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Abstract
We develop an approximate method for maximum likelihood estimation in Poisson-Binomial Lo-
gistic regression. The resulting approximate log-likelihood is generally non-convex but easy to
optimize in practice. We investigate the geometry of the likelihood and propose simple but effec-
tive optimization procedures. We use these methods to fit logistic regressions in all statewide U.S.
elections between 2016 and 2020, a total of 544 offices and over 1.75 billion votes.

1. Introduction

Understanding voter behavior is crucial to sustaining a healthy democracy. Elections are the pri-
mary mechanism through which citizens express their preferences and hold leaders accountable, so
analyzing electoral behavior is necessary to uncover the electorate’s priorities, assess campaign ef-
fectiveness, and ensure fair representation. There are basically two ways to understand who is voting
for whom: those based primarily on polling and those based directly on electoral data. Survey-based
approaches can produce excellent results [13], but as the quality of survey data has come under in-
creasing scrutiny [3], approaches that circumvent survey methods become more attractive.

Ecological methods to study elections combine precinct-level vote results with voter covariates.
Goodman’s Regression [7] pioneered this approach, followed by a number of improvements lever-
aging aggregate covariate information to identify ecological correlations [4, 5, 10, 11, 18, 28, 29].

In the modern setting, we observe a set of covariates xij for each voter j within each precinct i,
derived from the “voterfile,” the roster of all registered voters within a given geography. Vote tallies
are reported for each precinct i. One of the first models to use individual-level covariates, as opposed
to aggregates, was Jackson et al. [8, 9] which modeled voters’ individual vote choice as a Binomial.
More recent approaches model individual vote choice explicitly via a Poisson-Binomial distribution,
the distribution of the sum of independent but not identically distributed Bernoulli random variables
[12, 16, 19, 21]. We follow this approach via an approximate likelihood which makes our methods
more scalable and makes studying the geometry of the log-likelihood much more straightforward.

Using our approximate log-likelihood we fit ecological logistic regressions to all statewide elec-
tions in the United States between 2016 and 2020 using electoral outcomes documented by the
Voting and Election Science Team [24–26] and the TargetSmart Voterfile. This totals 544 offices,
over 1.75 billion votes, and hundreds of millions of unique voters. In addition to logistic regres-
sion predicting two-way vote choice, we extend our results to fit multinomial logistic regressions
allowing us to additionally model votes for third-party candidates, as well as ballot roll-off.
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In this paper we focus on the geometry of our approximation, developing primitives which allow
us to understand when and why it is easy to optimize. We go into more detail on our application in
App. A.1. We provide a more detailed review of existing approaches in App. A.3, along with an
empirical evaluation showing our method outperforms existing methods. In App. B.2 we present
several statistical results which give conditions for consistency and asymptotic normality. The con-
sistency and asymptotic normality results assume identifiability and that our MLE is the global
maximizer of the sample, and our goal in studying the geometry is determining when we can expect
identifiability to hold and when we can expect the optimization problem to be simple.

2. Poisson-Binomial Logistic Regression

Our model is a logistic regression with missing outcomes. We assume there are n precincts each
with mi voters. Each voter has a “true” individual-level probability of voting for the Democrat
p∗ij = σ(x⊤ijβ

∗) determined by β∗ pushed through the sigmoid function σ(z) = 1/(1 + exp(−z),
and an unobserved individual level vote sampled as Vij ∼ Bern(p∗ij). The vote counts Yi are just
the sum over the votes Yi =

∑
j Vij . Under this model, the vote counts follow a Poisson Binomial

distribution: Yi ∼ PoiBin({p∗ij}
mi
j=1). We illustrate this data structure in Fig. 2(a) where we depict

the voterfile containing voter covariates grouped into precincts with the precinct-level vote counts.

Assumption 1 (Realizability) The votes Vij and the vote counts Yi are generated by the data
generating process described above with a true, unknown, β∗.

Our goal is to recover the parameter β∗ via an estimate β̂, fit using maximum likelihood estima-
tion. We can write the likelihood we would like to optimize in terms of β:

ℓPoiBin(β) =

(
1

n · m̄

) n∑
i=1

log

 ∑
A∈PYi

([mi])

∏
j∈A

σ(x⊤
jiβ)

∏
j∈Ac

(1− σ(x⊤
jiβ))

 (1)

Where PYi([mi]) is the set of all partitions of [mi] = {1, . . . ,mi} into sets of size Yi and mi−Yi,
and m̄ = 1

n

∑n
i=1mi. This is essentially the logistic likelihood but we do not know who voted for

the Democrat so we have to average over all partitions of voters into Democrats and Republicans.

3. Approximation via a Local Limit Theorem

The ℓPoiBin(β) likelihood is computationally intractable since we need to sum over all possible
partitions of voters for every precinct. Since precincts are usually large we can use a local limit
theorem to approximate the object by a Normal likelihood, giving us a tractable objective.

Theorem 1 (Poisson-Binomial Local Limit Theorem, [17])
We define the mean µi(β) =

∑mi
j=1 pij and variance ςi(β)

2 =
∑mi

j=1 pij(1− pij). For any β ∈ Rd:

sup
k∈[mi]

∣∣∣∣∣∣
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pij
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2πςi(β)2
exp

(
−1

2

(
k − µi(β)

ςi(β)

)2
)∣∣∣∣∣∣ = O

(
1

ς2

)

Using the local limit theorem we can let pij = σ(x⊤
ijβ) to define the approximate log-likelihood:

ℓPoiBin(β) ≈ ℓ(β) = −
(

1

n · m̄

) n∑
i=1

1

2

(
log (2π) + log

(
ςi(β)

2
)
+

(Yi − µi(β))
2

ςi(β)2

)
(2)

2
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where constants have been dropped. From the local limit theorem a necessary condition for our
approximation to be close to the true log-likelihood is clear:

Assumption 2 The variance diverges for some precincts S ⊆ [n], so for all i ∈ S: ς2i
mi→∞−−−−→∞.

Essentially we need to assume that (1) precincts are large, and (2) as the number of voters in a
precinct grows the variance also grows. If pij ∈ (ϵi, 1 − ϵi) for some fixed ϵi then we satisfy the
condition. In practice, our covariates are bounded so for any fixed β∗ we will have pij ∈ (ϵi, 1−ϵi).

We illustrate the relationship between this limit theorem and our data-generating process in Fig.
2(b, c). This is a common, easy-to-compute, approximation to the Poisson-Binomial likelihood
[22], which also lends itself to a much more straightforward analysis than the full likelihood. The
central remaining issue is that this approximate log-likelihood remains non-convex, so it is unclear
how easy we should expect it to be to optimize in practice.

The approximate log-likelihood is simpler than the sum of its parts. Almost every individual
precinct has a complex multimodal log-likelihood, but the sum of log-likelihoods across precincts
tends to have simple geometries that are unimodal and often convex. Our analysis of the log-
likelihood landscape will focus on the population problem, where we analyze the expectation of the
log-likelihood under a ”fixed design” where we re-sample Yi conditional on the precincts:

E
Yi∼PoiBin

(
{σ(x⊤

ijβ
∗)}mi

j=1

) [ (Yi − µi(β))
2

ςi(β)2

]
=

ςi(β
∗)2

ςi(β)2
+

(µi(β
∗)− µi(β))

2

ςi(β)2

This lets us compute the population log-likelihood and gradient (as in Appendix B.1):

E[ℓi(β)] =
1
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pij(1− pij)xij

)

We can see here that the population likelihood for a single precinct decomposes into a mean
component and a variance component, and this decomposition carries through into the gradient. The
coefficient on the first term of the gradient ensures that when ςi(β)

2 = ςi(β
∗)2 then that term is zero.

The coefficients on the second and third terms guarantee a similar condition when µi(β) = µi(β
∗).

Many β will achieve either the correct mean or variance in a given precinct, as we can see in Fig
1(a). We will denote the setsMi = {β | µi(β) = µi(β

∗)} and Σi = {β | ςi(β)2 = ςi(β
∗)2} and

their intersection Bi =Mi ∩Σi. Now since the approximate likelihood is a Normal likelihood any
point achieving the correct mean and variance will be a global minimizer. Put another way, in any
particular precinct every point in Bi is a global optimum. By realizability, we know β∗ ∈ Bi but if
there are any other points in Bi then we do not have identifiability in precinct i with respect to the
approximate likelihood. Across precincts, we have identifiability if and only if ∩ni=1Bi = β∗.

But here we have a problem: Bi almost always contains more than just β∗. We illustrate this in
Fig. 1. The first precinct is the best-case scenario: the mean and variance surfaces only intersect at
the true optima. But it turns out this is only because the covariates are reflectively symmetric about
β∗. In the center precinct, we see that when we shift the covariates to the right, the mean surface
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tilts to the left, and the variance tilts the surface to the right, leading to two intersections which are
both global optima. Shifting the covariates to the left has the opposite effect.

The key intuition to generalize this to higher dimensions is that the mean and variance sets
Mi and Σi will be d − 1 dimensional surfaces that must intersect at β∗. The variance surface
Σi will describe a compact manifold, whereasMi will be non-compact. In two dimensions these
correspond to the one-dimensional curves in Fig. 1. Since these surfaces intersect by realizability,
unless they touch at a tangent point, they must intersect at multiple points. In two dimensions this
means we will have (at least) two global optima, but in higher dimensions, this will result in a
d− 2 dimensional surface: in three dimensions we will have a “ring” of global optima, and in four
dimensions we will have a “sphere” of solutions, etc. The only way to ensure these surfaces touch at
a tangent point is to require the mean and variance surfaces to be rotationally symmetric about β∗,
which in turn means the covariates have to be rotationally symmetric about β∗. In two dimensions
this rotational symmetry reduces to reflective symmetry. In d ≥ 3, barring rotational symmetry, Bi
will contain an infinite surface of points achieving the global optimum. We can formalize this:

Lemma 2 Assuming the model is well-specified with β∗, a necessary condition for a precinct to
have a single global optimum is that the covariates, {xij}mi

j=1, are rotationally symmetric about β∗.

Rotational symmetry is an extremely strong condition, which will virtually never be satisfied in
any single precinct, much less in every single precinct in a real dataset. These results clarify the
nature of the non-convexity in the approximate log-likelihood. Not only is the problem not convex,
but almost every individual precinct will have multiple global optima to say nothing of local optima.
And yet, as we demonstrate in Fig. 1, when we have even a few precincts with sufficiently distinct
covariate distributions all of these complexities disappear and we are left with extremely simple
log-likelihood landscapes. Certainly, there are pathological cases where | ∩ni=1 Bi| > 1 which
guarantees a complex landscape. There are even more cases where ∩ni=1Bi = β∗ but where we have
local optima, especially when the covariate distributions are similar. But, setting aside pathological
cases, if we have enough precincts with sufficient variation in covariate distributions we can expect
the approximate log-likelihood landscape to have a unique global minima and no local optima. Here
it is worth noting that this is not a mere artefact of our approximation: for large mi any minimum
in the approximate log-likelihood will be a minimum in the exact log-likelihood. although this does
not pose a threat to identifiability it does make computing the MLE intractable.

Beyond the local convexity we expect from Theorem 6 and the unimodality we might hope for
based on Fig. 1(b, top) we find that in most of the simulated settings and our applications the convex
neighborhood containing the sample optimum actually stretches all the way to β = 0. In Fig. 1(b)
we plot the minimum eigenvalues of the Hessian as functions of β, demonstrating convexity holds
for the population log-likelihood when we have even a few sufficiently differentiated precincts.

When the convex neighborhood covers both zero and β̂ optimization of the approximate log-
likelihood is straightforward with Newton’s method. Gradient descent and other non-linear optimiz-
ers like (L-)BFGS, on the other hand, struggle with the very sharp curvature around the optimum,
usually failing to converge. The Hessian is not always positive definite even initializing at zero, so
we developed a modified version of Newton’s method which runs a line search over ϵ > 0 projecting
the Hessian onto the set of matrices with minimum eigenvalue ϵ using the Armijo condition as an
acceptance criterion [1, 2]. We fully describe this algorithm in Appendix B.3, Algorithm 1.
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(a) Precinct-level covariates, µ(β), and ς(β)2. (b) E [ℓ(β)] and λmin

(
E
[
∇2

βℓ(β)
])

.

Figure 1: Here we present a simple three-precinct setting. (a) The first row depicts three different
sets of covariates in two dimensions, colored by p∗ij = σ(x⊤

ijβ
∗) where β∗ = (1, 1). The second

and third rows plot the corresponding mean and variance landscapes for each set of covariates as
functions of β, µi(β) and ςi(β)

2. Red indicates the mean/variance is too low while blue indicates
too high, and the white lines indicate theMi and Σi surfaces. (b) Depicts the sum of the expected
log-likelihood landscape E [ℓ(β)] (top) over all three precincts and the minimum eigenvalue of the
expected Hessian λmin(E[∇2

βℓ(β)]) (bottom) as functions of β. The black lines denote the axes
and the ∗ denotes β∗. Even though the second and third precincts each have two global optima the
log-likelihood landscape is unimodal and in fact convex in a neighborhood containing zero and β∗.

These procedures are fast and robust. The optima computed in simulations recover β̂ close to
the β∗ and the estimates behave asymptotically normally, as we would expect of the MLE based on
Theorem 7. We present the details of this simulation study in Appendix A.2.

4. Conclusion

We have presented an efficient algorithm to approximate the Poisson-Binomial logistic regression.
We have also documented the complexity of this non-convex optimization problem, a complexity
that is inherent to the geometry of the problem, not some mere artifact of our approximation. How-
ever, we found that in practice this problem is easy to optimize. We have developed some intuition
for why this is the case. In our appendices, we give more details on our application, along with
detailed simulations and a comparison to existing methods. The appendices also detail technical re-
sults building up to theorems for consistency and asymptotic Normality of the (approximate) MLE.
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Appendix A. Application

A.1. Predicting vote choice in U.S. Elections

Here we present some of the details of our central application: prediction of all 544 statewide
elections in the United States taking place between 2016 and 2020. Our first figure illustrates the
data-generating process from the voterfile, along with our core Normality assumption.

︙

1 57 F Asian ...

︙ ︙ ︙ ︙ ︙ ︙ ︙

45 F Black ...

Voter ID Precinct Age Gender Race ... Vote

1 1 27 M White ...

︙ ︙ ︙ ︙ ︙ ︙ ︙

1 63 F White ...

 = unobserved = observed

Figure 2: Fig. (a) represents the voterfile, with voter identifiers, precincts, and covariates available
for every registered voter in the United States. The votes Vij are not observed, but we observe
the precinct-level vote counts Yi. Fig. (b) represents our data-generating process. We assume some
“true” parameter β∗ determines each voter’s probability of voting for the Democrat p∗ij . This implies
Yi is Poisson-Binomial distributed and as long as mi is large the Poisson-Binomial is approximately
normally distributed with mean µi(β

∗) and variance ςi(β
∗)2. Fig. (c) gives a visual representation

of the data-generating process in (b): first we plot the covariates, then the distribution of the p∗ cor-
responding to those covariates, and finally we show that resampling Yi leads to the normal density.
In the left panel, we plot the first two principal components of the voterfile for a single precinct in
North Carolina, where each xij =

(
x
(1)
ij , x

(2)
ij

)
. Next we compute the probabilities for each voter by

setting β∗ = (1, 1), so p∗ij = σ
(
x
(1)
ij + x

(2)
ij

)
. We plot a histogram of these probabilities in the top

right panel. Finally in the bottom right we simulate Yi by sampling votes according to p∗ij and sum-
ming. We simulate this process 106 times and plot the histogram, which demonstrates the empirical
probability mass function matches the (appropriately scaled) Normal density as in (b).
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Our estimates allow researchers to ask fundamental questions about individual-level preferences
in federal and state-level elections during a notoriously difficult-to-understand moment in American
politics. We can produce individual-level estimates of party-line voting on a given ballot. We can
also generate voter trajectories over time, showing how voters flow from one candidate to another.
We can estimate candidate support by any crosstab – race, gender, age, and any possible interaction
thereof, in any level of geographic specificity. We illustrate the power of this approach in Fig.
3, where we plot individual-level presidential vote choice estimates for all U.S. voters in 2020,
chart the estimated flow of voters between presidential candidates from 2016 to 2020, and directly
estimate the prevalence of party-line voting with validation using county-level cast vote records
aggregated to the county level [14].

(a) US voters’ individual-level estimated probability of supporting Joe
Biden in the 2020 Presidential Election, plotted by registered address.

(b) White voters

(c) Black voters

(d) Estimated flow of candidate support between the 2016 and 2020
Presidential Elections for people who voted in both elections.

(e) Actual party-line voting vs esti-
mated party-line voting in 2020.

Figure 3: Fig. (a) shows individual-level estimates of support. Figs. (b) and (c) show we can
decompose these estimates by race. Fig. (d) shows we can study how support changes across
elections in different populations of voters. Figs. (e) that we can estimate party-line voting, e.g.
how often voters who support the Democrat for president support the Democrat for Senate and
other down-ballot offices. Using county-level ballot data from several states in the 2020 election
[14] we see that our estimates almost exactly recover the true rates of party-line voting.
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Our main estimates are based on a simple specification using just a few core covariates, captur-
ing party registration, race, gender, urbanicity, and voting history in the past two elections, as well
as voting method:

par ty dem , p a r t y g o p , p a r t y o t h e r ,
r a c e b l a c k , r a c e h i s p a n i c , r a c e a s i a n , r a c e w h i t e , r a c e n a t i v e , r a c e m i s s i n g ,
gende r ma le , g e n d e r f e m a l e ,
u s r r 1 , u s r r 2 , u s r s 3 , u s r s 4 , u s r u 5 , u s r u 6 , u s r m i s s i n g ,
p{ y e a r } v o t e d g o p , p{ y e a r } voted dem ,
g{ y e a r − 4} e a r l y , g{ y e a r − 4} a b s e n t e e , g{ y e a r − 4} i n p e r s o n ,
g{ y e a r − 2} e a r l y , g{ y e a r − 2} a b s e n t e e , g{ y e a r − 2} i n p e r s o n ,
g{ y e a r } e a r l y , g{ y e a r } a b s e n t e e , g{ y e a r } i n p e r s o n ,
gen z , g e n m i l l e n i a l , gen x , gen boomer , g e n s i l e n t , g e n g r e a t e s t , g e n m i s s i n g

All of these variables are standard voterfile variables except for race, which is modeled using
a commercial race model when race is not available on the voterfile. In addition to these base
variables for 2018 and 2020 we also included all previous individual-level predictions for voters
who were registered to vote in the previous elections with an interaction for whether they voted in
that election. For new registrants, we filled in 0.5 and included an indicator.

A.2. Simulation Studies

Our central simulation setting involves iid Gaussian covariates which we randomly select into
precincts. We fix the dimension d, the number of precincts n, and the total number of voters k. We
start by sampling our population of voters, by drawing k random normal vectors xij ∼ N (0, Id).
Next we randomly sample the β∗ ∼ N (0, Id) as above and a γ∗ ∼ N (0, In×d) which will select vot-
ers into precincts. Then we sample a precinct for each voter by letting gj ∼ Categorical(Softmax(xTj γ

∗)).
We then simulate votes and vote counts as Vj ∼ Bernoulli(σ(xTj β

∗)) and Yi =
∑k

j=1 I{gj = i}Vj ,
replicating a Poisson-Binomial sampling process. We provide a colab notebook here which runs
this simulation.

A.3. Comparison Against Other Ecological Inference Methods

Our goal with these models is to predict the candidate selected by each voter— an unknown out-
come. This poses a challenge for evaluating the performance of our models and comparing them
against other ecological inference methods.

To address this issue, we use a related task: modeling the probability that an individual casts a
ballot (rather than modeling the candidate he or she supports). We train only on aggregated ballot
counts from each precinct. This task is not a perfect proxy for modeling candidate selections, but
it is an attractive option because it allows us to leverage the same set of covariates and the same
aggregation structure, and we also have access to the individual-level outcomes for performance
evaluation.

We use a data set comprising all voters from Morris County, New Jersey, an affluent and
historically Republican-leaning county of about half a million residents. The voter file contains
316,724 registered voters and includes limited demographic information as well as information
about whether each voter cast a ballot in general elections and primaries stretching back to the year
2000. There are 396 voting precincts in the county.
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Coverage Probability MSE

d 3 5 10 3 5 10
m̄ n

10 100 0.89 0.804 0.642 0.035 0.102 0.946
500 0.882 0.794 0.446 0.00541 0.0109 0.0434
1000 0.868 0.752 0.362 0.00248 0.00667 0.0204

50 100 0.946 0.948 0.956 0.00396 0.00702 0.0188
500 0.942 0.946 0.884 0.000837 0.00116 0.00386
1000 0.954 0.928 0.888 0.000416 0.00067 0.00169

100 100 0.96 0.968 0.98 0.00216 0.00289 0.00687
500 0.956 0.938 0.918 0.000376 0.000591 0.00127
1000 0.934 0.946 0.934 0.000204 0.000291 0.000568

500 100 0.952 0.948 0.962 0.000433 0.000637 0.00133
500 0.962 0.934 0.962 7.04e-05 0.000115 0.000203
1000 0.954 0.95 0.964 4.18e-05 5.28e-05 9.87e-05

1000 100 0.946 0.942 0.966 0.000229 0.000342 0.000734
500 0.946 0.96 0.948 4.23e-05 5.61e-05 0.0001
1000 0.958 0.95 0.96 1.95e-05 2.47e-05 4.84e-05

Table 1: Simulation results for various m̄, d, and n. Each result is computed based on 500 simula-
tions. We present both coverage and mean squared error results. When m̄ ⩾ 50 and as n grows we
see the joint confidence ellipse achieves nominal coverage and decreasing mean squared error.
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We fit models to eight data sets in total. To explore performance in different outcome regimes,
we predict whether voters participated in each election from 2014 to 2017, in which 34%, 19%,
76%, and 45% of all voters in our data set cast a ballot, respectively. For each year, we fit two
models: a parsimonious “demographics-only” model containing just four covariates (age, party,
gender, and whether the voter lives in an apartment); and a “demographics and voter history” model
that also contains nine variables corresponding to the voter’s participation and voting method in the
given year’s primary and the primaries and general elections of the prior four years.

We compare the performance of a number of methods:

• To obtain an upper bound on performance, we fit a logistic regression and a Gradient Boosted
Machine (GBM) to the data set while giving them access to the individual-level outcomes [6].
Because these models “see” individual-level data, they should outperform methods that only
have access to aggregated data.

• We fit three variants of our logistic regression formulation.

– In the first (“Logit with Gaussian Gradient”), the coefficients are fit via gradient as-
cent exclusively using the Gaussian approximation. We run for 120 iterations using a
learning rate of 2× 10−5.

– In the second (“Logit with Gaussian Gradient, PoiBin Backtracking”), we run ten it-
erations using the approximated gradient and fixed step size; for the remaining 110
iterations, we use the normal-approximation gradient to choose an ascent direction but
use backtracking line search based on the true likelihood to choose a step size.

– The third algorithm (“Logit with Gaussian Gradient, PoiBin Backtracking, True Gradi-
ent”) is identical to the second, except we run only 100 iterations using backtracking
line search. The final ten iterations are then instead run using the true gradient derived
in Appendix B.1.

These three variants are used to explore the practical effect of the Gaussian approximation on
our model’s accuracy.

• Following the approach in [20], we baseline against the simplest ecological inference method:
assigning each unit in a given aggregation block the average of the outcomes in that aggre-
gation block. In our setting, this means each voter in a precinct is assigned the voter turnout
proportion in that precinct as a pseudo-outcome, and a logistic regression model is fit to these
data.

• We baseline against ecological regression as implemented in the ecoreg package in R [8].

• We baseline against Rueping’s Inverse Calibration method [20]. Aggregate accuracy on the
40 precincts in the development set is again used, this time for tuning the C and ϵ parameters.

• Lastly, we baseline against the Mean Map [19], Laplacian Mean Map, and Alternating Mean
Map [16]. Hyperparameters are again tuned using squared error on the development set.

Results for the demographics-only model are provided in Table 2 and results from the expanded
data set are provided in Table 3. The relative strength of the logistic regression formulation is
immediately obvious: these models achieve the highest ROC AUC values in all but one of the

12
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Table 2: ROC AUC scores for models predicting voter turnout, fit to demographics-only data sets.
The highest values among ecological inference models are underlined.

Demographics Only
2017 2016 2015 2014

Standard Methods (non-ecological)
Logistic Regression 72.0% 71.2% 75.2% 76.9%
GBM 73.0% 72.7% 75.5% 77.2%

Proposed Methods
Logit with Gaussian Gradient 69.3% 68.3% 73.6% 74.7%
Logit with Gaussian Gradient, PoiBin Backtracking 69.3% 68.4% 73.6% 74.7%
Logit with Gaussian Gradient, PoiBin Backtracking,

True Gradient 69.3% 68.4% 72.2% 74.5%
Comparison Methods

Logistic Regression on Aggregates 65.9% 60.0% 71.7% 69.0%
Ecological Regression 67.6% 66.7% 72.8% 75.0%
Inverse Calibration 61.1% 61.9% 72.9% 41.5%
Mean Map 51.5% 60.1% 33.3% 31.9%
Laplacian Mean Map 51.0% 46.1% 37.9% 51.1%
Alternating Mean Map 58.9% 62.6% 58.0% 58.4%

eight conditions and frequently come very close to the performance of methods with access to the
individual outcomes. Also evident is the fact that little to no predictive power is gained by making
use of the real likelihood rather than the approximation. Backtracking on the true Poisson Binomial
likelihood or using the true gradient actually slightly degrades performance in most cases, while
also slowing training.

Ecological regression performs well in all conditions and outperforms our proposed methods
in the demographics-only model for 2014. The other tested methods are generally not competi-
tive. The logistic regression on aggregates technique performs surprisingly well given its extreme
simplicity, but it still underperforms the proposed logistic methods. Inverse calibration sees a no-
ticeable performance bump with the inclusion of additional covariates. The Mean Map, LMM, and
AMM methods typically do poorly, with only AMM consistently beating random guessing in the
demographics-only case. Each of these methods is somewhat sensitive to hyperparameter values,
and tuning is extremely challenging in the absence of labeled data in the development set. We
are using squared error across development precincts as a proxy measure, and it’s highly plausible
that alternative proxies would yield better hyperparameter values. Nonetheless, a strength of our
proposed methods is that they require very little tuning to get good performance.

13



APPROXIMATE POISSON-BINOMIAL LOGISTIC REGRESSION

Table 3: ROC AUC scores for models predicting voter turnout, fit to demographics and voter history
data sets. The highest values among ecological inference models are underlined.

Demographics and Voting History
2017 2016 2015 2014

Standard Methods (non-ecological)
Logistic Regression 85.9% 84.5% 88.6% 89.5%
GBM 86.2% 85.5% 88.8% 89.6%

Proposed Methods
Logit with Gaussian Gradient 83.9% 82.0% 81.0% 86.3%
Logit with Gaussian Gradient, PoiBin Backtracking 83.8% 82.0% 81.0% 86.4%
Logit with Gaussian Gradient, PoiBin Backtracking,

True Gradient 83.8% 81.9% 80.6% 86.3%
Comparison Methods

Logistic Regression on Aggregates 75.0% 72.4% 77.2% 76.8%
Ecological Regression 67.5% 68.7% 71.8% 76.1%
Inverse Calibration 64.2% 77.6% 78.4% 66.9%
Mean Map 45.4% 54.4% 48.4% 51.8%
Laplacian Mean Map 49.5% 51.5% 57.6% 49.4%
Alternating Mean Map 51.9% 52.9% 44.4% 46.2%
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Appendix B. Methods

B.1. Gradients and Hessians

We start by writing out the gradients and Hessians as well as their expected forms, which will be
useful throughout our theoretical discussion.

B.1.1. EXACT LIKELIHOOD

We can write the exact likelihood and its gradient and hessian:

ℓi(β) = log

 ∑
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([mi])

exp
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j∈A

x⊤
ijβ

)−
mi∑
j=1

log
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The gradient and Hessian here actually have a lot of structure which we can use to analyze their
behavior. Using the probabilistic structure we will show how we can re-write the gradient in terms
very comparable to the standard logistic regression.

We will show the first term of the gradient is equal to

E

 mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

 .

We can interpret this in the sampling setting as the expected sample sum of the covariate vectors,
conditional on the total number of units sampled among those in [mi]. Careful expansion yields

E

(
mi∑
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xijVij |
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j=1

Vij = Yi

)
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which we recognize as the first term in our gradient from the prior section. Analogous computations
apply for the Hessian, giving us the following equivalent forms:

∇βℓi(β) = E

 mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

− E

 mi∑
j=1

xijVij


∇2
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Pushing the expectation into the sum we can rewrite this:
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We can similarly rewrite the covariance:
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This gives us a form of the gradient that very closely resembles the gradient for the logistic
regression and a form of the Hessian that involves the Hessian for the logistic regression and an
additional reweighting term:

∇βℓi(β) =
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We can also write these objects in expectation:
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It is worth noting that when P∗

(∑mi
j′=1 Vij′ = k

)
= Pβ

(∑mi
j′=1 Vij′ = k

)
we will have can-

cellation of the terms in the ratio, and the sum
∑mi
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(∑
j′ ̸=j Vij′ = k − 1

)
= 1. So under this

condition, the gradient will be zero.

B.1.2. APPROXIMATE LIKELIHOOD

To study the geometry of the likelihood it will be useful to write out the likelihood, gradient, and
hessian:
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We will also consider these objects under the expectation:
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Taking this expectation does not immediately help us; all of the problems and dynamics of the
eigenvalues of the Hessian are similarly true for this expected objective. But it is significantly more
tractable to analyze.

B.2. Statistical Results

Here we outline several statistical theorems in the exact and approximate settings focusing on iden-
tifiability and asymptotic normality. We present all the proofs in the following appendices.

B.2.1. EXACT IDENTIFIABILITY

We can start analyzing the likelihood by trying to understand its symmetries and the necessary
conditions for identifiability.

Lemma 3 For a single precinct let pi() denote the vector of ordered probabilities pi() = (pj1 <
· · · < pjmi

). The Poisson-Binomial distribution is identifiable up to pi(), which is up to permuta-
tions.

This result tells us that what matters for the identifiability of the Poisson-Binomial Logistic re-
gression is the set of probabilities in each precinct with respect to β∗, relative to other β. Essentially
if β∗ induces a unique set of probabilities across all precincts then we will have identifiability. If
there is some other β that induces the same sets of probabilities in every precinct as β∗ then the
regression will be non-identifiable.

More formally, we can think about the sets of ordered probabilities induced by β, which we
index by jβk (breaking ties arbitrarily) so that:(

x
ijβ1

)⊤
β ≤ · · · ≤

(
x
ijβmi

)⊤
β.

Now we define the set of β which induce the same probabilities as β∗ in precinct i:

B(PB)
i =

{
β

∣∣∣∣ ((xijβ1 )⊤ β, . . . ,
(
x
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=

((
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∗
1
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β∗, . . . ,

(
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∗
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)⊤
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)}
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Using these sets we can start to understand the identifiability of the Poisson-Binomial logistic
regression and the geometry of the likelihood.

Theorem 4 (Identifiability)

(i) The Poisson-Binomial logistic regression is identifiable if and only if ∩ni=1B
(PB)
i = β∗

(ii) Assuming xij are bounded, the Hessian is asymptotically positive semi-definite and so the log-
likelihood is asymptotically concave at any β ∈ ∩ni=1B

(PB)
i . Furthermore, we can consider

the precinct-level vectors:

∇βℓi(β) =

mi∑
j=1

Pβ

(∑
k ̸=j Vij = Yi − 1

)
Pβ

(∑mi
j=1 Vij = Yi

) − 1

 pijxij ,

when these vectors∇βℓi(β) span Rd the log-likelihood will be strictly concave at β∗.

The likelihood will be asymptotically log-concave in a neighborhood around the true parameter
value if there is sufficient differentiation in the covariates xij across precincts. In practical exam-
ples, this condition holds as long n is sufficiently large compared to p, and the covariates differ
sufficiently across precincts.

Assumption 3 (Identifiability) In addition to Asmp. 1 we assume the set of precincts are identifi-
ability with respect to β∗ and that the Hessian is full rank at β∗.

Our next theorem shows that under this assumption we will have consistency of the maximum
likelihood estimator and asymptotic normality:

Theorem 5 (Consistency and Asymptotic Normality of the Likelihood) We will assume that As-
sumption 3 holds. Let β̂ denote the maximum likelihood estimator for the likelihood ℓPoiBin(β). Then
as n→∞, we will have:

β̂n
n→∞−−−→ β∗ and

√
n
(
β̂n − β∗

)
n→∞−−−→ N

(
0,E

[
∇2

βℓPoiBin (β
∗)
])

. (3)

In the next section, we will explore what this result means, both in the well-specified setting we
have considered up to this point and in the more challenging mis-specified setting.

B.2.2. APPROXIMATE IDENTIFIABILITY

We can formalize this into an identifiability theorem, similar to the theorem in Section 4:

Theorem 6 (Identifiability)

(i) The Poisson-Binomial logistic regression is identifiable with respect to the approximate like-
lihood if and only if ∩ni=1Bi = β∗
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(ii) The Hessian of the approximate likelihood is asymptotically negative semi-definite and so the
log-likelihood is asymptotically concave at β∗. Furthermore, we can consider the precinct-
level vectors:

∇βℓi(β) =
1

2

(
(Yi − µi(β))

2 − ςi(β)
2

ςi(β)4

)(mi∑
j=1

(2pij − 1)pij(1− pij)xij

)
−
(
Yi − µi(β)

ςi(β)2

)(mi∑
j=1

pij(1− pij)xij

)
,

when these vectors∇βℓi(β) span Rd the log-likelihood will be strictly concave at β∗.

Now we can again assume these conditions hold which allows us to state consistency and asymp-
totic normality results for the approximate log-likelihood:

Assumption 4 (Identifiability with respect to the Approximate Log-Likelihood) Extending the
requirements of Assumptions 3 and 2 we further assume that P is identifiable with respect to the
approximate log-likelihood with the approximate Hessian full rank at β∗.

Theorem 7 (Consistency and Asymptotic Normality of the Approximate Likelihood) We will as-
sume that the approximate Poisson-Binomial logistic regression is identifiable with respect to P
and that Assumptions 3- 4 hold. Let β̂ denote the maximum likelihood estimator for the approxi-
mate likelihood ℓ(β). Then as n→∞, we will have:

β̂n
n→∞−−−→ β∗ and

√
n(β̂n − β∗)

n→∞−−−→ N
(
0,E

[
∇2

βℓ(β)
])

(4)

B.2.3. IDENTIFIABILITY RESULTS

We will start with our main identifiability results for the Poisson-Binomial log-likelihood and the
approximate log-likelihood under the Poisson-Binomial model.

Proof of Lemma 3 Proof The Poisson-Binomial is identifiable up to the ordered probability
vector p() if

for all k:
∑

A∈Pk([n])

(∏
i∈A

pi

)(∏
i∈Ac

(1− pi)

)
=

∑
A∈Pk([n])

(∏
i∈A

qi

)(∏
i∈Ac

(1− qi)

) ⇒ p() = q().

We will prove this condition holds by constructing a set of implied equivalences and then using
those as coefficients in a pair of polynomials, which will imply p() = q(). We will start by analyzing
the case k = n which gives us: ∏

i

pi =
∏
i

qi

Then we can examine k = n− 1:∑
j

∏
i ̸=j

pi(1− pj) =
∑
j

∏
i ̸=j

qi(1− qj)⇒
∑
j

∏
i ̸=j

pi =
∑
j

∏
i ̸=j

qi

since the remaining
∏

i pi and
∏

i qi terms cancel.
Likewise we can consider the case k = n− 2:

∑
k

∑
j ̸=k

∏
i ̸=k,j

pi(1− pj)(1− pk) =
∑
k

∑
j ̸=k

∏
i̸=k,j

qi(1− qj)(1− qk)⇒
∑
k

∑
j ̸=k

∏
i ̸=k,j

pi =
∑
k

∑
j ̸=k

∏
i ̸=k,j

qi
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where again we have cancellation by the k = n and k = n− 1 cases above. Proceeding in this
fashion we will have that:

∀k = 1, . . . , n :
∑

A∈Pn−k([n])

∏
i∈A

pi =
∑

A∈Pn−k([n])

∏
i∈A

qi

Now we can rewrite these relations as the coefficients on pair of degree n polynomials:

n−1∑
k=0

(−1)n
 ∑

A∈Pn−k([n])

∏
i∈A

pi

xk + xn = 0,
n−1∑
k=0

(−1)n
 ∑

A∈Pn−k([n])

∏
i∈A

qi

xk + xn = 0

It turns out these sets of coefficients are precisely the elementary symmetric polynomials of p
and q, and so by Vieta’s formulas we know that p and q exactly describe the roots of the respec-
tive polynomials. Since we have already shown that these polynomials in p and q have the same
coefficients we have that p() = q() whenever LPoiBin(k; p()) = LPoiBin(k; q()) for all k.

Proof of Theorem 4 Proof These two results are largely independent, and we prove them sepa-
rately:

(i) If | ∩∞i=1 B
(PB)
i | = 1 then ∩∞i=1B

(PB)
i = β∗ and by Lemma 3 we have identifiability.

(ii) Per the results in Appendix B.1, we can write the scaled Hessian as:

1

n
∇2ℓ(β) =

1

n

n∑
i=1

Cov

 mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

− Cov

 mi∑
j=1

xijVij


where n is the number of precincts. By Kolmogorov’s Strong Law [23], we see

1

n

n∑
i=1

Cov

(
mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

)
a.s.→ 1

n

n∑
i=1

E

(
Cov

(
mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

))

=
1

n

n∑
i=1

Cov

(
mi∑
j=1

xijVij

)
− Cov

(
E

(
mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

))

where the second line is due to the Law of Total Covariance. Thus

1

n
∇2ℓ(β)

a.s.→ − 1

n

n∑
i=1

Cov

E

 mi∑
j=1

xijVij |
mi∑
j=1

Vij = Yi

 .

and the result follows from the fact that any covariance matrix must be positive semidefinite.
By an identical SLLN argument the Hessian and the outer product of the gradient will behave
identically, so the full rank condition is rather immediate. Since the likelihood, gradient, and
Hessian will be the same for all β ∈ ∩ni=1B

(PB)
i we can conclude that the Hessian will be

positive semidefinite for all β ∈ ∩ni=1B
(PB)
i .
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Proof of Theorem 6 Proof The proof follows the exact structure of the proof of Theorem 4
replacing B(PB)

i with Bi and∇ℓPoiBin(β
∗) with ∇ℓi(β∗).

Proof of Lemma 2 Proof The necessity is immediate from the counterexamples in Fig. 1.
Now we can state a stronger version of Lemma 2 with the necessary and sufficient conditions:

Lemma 8 Assuming the model is well-specified with β∗, the necessary and sufficient conditions for
a precinct to have a single global optimum are that the covariates, {xij}mi

j=1:

1. span Rd

2. are rotationally symmetric about β∗

3. satisfy partisan monotonicity with respect to β∗

(a) xi (b) µi(β)
2 (c) ςi(β)2

(d) A precinct which satisfies partisan monotonicity but has multiple global minima
since the covariates are not rotationally symmetric.

(e) xi (f) µi(β)
2 (g) ςi(β)2

(h) A precinct with rotationally symmetric covariates but which has multiple global
minima since the covaraites do not satisfy partisan monotonicity with respect to β∗.

Figure 4: Two counter examples demostrating the necessity of both rotational symmetry and par-
tisan monotonicity in the two dimensional setting. Left is the covariate distribution, in the middle
we have the mean surface, and on the right we have the variance surface. Note that without partisan
monotonicity the mean and variance surfaces can essentially be arbitrarily badly behaved, as seen
in (b).
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Clearly, if the covariates do not span Rd we will have multiple global optima. We prove the
necessity of rotational symmetry and partisan monotonicity by counter-example in Fig. 4.

Now we can move on to sufficiency. Under partisan monotonicity and the full rank condition,
we know that Σi will form a compact surface, symmetric about the separating hyperplane normal
to β∗. We similarly know thatMi will be a non-compact surface. Since the covariates are radially
symmetric about β∗ we know that these surfaces must also be radially symmetric about β∗. Further-
more, we know that the surfaces must touch at β∗. Now by the radial symmetry of the covariates and
partisan monotonicity we also know that β∗ will be the minimum norm β ∈ β∗ and the maximum
norm β ∈ Σi, so β∗ will be the only point at which the two surfaces touch.

B.2.4. RADEMACHER COMPLEXITY, CONSISTENCY, AND ASYMPTOTIC NORMALITY

We will start by showing the Poisson-Binomial logistic log-likelihood and the approximate log-
likelihood are Lipshitz assuming bounded covariates and a compact parameter space. Using the
Lipschitz constant we will bound the Rademacher complexity. This will give us a Uniform Strong
Law of Large Numbers, which combined with identifiability and compactness will give us consis-
tency. We will then argue for asymptotic normality leveraging the fact we can take a second-order
Taylor exapansion of both of our log-likelihoods. All of our arguments will hold under misspecifi-
cation of the model for p∗, as long as our strong identifiability conditions hold. For simplicity here
we treat the case where every precinct i has the same number of voters: mi = m.

Lemma 9 The Poisson-Binomial logistic log-likelihood is Lipschitz with constant 2√
m

, and includ-

ing the linear connection the log-likelihood is Lipschitz with constant 2
√

1
m

∑m
j=1 ||xij ||22.

Proof Taking the gradient with respect to zk we can take a straightforward bound:

(
∂

∂zk
ℓi(z)

)2

=
1

m2

 ∑
A∈PYi

([m])

1{k ∈ A} exp
(∑

j∈A zij

)
∑

A′∈PYi
([m]) exp

(∑
j∈A′ zij

) − exp(zik)

1 + exp(zik)

2

≤ 4

m2

Then summing over each k = 1, . . . ,m we have ||∇zℓi(z)||2 ≤ 2√
m

. This bound is tight up to the
factor of 2 since setting k = 0 we have:

||∇zℓi(z)||2 =

√√√√ m∑
k=1

(
exp(zik)

1 + exp(zik)

)2

≤ lim
(zi1,...,zim)→∞

√√√√ m∑
k=1

(
exp(zik)

1 + exp(zik)

)2

=
1√
m

The second claim is almost immediate since a linear function X⊤
i β is Lipschitz with

√∑m
j=1 ||xij ||22

and the composition of Lipschitz functions is Lipschitz with constant the products of the constants.

Lemma 10 The approximate log-likelihood under the Poisson-Binomial model is Lipschitz with
constant

L =

√
31K2m2 + 4

1728m3
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and including the linear connection the log-likelihood is Lipschitz with constant

L =

√√√√(31K2

1728
+

1

432m2

)
1

m

m∑
i=1

||xij ||22

Proof Now we can write the gradient of the log-likelihood in terms of z:(
∂

∂zj
ℓi(z)

)2

=

(
1

2m

(
(Yi − µi(β))

2 − ςi(β)
2

ςi(β)4

)
(2pij − 1)pij(1− pij)−

1

m

(
Yi − µi(β)

ςi(β)2

)
pij(1− pij)

)2

≤ 1

4m2

(
(Yi − µi(β))

2 − ςi(β)
2

ςi(β)4

)2

((2pij − 1)pij(1− pij))
2 +

1

m2

(
Yi − µi(β)

ςi(β)2

)2

(pij(1− pij))
2

Now ((2pij − 1)pij(1− pij))
2 ≤ 1

108 and (pij(1− pij))
2 ≤ 1

16 . All we need to do is bound the
coefficients: (

(Yi − µi(β))
2 − ςi(β)

2

ςi(β)4

)2

≤
(
(Yi − µi(β))

2

ςi(β)4

)2

+
1

ςi(β)4

Now we can separately maximize the numerator and minimize the denominator. We can upper bound
the numerator since 0 ≤ Yi ≤ m so |Yi−µi(β)| ≤ m. Further assuming the covariates are bounded
such that ||xij ||2 ≤ C and ||β||2 ≤ B we can lower bound ςi(β)

2 ≥ nσ(BC)(1− σ(BC)). We let

K = 1
σ(BC)(1−σ(BC)) . Thus we have the bound

(
∂
∂zj

ℓi(z)
)2
≤ 31K2m2+4

1728m4 which lets us bound the
norm of the gradient:

||∇zℓi(z)||2 ≤
√

31K2m2 + 4

1728m3

Lemma 11 Under the Poisson-Binomial model we can upper bound the Rademacher compexity of
the Poisson-Binomial logistic log-likelihood and the approximate log-likelihood:

R(ℓPoiBin ⊙H) ≤
2B√
n

√√√√√ 2

n

n∑
i=1

 1

m

m∑
j=1

||xij ||22



R(ℓ⊙H) ≤ B√
n

√√√√√ 2

n

(
31K2

1728
+

1

432m2

) n∑
i=1

 1

m

m∑
j=1

||xij ||22


Proof We will prove the first bound first. Our proof will make use of a vector contraction inequality
for Rademacher complexities [15, Theorem 3] to peel off the L-Lipschitz loss function, incurring√
2L and summing over all coordinates j = 1, . . . ,m:

R(ℓPoiBin ⊙H) ≤

(
2

n

√
2

m

)
Eϵ sup

||β||≤B

n∑
i=1

m∑
j=1

ϵijβ
⊤xij
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So now we need to bound the linear transformation:

Eϵ

[
sup
β∈B

∑
ij

ϵijβ
⊤xij

]
= Eϵ

[
sup
β∈B

β⊤

(∑
ij

ϵijxij

)]
≤ BEϵ

∣∣∣∣∣
∣∣∣∣∣∑

ij

ϵijxij

∣∣∣∣∣
∣∣∣∣∣
2

≤ B

√√√√Eϵ

∣∣∣∣∣
∣∣∣∣∣∑

ij

ϵijxij

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ B

√∑
ij

||xij ||22

Combining this with the contraction inequality we have the desired bound on the Rademacher com-
plexity. The proof for the approximate likelihood is identical with the appropriate Lipschitz constant.

Note that these bounds are effectively free of m, which is what we should expect. Changing the
number of people in a precinct should not materially change the complexity of the learning problem
since we have fixed our functionclass to the linear model. It is worth noting that although it may
seem in the above proof that we could replace β with a separate βj for each coordinate of j without
incurring a complexity cost this is actually not the case. This would require ||βj ||F ≤ B and as
m → ∞ we would drive ||βj ||2 → 0 very quickly. Using the same β for every voter ensures the
magnitude of β can be free of m.

Now assuming the covariates are bounded ||xij ||22 ≤ C we have that ℓPoiBin and ℓ are bounded
by some constants KPoiBin,K, so we can convert these Rademacher complexity bounds into the
desired Uniform Strong Laws of Large Numbers by [27, Theorem 4.10], for any δ > 0, n ∈ N:

P

(
sup
β∈B

∣∣∣∣∣
n∑

i=1

ℓPoiBin (β)− EP [ℓPoiBin (β)]

∣∣∣∣∣ ≤ 2Rn(ℓPoiBin ⊙H) + δ

)
≥ 1− exp

(
− nδ2

2K2
PoiBin

)

P

(
sup
β∈B

∣∣∣∣∣
n∑

i=1

ℓ (β)− EP [ℓ (β)]

∣∣∣∣∣ ≤ 2Rn(ℓ⊙H) + δ

)
≥ 1− exp

(
− nδ2

2K2

)
To show consistency by [23, Theorem 5.7] we require two conditions: first the a uniform law of

large numbers and second the condition that the maximizer of the population problems E[ℓPoiBin(β)]
and E[ℓ(β)] are well-separated.

We proved a USLLN via our Rademacher complexity arguments above. We have also assumed
compactness, so the well-separatedness assumption reduces to the condition that the population
problems are globally maximized at the unique points. Under Assumptions 3 and by [23, Lemma
5.35] this implies β∗ is the unique maximizer of the population log-likelihood in the well specified
case. In the misspecified case we will have a similar condition by a standard KL argument assuming
our parameter space is convex. The approximate log-likelihood is more straightforward since we
constructed our sets Bi in Assumption 4 directly based on their being global maximizers. For the
misspecified case we will simply assume the population minimizer is unique. We will comment on
this further below. Under this uniqueness condition, regardless of misspecification, we have that:

β̂n,PoiBin
n→∞−−−→ β∗

PoiBin and β̂n,Normal
n→∞−−−→ β∗

Now we will argue we have asymptotic normality by [23, Theorem 5.23]. We need a number of
conditions: (i) measurability in (Yi, {xij}mj=1) and differentiability in β, (ii) local Lipschitzness in
a neighborhood of the population optimum, (iii) the estimates β̂n are the maximizers of the sample
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log-likelihoods, (iv) the consistency results above, and (v) a second-order Taylor expansion about
the population optimum with non-singular Hessian.

Both measureability and differentiability are clear for both likelihoods. We have global Lips-
chitzness, proved for both likelihoods in Lemmas 9 and 10. Our β̂n are indeed maximizers of the
sample log-likelihoods and we assume the same necessary conditions for the above consistency re-
sults. Since the output space is simply [1, . . . ,m] the expected log-likelihood, the expected gradient,
and the expected Hessian all exist and are bounded at the population optimum. The same is true for
the expected approximate log-likelihood and its gradient and Hessian. These conditions imply:

√
n(β̂n,PoiBin − β∗

PoiBin)
n→∞−−−→ N (0, IPoiBin(β

∗
PoiBin))

√
n(β̂n,Normal − β∗)

n→∞−−−→ N (0, I(β∗))

This completes our proof of consistency and asymptotic normality. These results rely cru-
cially on our assumption that the expected log-likelihoods are unique maximizers. For the full
log-likelihood this is a relatively mild condition since identifiability essentially relies on an ab-
sence of symmetry across precincts which should essentially always hold. For the approximate
log-likelihood in the well specified case this is also a relatively mild issue. In the misspecified case
since the same β∗ should not minimize every precinct, but only minimize them on average, we
might worry this is a strong condition, but in practice it is not.

B.3. Optimization

Although we can usually use Newton’s method on its own for optimizing the binary likelihood,
when the Hessian is close to singular or has negative eigenvalues this leads to catastrophic failure.
These issues are much more acute in the categorical case where it is much less common to have a
convex neighborhood that covers both zero and β̂. To address this problem we develop a variant
of Newton’s Method where, when the Hessian is not positive definite, we run a line search over
minimum eigenvalues projecting onto the set of matrices with that minimum eigenvalue. We give a
full description of this procedure in Algorithm 1.
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Algorithm 1 This is a variant of Newton’s Method where we use a spectral projection with minimum
eigenvalues of ϵ to ensure the estimated Hessian is positive definite. We run a line search over ϵ to
ensure convergence. Note that if the Hessian is positive definite the clipping has no effect.

Require: f(x) (objective function), ∇f(x) (gradient), ∇2f(x) (Hessian), x0 (initial point), α
(step size), ϵmin (initial and minimum clipping threshold), ϵmax (maximum clipping threshold),
γ > 1 (clipping increase factor), c (sufficient decrease parameter), tol (tolerance), maxiter
(maximum iterations)

1: function SPECTRALPROJLINESEARCH(f,x, g,H, ϵmin, ϵmax, γ, c)
2: ϵ← ϵmin
3: λ,v ← eigh(H) ▷ Compute eigendecomposition of the Hessian
4: while ϵ ⩽ ϵmax do
5: λϵ ← max(λ, ϵ) ▷ Clip minimum eigenvalues to ϵ
6: H−1

ϵ ← v Diag(λ−1
ϵ ) v⊤

7: pα,ϵ ← −αH−1
ϵ g

8: if f(x+pα,ϵ) ≤ f(x)+ c∇f(x)⊤pα,ϵ then ▷ Armijo Condition for sufficient decrease
9: break

10: end if
11: ϵ← γϵ
12: end while
13: return pα,ϵ

14: end function
15: function SPECTRALPROJNEWTONRAPHSON(f,∇f,∇2f,x0, α, ϵmin, ϵmax, γ, c, tol,maxiter)
16: x← x0

17: for k = 1 to maxiter do
18: g ← ∇f(x)
19: H ← ∇2f(x)
20: pα,ϵ ← SPECTRALLINESEARCH(f,x, g,H, α, ϵmin, ϵmax, γ, c)
21: x← x+ pα,ϵ

22: if ∥g∥ < tol then
23: break
24: end if
25: end for
26: return x
27: end function
28: return SPECTRALPROJECTEDNEWTONRAPHSON(ℓ,∇ℓ,∇2ℓ,x0 = 0, α = 1, ϵmin =

10−4, ϵmax = 10−1, γ = 1.5, c = 10−4, tol = 10−5,maxiter = 500)

B.4. Extension to categorical outcomes

The core of the generalization is to substitute the logit link function for the softmax link function
and to work with β = (β(1), . . . , β(K)) where for identifiability we assume that β(K) = 0 so that
β ∈ Rd×(K−1).

With these details clear we know that we have a Poisson-Multinomial distribution:
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ℓPoiMult(β) =
n∑

i=1

log

 ∑
(A1...,Ak)∈P(

Y
(1)
i

,...,Y
(K)
i

)([mi])

 K∏
k=1

∏
j∈Ak

exp(x⊤ijβ
(k))∑K

k′=1 exp(x
⊤
ijβ

(k′))


 (5)

Where we write P(
Y

(1)
i ,...,Y

(K)
i

)([mi]) to denote the set of all possible partitions of mi into K

sets of sizes (Y (1)
i , . . . , Y

(K)
i ) respectively. This is even more intractable than the binary likelihood.

The natural central limit theorem here would give us:

Yi ∼ N





∑mi
j=1

exp(x⊤
ijβ

(1))∑K
k′=1

exp(x⊤
ij

β(k′))

.

.

.∑mi
j=1

exp(x⊤
ijβ

(K))∑K
k′=1

exp(x⊤
ij

β(k′))


,



∑mi
j=1

exp(x⊤
ijβ

(1))
(∑

k ̸=1 exp(x⊤
ijβ

(k))
)

(∑K
k′=1

exp(x⊤
ij

β(k′))
)2 . . .

∑mi
j=1

exp(x⊤
ijβ

(1)) exp(x⊤
ijβ

(K))(∑K
k′=1

exp(x⊤
ij

β(k′))
)2

.

.

.
. . .

.

.

.∑mi
j=1

exp(x⊤
ijβ

(1)) exp(x⊤
ijβ

(K))(∑K
k′=1

exp(x⊤
ij

β(k′))
)2 . . .

∑mi
j=1

exp(x⊤
ijβ

(K))
(∑

k ̸=K exp(x⊤
ijβ

(k))
)

(∑K
k′=1

exp(x⊤
ij

β(k′))
)2





But the covariance here is always singular. We can “fix” this problem by dropping one of the
coordinates, but this solution does not work at β = 0 where the covariance matrix will always be
zero. This causes irreparable issues in the loss landscape. So instead of using this covariance we just
use its diagonal. This is exactly equivalent to summing the binary log-likelihood on each component
of Y (k):

ℓcat(β) =

(
1

n · m̄

) n∑
i=1

 K∑
k=1

log

(
ςi

(
β(k)

)2)
+

(
Y

(k)
i − µi

(
β(k)

))2
ςi
(
β(k)

)2
 (6)

This loss function remains easy to compute and inherits the nice geometry of the binary case we
analyze elsewhere. This also inherits the bounds in App. B.2.4 incurring a multiplicative factor in
K, again giving us a uniform strong law of large numbers for the approximate log-likelihood.
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