
Under review as a conference paper at ICLR 2023

DIFFERENTIABLE LOGIC PROGRAMMING FOR
PROBABILISTIC REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies inductive logic programming for probabilistic reasoning. The
key problems, i.e. learning rule structures and learning rule weights, have been
extensively studied with traditional discrete searching methods as well as recent
neural-based approaches. In this paper, we present a new approach called Dif-
ferentiable Logic Programming (DLP), which provides a flexible framework for
learning first-order logical rules for reasoning. We propose a continuous version
of optimization problem for learning high-quality rules as a proxy and gener-
alize rule learning and forward chaining algorithms in a differentiable manner,
which enables us to efficiently learn rule structures and weights via gradient-based
methods. Theoretical analysis and empirical results show effectiveness of our ap-
proach.

1 INTRODUCTION

Learning to reason and predict is a fundamental problem in the fields of machine learning. Repre-
sentative efforts on this task include neural networks (NN) and inductive logic programming (ILP).
The NNs and ILP methods represent learning strategies of two extremes: the ideas behind NNs are
to use fully differentiable real-valued parameters to perceive the patterns of data, while in the fields
of ILP, we search for determined and discrete structures to match the patterns of data. Over the
years, the former approaches, i.e. neural-based methods, have achieved state-of-the-art performance
in solving tasks from many different fields, while the latter ones have fallen behind due to their
inherited inferior in fitting noisy and probabilistic data.

However, it was pointed out that there is a debate over the problems of systematicity and explanabil-
ity in connectionist models, as they are black-box models that are hard to be explained. To tackle the
problem, numerous methods have been proposed to combine the advantages of both connectionist
and symbolic systems. Most existing efforts focus on two different manners: using logic to en-
hance neural networks and using neural networks to help logical reasoning. The former approaches
(Rocktäschel & Riedel (2017), Minervini et al. (2020c), Vedantam et al. (2019), Dong et al. (2019))
modify the structures of NNs to capture some features of logic. Some of them, known as neural
theorem provers (Rocktäschel & Riedel (2017), Minervini et al. (2020a)), represent entities with
embedding vectors that implies the semantics of them. Further more, they absorb symbolic logical
structures into the neural reasoning framework to enhance the expressiveness of the models. For
example, to prove the existence of (grandfather,Q,Bart) where Q is the target entity we wish to
find, these systems use logic rules such as grandfather ← father of, parent of to translate the
original goal (grandfather,Q,Bart) into subgoals that can be subsequently proved by operating
on entity embeddings. Thus, the expressiveness and interpretability of the systems is improved with
the help of logic.

The latter approaches (Yang et al. (2017), Xiong et al. (2017) Sadeghian et al. (2019), Qu et al.
(2021)) enhance traditional inductive logic programming with the help of neural networks. Gen-
erally, they use different techniques to solve the key problems of ILP, which is to learn structures
of logical rules from exponential large space. Some of them (Yang et al. (2017), Sadeghian et al.
(2019), Yang & Song (2020)) approximate the evaluation of all possible chain-like logic rules in
a single model, making learning of the model differentiable. However, as mentioned in Sadeghian
et al. (2019), these models inevitable give incorrect rules with high confidence values due to the
low-rank approximation of evaluating exponential many logic rules at the same time, which also

1



Under review as a conference paper at ICLR 2023

makes it hard to identify high-quality logic rules and explain the predictions made by these models.
The other line of the research (Yang & Song (2020), Qu et al. (2021)) propose different methods to
generate high-value rules such as reinforce learning and EM algorithms. However, since structure
learning of logical rules is a very hard problem, they are limited in only searching chain-like horn
clauses, which is less expressive and general.

In this paper, we propose a novel differentiable programming framework, called Differentiable Logic
Programming (DLP), to build a bridge between the ideas of differentiable programming and sym-
bolic reasoning. Our approach enjoys the merits of connectionist systems, i.e., high expressiveness
and easy to learn, as well as the merits of ILP systems, i.e., explanability and clear structures for
decision making. We study the construction of a probabilistic reasoning model, and discuss the
properties of valuable logic rules. Based on that, we propose a novel rule learning framework that
approximates the combinatory search problem with a continuous relaxation which enables us to
learn structures of logic rules via a differentiable program. Once valuable rules are learnt, we can
further fine-tune the rule weights and perform probabilistic forward chaining to predict the existence
of unobserved terms.

2 RELATED WORK

Our work is related to previous efforts on Inductive Logic Programming (ILP) fields and their exten-
sions. Representative methods of ILP includes FOIL (Quinlan (2004)), MDIE (Muggleton (2009)),
AMIE (Galárraga et al. (2015)), Inspire (Schüller & Kazmi (2018)), RLvLR (Omran et al. (2018))
and so on. Generally, these methods search for logic rules in exponential large space to obtain valu-
able logic rules and make predictions based on them. However, despite the well-designed searching
algorithms and pruning techniques, these methods suffer from their inherent limitations of relying
on discrete counting and predefined confidence.

More recently, different learning algorithms have been proposed to overcome the drawbacks of
ordinary ILP methods. Many of them consider a special kind of ILP tasks namely knowledge graph
completion, where most of the proposed methods (Yang et al. (2017), Rocktäschel & Riedel (2017),
Sadeghian et al. (2019), Minervini et al. (2020b), Yang & Song (2020), Qu et al. (2021)) focus on
learning chain-like rules, and these methods use different learning strategies to learn valuable rules.
Some of them are based on reinforcement learning (Xiong et al. (2017), Chen et al. (2018), Das et al.
(2018), Lin et al. (2018), Shen et al. (2018)), and they train agents to find the right reasoning paths
to answer the questions in knowledge graphs. Qu et al. (2021) uses recurrent neural networks as
rule generators and train them with EM algorithms. Yang et al. (2017), Sadeghian et al. (2019) and
Yang & Song (2020) propose end-to-end differentiable methods, which can be trained efficiently
with gradient-based optimizers. These methods are similar in spirit with our approach, as they claim
to be able to learn rule structures in a differentiable manner. However, what they actually do is to
find a low-rank tensor approximation for simultaneous execution of all possible rules of exponential
space with different confidence scores, and by doing so they suffer from the risk of assigning wrong
rules with high scores (Sadeghian et al. (2019)). Also, although Yang & Song (2020) claims that their
attentions usually becomes highly concentrate after convergence, there is no theoretical guarantee so
extracting logic rules implying these model could be problematic because there might be exponential
potential rules that have confidence scores higher than zero. The parameters learnt by these models
are dense vectors thus they suffer from the problem of explainability. Compared with them, our
method is able to generate sparse solutions that explicitly learns logic rules for reasoning with a
more flexible rule search space while keeping the rule learning procedure differentiable.

There are other methods that focus on different types of ILP problems. Lu et al. (2022) treats relation
prediction task as a decision making process, and they use reinforcement learning agents to select the
right paths between heads and tails. Our approach is more general and is able to deal with different
tasks. Rocktäschel & Riedel (2017) and Minervini et al. (2020b) propose a generalized version of
backward chaining with the help of neural embedding methods, and show great performance on both
relation prediction and knowledge graph completion tasks. Compared to them, our approach doesn’t
require the help of embeddings, thus our predictions are more explainable.

There are also interesting methods based on embedding and neural networks (Bordes et al. (2013),
Wang et al. (2014), Yang et al. (2015), Nickel et al. (2016), Trouillon et al. (2016), Cai & Wang

2



Under review as a conference paper at ICLR 2023

(2018), Dettmers et al. (2018), Balazevic et al. (2019), Sun et al. (2019), Teru et al. (2020), Zhu
et al. (2021)). Since they are less relevant to logic reasoning, we do not cover them in details here.

3 PRELIMINARY

3.1 FIRST-ORDER LOGIC

This paper focuses on learning first-order logic (FOL) rules for reasoning. Across this paper, we
assume predicates are from a countable universe P where we use uppercase P,Q, ... ∈ P to repre-
sent predicates. We use a, b, c, ... ∈ V to represent constants and x, y, z to represent variables. An
example of grammars of FOL applied in the experiments of this paper are:

φ(x) := P (x) | φ(x, x) | ∃y : φ(y) ∧ φ(x, y),
φ(x, y) := P (x, y) | φ(x) ∧ φ(y) ∧ φ(x, y) | ∃z : φ(x, z) ∧ φ(z) ∧ φ(z, y). (1)

Grammars are critical for ILP systems, because they not only define the syntax of FOL formulas,
but also determine the expressive power and search space of FOL formulas. However, in this paper
we will not restrict the specific formulation of the grammar. Instead, we use a common formulation
to represent them and our approach is equivalently applicable to any reasonable grammar:

φ(x) := P (x) | F1(x) | F2(x) | F3(x) | ... (2)

Also, Eq. 1 is frequently used to demonstrate the ideas in the following sections. We use x to
represent a tuple of variables, v for a tuple of constants for notation simplification given it’s clear
in the context. Fi represents a possible format that φ could take. For example, in the definition of
φ(x) in Eq. 1, we have x = x and F1(x) := φ(x, x), F2(x) := ∃y : φ(y) ∧ φ(x, y).

Logic classifiers and logic rules Logic formulas φ can be regarded as classifiers (Barceló et al.
(2020)). For example, consider φ(x) := ∃y : Red(y) ∧ Edge(x, y) and Blue(x)← φ(x). φ can be
regarded as a classifier, where we have φ(x) = 1 for nodes x with red neighbors and 0 otherwise.
Generally, logic classifiers take (set of) entities (e.g. node x) as input and compute the output (e.g.
φ(x)) by grounding the logic formula on the background statements (e.g. {Edge(x, y),Red(y)}).
Blue(x) ← φ(x) is a logic rule that tells us the rule head Blue(x) can be concluded if the rule
body φ(x) is satisfied. In the fields of probabilistic reasoning, each logic rule can be assigned with
a weight indicating the degree of certainty of the rule.

Forward chaining and backward chaining Forward chaining methods are critical in automated
deduction, as they enable us to repeatedly deduce new lemmas from known theorems. Forward
chaining starts from known conditions and logic rules, and move forward towards a conclusion by
applying the logic rules. Then, they absorb the deduced conclusions into known conditions and apply
the rules again until there are no further new conclusions deduced. Backward chaining methods are
the opposite of forward chaining, as they move backwards from the conclusions to the potential
conditions implied by the rules.

3.2 PROBLEM STATEMENT

This paper studies probabilistic inductive logic programming. The input data is a tuple (SB,SP ,SN )
where SB,SP ,SN are sets of ground atoms of the form {P1(v1), P2(v2), ...}, SB is a set of back-
ground assumptions, SP is a set of positive instances, and SN is a set of negative instances. The
target is to construct a model so that when applied to SB, it produces the positive conclusions in SP ,
as well as rejecting the negative instances in SN . This naturally leads to the following problems:

• Rule Mining. Our model is based on logic rules, and one key problem is finding useful rules that
produce the results in SP when grounded on SB.

• Probabilistic Reasoning. It is often infeasible to directly perform forward chaining with logic
rules when input data is noisy. A rule-based inference model p(Q(x) ∈ SP |SB) is needed to take
the uncertainty of logic rules into account.

3



Under review as a conference paper at ICLR 2023

Figure 1: Illustration of logic classifiers (left) and DLP framework (middle, right). The target rule is
Blue(x)← ∃y : Red(y) ∧ Edge(x, y). In the left figure, φ1(x) directly captures the target rule. In
the middle figure, the model is constructed by extending the unary node ψ1(x) with tree structure.
In the right figure, the model is constructed by stacking multiple layers. (see Sec. 4.2 for detailed
description). Both these structures are constructed with the grammar in Eq. 1. ψ1 learns to identify
the target logic rule via gradient descent and converges at the correct (colored as blue) reasoning
paths.

4 MODEL

In this section, we introduce our proposed Differentiable Logic Programming (DLP) framework.
The general idea is to use differentiable programs to solve the problems of rule mining and learning
the prediction model.

As mentioned in Sec. 3, the learning problems require us to identify important logic classifiers
from discrete space and assign feasible weights to them. In this paper, we introduce a differentiable
module called Logic Perceptron (LP) to help us deal with the problem. Given a grammar of logic
classifiers φ, we provide a method to construct corresponding LPs ψ that is able to capture any φ
with limited size. The LPs are stacked as a network to capture more complex logic classifiers as well
as being end-to-end differentiable. We further propose a new optimization problem whose solutions
are sparse so that each local optimal of it corresponds to the symbolic structure of a logic rule being
revealed. Moreover, these learnt LPs are organized into a prediction model that generalizes forward
chaining and can be learnt by maximizing the likelihood. Both these optimization problems are
continuous and differentiable w.r.t. parameters, which makes them can be solved via gradient-based
methods. Figure 1 presents a brief illustration of general ideas behind our model. Next, we introduce
the details of our approach.

4.1 OVERVIEW

In this section we first introduce the general ideas behind our approach, as well as highlighting the
key challenges in our learning framework. The details of model implementation are discussed in the
next sections. We start with an example which illustrates the general ideas of probabilistic reasoning
as well as providing the intuitions and motivations behind our approach.

Example 4.1 (Human Reasoning). Consider the query “Are a and b friends?”. In this case, we
have Q(x) = Friend(a, b). To answer the query, one may first ask ”Do a and b know each other?”
which corresponds to a logical classifier φ1(a, b) = Know(a, b). If φ1(a, b) = 1, our confidence in
x and y being friends is increased, and we call this φ1 proved Q, also Q is the target predicate of
φ1, denoted as Q ← φ1. With the answer of φ1, one may continue to ask φ2: “Do a and b live in
the same town?”, ..., where each evaluation of φi serves as an evidence that proves the existence of
Q.

In the example, we use different logic classifiers to prove the query from different aspects, and all
the classifiers used are highly relevant to the target predicate Friend. This makes sense because our
belief in x and y being friends is higher when we realize they know each other, which corresponds
to a relative high value of p(Friend(x, y)|Know(x, y) = 1), but irrelevant facts such as “they both
drink water” won’t help. In fact, this simple example illustrates the overall ideas of our model,
formally described as follows.

4



Under review as a conference paper at ICLR 2023

Proposition 4.2 (Properties of Φ). Given the input data (SB,SP ,SN ), let Q be a d-ary target
predicate, ΦQ = {φ0, φ1, ..., φL−1} be a set of logic classifiers and p0 ∈ (0, 1] a fixed thresh-
old. With the following statements being satisfied: (1) We start from l = 0 and let SP (0) = SP ;

(2) For φl, its precision: p(Q(x) ∈ SP (l)|φl(x) = 1) =

∑
x∈Vd φl(x) 1

Q(x)∈SP
(l)∑

x∈Vd φl(x) 1
Q(x)∈S(l)

P
∪SN

≥ p0; (3)

We let SP (l+1) = SP (l) \ {Q(x) | x ∈ Vd, φl(x) = 1} and increase l by 1 and go to (2)
again until l = L; (4) SP (L) = ∅. Then, there exists a prediction model p(Q(x) ∈ SP |SB) =
f(φ0(x), φ1(x), ..., φL−1(x)) such that its error rate satisfies:

Err [f ; (SB,SP ,SN )] ≤ (1− p0)NQ
p0N

≤ 1− p0, (3)

where NQ =
∑

x∈Vd 1Q(x)∈SP and N =
∑

x∈Vd 1Q(x)∈SP∪SN .

Prop. 4.2 implies how we learn such logic classifiers for proving Q. Generally our rule learning
procedure can be seen as a variant of boosting method where each rule is regarded as a weak clas-
sifier, but we focus on the rule precision rather than misclassification rate. This is because (1) in
most situations the input data is very sparse that one can obtain a small misclassification rate by
simply always predicting false, and (2) often a single logic rule is only able to prove a relative small
portion of the positive instances and a large number of logic rules are often needed to make complete
predictions of the target predicates. Thus, our learning procedure is formally described as follows.

Rule Learning Framework Given the input data (SB,SP ,SN ), suppose we are to learn L rules
for each target predicateQ ∈ P . We first start with an empty rule set ΦQ = ∅ for eachQ, and assign
each instance Q(v) in SP and SN with a weight wQ(v) = 1 (This corresponds to the statement (1)
in Prop 4.2). Then, we perform the follow steps recursively: we first find a logic classifier φ having
high precision on the weighted data, i.e.,

max
φ

p(Q(x) ∈ SP |φ(x) = 1) =

∑
x∈Vd 1Q(x)∈SP

wQ(x) φ(x)∑
x∈Vd 1Q(x)∈SP∪SN

wQ(x) φ(x)
. (4)

This generalizes the statement (2) in Prop. 4.2. We add φ into ΦQ. Then, we evaluate φ on SB,
and for instances v where φ(v) = 1, if Q(v) ∈ SP , we let wQ(v) ← τ1 wQ(x); if Q(v) ∈ SN ,
we let wQ(v) ← τ2 wQ(v), where τ1, τ2 ∈ [0,+∞) are fixed values. Note that this step generalizes
statement (3) in Prop. 4.2, and statement (3) is a special case of the above step where we let τ1 =
0,τ2=1. This procedure is then repeated for L times.

Now we have introduced the overall learning framework of our approach except two problems:
how we identify high-precision logic classifiers (Eq. 4) and how we learn the prediction model
p(Q(x) ∈ SP |SB). In this paper, we propose a differentiable model to solve these problems. In the
next sections we discuss the implementation of our model in details. In Sec. 4.2, we introduce logic
perceptrons (LP) as building blocks of our model as well as how we stack them together to express
more complex logic classifiers. In Sec. 4.3 we introduce how use LPs to perform probabilistic
reasoning. Then, we present our methods for learning the model in Sec. 4.4.

4.2 LOGIC PERCEPTRONS

A Logic Perceptron (LP) is a differentiable model that generalizes the ordinary logic classifiers into
continuous space. Given the grammar of logic classifiers:

φ(x) := A(x) | F1(x) | F2(x) | F3(x) | ... | FK(x), (5)

We provide two methods for constructing corresponding LPs given the grammar 5, which are tree-
structured LPs (LP-tree) and layer-structured LPs (LP-layer). The main difference is that LP-tree
strictly satisfies the constraints discussed in Sec. 4.4 while LP-layer is more compressed. As will be
shown in Sec. 5, they produce similar results in the experiments.

5



Under review as a conference paper at ICLR 2023

LP-tree We first define the correspondence between LPs ψ and logic classifiers φ as follows.

ψ(x;α) = [F1(x;α),F2(x;α),F3(x;α), ...FK(x;α)] wα,

s.t.

K∑
i=1

wi = 1, wi ≥ 0 for i = 1, 2, ...K ,
(6)

where w ∈ RK is an attention vector, α ∈ R is a hyperparameter that helps to keep the sparsity
of the model. The functionalities of α are discussed in Sec. 4.4, and often in experiments we set
α = 1. wα is an element-wise exponent applied to w. The evaluation of each Fi(x;α) in Eq. 6 is
corresponded to each Fi(x) in Eq. 5, where we define

Fi(x) := Fj(x) ∧ Fk(x) ⇐⇒ Fi(x;α) = Fj(x;α)Fk(x;α),

Fi(x) := Fj(x) ∨ Fk(x) ⇐⇒ Fi(x;α) = [Fj(x;α),Fk(x;α)]
(
w(i)

)α
,

Fi(x) := ¬Fj(x) ⇐⇒ Fi(x;α) = 1−Fj(x;α),

Fi(x) := ∃y : Fj(x,y) ⇐⇒ Fi(x;α) =
∑
y

Fj(x,y;α),

Fi(x,y) := Fj(x) ⇐⇒ Fi(x,y;α) = Fj(x;α),

Fi(x) := φ(x) ⇐⇒ Fi(x;α) = [P1(x), P2(x), ..., P|P|, ψ̃(x)]
(
w(i)

)α
,

(7)

where for each w(i) we have
∑
j w

(i)
j = 1 and w(i)

j ≥ 0. ψ̃ is a pointer to another LP. We exclude
the universal quantifier ∀ because this can be equivalently expressed by ¬ ∃ ¬.

To construct more complex and expressive LPs, we can generate arbitrary numbers of LPs within a
tree structure. Initially, we create a ψ0(x) as a root node. As shown in Eq. 7, the evaluation of ψ0

requires its pointers ψ̃ to be explicitly assigned, so we create a new LP for each pointer ψ̃ of ψ0 to
be a child of ψ0. The same procedure is performed on the leaf nodes of the tree for arbitrary times
while expanding the depth of the tree. Once we reached the desired depth, we simply assign empty
nodes as ψ̃ for the leaf nodes to terminate the construction procedure. These LPs compose a LP-tree
where ψ0 serves as the output of the tree. Figure 1 illustrates this procedure.

LP-layer Generally layer structured LPs are similar with tree structured LPs except that now we
stack multiple LPs linearly as layers. Suppose for LP-layer we have a total number of L LPs
{ψ(1), ψ(2), ..., ψ(L)}. The evaluation of each LP is exactly the same as in Eq. 6 and 7 except
that for each LP ψ(l) in LP-layer we have

Fi(x) := φ(x) ⇐⇒ Fi(x;α) = [P1(x), P2(x), ..., ψ
(1)(x;α), ..., ψ(l−1)(x;α)]

(
w(i)

)α
, (8)

, thus ψ(l) is able to access the layers before it P1, P2, ..., ψ
(1), ..., ψ(l−1), and the LPs are organized

as layers illustrated in Fig. 1, where ψ(L) serves as the output of the layers. An advantage of LP-
layer is that it’s very simple to extend the model: we only need to stack more layers. The following
proposition states the expressiveness of these two construction approaches.

Proposition 4.3 (Expressiveness of LP-tree and LP-layer). Given a grammar of logic classifiers of
the form in Eq. 5, suppose a logic classifier φ is constructed by recursively applying the grammar
for N > 0 times, then we have:
(1) In worst cases LP-tree with O(KN ) LPs can express φ;
(2) LP-layer with N LPs can express φ.

4.3 INFERENCE

We now discuss how we infer p(Q(x) ∈ SP |SB) for every x by generalizing forward chaining. In
this section, we assume we have learnt a set of ΨQ = {ψ1, ψ2, ...} for every Q ∈ P , and the goal is
to infer the (unknown) positive / negative instances in SP ,SN . For each predicate Q ∈ P and every
x, we let Q(0)(x) = 1 if Q(0)(x) ∈ SB and Q(0)(x) = 0 otherwise. Then, at iteration t, we:
(1) Evaluate LPs: We evaluate every ψ ∈ ΨQ on Q(t−1) at every x ∈ Vd. This procedure costs

6



Under review as a conference paper at ICLR 2023

O(|V|dRΨ(|P| + N)N) where N is the size of the network, d is the maximum arity of predicates
and LPs when evaluating ψ, RΨ is the amount of rules, i.e., the total size of ΨQ for each Q.
(2) Update inferences: We update our inferences about Q(x) for each Q ∈ P and x. This procedure
costs O(|V|dRΨ).

Q̂(x) = sigmoid (Update ({ψQ(x)|ψQ ∈ ΨQ})) ,
Q(t)(x) = max{Q̂(x), Q(0)(x)},

(9)

where Update is the function that specifies how we update the predictions based on the groundings
of ψQ ∈ ΨQ. The common implementation of the update function used in this paper is

Update ({ψQ(x)|ψQ ∈ ΨQ}) =
∑

ψQ∈ΨQ

wψQ
ψQ(x), (10)

but any differentiable update functions (MLP, etc.) is also applicable. After T rounds of iterations,
we directly pick the values of Q(T )(x) as an approximation of p(Q(x) ∈ SP |SB), while p(Q(x) ∈
SN |SB) = 1− p(Q(x) ∈ SP |SB).
Also, the time complexities we provided here are rather loose. In reality, input data is often very
sparse, and it turns out that the |V|n term in the time complexities can be significantly reduced. See
appendix for more discussion.

4.4 LEARNING

In this section, we discuss how we solve the two problems stated in Sec. 3, i.e., mining logic rules
and learning the probabilistic prediction model.

Learning Symbolic Structures via Continuous Optimization We now discuss how we learn the
structures of logic classifiers, i.e., to solve the problem

max
φ

p(Q(x) ∈ SP |φ(x) = 1). (11)

Theorem 4.4 (Sparse attentions). Consider the optimization problem

min
ψ

L(ψ) = − logEx∼p1 [ψ(x;α)] + logEx∼p2 [ψ(x;β)], (12)

where ψ(x;α) and ψ(x;β) are obtained by one iteration of the inference procedure. Here, we
assume Ex∼p1 [ψ(x;α)] > 0 and Ex∼p2 [ψ(x;β)] > 0. With the following constraints being
satisfied: (1) α > β > 1; (2) ψ is the root of a LP-tree; (3) Negations are applied only on leaf
nodes. Then, at each local minima of L(ψ), the attention vectors w, w(i)), ... used for evaluating ψ
are one-hot vectors and ψ explicitly captures a logic classifier.

We say ψ captures a logic classifier φ when evaluated on any background assumption SB, ψ(x) >
0 ⇐⇒ φ(x) = 1 for any x. With the above theorem, we can directly derive the following corollary.

Corollary 4.5 (Proxy problem). Minimization of the optimization problem

min
ψ

L(ψ) = − logE [ψ(x;α)|Q(x) ∈ SP ] + logE [ψ(x;β)|Q(x) ∈ SN ] , (13)

yields a near-optimal solution for solving problem 11, with the constraints of theorem 4.4 being
satisfied.

We say the solution is near-optimal because (1) the LPs are only capable to capture the logic clas-
sifiers within their expressiveness power, and (2) the ranges of φ and ψ are different: we have
φ(x) ∈ {0, 1} and ψ(x;α) ∈ [0,+∞). For example, if we have φ(x) := ∃y : Neighbor(x, y),
then the corresponding ψ(x) is equal to the amount of neighbors that x have. Also, the 3 constraints
are sufficient conditions for the optimization problem to guarantee to converge at the points where
ψ captures a logic classifier, but they are not always necessary. In most cases we can relax these
constraints and set α = β = 1 while keeping the sparsity of the solutions, which is shown in
the experiments. The LP-tree constructed from the grammar 1 naturally satisfies the constraint (2),
while for LP-layer the constraint (2) is relaxed. See appendix C for more discussion of how these
constraints work.

7



Under review as a conference paper at ICLR 2023

Learning the Inference Model To learn the inference model p(Q(x) ∈ SP |SB), we fix the pa-
rameters of each ψ ∈ Ψ. Then, we proceed the inference steps for a fixed number T . Since the
Update function is differentiable w.r.t. its parameters, the obtained p(Q(x) ∈ SP |SB) for each
Q ∈ P and x is also differentiable, and we can optimize the inference model by simply maximizing
the likelihood of p(Q(x) ∈ SP |SB) on data.

With the proposed approaches, the whole learning procedure of our model described in Sec. 4.1 is
realized.

5 EXPERIMENT

5.1 DATASETS

We consider datasets from different fields to test the model’s ability in solving ILP tasks, systematic
reasoning and knowledge graph completion. These datasets include:

ILP tasks We test the model’s expressiveness by applying the model to solve the 20 ILP tasks
proposed in Evans & Grefenstette (2018). These tasks test the expressive power of an ILP model,
including learning the concepts of even numbers, family relations, graph coloring, etc.

Systematicity We test the model’s systematicity (Lu et al. (2022)) on CLUTRR (Sinha et al.
(2019)) datasets. These tasks test a model’s ability of generalizing on unseen data of different dis-
tributions. Models are trained on small scale of data and tested on larger data with longer resolution
steps.

Knowledge graph completion We test the model’s capability of performing probabilistic rea-
soning on knowledge graphs including UMLS, Kinship (Kok & Domingos (2007)), WN18RR
(Dettmers et al. (2018)) and FB15k-237 (Toutanova & Chen (2015)). These tasks test a model’s
ability of dealing with probabilistic and noisy data. For Kinship and UMLS, since there are no
standard data splits, we take the data splits from Qu et al. (2021).

5.2 MODEL CONFIGURATION

On all experiments, we use the grammar presented in Eq. 1, and if the input data does not contain
unary predicates, we simply use an invented one Pinv(x) ≡ 1. We stack LPs the same way provided
in Sec. 4.2, where the depth of LP-tree and number of layers of LP-layer are 5 for ILP tasks, 3 for
Systematicity tasks and KG completion. For inference model, the number of iterations is 10 for ILP
and Systematicity tasks and 1 for KG completion. Due to space constraints, we left the detailed
model configuration and a sketch figure of the constructed network in Appendix D.

5.3 COMPARED ALGORITHMS

We observe there are few models capable of solving all the tasks, so we pick different algorithms for
comparison for different tasks. For ILP tasks, we choose Evans & Grefenstette (2018). For system-
atic reasoning, we choose Graph Attention Networks (GAT) (Velickovic et al. (2018)), Graph Con-
volutional Networks (GCN) (Kipf & Welling (2017)), Recurrent Neural Networks (RNN) (Schus-
ter & Paliwal (1997)), Long Short-Term Memory Networks (LSTM) (Hochreiter & Schmidhuber
(1997)), Gated Recurrent Units (GRU) (Cho et al. (2014)), Convolutional Neural Networks (CNN)
(Kim (2014)), CNN with Highway Encoders (CNNH) (Kim et al. (2016)), Greedy Neural Theorem
Provers (GNTP) (Minervini et al. (2020a)), Multi-Headed Attention Networks (MHA) (Vaswani
et al. (2017)), Conditional Theorem Provers (CTP) (Minervini et al. (2020b)), R5 (Lu et al. (2022)).
For knowledge graph completion, we choose rule-based methods including Markov Logic Networks
(MLN) (Richardson & Domingos (2006)), PathRank (Lao & Cohen (2010)), NeuralLP (Yang et al.
(2017)), DRUM (Sadeghian et al. (2019)), CTP (Minervini et al. (2020b)), M-Walk (Shen et al.
(2018)), MINERVA (Das et al. (2018)), NLIL (Yang & Song (2020)), RNNLogic (Qu et al. (2021)).

8



Under review as a conference paper at ICLR 2023

Table 1: Results on CLUTRR.
Method Short Stories Long Stories

4Hops 5Hops 6Hops 7Hops 8Hops 9Hops 10Hops 5Hops 6Hops 7Hops 8Hops 9Hops 10Hops
DLP-tree .990±.006 .994±.001 1.0±.000 .995±.002 .997±.001 .996±.000 1.0±.000 .992±.001 .990±.000 .994±.002 1.0±.000 .992±.002 .996±.001

DLP-layer .991±.003 .993±.001 1.0±.000 .995±.002 .997±.000 .996±.000 1.0±.000 .992±.002 .990±.000 .997±.001 1.0±.000 .992±.002 .996±.001
R5 .98±.02 .99±.02 .98±.03 .96±.05 .97±.01 .98±.03 .97±.03 .99±.02 .99±.04 .99±.03 1.0±.02 .99±.02 .98±.03

CTPL .98±.02 .98±.03 .97±.05 .96±.04 .94±.05 .89±.07 .89±.07 .99±.02 .98±.04 .97±.04 .98±.03 .97±.04 .95±.04
CTPA .99±.02 .99±.01 .99±.02 .96±.04 .94±.05 .89±.08 .90±.07 .99±.04 .99±.03 .97±.03 .95±.06 .93±.07 .91±.05
CTPM .97±.03 .97±.03 .96±.06 .95±.06 .93±.05 .90±.06 .89±.06 .98±.04 .97±.06 .95±.06 .94±.08 .93±.08 .90±.09

GNTP .49±.18 .45±.21 .38±.23 .37±.21 .32±.20 .31±.19 .31±.22 .68±.28 .63±.34 .62±.31 .59±.32 .57±.34 .52±.32

GATs .91±.02 .76±.06 .54±.03 .56±.04 .54±.03 .55±.05 .45±.06 .99±.00 .85±.04 .80±.03 .71±.03 .70±.03 .68±.02
GCNs .84±.03 .68±.02 .53±.03 .47±.04 .42±.03 .45±.03 .39±.02 .94±.03 .79±.02 .61±.03 .53±.04 .53±.04 .41±.04

RNNs .86±.06 .76±.08 .67±.08 .66±.08 .56±.10 .55±.10 .48±.07 .93±.06 .87±.07 .79±.11 .73±.12 .65±.16 .64±.16
LSTMs .98±.04 .95±.03 .88±.05 .87±.04 .81±.07 .75±.10 .75±.09 .98±.03 .95±.04 .89±.10 .84±.07 .77±.11 .78±.11
GRUs .89±.05 .83±.06 .74±.12 .72±.09 .67±.12 .62±.10 .60±.12 .95±.04 .94±.03 .87±.08 .81±.13 .74±.15 .75±.15

CNNHs .90±.04 .81±.05 .69±.10 .64±.08 .56±.13 .52±.12 .50±.12 .99±.01 .97±.02 .94±.03 .88±.04 .86±.05 .84±.06
CNNs .95±.02 .90±.03 .89±.04 .80±.05 .76±.08 .69±.07 .70±.08 1.0±.00 1.0±.01 .98±.01 .95±.03 .93±.03 .92±.04
MHAs .81±.04 .76±.04 .74±.05 .70±.04 .69±.03 .64±.05 .67±.02 .88±.03 .83±.05 .76±.04 .72±.04 .74±.05 .70±.03

5.4 RESULTS

1. Comparison with other methods. The main results of systematicity tests and KG completion
are shown in Tab. 1, Tab. 2 and Tab. 3. The 20 ILP tasks are pass-or-fail tests and both LP-tree
and LP-layer are able to solve all of them, indicating that our model has sufficient expressive power
to learn a variety of general ILP problems. In contrast to ∂ILP (Evans & Grefenstette (2018)), a
principle ILP method which uses different program templates to solve the problems, our approach
uses the same grammar for all problems. With the same model architecture, our model is able to
achieve high accuracy on the CLUTRR datasets. Our model is also able to learn valuable logic rules
and make fairly accurate predictions on much noisier knowledge graphs.

2. Performance w.r.t. rule complexity. We conduct experiments to study the model performance
under different rule complexity on UMLS dataset in Tab. 4. We can see that if we force the rules
to be too simple, it’s hard to capture informative patterns of data; On the other hand, if we force the
rules to be too complex, the performance is also decreased due to the loss of rule generality.

Figure 2: Distribution of rules.

3. Performance w.r.t. reweighting techniques. We study
the effects of reweighting training data in Tab. 5. We train
models on UML dataset with different reweighting methods.
We can see that even without reweighting, our model is able to
capture various logical patterns by merely randomly initializ-
ing model parameters. Besides, replacing, i.e., removing data
instances that are correctly predicted, achieved worst results.
This is because for noisy data it’s better to learn more differ-
ent logical patterns to prove the targets, and removing them
prevents the model to learn more information about them.

4. Effects of fine-tuning rule weights. We find on most
situations the model is able to make fairly precise predictions
without training rule weights as in Tab. 6. We set the weights
of each rule to be its precision on training data, and conduct
comparison experiments based on that.

5. Effects of hyperparameters α and β. To show that in
most situations we can safely set α and β to a relative small value, we conduct experiments on UMLS
dataset with different settings of α and β, summarized in Tab. 7. Suprisingly, the performance under
different α and β greater or equal than 1.0 is quite similar. This implies that on most situations we
can safely set α and β to 1.0 to both simplify computation and stabilize the learning of model.

6. Distribution of rules accuracy. We summarize the distributions of learnt rule accuracy and
average rule contributions for UMLS in Fig. 2. The average contribution of a rule equals to the
average decrement of scores of queries in test data if we remove the rule and hence it measures how
important a rule is on average for predicting the correct answers. We can see that most learnt rule

9



Under review as a conference paper at ICLR 2023

Table 2: Results on Kinship and UMLS.

Method Kinship UMLS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

MLN 10.0 0.351 0.189 0.408 0.707 7.6 0.688 0.587 0.755 0.869
PathRank - 0.369 0.272 0.416 0.673 - 0.197 0.148 0 214 0.252
NeuralLP 16.9 0.302 0.167 0.339 0.596 10.3 0.483 0.332 0.563 0.775
DRUM 11.6 0.334 0.183 0.378 0.675 8.4 0.548 0.358 0.699 0.854

MINERVA - 0.401 0.235 0.467 0.766 - 0.564 0.426 0.658 0.814
CTP - 0.335 0.177 0.376 0.703 - 0.404 0.288 0.430 0.674

RNNLogic (w/o emb.) 3.9 0.639 0.495 0.731 0.924 5.3 0.745 0.630 0.833 0.924
DLP 3.7 0.645 0.504 0.733 0.927 3.1 0.810 0.708 0.896 0.959

Table 3: Results on FB15k-237 and WN18RR.

Method FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

PathRank - 0.087 0.074 0.092 0.112 - 0.189 0.171 0.200 0.225
NeuralLP - 0.237 0.173 0.259 0.361 - 0.381 0.368 0.386 0.408
DRUM - 0.238 0.174 0.261 0.364 - 0.382 0.369 0.388 0.410
NLIL - 0.25 - - 0.324 - - - - -

M-Walk - 0.232 0.165 0.243 - - 0.437 0.414 0.445 -
RNNLogic (w/o emb.) 538 0.288 0.208 0.315 0.445 7527 0.455 0.414 0.475 0.531

RNNLogic+ (w/o emb.) 480 0.299 0.215 0.328 0.464 7204 0.489 0.453 0.506 0.563
DLP 432 0.285 0.208 0.310 0.436 7190 0.501 0.472 0.514 0.556

are rather inaccurate, as there are barely any rules having precision higher than 0.5, but putting them
together, rules of accuracy 0− 0.4 contribute the most for proving the target queries.

Table 4: Study of rule complexity.
Rule Length 2 3 4

MRR 0.682 0.810 0.786

Table 5: Study of reweighting.
Methods Reweight Replace None

MRR 0.810 0.584 0.733

Table 6: Study of fine-tuning.
Fine-tune Y N

MRR 0.810 0.802

Table 7: Study of α and β.
α and β 0.5 1.0 2.0 3.0

MRR 0.687 0.810 0.809 0.802

6 CONCLUSION

This paper studies inductive logic programming, and we propose Differentiable Logic Programming
framework to solve the problems of structure learning and weights learning. We generalize the dis-
crete rule search problem and forward chaining algorithm in a continuous and probabilistic manner
and use a differentiable program with a proxy problem to solve the learning problem. Both theoret-
ical and empirical evidences are present to prove the efficiency of our algorithm. In the future, we
plan to explore the possibility of combining neural network architecture to help the model discovery
more complex and accurate logical patterns.

10



Under review as a conference paper at ICLR 2023

REFERENCES

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowl-
edge graph completion. ArXiv, abs/1901.09590, 2019.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In ICLR, 2020.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Liwei Cai and William Yang Wang. Kbgan: Adversarial learning for knowledge graph embeddings.
ArXiv, abs/1711.04071, 2018.

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William Yang Wang. Variational knowledge graph
reasoning. In NAACL, 2018.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP, 2014.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning. ArXiv, abs/1711.05851, 2018.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, 2018.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. ArXiv, abs/1904.11694, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. ArXiv,
abs/1711.04574, 2018.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining in
ontological knowledge bases with amie+. The VLDB Journal, 24:707–730, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997.

Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

Yoon Kim, Yacine Jernite, David A. Sontag, and Alexander M. Rush. Character-aware neural lan-
guage models. In AAAI, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ArXiv, abs/1609.02907, 2017.

Stanley Kok and Pedro M. Domingos. Statistical predicate invention. In ICML ’07, 2007.

N. Lao and William W. Cohen. Relational retrieval using a combination of path-constrained random
walks. Machine Learning, 81:53–67, 2010.

Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph reasoning with
reward shaping. In EMNLP, 2018.

Shengyao Lu, Bang Liu, Keith G. Mills, Shangling Jui, and Di Niu. R5: Rule discovery with
reinforced and recurrent relational reasoning. ArXiv, abs/2205.06454, 2022.

Pasquale Minervini, Matko Bovsnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette.
Differentiable reasoning on large knowledge bases and natural language. ArXiv, abs/1912.10824,
2020a.

11



Under review as a conference paper at ICLR 2023

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In ICML, 2020b.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 6938–6949. PMLR, 2020c.

Stephen Muggleton. Inverse entailment and progol. New Generation Computing, 13:245–286, 2009.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of knowl-
edge graphs. ArXiv, abs/1510.04935, 2016.

Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. Scalable rule learning via learning rep-
resentation. In IJCAI, 2018.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learn-
ing logic rules for reasoning on knowledge graphs. ArXiv, abs/2010.04029, 2021.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266, 2004.

Matthew Richardson and Pedro M. Domingos. Markov logic networks. Machine Learning, 62:
107–136, 2006.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 3791–3803, 2017. URL http:
//papers.nips.cc/paper/6969-end-to-end-differentiable-proving.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-
end differentiable rule mining on knowledge graphs. In NeurIPS, 2019.

Peter Schüller and Mishal Kazmi. Best-effort inductive logic programming via fine-grained cost-
based hypothesis generation. Machine Learning, 107:1141–1169, 2018.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans. Signal
Process., 45:2673–2681, 1997.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning to
walk over graphs using monte carlo tree search. In NeurIPS, 2018.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. Clutrr: A
diagnostic benchmark for inductive reasoning from text. In EMNLP, 2019.

Zhiqing Sun, Zhihong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. ArXiv, abs/1902.10197, 2019.

Komal K. Teru, E. Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning. In ICML, 2020.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Com-
positionality, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In ICML, 2016.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, and Devi Parikh.
Probabilistic neural-symbolic models for interpretable visual question answering. In ICML, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2018.

12

http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving


Under review as a conference paper at ICLR 2023

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, 2014.

Wenhan Xiong, Thi-Lan-Giao Hoang, and William Yang Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. In EMNLP, 2017.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. CoRR, abs/1412.6575, 2015.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
edge base completion. ArXiv, abs/1702.08367, 2017.

Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=SJlh8CEYDB.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In NeurIPS, 2021.

13

https://openreview.net/forum?id=SJlh8CEYDB
https://openreview.net/forum?id=SJlh8CEYDB


Under review as a conference paper at ICLR 2023

A PROOF OF PROPOSITION 4.2

We now prove Prop. 4.2.

Proposition A.1 (Properties of Φ). Given the input data (SB,SP ,SN ), let Q be a d-ary target
predicate, ΦQ = {φ0, φ1, ..., φL−1} be a set of logic classifiers and p0 ∈ (0, 1] a fixed thresh-
old. With the following statements being satisfied: (1) We start from l = 0 and let SP (0) = SP ;

(2) For φl, its precision: p(Q(x) ∈ SP (l)|φl(x) = 1) =

∑
x∈Vd φl(x) 1

Q(x)∈SP
(l)∑

x∈Vd φl(x) 1
Q(x)∈S(l)

P
∪SN

≥ p0; (3)

We let SP (l+1) = SP (l) \ {Q(x) | x ∈ Vd, φl(x) = 1} and increase l by 1 and go to (2)
again until l = L; (4) SP (L) = ∅. Then, there exists a prediction model p(Q(x) ∈ SP |SB) =
f(φ0(x), φ1(x), ..., φL−1(x)) such that its error rate satisfies:

Err [f ; (SB,SP ,SN )] ≤ (1− p0)NQ
p0N

≤ 1− p0, (14)

where NQ =
∑

x∈Vd 1Q(x)∈SP and N =
∑

x∈Vd 1Q(x)∈SP∪SN .

Proof: The proof is constructive. We let f(φ0(x), ..., φL−1(x)) = min
{
1,
∑
φ∈Φ φ(x)

}
, and let

Nφi
be the number of Q(x)s that are true and also predicted true by φi, with those Q(x)s related

to φ1, φ2, ..., φi−1 removed first. It’s easy to observe that the number of Q(x)s predicted true by φi
but are actually false is Wφi ≤

1−p
p Nφi

. For simplification here we let Q(x) = 1 if Q(x) ∈ SP
and 0 otherwise. Thus, we have:

Err [f ; (SB,SP ,SN )] =

∑
x 1Q(x) ̸=pw(Q(x))

N

=
1

NG

∑
x

(1−Q(x))min

1,
∑
φ∈Φ

φ(x)


≤ 1

N

∑
i

Wφi

≤ 1

N

∑
i

1− p
p

Nφi

=
(1− p)NQ

pN
≤ 1− p.

(15)

B PROOF OF THEOREM 4.4 AND COROLLARY 4.5

We now prove Prop. 4.5 and Corollary 4.5 .

Theorem B.1 Consider the optimization problem

min
ψ

L(ψ) = − logEx∼p1 [ψ(x;α)] + logEx∼p2 [ψ(x;β)], (16)

where ψ(x;α) and ψ(x;β) are obtained by one iteration of the inference procedure. Here, we
assume Ex∼p1 [ψ(x;α)] > 0 and Ex∼p2 [ψ(x;β)] > 0. With the following constraints being
satisfied: (1) α > β > 1; (2) ψ is the root of a LP-tree; (3) Negations are applied only on leaf
nodes. Then, at each local minima of L(ψ), the attention vectors w used for evaluating ψ are
one-hot vectors and ψ explicitly captures a logic classifier.

Proof: Before we proceed to prove the proposition, we need to first study in what situations does
a LP ψ capture a logic classifier φ. Across this section we assume we are given a inference network
G composed of {ψ1, ψ2, ..., ψL, ψ} where ψ is the output node built upon {ψ1, ψ2, ..., ψL} we care
about. The following lemma explains the properties of ψ when it captures a logic classifier.

14



Under review as a conference paper at ICLR 2023

Lemma B.2 Given G and {ψ1, ψ2, ...} stated above. If we perform a restricted breadth first search
across the inference network where:

• We start with the output node ψ;

• For each node we go through, the parameters of the node w defined in Eq. 6-7 are a one-hot
vector where one of its dimensions equals to 1;

• From the current node, the next paths we go are a subset of the inverse edges of ψi, where we only
consider the ones corresponding to the nonzero dimensions of w discussed above defined in Eq.
6-7.

Then, ψ captures a logic classifier φ, i.e., for all x, ψ(x) > 0 ⇐⇒ φ(x) > 0.

The lemma is quite straightforward: by restricting a LP with the above constraints, its evaluation
procedure naturally simulates the grounding of a logic classifier. We can construct a logic classifier φ
captured by ψ as follows: for each node we went through in the procedure of lemma B.2, we replace
the LP ψ with an actual logic classifier φ which is constructed with the correspondence defined in
Eq. 7. Moreover, for each one-hot vectors w, we pick the predicates or sub-formulas corresponding
to the nonzero dimension of these vectors. By doing so, we observe that the evaluation results of φ
for any x are the same as ψ does because every computational steps of both φ and ψ stay the same.
Thus, to prove that a ψ captures a φ, we need to show that the parameters of ψ satisfy the constraints
in lemma B.2.

We now proceed to prove Theorem 4.4 recursively: we first prove that the parameters w of ψ must
satisfies the proposition, i.e. it is one-hot, no matter whether w(1), w(2), ... of F1, F2,... of ψ are or
not; Then, we prove that the parameters w(i1), w(i2), ... w.r.t. the nonzero dimension w of w must
also be one-hot; After that, we show that if ψ satisfies the proposition, the next nodes of ψ in the
restricted BFS path must also satisfies the proposition; Hence the theorem is proved.

To study w, we fix all other parameters in the inference network G except w for ψ, and the evaluation
of ψ(x;α) becomes a simple polynomial function:

ψ(x;α) =
∑
i

Fi(x)wαi , (17)

and the evaluation of L′ becomes:

L′(ψ) = − logEx∼p[ψ(x;α)] + logEx∼q[ψ(x;β)]

= − log
∑
x

ψ(x;α)p(x) + log
∑
x

ψ(x;β)q(x)

= − log

{(∑
x

∑
i

p(x)Fi(x;α)

)
wαi

}
+ log

{(∑
x

∑
i

q(x)Fi(x;β)

)
wβi

}
.

(18)

Hence, L′(ψ) is a polynomial function w.r.t. w and we need to show that at each local minima of
L′(ψ) there cannot exist two wi and wj that are all larger than 0, which will be discussed later in this
section. Now, assume we have already know that w of ψ satisfies the proposition, i.e., wi = 1 for
some i. To proceed, we need to prove that all parameters w(i1), w(i2), ... w.r.t. Fi are also one-hot.
We do this similarly as before: we fix all other parameters in the inference network except some
w(ik) emerged in a neighbor of ψ in the inference network. By carefully checking the construction
steps of Fi in Eq. 7, it’s easy to show that L′(ψ) is also a polynomial function w.r.t. w(ik) under
the constraints that w is one-hot. The following theorem directly proves that these functions indeed
satisfy the constraints.

Theorem B.3 (Sparse Attentions.) The following function

h(w, α, β) =

∑
iAi(α)w

α
i∑

iBi(β)w
β
i

(19)

has no local maxima w.r.t. wi ∈ (0, 1) with the following constraints being satisfied:
(1) Attention vector: wi ≥ 0 for each dimension i and

∑
i wi = 1;

15



Under review as a conference paper at ICLR 2023

(2) Positive coefficients: Ai(α) ≥ 0 and Bi(β) ≥ 0 for every i and all α, β > 0;
(3) Non-empty results:

∑
iAi(α)w

α
i > 0 and

∑
iBi(β)w

β
i > 0;

(4) α > β > 1.

Proof of theorem B.3: We now prove that h(w, α, β) has no local maxima where eachwi ∈ (0, 1)
by contradiction. Assume we are now given some w0 where there are at least two dimensions of w0

that are nonzero, and the target is to prove that w0 is not a local maxima of h. To do so, we create a
new vector v0 composed of nonzero dimensions of w0 together with a function h′(v, α, β), and

h(w, α, β) = h′(v, α, β) =

∑
i Ci(α)v

α
i∑

iDi(β)v
β
i

=
f(v, α)

g(v, β)
. (20)

To prove that h(w, α, β) is not at local maxima, we can instead show that v0 is not a local maxima
of h′(v, α, β) is not at local maxima. We first consider the situations where the partial derivatives
of h′ w.r.t. each vi are not all the same, for example, suppose ∂h′

∂v1
|v=v0 > ∂h′

∂v2
|v=v0 . Directly

study all dimensions of v is intractable with constraint
∑
i vi = 1, so we instead fix all parameters

v3, v4, ... at the corresponding value of v0 and only study the two parameters v1 and v2 where we
let v1 = v01 + x, v2 = v02 − x and so the above constraint is naturally satisfied. Thus, we have
h′(v, α, β) = h′′(x) and

dh′′(x)

dx

∣∣∣∣
x=0

=
∂h′(v, α, β)

∂v1

∣∣∣∣
v=v0

− ∂h′(v, α, β)

∂v2

∣∣∣∣
v=v0

> 0. (21)

Since the derivative w.r.t. x is larger than 0, v0 is not a local maxima.

Next, we discuss the situation where ∂h′

∂vi
|v=v0

= λ are all the same. We again let v1 = v01 + x,
v2 = v02 − x, and fix all other parameters of v. We have

d2h′′(x)

dx2

∣∣∣∣
x=0

=
1

g3

{
g2α(α− 1)

(
A1v

α−2
1 +A2v

α−2
2

)
− 2gαβ(A1v

α−1
1 +A2v

α−1
2 )(B1v

β−1
1 +B2v

β−2
2 )

+ 2fβ2
(
B1v

β−1
1 +B2v

β−2
2

)2
− gfβ(β − 1)

(
B1v

β−2
1 +B2v

β−2
2

)}
.

(22)

Since we assume ∂h′

∂vi
|v=v0

= λ, we have

∂h′

∂vi

∣∣∣∣
v=v0

=
1

g2

(
αgAiv

α−1
i − βfBivβ−1

i

)
= λ,

=⇒ 1

g2

(
αgAiv

α
i − βfBiv

β
i

)
= viλ,

=⇒
∑
i

1

g2

(
αgAiv

α
i − βfBiv

β
i

)
=
∑
i

viλ,

=⇒ f

g
(α− β) = λ.

(23)

16



Under review as a conference paper at ICLR 2023

Substituting Eq. 23 into Eq. 22, we have

d2h′′(x)

dx2

∣∣∣∣
x=0

=
f

g

(
1

f
A1α(α− 1)vα−2

1 − 1

g
B1β(β − 1)vβ−2

1

)
+
f

g

(
1

f
A2α(α− 1)vα−2

2 − 1

g
B2β(β − 1)vβ−2

2

)
≥ f

gv1

(
1

f
A1αv

α−1
1 − 1

g
B1βv

β−1
1

)
+

f

gv2

(
1

f
A2αv

α−1
2 − 1

g
B2βv

β−1
2

)
=

λ

v1
+
λ

v2

=
f

g
(α− β)

(
1

v1
+

1

v2

)
> 0.

(24)

So v0 is not a local maxima of h′. Thus, we have proved that h(w, α, β) has no local maxima for
wi ∈ (0, 1).

End of proof of theorem B.3.

Since f and log f share the same minimum points for any f > 0 we have shown that the output node
ψ indeed satisfies the conditions in the proposition. It’s straightforward to show the nodes along the
paths that ψ is built on also satisfy the conditions. Suppose we are studying another ψ′ that is used
for computing ψ. By writing the detailed computation steps for evaluating ψ and fixing all irrelevant
parameters, we can show that ψ(x;α) =

∑
x′ A(x′, α)ψ(x′;α) and thus

Ex∼p[ψ(x;α)] = Ex′∼p′ [ψ(x
′;α)], (25)

where p′ is an unnormalized distribution. Thus, the same conclusion holds for all ψ in the restricted
BFS path.

We now have proved that every local minima of the proxy problem corresponds to a logic classifier,
and it’s much easier to prove the rest of the conclusions as collaborations of the first one. For
conclusion (2), we notice that when ψ converges,

p(Q(x)|φ(x) = 1) =
p(φ(x) = 1|Q(x) = 1)

p(φ(x) = 1)
p(Q(x) = 1)

=
E[φ(x)|Q(x) = 1]

E[φ(x)]
E[Q(x)]

≈ E[ψ(x;α)|Q(x) = 1)

E[ψ(x;β)]
NQ
N

=
E[ψ(x;α)|Q(x) = 1)

E[ψ(x;β)|Q(x) ̸= 1] + E[ψ(x;β)|Q(x) = 1]

NQ
N

=
E[ψ(x;α)|Q(x) = 1)

E[ψ(x;β)|Q(x) ̸= 1] + E[ψ(x;α)|Q(x) = 1]

NQ
N

=
1

1 + E[ψ(x;β)|Q(x) ̸=1]
E[ψ(x;α)|Q(x)=1]

NQ
N

=
NQ

(1 + expL(ψ))N
,

(26)

which is monotone decreasing w.r.t. L(ψ) so conclusion (2) holds. Here, we assume when ψ
converges, E[ψ(x;α)|ψ(x;α) > 0] ≈ Ex∈Pos[ψ(x;α)|ψ(x;α) > 0].

C DISCUSSION OF CONSTRAINTS IN PROXY PROBLEM

In this section we discuss the properties and functionalities of the three constraints in the proxy
problem as well as constructing example to illustrate how they work.

17



Under review as a conference paper at ICLR 2023

Proxy Problem Minimization of the optimization problem

min
ψ

L(ψ) = − logE [ψ(x;α)|Q(x) ∈ SP ] + logE [ψ(x;β)|Q(x) ∈ SN ] , (27)

yields a near-optimal solution for solving problem 11, with the constraints of theorem 4.4 being
satisfied.

Properties of α and β. We first discuss the properties of hyperparameters α and β. As show in
appendix B, α > β is necessary to keep the second-order derivative positive. If we remove this
constraints by simply setting α = β = 1, then we observe that Eq. 23 actually becomes

∂h′

∂vi

∣∣∣∣
v=v0

=
f

g
(α− β) = 0, (28)

and we have the second-order derivative

d2h′′

dx2

∣∣∣∣
x=0

=
f

g
(α− β)( 1

v1
+

1

v2
) = 0. (29)

This means that while training the model, it is possible that the model’s derivatives w.r.t. multiple
nonzero dimensions wi of some w become 0 and the model might falls into local minima where it
doesn’t capture any logic classifier. We now discuss the situations where these risks actually exist.

The first and most simple case is when p = q, i.e.,

L(ψ) = − logEx∼p [ψ(x;α)] + logEx∼p [ψ(x;α)] = 0. (30)

Apparently in this case, training the model provides nothing because L(ψ) is a fixed scalar irrele-
vant to ψ. We argue that this is not a big problem since it requires p and q, corresponding to the
distributions of positive and negative data instances, to be the same.

By extending the above case, we can construct a more general situation. Recall that in theorem B.3,
we have

h(w, 1, 1) =

∑
iAi(1)wi∑
iBi(1)wi

≤ max
i

{
Ai(1)

Bi(1)

}
=
Am(1)

Bm(1)
, (31)

where we let m be the dimension corresponding to the global maxima. If there are some dimension
k of w such that Ak(1) = Bk(1) = 0, then for any w′ satisfying w′

m > 0 and w′
k = 1 − w′

m, we
have h(w′, 1, 1) = Am(1)

Bm(1) = sup{h(w, 1, 1)}. To solve this problem, we can add a normalization
term to the original proxy problem, i.e.

LAug(ψ) = L(ψ) + LNorm(ψ)

= − logEx∼p [ψ(x; 1)] + logEx∼q [ψ(x; 1)]− λ logEx∼p [ψ(x; 1)] .
(32)

Thus, even when Ak(1) = Bk(1) = 0, the normalization term still encourages the model to assign
larger value to wm.

Another problematic situation still happens when there exists i ̸= j such that Ai(1) = Aj(1) > 0
and Bi(1) = Bj(1) > 0. This is not usual because it requires there exists two different logic
classifiers φ1 and φ2 to have Ex∼p[φ1(x)] = Ex∼p[φ2(x)] and Ex∼q[φ1(x)] = Ex∼q[φ2(x)]. Even
when it happens, it’s easy to deal with the problem, as during training we always reweight or sample
different batches of training data, yielding a different data distribution p′ and q′, We can also set
α = β > 1, for example, α = β = 2, to avoid such situations from happening.

Tree structured paths constraints. We now discuss the second constraint in the problem. If we
remove this constraints and there are circles for some unfixed nodes, we observe that L(ψ) w.r.t.
the corresponding w might no more holds the form of Eq. 19. Note that in Eq. 7 we define
the conjunction as Fi(x) = Fj(x)Fk(x). If the evaluation of Fj and Fk both contains some w,
i.e. Fj = aTj (w)α and Fk = aTk (w)α where aj and ak are irrelevant quantities with w, then
Fj = aTj (wwT )αak which no more holds the form of Eq. 19. Instead, we have

h(w, α, β) =

∑
iAi(α)

∏
j w

njα
j∑

iAi(α)
∏
j w

njα
j

. (33)

18



Under review as a conference paper at ICLR 2023

This form of h(w, α, β) no longer keeps the good properties of Eq. 19, as it’s second order deriva-
tives w.r.t. some dimension of w no longer guarantee to be larger or equal than 0. We provide an
example to illustrate this.

Consider we want to learn logic rules of Q(x) ← φ1(x) := P1(x) ∧ P1(x) and Q(x) ←
φ2(x) := P2(x) ∧ P2(x). This expression is redundant because the two terms of the con-
junction are the same. Suppose we the model we used here is ψ1(x;α) = ψ2(x;α)ψ2(x;α)
where ψ2(x;α) =

∑
i w

α
i Pi(x) is a soft selection over all possible predicates. Unluckily, in

the training data the logic rule Q(x) ← φ1(x) and Q(x) ← φ2(x) are never satisfied, i.e.,
p(Q(x)|φ1(x)) = p(Q(x)|φ2(x)) = 0, but for the rule Q(x) ← φ3(x) := P1(x) ∧ P2(x) we
have p(Q(x)|φ3(x)) > 0. Then, it’s easy to observe that the global minima of the proxy problem
happens when w1 = w2 = 0.5.

Although this situation disobeys with the conclusions of the proxy problem, both the training data,
the target logic rules and construction of LPs are ill-conditioned, as we placed the same ψ2 between
the conjunction as well as in the training data we are unable to find any high-precision logic rules.
We argue that in reality this can often be avoided because we can increase the expressiveness of the
model, and set α and β to a relative large value so that even the above situation happens, because
wα1 = wα2 are rather small values, it provides little stimulation to the model, and thus the model
is encouraged to choose other rule structures that better explains the data. Also, because during
training when the model is not at convergence, dimensions of w are rather small values, and the
higher order terms

∏
j w

njα
j where

∑
j nj is large are much smaller than oridinary terms, which

means they provide little influence to the overall derivatives of w, so this problem is less serious.

Negations. When training completes and model converges, negations do not influence the validity
of the model. However, during training, negations might be tricky to deal with, as adding negations
to the training LPs might lead to the coefficients of corresponding wi in h(x, α, β) being negative.
The following example illustrated how negations might influence the training process.

Consider we want to learn the logic rules Q(x) ← φ1(x) := ¬P1(x) and Q(x) ← φ2(x) :=
¬P2(x), and we construct a model of ψ1(x;α) = 1 − ψ2(x;α) where ψ2(x;α) =

∑
i w

α
i Pi(x).

Suppose E[φ1(x)|Q(x) = 1] = E[φ2(x)|Q(x) = 1] = E1, E[φ1(x)|Q(x) ̸= 1] =
E[φ2(x)|Q(x) ̸= 1] = E2 Then, by letting ψ2(x;α) = 0.5αP1(x) + 0.5αP2(x), we observe
that

L(ψ) = − logE [ψ(x;α)|Q(x) = 1] + logE [ψ(x;β)|Q(x) ̸= 1]

= − log (0.5α (E[φ1(x)|Q(x) = 1] + E[φ2(x)|Q(x) = 1]))

+ log
(
0.5β (E[φ1(x)|Q(x) ̸= 1] + E[φ2(x)|Q(x) ̸= 1])

)
= −α+ β + constant.

(34)

Thus, we can see L(ψ) is monotonic decreasing w.r.t. α− β, and such ψ2 can reach a smaller value
than φ1 and φ2 once α − β is sufficiently large. We can set α = β to a relative small value and
carefully select the target LPs when trying to assign negations to them to avoid the problem from
happening.

So far we have discussed the situations when the model might fail to converge if we discard the
constraints of the proxy problem. As we can see, most of these invalidate situations can be avoided
by setting α = β = 1 or 2 as well as providing a reasonable grammar of target logic rules. We argue
that even if sometimes the model fails to converge at capturing a logic classifier, we can reinitialize
the parameters of the relevant LPs randomly and train the model again so that it converges at other
minimum points.

D EXPERIMENT DETAILS

In this section we explain the detailed model configuration for each experiment.

D.1 ILP TASKS

The 20 ILP tasks introduced by Evans & Grefenstette (2018) cover problems from integer recogni-
tion, family tree reasoning, general graph algorithms and so on. We briefly summarize them here.

19



Under review as a conference paper at ICLR 2023

Task 1-6 In task 1 to task 6 we are provided with natural numbers from 0 to 9, which are defined
as follows:

SB = {zero(0), succ(0, 1), ..., succ(8, 9)}. (35)
The target is to learn to recognize predecessor, even / odd numbers, the less-than relation and divis-
ible by 3 or 5.

Task 7-8 Task 7-8 requires us to learn the relation member and length of a list. Nodes in a list is
encoded as follows: cons(x, y) if the node after x is y, and value(x, y) if the value of node x is y.
Two background statements are given, corresponding to the list [4, 3, 2, 1] and [2, 3, 2, 4].

Task 9-14 In task 9-14 we are provided with different facts about family relations, and we need to
learn the relations including son, grandparent, husband, uncle, relatedness and father. An example
of rules would be son(x, y)← father(x, y)∧φ(x), φ(x) := brother(x, y)∨ father(x, y) where
φ implies the male property.

Task 15-20 In task 15-20 we are provided with labeled directed graphs, and we are asked to learn
general concepts of graph algorithms. These tasks includes to learn whether a node is adjacent to a
red node; whether a node has at least two children; whether a graph is well-colored, i.e., to identify
if there are two adjacent nodes of the same color; whether two nodes are connected; and recognize
graph cycles.

As a principled approach, ∂ILP (Evans & Grefenstette (2018)) is able to solve all these tasks. How-
ever, they need to construct different language templates and program templates for each task, for
example, to solve the even numbers problem, they use the following templates:

Pe : {zero/1, succ/2}
Pi : {target/1, pred/2}

τtarget,1 = (h = target, n∃ = 0, int = False)

τtarget,2 = (h = target, n∃ = 1, int = True)

τpred,1 = (h = pred, n∃ = 1, int = False)

τpred,2 = null.

(36)

In contrast, we use a unified model to solve the tasks. Our grammar of logic classifiers are as follows:

φ(x) := P (x) | φ(x, x) | ∃y : φ(y) ∧ φ(x, y),
φ(x, y) := P (x, y) | φ(x) ∧ φ(y) ∧ φ(x, y) | ∃z : φ(x, z) ∧ φ(z) ∧ φ(z, y). (37)

For some tasks if there are no observed predicates of arity 1 or 2, we simply create an invented
predicates with all 1 values for every variables x. On all tasks we set α = β = 1. The construction
of inference network of the model and how we train the model is the same as described in Sec. 4.1,
Sec. 4.2 and Sec. 4.4. The correctness of learnt model is confirmed by checking whether all positive
queries are predicted as true and all negative queries are predicted as false by the model.

D.2 SYSTEMATICITY TESTS

All model configurations are the same as in the ILP tasks.

D.3 KNOWLEDGE GRAPH COMPLETION

The statistics of datasets are summarised as follows.

Table 8: Statistics of datasets.
Dataset #Entities #Relations #Trains #Validation #Test

FB15k-237 14514 237 272115 17535 20466
WN18RR 40943 11 86835 3034 3134
Kinship 104 25 3206 2137 5343
UMLS 135 46 1959 1306 3264

20



Under review as a conference paper at ICLR 2023

Figure 3: Illustration of two inference networks generated by procedure in Sec. 4.3. We remove
Fi nodes for notation clarity. Output nodes are colored in blue. The left figure corresponds to
φ(x, y) := A(x, y) | ∃z : φ(x, z) ∧ A(z, y), which is applicable to the systematicity tests and
knowledge graph completion tasks. The right figure corresponds to φ(x) := A(x) | ∃y : φ(x, y) ∧
φ(y) and φ(x, y) := A(x, y) | ∃z : φ(x, z) ∧ φ(z) ∧ φ(z, y), which is used in the ILP tasks.

Generally, knowledge graphs are much noisier than ILP tasks, as shown in Fig. 2, most learnt
rules have a rather small value of accuracy compared to ILP tasks (correct rule accuracy is 1) and
systematicity tests (learnt rule accuracy usually more than 0.8). To handle such uncertainty, we set
the number of inference iterations to be 1 and learn more rules for each predicate. On all tasks our
grammar is the same as in ILP tasks. Because there are no unary predicates in KG, the resulted
grammar is essentially

φ(x, y) := ∃z : φ(x, z) ∧ φ(z, y), (38)

which is corresponds to chain-like rules. On all KG completion tasks we learn rules of length 3.
We create negative statements via negative sampling. Instead of removing the proved queries, we
reduce the weights of corresponding queries with the fixed ratio 0.8. We train for 400 times for
each relation and remove duplicated rules. When testing, we choose different update functions for
inference, including the original ones in Eq. 9, a modification of the original ones where we set the
restriction ψ(x) = max{ψ(x), 1} thus the evaluation value provided by ψ is exactly the same as the
corresponding logic classifier, and a multi-layer perceptron based on the validation data.

For evaluation, we use the standard filtered ranking (Bordes et al. (2013)) metrics, including Mean
Rank (MR), Mean Reciprocal Rank (MRR) and Hit@k (H@k). When there are multiple tail nodes
assigned with the same score, we compute the expectation of each evaluation metric over all random
shuffles of entities (Qu et al. (2021)).

After all, in all of the experiments, we use Adam (Kingma & Ba (2015)) optimizer with lr =
{0.01, 0.1}. We let α = β = {1, 2}. We generate the structural parameters of LPs w using a
softmax function as follows:

w = softmax(w′), (39)

where w′ ∈ Rnw are real-valued vectors with no constraints. We prepossess the data to add per-
mutations for ordinary predicates, for example, for every 2-ary statement P (a, b) in data we create
an invented one P ′(b, a). For randomly initialized parameters, we draw them independently from
Gaussian distribution N (0, 1), but this is not necessary and other distributions (uniform, Xavier,
...) also work well. Illustrations of inference network architecture constructed with the procedure
discribed in Sec. 4.3 are in Fig. 3.

E DISCUSSION OF TIME COMPLEXITY

In this section we discuss the model complexity. Suppose the inference network is composed of N
LPs. Suppose the arities of predicates and LPs are at most n. We now discuss the time complexity
of each part of the inference model.

General time complexity We first take a look at a single LP’s behaviour, where we assume that
all other LPs in the network are already evaluated. From the definitions of LPs Eq. 6 and Eq. 7, we
can see that evaluating one LP invloves:

ψ(x;α) = (wT )α[F1(x;α),F2(x;α),F3(x;α), ...]
T . (40)

21



Under review as a conference paper at ICLR 2023

Since the total amount of Fi is limited and does not scale as the network or input data grows, this
step costs

T (ψ) ≤
∑
i

T (Fi) +O(|V|n), (41)

where we let T (ψ) be the time complexity for evaluating ψ(x;α) for all x, T (Fi) be the time
complexity for evaluating Fi(x;α) for all x, etc. For each Fi, we have:

Fi(x;α) =
[
P1(x), P2(x), ..., P|P|(x), ψ

′
i(x)

] (
w(i)

)α
⇐⇒ T (Fi) ≤ O(|P||V|n),

Fi(x;α) = Fj(x;α)Fk(x;α) ⇐⇒ T (Fi) ≤ T (Fj) + T (Fk) +O(|V|n),

Fi(x;α) = [Fj(x;α),Fk(x;α)]
(
w(i)

)α
⇐⇒ T (Fi) ≤ T (Fj) + T (Fk) +O(|V|n),

Fi(x;α) = 1−Fj(x;α) ⇐⇒ T (Fi) ≤ T (Fj) +O(|V|n),

Fi(x;α) =
∑
y

Fj(x,y;α) ⇐⇒ T (Fi) ≤ T (Fj) +O(|V|n),

Fi(x,y;α) = Fj(x;α) ⇐⇒ T (Fi) ≤ T (Fj) +O(|V|n).
(42)

Thus we can see that for one ψ, we have

T (ψ) ≤
∑
Fi

O(|P||V|n) = O(|P||V|n). (43)

To evaluate all nodes in the network, we simple evaluate LPs one by one in topological order, which
directly gives a total time complexity of

T (Ψ) = O(|P||V|nN). (44)

The update procedure for one x is a function with RΨ (amount of learnt rules) inputs, and all im-
plementations we introduced here all make the evaluation of the function O(RΨ)), so the evaluation
over all x takes O(|V|nRΨ) time.

Time complexity on sparse graphs In reality often the input data is sparse, and the |V|n term in
time complexities can be reduced significantly. Here, we analyse the time complexity of the model
under knowledge graph completion experiments.

Suppose the input graph has |V| nodes, |P| predicates and M edges, and we are learning chain-like
rules of length L. Thus, each output unit, corresponding to a rule, is composed of L LPs, and can be
written as follows:

ψ(x, y;α) =
∑

z1,z2,...,zL−1

P1(x, z1;α)P2(z1, z2;α)...PL(zL−1, y;α), (45)

where

Pi(x, y;α) = [P1(x, y), P2(x, y), ...]w
α
i . (46)

We can efficiently calculate ψ(x, y;α) for all nodes y in the knowledge graph with the same source
x. The algorithm is an extension of L-step breadth first search described as follows. SL maps nodes
y with nonzero value ψ(x, y;α) to ψ(x, y;α).

22



Under review as a conference paper at ICLR 2023

Algorithm 1 Inference in sparse graphs
Input: graph G, predicates P , source node x, rule length L, model parameters α,w1,w2, ...,wL.
Output: SL.

1: function EVALUATE(x,G, L, α,w1,w2, ...,wL)
2: S0 ←MAP(∅)
3: S0[x]← 1.0
4: for l← 1 to L do
5: Sl ←MAP(∅)
6: for P ∈ P, s ∈ Sl−1, t ∈ NP (s) do
7: if t /∈ Sl then
8: Sl[t]← 0.0
9: end if

10: Sl[t]← Sl[t] + (wl[P ])
α
Sl−1[s]

11: end for
12: end for
13: return SL
14: end function

Here, we denote N (s) as the neighbors of s in the KG, and NP (s) as the neighbors of s connected
by edge type P . Thus, one run of the function takes at least

Tsingle =
∑
l

∑
s∈Sl−1

∑
P∈P

∑
t∈NP (s)

O(1)

=

L∑
l=1

∑
s∈Sl−1

O(|N (s)|)
(47)

Denoting N (k) as the max amount of nodes in a node’s k-hop subgraph, we have

Tsingle ≤
L∑
l=1

N (l−1)O(N (1))

≤ O(LN (L)N (1)).

(48)

Thus, one-time of evaluating a total number of RΨ rules for all node pairs in the graph takes

T ≤ RΨ|V|Tsingle
= O(RΨLN

(L)N (1)|V|).
(49)

Since in sparse graphs we often have N (1) << N (L) << |V|, this estimation of time complexity
(Eq. 49) is much less than the original one (Eq. 44), which is O(RΨL|P||V|3) in this case.

F CASE STUDIES

In this section we illustrate part of the logic rules we learned on ILP tasks, systematicity tests and
knowledge graph completion.

23



Under review as a conference paper at ICLR 2023

Table 9: Sparsity of LP-layer.
Task Converge Ratio

ILP α = 1 0.915
Systematicity α = 1 0.813
Systematicity α = 2 0.956

KG completion α = 1 1.0

Target ← Rules
DivisibleBy3(x) ← ψ1(x) = Zero(x)

← ψ2(x) = ∃y : ψ3(y) ∧ Succ(y, x)
ψ3(x) = ∃y : ψ4(y) ∧ Succ(y, x)
ψ4(x) = ∃y : DivisibleBy3(y) ∧ Succ(y, x)

AdjacentToRed(x) ← ψ1(x) = ∃y : Red(y) ∧ Edge(x, y)

Connect(x, y) ← ψ1(x, y) = Edge(x, y)
← ψ2(x, y) = ∃z : Connect(x, z) ∧ Edge(z, y)

Grandmother(x, y) ← ψ1(x, y) = ∃z : Brother(x, z) ∧Grandmother(z, y)
← ψ2(x, y) = ∃z : Father(x, z) ∧Mother(z, y)

Causes(x, y) ← ψ1(x, y) = ∃z1, z2 : Contains(z1, x) ∧ LocationOf(z1, z2)
∧OccursIn(z2, y)

← ψ2(x, y) = ∃z1, z2 : Contains(z1, x) ∧ LocationOf(z1, z2)
∧Complicates(y, z2)

← ψ3(x, y) = ∃z1, z2 : IngredientOf(z1, x) ∧ IsA(z1, z2)
∧Causes(z2, y)

← ψ4(x, y) = ∃z1, z2 : IngredientOf(z1, x) ∧ InteractsWith(z2, z1)
∧Causes(z2, y)

G ADDITIONAL ABLATION STUDY

In this section we provide empirical results for additional ablation study.

G.1 SPARSITY OF LP-LAYER

We run LP-layer on the experiments used in this paper and obtain the sparisity of learnt parameters.
For each w used for prediction, if after training max{w1, w2, ...} ≥ 0.99 we simply regard w as
being converged. Then, we obtain the results in Tab. 9.

G.2 DEPTH OF NETWORKS

We run LP-layer and LP-tree with different depths {3, 5, 10} on ILP and Systematicity tests. Depth
of 3 cannot complete some of the ILP tasks which requires more reasoning steps. Depth of 5 and
10 are both able to complete ILP tasks. Results on Systematicity tests are very similar with depth
3, 5, 10, as is shown in Tab. 10.

G.3 CLIPPING ON LP

We now study the effects of whether to restrict the range of ψ to be [0, 1] by simply setting
ψ(x;α)← min{ψ(x;α), 1}. The results are shown in Tab. 11.

24



Under review as a conference paper at ICLR 2023

Table 10: Depth of networks.
4Hops 5Hops 6Hops 7Hops 8Hops 9Hops 10Hops

DLP-tree-3 .990 .994 1.0 .995 .997 .996 1.0
DLP-layer-3 .991 .993 1.0 .995 .997 .996 1.0
DLP-tree-5 .995 .994 1.0 .997 .997 .996 1.0
DLP-layer-5 .995 .994 1.0 .997 .997 .996 1.0
DLP-tree-10 .995 .994 1.0 .993 .997 .996 1.0
DLP-layer-10 .995 .994 1.0 .997 .997 .996 1.0

Table 11: Setting ψ(x;α)← min{ψ(x;α), 1}.

Method Kinship UMLS
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

With clipping 3.7 0.639 0.498 0.725 0.926 3.2 0.800 0.689 0.892 0.957
Without clipping 3.7 0.645 0.504 0.733 0.927 3.1 0.810 0.708 0.896 0.959

25


	Introduction
	Related Work
	Preliminary
	First-order Logic
	Problem Statement

	Model
	Overview
	Logic Perceptrons
	Inference
	Learning

	Experiment
	Datasets
	Model Configuration
	Compared Algorithms
	Results

	Conclusion
	Proof of Proposition 4.2
	Proof of Theorem 4.4 and Corollary 4.5 
	Discussion of Constraints in Proxy Problem
	Experiment Details
	ILP Tasks
	Systematicity Tests
	Knowledge graph Completion

	Discussion of Time Complexity
	Case Studies
	Additional Ablation Study
	Sparsity of LP-layer
	Depth of networks
	Clipping on LP


