  1.014+0.002 1.008+0.001  1.010+0.001  1.006+0.001  1.005+0.002  1.005+0002  1.006+0.001
88.76 +0.62 88.16+0.55 89.33+0.63 91.04+0.51 88.91+0.60 90.26 +0.61 88.30+0.62 88.50+0.66 88.23 £ 0.64 88.32+0.52
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006 £0.001  1.003+0.001  1.008+0.001  1.014+0002 1.008+0.001 1.010+0.001 1.005+0.001 1.005+0.002 1.005+0.002  1.006+0.001
88.91 +0.60 88.47+0.57 89.54 +0.54 90.96 +0.49 89.09 +0.57 90.33 +0.62 88.43+0.711 88.64 +0.62 88.24+0.51 88.59 +0.48
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG —— 1.007+0.003  1.006+0.003 1.010+0.003 1.014+0.003 1.010+0.003 1.011+0003 1.007+0.003 1.007+0.003 1.005+0.004  1.009+0.003
2
88.77 +0.66 88.22+0.57 89.35+0.64 90.96 +0.52 88.97+0.62 90.24 +0.63 88.32+0.62 88.51+0.64 88.25+0.65 88.33+0.55
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006 £0.002  1.004+0.001  1.008+0.001  1.014+0.001  1.009+0.001  1.010+0.002 1.006+0.001  1.005+0.001  1.005+0.002  1.006+0.001
88.87+0.57 88.33+0.47 89.33+£0.44 90.70 +0.35 88.92+0.53 90.16 +0.62 88.28 +0.64 88.47 +0.51 88.16+0.64 88.39+0.59
0.0+0.0 0.0+£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
SCRUB ——— 1.007+0.002  1.006+0.003  1.009+0.003 1.013+0.002 1.010£0.003 1.011+0.003 1.007+0.003 1.006+0.003 1.006+0.004  1.008+0.002
)
88.82+0.56 88.32+0.55 89.37+0.65 91.25+0.59 89.02+0.57 90.46 +0.67 88.37+0.60 88.66 +0.64 88.32+0.59 88.46+0.53
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006+0.002  1.005+0.001  1.008+0.001 1.017+0.001 1.009+0002 1.012+0002 1.006+0.002 1.007+0.003 1.006+0.003 1.007+0.001
88.87+0.58 88.31+0.54 89.39 £ 0.55 91.25+0.52 89.02+0.61 90.43 +0.50 88.37+0.58 88.64 +0.66 88.37+0.60 88.44+0.48
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.007+0.002  1.005+0.001  1.008+0.001 1.017+0.002 1.009+0.001 1.012+0003 1.006+0.001  1.007+0.003 1.006+0.002  1.007+0.002
88.81+0.63 88.21+0.56 89.36 +0.64 91.06 +0.51 88.95+0.60 90.29 +0.63 88.34+0.61 88.56 +0.65 88.26 +0.64 88.36+0.54
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.006+0.001  1.004+0.001  1.008+0.001 1.015+0.002 1.008+0.001 1.010+0.001  1.006+0.001  1.006+0.002 1.005+0002  1.006 +0.001
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Table 10: Single-class unlearning performance for CIFAR-10 using ViT-B/16, averaged over 5 random trials. Rows
highlighted in gray represent our results using synthetic embeddings, while the corresponding non-shaded rows use

original embeddings with the same method.

. Forget Class
Method ‘ Metric 0 1 9 3 4 5 6 7 3 9
Af. 1 97.65+0.07 97.60+0.11 97.71+0.13 97.98 +0.11 97.68 +0.18 97.88+0.11 97.55+0.13 97.63 +0.08 97.55+0.13 97.65+0.15
Original A_”f 1 98.0+£0.6 98.5+0.5 97.5+0.2 95.1+0.8 97.8+0.7 95.9+0.2 98.9+0.3 98.2+0.9 98.9+0.2 98.0+0.4
AUS T | 0.505+0.002  0.504+0.001  0.506+0.001  0.513+0.002 0.506+0002 0.510+0.000 0.503+0.001  0.505+0.002  0.503+£0.000  0.505+0.001
ALt 98.39 98.38 98.21 98.86 98.38 98.67 98.17 98.28 98.20 98.31
Retrained Al 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS 1 1.007 1.008 1.005 1.009 1.007 1.008 1.006 1.006 1.006 1.007
AL 1 97.80+0.10 97.78 £0.10 97.85+0.12 98.34 £0.09 97.92£0.12 98.27+0.14 97.64+£0.14 97.77 +0.07 97.71x0.13 97.82+0.12
A’f I3 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0x0.0 0.0+0.0
NG (Golatkar ot al. AUS 1t | 1.002+0.000 1.002+0.000 1.001+0.000  1.004 +0.001 1.002 +0.001 1.004 +0.001 1.001 +0.000  1.001 +0.001 1.002+0.000  1.002 +0.001
AL 97.81+0.10 97.78 £0.10 97.86 £0.12 98.34 £ 0.09 97.93 £0.12 98.28 £0.13 97.65+0.14 97.77 £0.06 97.71+0.14 97.82+0.12
A‘f i 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1t  1.002+0.000 1.002+0.000 1.002+0.000 1.004+0.001  1.003+0.001  1.004+0.001  1.001+0.000 1.001+0.001 1.002+0.000 1.002+0.001
Aﬁ, 1 97.81+0.10 97.79+0.10 97.85+0.12 98.37+0.10 97.94+0.12 98.28 +0.12 97.68 +0.13 97.78 +0.07 97.72+0.14 97.83+0.12
Af, 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS 1 1.002 +0.000 1.002 +0.000  1.001 +0.000 1.004 + 0.000 1.003 = 0.001 1.004 +0.001 1.001+0.000  1.001+0.001 1.002 + 0.000 1.002 +0.001
L
AL 4 97.85 £0.07 97.84+0.12 97.90+0.13 98.38 £ 0.11 97.96 +0.13 98.30+0.13 97.70 +0.12 97.83+0.06 97.75+0.15 97.83+0.12
Atf 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
AUS T  1.002+0.000 1.002+0.001  1.002+0.000 1.004+0.000 1.003+0.001 1.004+0.000 1.001+0.000 1.002+0.001 1.002+0.000 1.002+0.000
ALt 97.67 £0.12 97.75+0.08 97.79£0.19 98.13 +0.24 97.74+0.19 97.97+0.19 97.61+0.15 97.68 +0.07 97.60 £0.14 97.72+0.22
A*’,v 4 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
BS (Chen of al. -23 AUS 1 | 1.000+0.001  1.002+0.001  1.001+0001  1.002+0.002 1.001+0000 1.001+0001  1.001+0.000 1.000+0.000 1.000+0.001  1.001+0.001
At 97.80 £ 0.10 97.76 +0.07 97.86 +0.11 98.29 £ 0.08 97.92+0.13 98.25+0.14 97.67+0.14 97.79+0.05 97.69 +0.17 97.82+0.11
T 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000 1.002+0.001  1.001+0.000 1.003+0.001 1.002+0.001 1.004+0.000 1.001+0.000 1.002+0.001  1.001+0.000 1.002+0.001
97.81+010  97.78+0.09 97.85£0.12 98.34+010  97.93+0.12 98.28 +0.13 97.64+013  97.77+007  97.T1xo013  97.82+0.2
0.0x0.0 0.0+0.0 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
DELETE 1.002+0.000  1.002+0.000 1.001+0.000 1.004+0.001 1.003+£0.001  1.004+0.001 1.001+0.000 1.001x0.001  1.002+0.000 1.002+0.001
97.81 +0.09 97.79+0.10 97.87+0.13 98.35+0.10 97.95+0.12 98.29+0.13 97.66 +0.15 97.79 +0.07 97.72+0.14 97.83+0.13
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000 1.002+0.000 1.002+0.000 1.004+0.000 1.003+0.001  1.004+0.001 1.001+0.000 1.002+0.001  1.002+0.000  1.0020.000
97.79 x0.10 97.77+0.13 97.83+0.13 98.34 +0.09 97.91+0.13 98.26 £0.15 97.64+0.14 97.75+0.08 97.69+0.14 97.81+0.13
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
\ T 1.001+0.000 1.002+0.000 1.001+0.000 1.004+0.001 1.002+0.001 1.004+0.001  1.001+0.000 1.001+0.000  1.001+0.000  1.002+0.001
NG+ (Kurmangi o a1
97.82£0.10 97.80+0.10 97.88+0.13 98.37+0.10 97.96 +0.12 98.31£0.14 97.67+0.14 97.79 +0.07 97.74 £0.14 97.85+0.13
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.002+0.000  1.002+0.000 1.002+0.000 1.004+0000 1.003+£0.001  1.004+0.001  1.001+0.000 1.002£0.001 1.002+0.000  1.002+0.000

Table 11: Single-class unlearning performance for CIFAR-10 using Swin-T, averaged over 5 random trials. Rows
highlighted in gray represent our results using synthetic embeddings, while the corresponding non-shaded rows use

original embeddings with the same method.

P Forget Class
Method ‘ Metric ‘ 0 1 9 3 4 5 6 7 3 9
ALt 97.58 +0.08 97.65+0.05 97.78 £ 0.08 97.96 +0.15 97.74+0.03 98.03+0.10 97.55+0.05 97.63 +0.08 97.60 +0.07 97.74 +0.09
Original .A_*/ 1 99.0+0.3 98.4+05 97.3+0.6 95.6+0.9 97.6+0.7 95.0£0.9 99.3+0.3 98.6+0.3 98.8+0.1 97.6+0.3
AUS T | 0.502+0.001  0.504+0.001  0.507+0.002 0.511+0.002 0.506+0.002 0.513+0.002 0.502+0.001  0.504+0.001  0.503+0.000 0.506 +0.001
ALt 98.22 98.30 98.31 98.80 98.30 98.73 98.14 98.14 98.17 98.43
Retrained A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUS 1 1.006 1.006 1.005 1.008 1.006 1.007 1.006 1.005 1.006 1.007
ALt 97.73+0.05 97.86 +0.05 97.88 £ 0.07 98.46 +0.10 97.91+0.04 98.37+0.12 97.65 +0.06 97.76 +0.06 97.74 x0.07 97.88 +0.08
ALf 1 0.0+0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG (Golatkar ot al “ AUS 1 | 1.002+0.000 1.002+0.000 1.001+0.000 1.005+0.001  1.002+0.000 1.003+0.001  1.001+0.000 1.001+0.000 1.001+0.000 1.001+0.000
ALt 97.71+0.10 97.65+0.28 97.74 +0.08 97.31+2.61 97.90+0.07 97.81+0.60 97.28 +0.72 97.66 +0.19 97.71+0.08 97.71+0.11
A", 1 0.0+0.0 1l+16 0.3+03 09+19 0.1+0.2 11l+16 0.2+03 0.2+0.2 0.1+0.1 0.7+0.6
AUS 1t  1.001+0001  0.990+0.017 0.997+0.003 0.985+0.044 1.001+0.002 0.987+0.021 0.995+0010 0.998+0.004 1.001+0.001  0.993+0.007
ALt 97.67 +0.07 97.67 +0.06 97.85+0.06 98.32+0.13 97.81+0.02 98.32+0.14 97.59 +0.05 97.66 + 0.06 97.64 +0.04 97.76 +0.07
ALf 1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
NG+ ' n AUS 1 | 1.001+0.000 1.000+0.000 1.001+0.000 1.004+0.001  1.001+0.000 1.003+0.001  1.000+0.000 1.000+0.001  1.000+0.001  1.000+0.000
At 4 97.45x030  90.38+11.22  92.22+6.15 95.45 +3.03 97.15+0.70 95.16+0.77  85.57+1619  94.36+5.09 94.61 £4.95 92.80+4.31
¢ 0.0+01 2.1+15 1.2+07 0.9+1.4 0.1+0.2 3.0+05 1.2+138 0.8+05 0.5+05 2.2+16
0.998+0.003 0.908+0.113 0.933+0.060 0.967+0041 0.993+0.007 0.943+0009 0.872+0172 0.960+0.052 0.966+0.053 0.931+0.054
97.63+0.09 97.68 +0.06 97.84 +0.07 98.38 +0.09 97.87+0.03 98.22+0.10 97.65+0.06 97.73 £ 0.04 97.69+0.04 97.79+0.04
0.0+0.0 0.0+£0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0x0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
SCRUB (Kurmanji ot al 1.000+0.001  1.000£0.001  1.001+0.000 1.004+0.001  1.001+0.000 1.002+0.001  1.001+0.000 1.001+0.001  1.001+0.001  1.001+0.001
97.59 +0.07 97.49+0.35 97.57+0.18 97.93+0.38 96.70 + 2.09 97.94 +0.37 97.23+0.53 96.36 + 2.62 97.38+0.29 97.71+0.10
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
1.000+0.001  0.998+0.003 0.998+0.002 1.000+0.005 0.990+0.021  0.999+0003 0.997+0005 0.987+0.026 0.998+0.003  1.000+0.001
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