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Abstract

Robotics, autonomous driving, augmented reality, and many embodied computer
vision applications must quickly react to user-defined events unfolding in real
time. We address this setting by proposing a novel task for multimodal video
understanding—Streaming Detection of Queried Event Start (SDQES). The goal
of SDQES is to identify the beginning of a complex event as described by a natural
language query, with high accuracy and low latency. We introduce a new benchmark
based on the Ego4D dataset, as well as new task-specific metrics to study streaming
multimodal detection of diverse events in an egocentric video setting. Inspired by
parameter-efficient fine-tuning methods in NLP and for video tasks, we propose
adapter-based baselines that enable image-to-video transfer learning, allowing for
efficient online video modeling. We evaluate four vision-language backbones and
three adapter architectures in both short-clip and untrimmed video settings.

1 Introduction

The ubiquity of embodied vision applications, such as robotics [1], autonomous driving [2], and
augmented reality [3], highlights the need for methods that can detect the occurrence of events with
low latency in untrimmed and egocentric video streams. Despite significant strides made in video
understanding, a review of the existing literature reveals a notable gap: most current methods are
designed for batch processing or adopt windowed approaches that result in redundant computation
when new frames are considered. These approaches are effective in addressing existing benchmark
tasks, but they fall short in practical, real-time applications due to the high computational overhead
required in processing additional new frames and their limited context.

Some prior work has attempted to bridge this gap by extending traditional offline action recognition
[4, 5, 6] and detection [7, 8] tasks to an online setting [7, 9]. In particular, online detection of action
start (ODAS) [9, 10] emphasizes low-latency1 detection of when an action from a predefined list of
classes begins in a streaming video starts. ODAS captures the urgency of the detection task, but it
cannot assess settings where the user wants to specify more complex event queries beyond the scope
of the predefined classes, nor do existing benchmarks for ODAS focus on egocentric settings, which
are important for embodied applications. Consequently, approaches trained on existing datasets
for online action detection may be constrained by the limited range of events they are designed to
recognize, reducing their applicability to more diverse or unforeseen scenarios.

1Total latency is the sum of two factors: (1) computation latency, the time taken by a model to run on
hardware and generate a prediction for a given frame, and (2) observation latency, the number of frames of the
event that the model has to see before it identifies the specified query event has started to occur in the video. In
this paper, we propose new metrics that consider observation latency, while also reporting existing metrics of
model efficiency.
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Accelerate when the light turns green.
Alert me if a child is crossing the street.

Let me know when it’s appropriate to vacuum.
Wake up when the person leaves the house.

Remind me to get my card after I use the ATM.
When I’m paying remind me I have a coupon.
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Figure 1: Overview of our proposed SDQES task. The goal of streaming detection of queried event
start (SDQES) is for a system to detect the start of a complex event, described by natural language,
with low latency from a streaming video input. This task is a novel intersection of multimodal event
and online/streaming video understanding benchmarks. It is intended to encourage the design of new
streaming multimodal models for challenging egocentric or embodied settings (e.g., assistive robotics,
augmented reality) where time-sensitivity is a key concern for safety, accessibility, or convenience.

Natural language, in contrast, enables users to flexibly specify complex events. However, traditional
tasks for this kind of multimodal setting, such as temporal localization with language [11, 3], are
typically offline, requiring full observation of the complex event (and potentially, of the video as a
whole [12, 13]) before providing the output detection. Thus, models for this task are not suitable for
deployment in online settings where time sensitivity is paramount, such as those shown in Figure 1.
This gap underscores the need for new methods that enable low-latency, real-time detection of
complex events specified through natural language in untrimmed and egocentric video streams, as
well as datasets to train and benchmark on.

To this end, we propose a novel task at the unique intersection of online and multimodal video
understanding: Streaming Detection of Queried Event Start (SDQES). The goal of SDQES is to
detect the start of a complex event, described by a natural language query or description, with
high accuracy and low latency, with a particular focus on egocentric video streams in embodied
applications. To support this, we present a new benchmark, EgoSDQES, leveraging annotations from
the comprehensive Ego4D dataset [3]. This task synthesizes three significant challenges. First, it
operates under a streaming framework where models access only past video frames without future
data, such that the model will need to use precursor visual cues to provide timely detection outputs.
Second, SDQES demands a multimodal approach, incorporating language queries that require a
profound understanding of the video’s content, which means that models cannot rely on a small set of
cues to distinguish a closed vocabulary of atomic actions. Lastly, the task also aims to enable progress
on applications with egocentric video inputs, which often involve complex issues like variable camera
angles and motion blur that effective streaming systems must learn to address.

We propose baseline methods that extend existing vision language foundation models by adding
adapters to enable online applications with real-time outputs on untrimmed videos with constant time
per additional frame. This approach leverages the pretraining of vision language foundation models
for parameter-efficient adaptation and transfer to the task of event detection in video streams. By
adapting foundation models into an efficient streaming video architecture, we combine the strengths of
massively diverse vision pretraining sets with the specific requirements of real-time video processing.

In sum, we make three contributions. First, we formulate Streaming Detection of Queried Event Start
(SDQES), a novel task for online multimodal video understanding representing a unique intersection
of challenges for event detection models. Second, we construct a new benchmark based on the
existing large-scale egocentric video dataset. We propose metrics suited for measuring progress on
this streaming multimodal task. Third, we propose a mechanism to adapt existing pretrained vision
foundation models to handle long streaming videos efficiently. We evaluate multiple combinations of
vision backbones and adapter architectures on both short clips and extremely long videos.
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Next time I enter a supermarket, please 
remind me to sanitize my hands.

Remind me to use my loyalty card when I 
start to pay at the billing counter.

When I start to exit the supermarket, 
remind me to return the shopping trolley.

Next time I start doing my exercises, 
please remind me to drink some water.

When I start watching television after decorating 
the house, remind me to adjust the volume.

As soon as I throw away the trash, 
remind me to wash my hands.

34:456:02 45:430:59 12:0211:06 31:35 41:08

52:36 18:41 53:031:52 50:0418:45 52:30 52:56

Figure 2: Example videos and queries from our dataset EgoSDQES.

2 Related Work

Our proposed streaming detection of queried event start (SDQES) task is a unique intersection of
video understanding areas that have not been explored by prior work, which we summarize below.

Action Recognition and Detection in Videos. The goal of action recognition systems is to output
the action or activity present in an input video clip [14, 15]. While in recent years the focus has
broadened to settings with untrimmed videos, these tasks are often designed with a fixed vocabulary
of action classes [16, 17], and models have been primarily developed for offline usage where the
model has access to the full video before outputting predictions [18, 19, 20, 21, 4]. This limits their
immediate efficacy in online or streaming contexts, or in settings where a more flexible model is
required to handle open-vocabulary complex event descriptions.

Online Detection of Action Start (ODAS). To address the limitations of offline tasks, Online
Detection of Action Start was introduced [9], which built upon prior work in the field of early action
recognition [22, 23, 24] and online action anticipation [7, 25]. Given an untrimmed video stream
input, the goal of ODAS [9, 10] is to detect the start of an action, from a set of pre-defined action
classes [17, 16]. This is intended to also be useful in settings where having low total latency is
paramount. On the other hand, in our proposed task of SDQES, the events are described by open-
vocabulary natural language, an increased challenge for video understanding models that require the
design of different technical approaches and appropriate evaluation protocols.

Action Anticipation. Like ODAS and SDQES, action anticipation [26, 27, 28, 29, 30, 31] involves
the timely prediction of events in a video sequence from a predetermined set of action classes.
However, unlike traditional ODAS, action anticipation predicts the action class for a frame in the
future instead of focusing on the present frame. These models typically do not predict a “background
class," which is a distinguishing feature of SDQES and ODAS. Most of them are traditionally offline,
processing pre-recorded video data rather than streaming video, whereas SDQES is designed for
online, real-time detection. As in ODAS, the output of action anticipation is a classification to a
predetermined set of classes, rather than the start of an event specified in language. To our knowledge,
no prior work has combined natural language event specification with online prediction.

Video Understanding with Language. There is significant work on video event understanding with
language across datasets, models, and tasks [32, 33, 34, 35, 36, 37, 38, 39]. The most related to
our work is the task of event localization with language [40, 34, 11, 13], where the goal is to take a
language query and untrimmed video as input and to provide the localization of the queried event
in the video. Others have considered anticipating which of two possible events is more likely given
videos and additional dialogue transcriptions [41], with connections to commonsense reasoning [42].
However, these are offline tasks or use auxiliary information to make predictions over a limited
event space. Our work inherits the complexity of using natural language queries for events, while
simultaneously extending to the challenging area of online/streaming video understanding.

Egocentric Video Understanding. Egocentric video data poses unique challenges relative to
traditional video data often explored in video action understanding. Prior work [3, 1, 43, 44, 45],
aiming to capture settings representative for assistive robotics, driving, and augmented reality, has
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allowed access to rich collections of challenging egocentric visual data. Previous tasks in this domain
have focused mainly on traditional event understanding, such as offline action recognition [43] or
localization with language [3], so models developed for these tasks [12, 46, 47, 48, 49] are not directly
suitable for online or streaming detection settings. Egocentric action anticipation [44, 30], has been
constrained to specific atomic action vocabularies, which limits their effectiveness in settings where
users may need to specify more complex events flexibly. We aim to address these limitations for the
egocentric setting.

Adaptation of Pretrained Vision Models for Video. Due to the computational expense of fully fine-
tuning video models, a recent line of work inspired by the use of adapter modules in NLP [50, 51] has
focused on parameter-efficient fine-tuning of image models, in particular the CLIP vision encoder [52],
for offline video tasks [53, 54, 55, 56]. Notably, ST-Adapter [54] and AIM [56] achieve strong results
in action recognition by learning spatio-temporal adapter modules over a CLIP backbone. More
recently, another line of work has focused on two-channel models that utilize intermediate CLIP
features in order to avoid backpropagation through frozen ViT parameters [57, 58, 59]. Our proposed
model builds upon these paradigms for efficiently transferring representations for video understanding,
and further extends them for effectively handling the online video setting.

3 SDQES Task: Formulation and Metrics

3.1 Formulation and Goal

Given an input video stream V and an event query in natural language q, the goal of SDQES is
to accurately provide the temporal location where the described event starts with low latency. Let
V

(i)
stream = {f1,f2, . . .fi} be a streaming input video sequence of frames up to the current frame fi

at time i, and ts the start time of the queried event in the video stream. A model M for SDQES is

M(Vstream, q) 7→ tout, (1)

where the goal is to output a high accuracy prediction of event start (i.e., output time tout = ts) with
low latency. Since the ground truth start time ts is not known to the model in advance and inputs are
processed sequentially, we do not restrict the model to a single prediction. Instead, the model may
output a set of prior predictions tout < ts. Thus, an additional goal is one of high precision, where
such false positive outputs by model M are minimal.

3.2 Metrics: Accuracy with Low Latency

Existing Protocols. The seminal prior work in early detection, MMED [22], reported a comprehen-
sive evaluation protocol including FPR, accuracy, and timeliness metrics. However, these do not
provide a complete picture of the actual model performance for SDQES. Specifically, the FPR and
accuracy metrics are measured at the frame level and may not be representative of the model’s perfor-
mance on the actual task. Additionally, the metric for timeliness assumes frame-perfect annotations,
where, in practice, there can be reasonable disagreement about when an event starts. Later work in
Online Detection of Action Start (ODAS) [19, 9] instead adopts a single evaluation metric: p-mAP.
This metric addresses the noise in annotations by considering action starts as correct when they are
contained within a temporal window. However, p-mAP disregards temporal order; thus, it is not
strictly online. More discussion in the supplementary material.

Streaming Recall. Our key accuracy metric is streaming recall of event start. SR builds on p-mAP
and extends the definition to account for the greater ambiguity present in SDQES by considering the
first k predictions. Following from Eq. 1, let P (k)

M = {tout1 , . . . , toutk} denote a set of the first (up to)
k predictions tout generated by a model M(Vstream, q), and let ts denote the groundtruth start time of
the event described by query q. A model output set P (k)

M is then “correct” if and only if

∃t′out ∈ P
(k)
M : −anticipation ≤ ts − t′out ≤ latency, (2)

where anticipation and latency define the asymmetric temporal tolerance window. Since k repre-
sents the first predictions in the set, Eq. 2 penalizes models with a high false positive rate, as such
models would exhaust their k guesses of the event start early in the stream. By considering different
values of k and tolerances, we can provide fine-grained measurements of a model’s capabilities.
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(a) Overview of data annotation pipeline.
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(b) Sankey Diagram.

Figure 3: Dataset generation pipeline. Left: we show the generation pipeline steps for an example
video with dense captions. Right: Sankey diagram illustrates the flow of data from Ego4D through
the various filtering stages. Asterisk (∗) encodes a filter based on query specificity.

Streaming Minimum Distance. In addition to Streaming Recall, we propose a second metric that
focuses on timeliness: Streaming Minimum Distance (SMD). This metric measures the average error
of the closest prediction made by the model M to the groundtruth ts. Given the set of predictions
PM , we define the minimum distance as dmin = mintout∈PM

|ts − tout|.
We report this metric as SMD@k, which measures the average minimum distance across all queries
with groundtruth start times ts and across a model’s first k predictions tout This metric is comple-
mentary to the streaming recall metric, providing a measure of the temporal accuracy of the model’s
predictions. More details of both metrics are provided in the supplementary material.

Model Efficiency. In addition to the proposed metrics that focus on model task performance and
observational latency, we evaluate the computational efficiency of our models to assess their suitability
for real-time applications across a range of metrics that reflect both computational resource usage
and response speed. Our computational efficiency metrics include Parameter Count for assessing
memory footprint, Multiply-Accumulate Operations (MACs) and Floating Point Operations (FLOPs)
to quantify computational load, and Computation Latency to measure model processing time per
frame.

4 Data Collection and Annotation

As our task is novel, no dataset has been previously created for it. Instead, we repurpose publicly avail-
able datasets with temporally grounded language annotations. Specifically, we focus on Ego4D [3], a
recent large-scale dataset of long videos from an egocentric perspective. This dataset is challenging
because it contains diverse activities, viewpoints, and camera motion, making it ideal for evaluating
the robustness of our method to challenging real-world scenarios. Furthermore, it is easily accessible
under the Ego4D license. Additionally, we demonstrate how the dataset can be extended with other
video sources by applying the same pipeline to the videos and annotations from the EgoExoLearn
dataset [60]. Details specific to this other dataset are provided in the supplementary material.

Our innovative data generation pipeline employs Large Language Models (LLMs) for generation
and several key filtering steps, with stages illustrated in Fig. 3a and 3b. Figure 3a illustrates the
process of how the LLM contributes to modifying a single event, and generates relevant metadata
for subsequent filtering. Figure 3b shows the flow of the existing temporal annotations through the
successive filtering stages, some of which use outputs from the LLM. We describe each of these
below.

Generation Pipeline. Specifically, we start with Ego4D’s temporally grounded Moments (Action
Localization) and NLQ (Natural Language Queries) annotations, as well as dense video captions
(Narrations). For each annotation, the LLM extracts the event, as this is the key information needed.
For instance, from the query "Where did I last leave the box?", we extract the event "leave box." It
then confirms the event’s reflection in narrations to ensure contextual accuracy and groundedness in
the video content, a necessary step since the queries must refer to visible events.

Next, the LLM refers to the narrations to verify if the extracted event has previously occurred in
the video. This prior check ensures that previous occurrences can be accurately identified, avoiding
misclassification due to missing narrations. The LLM is then prompted to generate an original
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Dataset Task Video Source View #Videos #Annotations Video duration (s)

Thumos 14 ODAS YouTube Allocentric 413 6365 <180
ActivityNet ODAS YouTube Allocentric 15K 22.6K <180

NLQ Temporal localization Ego4D Egocentric 1046 17052 492
Moments Temporal localization Ego4D Egocentric 1189 19151 472
EgoSchema Video QA Ego4D Egocentric 5063 5063 180

EgoSDQES SDQES Ego4D Egocentric 1773 12767 1553

Table 1: Comparison of various related datasets.
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(b) Distribution of event starts.
(c) WordCloud of the most common
words in our generated queries.

Figure 4: Dataset statistics. Left: Event duration in seconds. Center: Distribution of Event Start
with respect to video start. Right: Word Cloud of the query generations.

streaming query for the current instance, following the template of setting a reminder to do something
when the event begins. We prompt the model to disambiguate so that the query cannot refer to
another prior event if one was detected. Finally, we verify the specificity of the generated query to the
annotated event instance using the LLM to differentiate between multiple instances of the same event.

The crucial filtering stage ensures data quality and relevance. We eliminate annotations based on fixed
rules using metadata to quickly discard obviously irrelevant annotations. We discard annotations
that cannot be verified within the LLM’s context window (8k tokens). This is necessary to avoid
truncation, which would compromise the LLM’s capacity to identify if the event has occurred before.

Finally, there is a bifurcation in the filtering process. For events occurring for the first time, we use
the generated annotation as is, ensuring that new events are accurately captured and added to the
dataset. If the event has occurred before, we add a final filter stage to check if the generated query
is unambiguous using the LLM. This specificity check is key because the dataset is intended for
detecting events in a streaming video, where future video content is unknown. Thus, we ensure that
queries are specific and identifiable without relying on context from future portions of the video.

EgoSDQES. We run the full pipeline using GPT-4 [61] as the LLM, resulting in 12,767 annotations
for over 740 hours of video. We split the videos and annotations following the original Ego4D
train/val split, resulting in 1,331 training and 442 validation videos. These videos are untrimmed
and contain at least one streaming query. Table 1 compares our dataset with other egocentric video
datasets. Our dataset is larger than NLQ, Moments, and EgoSchema in terms of both the number of
videos and annotations. Notably, our videos have a much longer duration (1,553 seconds on average)
compared to other datasets, even those used for ODAS, which are limited to 180 seconds.

Note that because of the filter that discards annotations with scripts that do not fit in the context
(and pre-existing biases in Ego4D annotations), our final dataset mostly contains queries that refer
to events in the first 30 minutes of a video (see Figure 4b). Nevertheless, our dataset videos are
substantially longer, so our annotations occur further into the videos compared to existing datasets.

Figure 4c shows the most common words in the generated queries, illustrating their diversity. Common
words such as "next," "time," "remind," and "start" reflect the nature of the task, which involves
setting reminders for future events or actions related to common objects and situations.

Datasheets, data cards, and visualizations of the annotations are in the supplementary material.
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Figure 5: Overview of the Streaming-Adapter. (a) Intervened Block: the lock icon denotes frozen
parameters - only adapter parameters are trained. Temporal adapters operate on a reduced dimension
for efficiency. (b) Adapter Internals: the adapter operates over the temporal dimension and consists
of temporal aggregation layers. The final state of the model is stored for when the next frame arrives.

5 Baseline Approaches

We present adapter-based baseline models that enable efficient adaptation of vision-language models
for streaming video input, allowing for online video modeling. We provide an overview of their model
architectures and training objectives. The implementation details are in the supplementary material.
Our models serve as initial explorations into this new problem setting, laying the groundwork for
future work to build upon. Figure 5 shows an overview of our architecture.

5.1 Streaming-Adapters

Given a pre-trained image model F and a set of videos, our objective is to bridge the modality gap
between the image-level model pretraining and the spatio-temporal video task. We adapt the image
model into a spatio-temporal video model F∗, while reusing as many parameters from F as possible.

A common strategy for both adapting image models to video processing tasks [54, 56, 55, 53], as
well as for developing video models from the ground up [62, 63], involves incorporating temporal
aggregation layers into the pre-existing ViT architecture (Figure 5a). This enables the model to reason
over successive video frames by adding new temporal-specific layers between the ViT’s spatial layers
for temporal aggregation across image patches.

A key consideration is the choice of architecture for the temporal aggregation layer, as this fun-
damentally governs how the model’s computational requirements scale with the input sequence
length (i.e., video duration). For streaming video-language tasks, it is desirable to use architectures
that can efficiently process new frames with a constant computational cost, rather than requiring
re-computation over the entire sequence. To this end, we explore different architectural choices suit-
able for streaming, such as recurrent models and 1D convolutional models, which can incrementally
update their representations as new frames arrive. Specifically, we use them to aggregate temporal
information across timesteps for each patch-wise tubelet with shape, as shown in Figure 5b.

Importantly, the adapters operate in a reduced dimension d′ < d to reduce computational cost. Also
note that architectures that use convolutions require zero-padding to produce an equal-sized output.
We pad the sequence on the left to ensure that no information from future frames is leaked into the
past. Additional baseline architecture details are provided in the supplementary material.

5.2 Training and Loss

Data Sampling. One key issue for detecting event starts, as also observed in prior work on ODAS [9],
is the significant imbalance between positive and negative samples in the training data. As videos are
long and events are infrequent, there are many more frames that are not event starts than those that
are. To mitigate this impact, we reformulate the training approach by leveraging denser supervision
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signals provided by a dense labeling task. In this task, we pair sampled windows of ws frames
fi−ws+1, . . . , fi (along with query q) with ground truth labels yi−ws+1, . . . , yi, where each label y
is true if the associated frame belongs to the region of the video corresponding to query q. For further
details, please refer to the supplementary material.

Loss Formulation. Our model employs a cross-entropy loss function, which operates over the
cosine similarities between the frame embeddings efi obtained from the video encoder and the query
embedding eq from the corresponding language encoder. The goal is to maximize the similarity
between the frame embeddings that correspond to the specific event described by the query and the
query embedding itself. For a set of frame embeddings {ef1 , . . . , efN } and the query embedding
eq, the cosine similarity si is given by si =

efi
·eq

∥efi
∥∥eq∥ . We then apply the sigmoid function to these

similarities to model the probability pi of each frame embedding corresponding to the query. The
binary cross-entropy loss L is computed as L = −

∑N
i=1 yi log(pi), where yi is the ground truth

label indicating whether frame fi is relevant to the query q. Finally, because events typically occur
for only a fraction of the video (see Figure 4a), there are many more negative frames than positive
ones. Therefore, we also apply a weighting scheme to the loss function during training.

6 Experiments

We evaluate a variety of combinations of Streaming Adapters and dual-encoder vision-language
models, including the current state-of-the-art (SOTA) egocentric video encoder.

In no particular order, we consider adapters based on: 1) 1D Convolutions (which we refer to as
ST-Adapter as they closely resemble the adapter in [54]); 2) Quasi-Recurrent Neural Networks [64],
a more computationally efficient gated RNN (referred to as QR-Adapter); and 3) RetNet [65], a close
analog to the standard Transformer architecture [66] that allows for low-cost inference by linearizing
the attention mechanism (RN-Adapter in our experiments). Additionally, we also consider a standard
non-temporal MLP adapter, refered to simply as Adapter in the experiments.

In this study, we evaluate several vision-language backbone models, including CLIP as detailed in the
work by Radford et al. [52]. Additionally, we extend our evaluation to incorporate vision-language
models that have been pretrained using egocentric video data. It is important to highlight that our
focus is primarily on dual-encoder models. This design choice is based on the efficiency consideration
that modeling the query and the video with a dual-encoder does not require reprocessing the video
for each new query. Among the models assessed, we include the well-known EgoVLP [12] and
LaViLA [46], and the current state-of-the-art dual encoder model EgoVideo [47].

6.1 Experimental Setup

We initialize backbone weights to the best-performing pretrained models available and then freeze
them. For EgoVLP, LaViLa, and EgoVideo, we modify each architecture to process a single frame at
a time, diverging from their original multi-frame input configurations. Unless otherwise specified, we
use the Base variants of all encoders. Adapters are added at the beginning of each block and before
the MLP layers, with weights initialized to approximate an identity operation at the start of training.
Dimensions are selected such that all adapters have roughly the same amount of hyperparameters.

All models are trained on 60-frame windows sampled at 1 frame per second (FPS), except for
RetNet-based adapters, which use 30 frames to ensure stability, and models based on the EgoVideo
backbone, which are limited to 30 frames due to memory constraints. We predict action starts by
thresholding the cosine similarities between frame embeddings and the query embedding, with the
Streaming Recall metric’s anticipation and latency set to 5 and 10 seconds, respectively. Additional
details are available in the supplementary material.

Efficiency and Latency Measurement. To assess model efficiency, we include metrics for both
modified single-frame backbones (e.g., EgoVLP backbone) and unmodified versions using a sliding
window of four frames. We measure computation latency by running each model on a full video and
recording the total elapsed time, with results averaged over three runs to ensure consistency. Latency
values reflect hardware and implementation specifics and may vary under different conditions, such
as with different accelerators or environments.
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1 Min. 5 Min.

Method SR@1↑ SMD@1↓ SR@1↑ SR@2↑ SR@3↑ SMD@1↓ SMD@2↓ SMD@3↓
Zero-Shot CLIP 16.9 24.3 7.9 11.6 14.0 151.3 140.3 132.6

CLIP + Adapter 19.5 23.5 8.9 13.7 17.2 135.7 121.7 113.3
CLIP + QR-Adapter 23.7 21.2 9.1 14.1 18.7 136.7 117.7 102.9

LaViLa + Adapter 19.5 23.4 8.7 13.0 16.2 163.4 151.7 144.0
LaViLa + QR-Adapter 29.1 18.1 9.3 12.8 16.5 132.1 115.9 104.1

EgoVLP + Adapter 18.1 24.0 8.4 13.0 16.7 160.8 148.7 141.5
EgoVLP + QR-Adapter 28.8 17.7 9.7 14.1 17.9 133.1 120.8 110.9
EgoVLP + ST-Adapter 17.4 30.5 8.6 13.4 17.0 170.7 161.4 155.6
EgoVLP + RN-Adapter 25.7 21.3 9.4 15.4 20.1 174.8 159.0 149.2

EgoVideo + Adapter 27.1 28.8 16.0 21.8 26.4 148.5 138.3 131.2

Table 2: Baseline Results for CLIP [52], EgoVLP [12], and LaViLa [46] fine tuned with a variety of
adapters.
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Figure 6: Full length video results.

6.2 Task Performance Results

In our experimental evaluation, we present findings on the performance of various adapter models
integrated with dual-encoder vision-language architectures, using video clips of 1-minute and 5-
minute duration captured at 1 frame per sec. Table 2 summarizes these findings.

Impact of New Dataset on Task Performance. Our results demonstrate a clear improvement in
model performance when trained with our data. We include a zero-shot single-frame baseline that
uses CLIP [52] to illustrate the capabilities of the dual-encoder without additional training. Across all
tested backbones, every adapter model outperformed the zero-shot CLIP baseline. This improvement
underscores the effectiveness of training on our generated dataset.

Temporal Adaptation with QR-Adapter. We find that our QR-Adapter-based model consistently
outperforms the zero-shot baseline and the standard non-temporal Adapter across all backbones. This
supports our hypothesis that temporal adaptation, as introduced by QR-Adapter, is beneficial for
SDQES.

Alternative Streaming Temporal Adapters. We further this analysis by including additional
formulations for temporal streaming adapters based on alternative architectures. We find that, while
the 1D convolution-based ST-Adapter showed limited success, the linear-attention-based RN-Adapter
showed comparable performance to the QR-Adapter, supporting the claim that more complex temporal
modeling capabilities are required for SDQES.

Extension to Untrimmed Video Results. We also assess model performance on full-length videos
up to two hours long: Figure 6a shows the relationship between the number of predictions allowed
(modulated by the K-value) and the mean Streaming Recall. This trade-off between recall and the
volume of predictions is particularly relevant for longer videos, where the chance of capturing relevant
events increases with more predictions. Figure 6b details the precision of predictions, showing that
higher K-values are more likely to include predictions that are closer to the ground truth annotations.
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Memory Computational Latency

Model # parameters Multiply Adds Floating Point Operations Latency

EgoVLP backbone 180.92 M 7.85 TMACs 15.7 Tflops 1.68 s

EgoVLP + Adapter +7.9% +12.7% +12.8% +15.5%
EgoVLP + ST Adapter +7.9% +12.7% +12.8% +18.5%
EgoVLP + QRNN Adapter +7.5% +12.0% +12.2% +21.5%
EgoVLP + RetNet Adapter +7.6% +15.2% +15.3% +99.5%

EgoVLP Sliding Window +0.1% +298.5% +298.8% +260.2%

Table 3: Model Efficiency. This table compares the number of model parameters along with the
computational cost of processing a single frame for each listed architecture. For computational
latency we report both the total number of operations (Multiply-Accumulates operations and floating
point operations) along with the processing time taken on a single V100 graphics processor to run
on a 5 minute and 50 seconds long video taken from the dataset: video_uid = dd08bc58− b614−
4ba7− b883− a213560621dd.

6.3 Latency and Model Efficiency

Latency is critical for real-time applications such as assistive technologies, human-computer in-
teraction, and autonomous systems. Our models are designed for efficiency, featuring minimal
parameters, low FLOPs, and reduced latency to meet these demands. Table 3 presents the memory
and computation requirements of different adapter models. The context-less backbone architecture
is the most memory-efficient and fastest option. However, all our adapters are highly efficient,
introducing only about a 13% increase in operations compared to the backbone alone. Notably, our
temporal adapters—ST-Adapter, QRNN-Adapter, and RetNet-Adapter—approach the efficiency of
the non-temporal vanilla adapter.

In contrast, the Sliding Window variant consumes four times the computational resources and
is limited to only four seconds of context. Regarding latency, all temporal adapters, except for
the RetNet-Adapter, exhibit computation times comparable to the non-temporal adapter, adding
approximately 5% to the total computation time. The higher latency of the RetNet-Adapter is due to
the absence of an optimized CUDA implementation, whereas the QRNN-based adapters benefit from
a dedicated CUDA kernel, and the ST-Adapter leverages PyTorch’s efficient convolution operations.
These results demonstrate that our proposed models effectively balance performance and efficiency,
making them suitable for real-time applications requiring both rapid response and accurate temporal
modeling.

7 Conclusion

We have introduced Streaming Detection of Queried Event Start (SDQES), a novel task designed
to push the boundaries of online multimodal video understanding, with a specific focus on the
challenges presented by egocentric video streams. The task synthesizes the unique complexities of
detecting complex events in a streaming framework, requiring both high accuracy and low latency.
Our contributions include the formulation of SDQES, which demands that the models operate without
future data, relying instead on past video frames and language cues to predict events as they unfold.
We have also developed a benchmark, leveraging existing egocentric videos and annotations, and
proposed metrics tailored for evaluating progress in this streaming setting. We propose adapter-based
baseline approaches to serve as a starting point. Our temporal adapter models highlight the benefits
of incorporating temporal adaptation, as introduced by QR-Adapter, for this task. Importantly, these
models achieve enhanced performance while maintaining low latency, making them suitable for
real-time applications where rapid response is essential.

Limitations. Our dataset inherits any errors or omissions present in the Ego4D narrations that were
used to generate it. Additionally, the narrations may lack important details, violating assumptions
about their quality. As is the case for ODAS, the inherent ambiguity in defining precise start and end
points of actions remains a challenge.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Supplementary Material.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] , in section 7 and in more detail
in the supplementary material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Discussion
in the supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include the
code, data and instructions needed in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] , in sections 4, 5 and 6, and in more detail in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Due to the high training time (because of the long
sequences), multiple runs with different seeds were not feasible. We will add them
before publication.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] , in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] . We heavily rely on
Ego4D [3] annotations and cite their work accordingly.

(b) Did you mention the license of the assets? [Yes] , in section 4 we refer to the Ego4D
License.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include our new annotations in the supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] People recorded in the videos consented to the Ego4D license.
Our contribution on top of those annotations does not require additional consent.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Since we use the videos in Ego4D we refer
readers to their discussion of data privacy risks and offensive content.
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Official Checklist
1. Submission introducing new datasets must include the following in the supplementary

materials:
(a) Dataset documentation and intended uses. Recommended documentation frameworks

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and
accountability frameworks.

• See Section G for complete datasheet.
(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded

by the reviewers.
• Website is available at sdqesdataset.github.io.

(c) URL to Croissant metadata record documenting the dataset/benchmark available for
viewing and downloading by the reviewers.

• Croissant metadata is available at
sdqesdataset.github.io/dataset/croissant_metadata.json.

(d) Author statement that they bear all responsibility in case of violation of rights, etc., and
confirmation of the data license.

• We, the authors, bear all responsibility in case of violation of rights or any other
legal issues arising from the use of this dataset. We also confirm that the data
license is as follows: The dataset is published under the MIT License. However,
Ego4D videos are licensed under a separate Ego4D License as cited in [3].

(e) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as
long as you ensure access to the data (possibly through a curated interface) and will
provide the necessary maintenance.

• The data is hosted in the open Github repository associated with the website
github.com/sdqesdataset/sdqesdataset.github.io/. The repository will be maintained
by the authors.

2. To ensure accessibility, the supplementary materials for datasets must include the following:
(a) Links to access the dataset and its metadata.

• Both data and metadata are hosted in the Github repository associated with the
website github.com/sdqesdataset/sdqesdataset.github.io/.

(b) The dataset itself should ideally use an open and widely used data format. Provide a
detailed explanation on how the dataset can be read. For simulation environments, use
existing frameworks or explain how they can be used.

• The main dataset deliverable is the CSV file that contains the generated queries.
This file can be found here. Each row includes details such as the dataset split
(’train’, ’val’), the source (’moments’, ’nlq’), unique identifiers for the video
(video_uid) and the clip (clip_uid), and the annotator (annotator_uid). It also
includes an annotation index (ann_idx, referring to the index of the annotation
withing the specific annotators annotations), the generated query, the corresponding
response, and additional metadata from the generation process. Additionally, it
provides the start and end times of the event within the video (in seconds), the
video’s frames per second (video_fps), and its total length (video_length).

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,
either by uploading to a data repository or by explaining how the authors themselves
will ensure this.

• The dataset has been uploaded to GitHub and is publicly accessible at
https://sdqesdataset.github.io/dataset/all.csv.

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an
open source license for code (e.g. RL environments).

• EgoSDQES is published under MIT License. Note that Ego4D videos licensed
under a separate Ego4D License [3]. We additionally open source the code for
dataset generation github.com/sdqesdataset/sdqes_generation.

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like
schema.org and DCAT): This allows it to be discovered and organized by anyone. If
you use an existing data repository, this is often done automatically.
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• We host the website, data, and associated repositories using https://github.com.
(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.
GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.

• We host the data on github sdqesdataset.github.io/dataset/all.csv. Furthermore, we
include a sha256 hash of the dataset in the Croissant metadata file.

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-
ducible. Where possible, use a reproducibility framework such as the ML reproducibility
checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary
datasets, code, and evaluation procedures must be accessible and documented.

• Code for all baselines, metrics and dataloaders is included at
github.com/sdqesdataset/sdqes_baselines. Additionally, Sections 6 and D in-
clude most of the implementation details for every baseline. Finally, Table 2 includes
a Weights and Biases link (wandb.ai) to the specific experiment hyperparameters,
metrics, and logs for every experiment in the main paper.

B Discussion of Metrics

B.1 Human Baseline

As part of our ongoing effort to establish a human baseline for comparison, we evaluate human
expert performance in the untrimmed video setting. Due to the length and associated costs of video
annotation by humans, we focus on a subset of 87 annotations. Our results show that SR@1[−5, 10]
is 72.4, and SR@3[−5, 10] is 86.2. This serves as a clear indicator of the high quality of our data,
as evidenced by robust human performance. Furthermore, it substantially surpasses the best model
performance in the same setting (see Figure 6a). We will continue to verify more annotations, but the
current results already indicate more than reasonable generation quality, and human performance
remains clearly superior.

B.2 Comparison to Prior Protocols

Section 3.2 of this work introduced a new metric for evaluating online detection of queried event
start (SDQES), specifically designed to deal with challenging ambiguities in Streaming Detection of
Queried Event Start. Here, we expand on our prior discussion. In particular, we reiterate that our
setting naturally entails additional ambiguities compared to both ODAS [9] and TALL [11]. The
streaming setting, where low-latency constraints mean models must make predictions with a higher
degree of contextual ambiguity than offline models, means that there is a high potential for false
positive outputs. Evaluation metrics for SDQES therefore should account for false positive rates.

The seminal prior work in early detection, MMED [22], reported a comprehensive evaluation protocol
that accounted for the False Positive Rate (FPR), while also including two other metrics for measuring
the timeliness of the predictions, and accuracy. However, each metric represents an incomplete
picture of the actual model performance. Specifically, the metrics for FPR and accuracy are measured
at the frame level and therefore aren’t necessarily representative of the model’s performance on the
actual task of predicting action starts in the context of full video streams. Furthermore, the metric for
action start timeliness assumes frame-perfect annotations as an action start made one frame before the
annotated region doesn’t count towards the metric. In practice, there can be reasonable disagreement
(e.g. within 1 second) of when an event formally starts.

Because of the limitations listed above later work in Online Detection of Action Start (ODAS) [9]
have moved away from the protocols in [22] and instead use a single evaluation metric: Point-Level
AS Detection mAP (p-mAP). The metric addresses the noise in annotations by considering action
starts as correct when they are contained within a temporal window centered around the annotated
action start. Additionally, the same window is adjusted to measure timeliness, as window widths
represent the maximum accepted latency in the action start detection. In brief, a tighter window is
met only by predictions with a small temporal offset to the annotated start. Critically, the metric
has a key limitation: its handling of temporal order. Sorting event detections inherently ignores the
temporal sequence of these detections, making the metric temporally invariant. This is illustrated in
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✗ ✓✗

✓ ✗✗

Q: Let me know when you see the paper towels.

Figure 7: Metric Comparison. These two scenarios are indistinguishable for the p-mAP metric.
Top: model correctly alerts the user on the third attempt after two false positives. Bottom: model is
successful on its first attempt and alert can be turned off, avoiding two future false positives.

Figure 7. In a streaming context, it’s essential to consider the temporal flow of events, as it directly
affects the real-time decision-making process.

The metric proposed in this paper, Streaming Recall (SR), builds on Point-Level AS Detection
mAP, but extends the definition to account for the greater ambiguity present in SDQES. Like p-mAP
predicted action starts are considered correct when the temporal offset to the annotated start is lower
than a specified maximum accepted latency, i.e. when the prediction is within a window. The main
differences are: First, we consider K predicted actions starts to account for the increased ambiguity
in our setting. Second, to make the metric more representative of the streaming setting we consider
action starts temporally, selecting the first K. That is, we favor early predicted action starts and
suppress later ones (anything that comes later after the set “limit” of K outputs is hit). This contrasts
with p-mAP where predictions are suppressed based on model confidence, instead of by temporal
order alone.

By construction, our metric implicitly accounts for the temporal false positive rate in the action start
predictions as models with high false positive rate will quickly exceed the k predictions limit. We
find that considering multiple predictions is especially important for long videos like those present in
the Untrimmed setting for Ego4D [17].

Furthermore, like p-mAP, our Streaming Recall metric also uses windows which allow it to quantify
timeliness while accounting for noise in the annotations. As a more direct measure of timeliness we
also introduce Streaming Minimum Distance at K. This other metric tracks the offset between the
best out of the first K predicted action starts and the annotated one. As in case of Streaming Recall,
we find that considering more predictions improves the model’s measured timeliness. This again
indicates that many false positive starts are predicted before finding the right one.

Additionally, we note that our proposed metrics are not limited to a single instance of the event, even
if our dataset only provides annotations for a single instance.

B.3 Choice of Window Width

In addressing the issue of event start time ambiguity mentioned in Limitations 7, we incorporate
a temporal tolerance into our Streaming Recall metric during evaluation. This adjustment helps
minimize the impact of this ambiguity by allowing us to account for predictions that are close enough
to the ground truth annotations, even if they are not exact.

Following the nomenclature in Section 3.2, we adopt a data-centric approach to determine the
appropriate values for anticipation and latency based on this consideration. We utilize the fact that
multiple annotators may label the same event in Ego4D to identify overlaps, referred to as ’collisions,’
in Moments annotations. These collisions are detected by verifying whether any two annotated events
achieve an Intersection over Union (IoU) score of at least 0.7 and share identical high-level semantic
descriptors. From these identified pairs, we calculate the average variance in event start times across
the training data, which amounts to σ2 = 28.8 seconds. The square root of this variance, 5.3 seconds,
represents the standard deviation of the event start times.

We therefore set the anticipation and latency values in the Streaming Recall metric to be respec-
tively σ and 2 ∗ σ, which, when discretized into our framerate of 1 FPS results in a tolerance window
of [−5,+10] seconds. While arbitrary, we choose to set a larger value for the allowed latency than
for the allowed anticipation for two reasons. First, when deduplicating annotations in the generation
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Model SR@1[5, 10] SR@1[2, 5]

ZS CLIP ViT-B/16 16.90% 8.85%

CLIP Vanilla Adapter 19.45% 11.36%
CLIP QRNN Adapter 23.70% 15.35%

LaViLa Vanilla Adapter 19.48% 12.28%
LaViLa QRNN Adapter 29.12% 17.10%

EgoVLP Vanilla Adapter 18.09% 10.89%
EgoVLP ST Adapter 17.36% 10.20%
EgoVLP QRNN Adapter 28.75% 16.50%
EgoVLP RetNet Adapter 25.69% 13.67%

Table 4: Streaming Recall Results for two temporal tolerances. We provide additional results to
those in Table 2 for one minute clips when evaluating smaller window tolerances.

streaming queries phase (Section 4) we keep the earliest of the duplicated annotations, which results
in a bias towards early starts. Second, some latency is expected from the models, as the event start
might not be immediately obvious.

We emphasize that different values can be used, and include additional results comparing a tighter
tolerance window ([−2,+5]) to the values reported in Table 4. Note that the same trends discussed in
Section 6 hold, albeit with smaller values, as fewer predictions are considered correct.

C Model Architecture Details

C.1 Vision Transformers (ViT)

Vision Transformers (ViT) adapt the transformer architecture to process 2D images. Given an image
denoted I ∈ RH×W×C where H and W are the spatial dimensions, and C is the channel dimension,
ViT extracts N non-overlapping image patches, xi ∈ Rh×w, performs a linear projection to d
dimensions, and then embeds them into a sequence of 1D tokens Rw×h×d. Specifically, the sequence
of tokens input to the transformer encoder is represented as:

z = [zcls,Exihw
] + p, (3)

where zcls is an optional class embedding, Exihw
denotes the linear projection of image patches

into d dimensions, xihw
→ zid , and the index notation ihw is reshaped into (hw)d using Einstein

notation to indicate the transformation from 2D spatial dimensions to a flattened sequence. The
learned positional embedding p ∈ RN×d is added to these tokens to retain positional information.

The tokens z are passed through an encoder consisting of a sequence of L transformer layers, each
performing the operations:

yℓ = MHSA(LN (zℓ)) + zℓ

zℓ+1 = MLP(LN (yℓ)) + yℓ
(4)

where MHSA denotes Multi-Headed Self-Attention, LN is layer normalization, and MLP consists of
two linear projections with a GELU non-linearity between them. The token-dimensionality d remains
fixed throughout all layers.

C.2 Image to Video Adaptation

Given a pre-trained image model F and a set of videos, with each video V ∈ RT×H×W×C , and
where T represents time, H and W are the spatial dimensions of an image or frame, and C is the
channel dimension, our objective is to bridge the modality gap between the image level pretraining
of the model, and the spatio-temporal downstream video task. We aim to adapt the image model
into a spatio-temporal video model F∗ : RT×H×W×C → Rnt×nh×nw×d while reusing as many
parameters from F as possible.
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The modified Equation 4 employed in Spatio-Temporal Transformer Blocks is as follows:

yℓ
temp = TA(zℓ)

yℓ = MHSAspatial(LN (yℓ
temp)) + zℓ

zℓ+1 = MLP(LN (yℓ)) + yℓ

(5)

Importantly, because the spatial layers operate independently on every frame, MHSAspatial requires
that we fold the temporal dimension of input tokens into the batch dimension and that the patches
are flattened, i.e. yℓ

temp is reshaped to Rnt×nh·nw×d. Here we assume the leading dimension would
correspond to the aforementioned “batch dimension”.

For models with a shallower architecture, like the ViT-B, an additional temporal adapter module is
inserted after the spatial attention layer to enhance temporal processing capabilities.

C.3 ST-Adapter

A natural first choice of architecture for temporal aggregation TA is to use 1D Convolutions as in
ST-Adapter [54].

In ST-Adapter convolutions are applied in parallel across time steps, mixing the information from
neighbouring timesteps, which constitutes the primary temporal aggregation operation. Figure 5
shows an example of how temporal information is aggregated across timesteps for each patch-wise
tubelet with shape Rnt×1×1×d. This operation can be performed efficiently in PyTorch by folding the
patch dimensions nh, nw of input tokens to the temporal aggregation model into the batch dimension
such that z is reshaped to Rnh·nw×nt×d. As in Equation 5 the leading dimension is the batch
dimension.

As mentioned in the main text, and following prior work [54, 56] our implementation of ST-Adapter
operates on a reduced dimension d′ < d to reduce computational cost. Given an input sequence
zℓ ∈ Rnh·nw×nt×d we first downsample each patch from d to d′. We then convolve the resulting
sequence to obtain an output sequence o ∈ Rnh·nw×nt×d′

.

o = Ws ∗ zℓ (6)

where Ws ∈ Rk×d′×d′
is a convolutional filter bank with kernel size k, and ∗ denotes a masked

convolution along the time dimension.

The final step in our adapter is the upsampling of the sequence back up from d′ to d.

It is important to note that the use of a convolution operation requires that we pad our input sequence
zℓ appropriately to avoid temporally downsampling the sequence. To produce an equal sized output,
we apply zero-padding around its boundaries. Specifically, for a convolution kernel of size k, we
pad the sequence with a total of k − 1 zeros. However, it is crucial to note that the padding does not
need to be symmetric on either side of the sequence. Instead, we adjust the value of k along with
the proportion of the padding on the left and right of the sequence to enable our model to consider
additional context from frames from the future or past when generating ft and st. We refer to the
amount of future frames considered as the lookahead window, and conversely, to the amount of past
frames considered as the lookback window.

An important limitation of convolutional approaches is the limited temporal context, as the kernel
defines only a fixed window of inputs that it can process at any given time, restricting the range of
dependencies that can be captured within that window. Although stacking multiple convolutional
layers can extend this window —where the receptive field M layers with kernel width k is calculated
as k + (M − 1)× (k − 1)— this still imposes a constraint on the breadth of temporal dependencies
that can be effectively captured compared to recurrent approaches. For instance, in our experiments
where we with CLIP-base [52] where we add a single 1D convolution adapter per block the effective
receptive field is 12 frames (i.e. a maximum of 12 seconds of prior context can be considered by the
model).

C.3.1 Initializing ST-Adapter

Following work from existing adapter modules across NLP [50, 51] and Video [54, 56], we initialize
our adapter such that it initially approximates the identity function for better training dynamics. To
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this end we zero initialize the linear upsampling layer following the adapter resulting in the overall
adapter which carries over the value received by its residual connection, thereby approximating the
identity function. The motivation for this is to slowly integrate the adapter module into the larger
image backbone.

C.4 QR-Adapter

The choice of architecture for the temporal aggregation layer TA fundamentally governs the dynamics
of the model scaling with respect to sequence length (i.e. video duration). However, most existing
approaches either rely on base architectures with fixed receptive fields, such as 1D Convolutions in
ST-Adapter [54], which makes them unsuitable for modelling long sequences.

In QR-Adapter use QRNN which alternates convolutions -applied in parallel across time steps- with
minimalist recurrent temporal pooling layers without any trainable parameters. As was the case for
ST-Adapter, QRNN aggregates temporal information across timesteps for each patch-wise tubelet
with shape Rnt×1×1×d as shown in Figure 5. As with ST-Adapter, this operation can be performed
efficiently by folding the patch dimensions nh, nw of input tokens to the temporal aggregation model
into the batch dimension, such that z is reshaped to Rnh·nw×nt×d. Again, the leading dimension is
the batch dimension.

Our QR-Adapter also operates on a reduced dimension d′ < d to reduce computational cost. Given an
input sequence zℓ ∈ Rnh·nw×nt×d we first downsample each patch from d to d′. We then apply two
separate convolutions to the resulting sequence to obtain a candidate state vector s ∈ Rnh·nw×nt×d′

,
and a forget-vector f of the same shape:

s = tanh(Ws ∗ zℓ)
f = σ(Wf ∗ zℓ)

(7)

where Wz , and Wf , each in Rk×d′×d′
, are depth-wise convolutional filter banks with kernel size

k, and ∗ denotes a masked convolution along the time dimension. Finally, the output sequence
h ∈ Rnh·nw×nt×d′

is computed by a recurrent pooling of each individual timestep’s representation
in time:

ht = ft ⊙ ht−1 + (1− ft)⊙ st, (8)

where st and ft denote the state and forget vectors corresponding to timestep t from the convolution
operations, and ht−1 denotes the output of the recurrent pooling function from the prior timestep.
The recurrent formulation allows for running the model indefinitely, as processing a new frame only
requires that we save the most recent token hnt

of the recurrent memory, and use it to initialize the
hidden state of the recurrent pooling layer for future iterations, as visualized in Figure 5b.

The final step in our adapter is the upsampling of the sequence back up from d′ to d, resulting in the
output sequence hℓ ∈ Rnh·nw×nt×d.

It is important to note that the use of a convolution operation in the QRNN again requires that we pad
our input sequence zℓ appropriately. The definitions of lookahead and lookback window from the
previous section carry over to our implementation of QR-Adapter.

C.4.1 Initializing QR-Adapter

As in the previous section, we initialize our adapter such that it initially approximates the identity
function by zero initializing the linear upsampling layer following the QRNN. Similarly, we also
initialize the forget gate convolution filter bank Wf to be all zero, and initialize the forget gate
convolution’s bias to a fixed negative value (−5) such that the forget gate output ft is approximately
zero. This leads to an initial recurrent pooling update of ht = st, thus removing the impact of
the prior hidden state. This setup allows for the steady integration of temporal modelling into the
preexisting image model in a principled manner.

C.5 RN-Adapter

Each block in Retentive Networks (RetNet) [65] resembles a Transformer block [66], but replaces the
Self Attention operation for Retention. As with Self Attention each token is projected into a query,

23



key, and value vector which are combined by comparing queries and keys, and scaling values by said
score:

Q = (XWQ)⊙Θ, K = (XWK)⊙Θ, V = XWV

Retention(X) = (QK⊺ ⊙D)V
(9)

where Θn = einθ, Θ is the complex conjugate of Θ, and D ∈ R|x|×|x| combines causal masking and
exponential decay. For further reading refer to the Retention Networks paper [65].

Importantly, said formulation (Equation 9) foregoes any non-linear operations and therefore can be
rewritten as a Recurrent Neural Network:

Sn = γSn−1 +K⊺
nVn

Retention(Xn) = QnSn, n = 1, · · · , |x| (10)

where Q,K, V are the same as in Equation 9, and γ is the base that is exponentially decayed in D.

We take advantage of both formulations in our RN-Adapter. During training we leverage the parallel
representation of Retention to train with GPUs efficiently, while during inference we can instead use
the recurrent formulation to avoid repeating computation and minimize memory use. Indeed, the
Transformer’s attention scores and D scale quadratically with sequence length, making it unfeasible
to use these models for some of our video sequences (which can exceed 1.5 hours or 5400 frames
long).

As with ST-Adapter and QR-Adapter, we use Retention to aggregate temporal information across
timesteps for each patch-wise tubelet. Again, the adapter operates on a reduced dimension d′ < d to
reduce computational cost, which is later upsampled back up from d′ to d.

C.5.1 Initializing RN-Adapter

As in previous sections where we described initalization for ST-Adapter and QR-Adapter, we initialize
our RN-Adapter by initially setting the weights in the linear upsampling layer to zero.

D Implementation Details and Hyperparameters

D.1 Event Start Detection

In Section 3 we broadly define the models used to obtain the event start scores from the streaming
context. Briefly, the query and the right-aligned representations of the visual features up to the current
time-step i are used to compute the score for said time-step. In practice, during training we consider
a context of at most ws − 1 past frames in addition to the current one, and make predictions for each
of these:

M (i)({fi−ws+1, . . . , fi}) 7→ {s(i)i−ws+1, . . . , s
(i)
i }. (11)

such that we can provide denser supervision to the model. However, for inference we discard the
scores for past frames and only consider the score given to the most recent:

si = s
(i)
i . (12)

We train all models with windows of ws = 60 frames at one frame per second. Exceptionally, we
train RetNet variants with fewer frames ws = 30 as we found the model training to be unstable with
longer sequence lengths. This instability is likely due to the large exponents in computations like
γ(ws) (where 0 < γ < 1), which can cause numerical instability like underflow, where these values
can approach zero too closely, destabilizing the computations and model training. Setting ws = 30
during training stabilizes calculations and improves model training reliability.

As per Section 5.2 during training we sample windows of training we report validation metrics on
randomly sampled windows of ws frames. The threshold for a score to be considered a prediction is
selected from a set of 20 uniformly spaced candidate values ranging between the minimum and the
maximum observed probabilities (obtained by σ(si) where σ is the sigmoid function):

ts = np.linspace(probs.min(), probs.max(), 20)
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Model ws During Training Link to Experiment

ZS CLIP ViT-B/16 - link

CLIP Vanilla Adapter 60.00 link
CLIP QRNN Adapter 60.00 link

LaViLa Vanilla Adapter 60.00 link
LaViLa QRNN Adapter 60.00 link

EgoVLP ST Adapter 60.00 link
EgoVLP Vanilla Adapter 60.00 link
EgoVLP QRNN Adapter 60.00 link
EgoVLP RetNet Adapter 30.00 link

EgoVideo Vanilla Adapter 50.00 link

Table 5: Experiment links. We include Weights and Biases links (wandb.ai) to the logs for every
experiment in Table 2 and Figure 6.

We report each metric at every threshold for randomly sampled windows of ws = 60 and ws = 300,
and select the threshold that maximizes the SR@1 with 5 seconds of allowable anticipation and 10
seconds of latency for that video duration. For testing, we evaluate the performance on the same
window sizes, ws = 60 and ws = 300, but apply the thresholds established through the randomly
sampled windows during training on a standardized validation set. This approach ensures that instead
of using randomly sampled windows, we employ a consistent set of windows for evaluating all models.
We include the standardized validation set with our data release. We additionally evaluate performance
on the full videos, which does not require sampling windows (as all frames are considered).

D.2 Model Hyperparameters

To ensure that the adapters are comparable we adjust the downsampling dimension d′ such that the
number of parameters in each adapter is roughly equal to the number of parameters in our ST-Adapter.
See Table 3 to verify parameter counts for each one. For ST-Adapter we carry over the value used in
[54] (i.e. d′ = d

2 ).

Where we can, we set hyperparameters to be the same across all models trained. Other than the
number of frames considered during training we also adjust the learning rate, reducing it when
encountering training instabilities. Table 5 includes links to the logs of all referenced experiments,
and includes the exact command, hyperparameters, and seed to replicate the results. The same links
include information as to what compute we used and training time. Experiments run on private
servers between one to two days at a carbon cost of approximately 27gCO2 equivalent per hour
(estimated using mlco2.github.io [67] and historical information taken from electricitymaps for the
state of California).

E Additional Dataset Generation Details

As noted in Section 4, we translate two existing sources of temporal annotations for Ego4D [3]
and the annotations from EgoExoLearn [60] into our own streaming queries. For this we need to
prompt the generative language model to generate reasonable and quality generations. To this end we
combine the temporal annotation with dense video captions to contextualize and ground the temporal
annotation in the contents of the video.

The query generation process is integral to our system, designed to construct contextually aware
queries from existing temporally grounded language annotations. This section delineates the steps
involved in filtering the data, generating the scripts, and synthesizing the queries, ensuring relevance
and specificity.

E.1 Ego4D Moments Annotations

Data Filtering. The initial step involves rigorously filtering the narrations and moments data to
ensure consistency and completeness. Narrations are retained only if they have a ’complete’ status,
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while moments data is conditioned on the availability of corresponding narrations. Furthermore, to
prevent redundancy and enhance computational efficiency, we first sort annotations temporally, and
then employ a duplication check that cross-references new annotations against previously generated
queries, thereby omitting any repeated data processing.

Script Generation. For each video annotation, a script is dynamically generated to serve as the
context for the query generation model. We provide one example output per script, but vary the
example among generations to encourage diversity. To facilitate this, we select the example query
based on a deterministic hash function amalgamating various identifiers (video, clip, and annotator
IDs). This approach ensures consistent example selection across different executions. We also prepare
a second disambiguated example for scenarios where an event has occurred before, which aids in
minimizing ambiguity in the queries.

The script comprehensively outlines the event itself, embedding detailed timings and associated (prior)
narrations. It includes both high-level summaries and specific event narrations, thereby enriching
the context provided to the model. This detailed script is designed to highlight the event’s temporal
occurrence within the video and contextualize with the rest of the narrations.

Query Synthesis. Our query synthesis pipeline leverages OpenAI’s API to process the prepared
script and generate a query that aligns with the specified context. The system formulates the input for
the API by encapsulating the system prompt along with the user-generated script as context.

The model is tasked with producing a query that is not only relevant but also specific to the particular
instance of the event, especially in cases where the event has previously occurred. This specificity
is crucial for applications requiring precise action based on the video content. Should the model
generate a query that fails to meet the criteria of relevance or specificity (e.g., due to ambiguous or
incomplete responses), the system employs a retry mechanism. This mechanism adjusts the inputs
based on the error encountered and re-invokes the model, striving to refine the query output.

We enforce that the model generate the following intermediate outputs in order: a boolean indicating
whether the event has occurred before, a detailed event label, a specific query tailored to the event’s
context, an answer string that directly corresponds to the query prompt, and a boolean indicating
whether the query is specific only to this instance of the event. Generating these intermediate outputs
in a specific order is crucial for grounding each subsequent output, ensuring the overall coherence
and specificity of the generated queries.

The complete prompt is used to condition a Large Language Model to generate the requested questions
and answer candidates in a JSON format. The chosen language model is GPT-4. We set the sampling
temperature to zero and decode greedily (for replicability). We include the exact prompts used here:
first the system prompt, and then the user prompt showcasing an example script (trimmed at ". . . " to
fit the page):

Query Generation System Prompt

You’re helping me generate a new dataset for an online assistant that receives a first person
view of the world (via a head mounted camera, e.g., augmented reality glasses). In short, will
receive an EVENT and must convert it into a query in which a human asks an assistant to
identify the point at which the event becomes true (the start of the event).
Eg. {

"query": "Let me know when it’s safe to cross the street.",
"ans": "You may cross the street now."

}
You won’t have access to the full video, instead I’ll provide narrations of the events in the
video, and high level summaries. Use them to enrich the query with context (e.g., say "talk to
the cashier" or "interact with person X" instead of "converse/interact with someone"), but
remember to keep the query grounded in the video (do not invent details). Importantly, the
narrations might contain mistakes, especially with the language.
The videos are in first person and #C ALWAYS refers to the camera wearer, i.e., the person
that is using the assistant. #O refers to others in the video.
If the event B has already occurred before, make sure that the query is unambiguous. For
example, by referring to another event A that happened before.
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You should only return a JSON file with a single query formatted as indicated (with the keys
in the same order):
{

"event_has_occurred_before": true|false,
"event": string,
"request": string,
"query": string,
"ans": string,
"query_is_specific_only_to_this_event": true|false

}

Video Narration Script

Event you should generate a “start” query for: use_phone (0:05:47 - 0:05:49)
VIDEO NARRATIONS: The high level descriptions of the video are:

• (0:00:00 - 0:05:00) #Summary C used the phone, watered the flowers, walked outside
the house compound then arranged the documents.

• (0:04:30 - 0:05:49) #Summary C walked upstairs with the documents, cleared the
working station then used the phone

The low level events in the video are:
• (0:00:02) #C C uses the phone
• (0:00:09) #C C gets up
• (0:00:09) #C C takes a cup of water
• (0:00:12) #C C opens door curtain
• . . .
• (0:03:00) #C C uses the phone
• (0:03:05) #C C opens television door stand
• (0:03:09) #C C takes out some documents
• (0:03:21) #C C puts earphones to the cabinet
• (0:03:25) #C C puts in some of the documents to the cabinet
• . . .
• (0:04:25) #C C gets up
• (0:04:30) #C C puts down a water bottle
• (0:04:34) #C C arranges the documents
• (0:04:38) #C C takes a water bottle
• (0:04:46) #C C walks upstairs
• (0:05:17) #C C puts documents on top of the work table
• (0:05:21) #C C puts down the water bottle
• (0:05:23) #C C takes out the tin lid from the table
• (0:05:26) #C C puts tin lid on the other side of the table
• (0:05:31) #C C takes water bottle
• (0:05:33) #C C puts the water bottle aside
• (0:05:36) #C C removes dust from the table
• (0:05:47) EVENT STARTS HERE
• (0:05:48) #C C uses phone
• (0:05:49) EVENT ENDS HERE
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Remember to format the query in first person, as if the user is asking the assistant. (like the
examples in the prompt).
Sample Query Configuration:
{

"event_has_occurred_before": false,
"event": "enter_/_exit_building",
"request": "reminder to check mail.",
"query": "Ask me to check the mail when I leave the house.",
"ans": "Remember to check the mail.",
"query_is_specific_only_to_this_event": true

}
Again, the event you should generate the query for is use_phone (occurs between 0:05:47
- 0:05:49) Remember that query should be a reminder to do something when the EVENT
STARTS (event starts to occur). Remember to make the query unambiguous if the event has
already occurred before (if ‘event_has_occurred_before: true‘). If the query is not specific
only to the given instance of the event, then set query_is_specific_only_to_this_event: false.

E.2 Ego4D NLQ (Natural Language Query) annotations

Data Filtering. Similar to the Moment annotations pipeline, narrations are filtered to ensure they
are marked ’complete’, ensuring data quality and consistency. Unlike the general query process, the
NLQ pipeline includes specific filtering based on template and word lists. Annotations with templates
not in the whitelist or containing blacklisted words are excluded from further processing to maintain
query quality and relevance. We specifically filter events that are likely to be ungrounded or those that
refer to spoken interactions between people. We again check for duplicates by looking for significant
temporal overlap between new annotations and previously processed ones to avoid generating queries
for duplicate events. Annotations with high overlap are marked and skipped, ensuring each query is
unique.

Script Generation. We again select an example from a pre-specified list based on a hash of unique
identifiers (video, clip, annotation IDs) to ensures consistency across different runs. For events that
are detected to have occurred previously, a disambiguated example is also prepared to encourage
reduced ambiguity in the generated queries.

The script itself remains unchanged.

Query Synthesis.

While this part mostly is the same as for Moments annotations, a few substantial differences exist.
Most important is that we also request that the LLM identifies whether the event is grounded in
narrations. This is necessary because many of the NLQ annotations refer to background events
that do not show up in the Narrations. If we kept these annotations it would be hard to identify
whether the event has occurred before. By filtering NLQ annotations that we are not sure we can
detect previous instances of we ensure that the following generations are accurate. Particularly
event_has_occurred_before and query_is_specific_only_to_this_instance_of_event.

Query Generation System Prompt NLQ

You’re helping me generate a new dataset for an online assistant that receives a first person
view of the world (via a head mounted camera, e.g., augmented reality glasses). In short, it
will receive a question and must convert it into a query in which a human asks an assistant to
identify the point at which the event starts. For example:
{

"query": "Let me know when it’s safe to cross the street.",
"alert": "You may cross the street now."

}
You won’t have access to the full video; instead, I’ll provide narrations of the events in the
video and high-level summaries. Use them to enrich the query with context (e.g., say "talk to
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the cashier" or "interact with person X" instead of "converse/interact with someone"), but
remember to keep the query grounded in the video (*do not* invent details). Importantly, the
narrations might contain mistakes, especially with the language.
The videos are in first person and #C ALWAYS refers to the camera wearer, i.e., the person
using the assistant. #O refers to others in the video.
If event B has already occurred before, make sure that the query is unambiguous, for example,
by referring to another event A that happened before.
You should only return a JSON file with a single query formatted as indicated (with the keys
in the same order):
{

"question": string,
"event": string,
"event_is_grounded_in_narrations": true|false,
"event_has_occurred_before": true|false,
"request": string,
"query": string,
"alert": string,
"query_is_specific_only_to_this_instance_of_event": true|false

}

E.3 EgoExoLearn (Natural Language Query) annotations

Similar to the Ego4D dataset, EgoExoLearn contains dense captions in text, describing the main
occurrences in the video. We filter annotations to keep only the egocentric videos. We do not filter
any based on content using word blacklists. An important difference with Ego4D annotations is that
each of the dense captions is annotated with both start and end times. This is significant in two ways.
First, it means we can leverage the dense captions both for contextualizing and as the base annotation
that we adapt into our EgoSDQES annotation. As was the case with both sources of annotations from
Ego4D we only include the contextualizing events that occur prior to the event we’re generating a
query for. Other than these changes the LLM prompt remains mostly unchanged with respect to the
NLQ annotation pipeline from the previous section.

F Broader Impacts and Limitations

Our work presents the first benchmarks for encouraging model development towards, and measuring
progress of, a critical task for time-sensitive detection of events described with natural language
queries. This is a task which has potential for positive impact to settings where low-latency video
understanding can improve safety. Below, we discuss the potential for other broader impacts and
limitations.

Dataset Bias and Deployment. Our proposed benchmarks build directly on the data and the
annotations collected in prior work, Ego4D [3]. This means that our benchmark inherits limitations
of these datasets, with respect to their data distributions (e.g., skewed representation of gender,
geographical origin, culture, among others). This means that performance of models trained for
SDQES on our generated dataset EgoSDQES may have their performance dependent on such factors,
as has been observed in other literature for vision and language models [68]. Our techniques tackle
problems related to event understanding that may involve people, and as such, could be misused in
ways that threaten people’s privacy if deployed without taking appropriate precaution.

Other Limitations. In addition to the above, we note some technical limitations with the construction
of our streaming datasets. First, the adaptation of temporal localization annotations into event start
detection ones, and the inherent ambiguities with language descriptions, means that the annotated
event boundary may not be frame-perfect. We aim to mitigate the impacts of these by introduction
of an acceptable start window in our main streaming recall metric (see Section B.3), but this is
something that can continue to be a focus for future work. In addition, as discussed in the main paper,
the construction of our dataset relies on often faulty pre-existing annotations, as well as the capacity
of Large Language Models to follow the precise instruction and understand the context provided.
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Any failure in this process can result in low-quality generations, which also affects models trained on
the data.
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G EgoSDQES Datasheet

G.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.

EgoSDQES was created for the Streaming Detection of Queried Event Start (SDQES) task. This
task aims to identify the start of complex events as described by a natural language query with high
accuracy and low latency. The dataset facilitates the development and evaluation of models capable
of multimodal understanding in a streaming video context, particularly for applications requiring
quick reaction times like robotics and augmented reality.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

The dataset is a product of the SVL group within Stanford Computer Science, Stanford University.

G.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.

The instances in the dataset represent streaming video frames annotated with natural language queries.
These queries describe specific events that start within these video frames. Each query is accompanied
by start and end timestamps and a response string.

How many instances are there in total (of each type, if appropriate)?

EgoSDQES has a total of 12767 query annotations spanning 1773 distinct videos.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).

The dataset is a sample of instances from a larger set of egocentric video data. It is not necessarily
representative of all possible scenarios but is curated to include a diverse range of activities, view-
points, and camera movements. The representativeness for specific tasks is validated through its
design to challenge models with real-world scenarios encountered in egocentric video understanding.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.

Each instance consists of raw video in .mp4 format coupled with temporally and contextually relevant
natural language queries. Each query is accompanied by start and end timestamps in seconds encoded
as floating point numbers and a response string.

Is there a label or target associated with each instance? If so, please provide a description.

Each query is associated with a start and end timestamp which specifies the slice of the video in
which the queried event is occurring. As it pertains to SDQES, only the start timestamp is relevant.
However, we use both the start and end timestamps for training. See Section 5.2.

Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g. because it was unavailable). This does not include
intentionally removed information but might include, e.g., redacted text.
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N/A

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

Relationships between instances (e.g., sequential video frames and their corresponding queries) are
made explicit (as they share a common video_uid). The dataset is structured to allow models to
use prior video frames and language cues to predict events, emphasizing temporal and contextual
relationships necessary for streaming applications.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.

EgoSDQES includes recommended splits for training and validation. These splits are designed to
help in the systematic training and evaluation of models, ensuring that they can generalize across
different scenarios presented in the dataset. We divide individual videos and all their associated
annotations into one of {train, val} such that there is no overlap between training and validation
instances. This split is done according to the official Ego4D splits [3] to avoid data contamination
when evaluating models trained on Ego4D.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

Like any real-world dataset, especially one involving egocentric videos, the videos contain some level
of noise. Additionally, mistakes in existing annotations in the source dataset percolate and can be
amplified by our pipeline. Finally, when an event starts is sometimes ambiguous. For example, the
event "opening the refrigerator" can be thought to start when the hand touches the refrigerator handle,
or later when the refrigerator door begins to open.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as they existed at the time the dataset was
created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources
that might apply to a future user? Please provide descriptions of all external resources and any
restrictions associated with them, as well as links or other access points, as appropriate.

The dataset does not heavily rely on external resources beyond the initial video content, which was
released under the Ego4D license. EgoSDQES is self-contained with respect to the primary task of
detecting queried events in video streams. The annotations generated for EgoSDQES will be made
available to the public under the MIT license, permitting the use of the text data for research and
commercial applications.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals non-public communications)? If so, please provide a description.

No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

No

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

The use of egocentric video could potentially include personal or sensitive content. People recorded
in the videos consented to the Ego4D license. However, the creators of Ego4D implemented a
variety of de-identification techniques, focusing mainly on maintaining a controlled setting where
all participants provided informed consent. When videos are recorded in public areas an effort was
made to keep personally identifiable details obscured. Our contribution on top of those annotations
does not require additional consent or de-identification efforts.
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Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.

No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.

No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)? If so, please
provide a description.

No.

G.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how.

The video data (directly observable) was acquired from the Ego4D dataset. The generated queries
(directly observable text) were generated using Large Language Models, specifically GPT4. These
LLMs take as input visual narrations and an event description (both also directly observable text) and
generate a new "streaming" query.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?

The video and narration data were downloaded from the official Ego4D website https://ego4d-
data.org. Text data were generated using API access to GPT-4 via OpenAI. Additional details on
generation and curation are available in the main paper, Sections 4 and E.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

We consider all videos in Ego4D that have been annotated with both Narrations and one of Moments
or NLQ temporal annotations. Queries are generated for the annotations that pass the filters detailed
in Sections 4 and E.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?

The annotation process was automated. Additional verification of the quality of generations was
carried out by authors of the paper.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.

The original videos in the Ego4D dataset were collected between 2019 and 2021. Our own annotation
efforts were carried out in the first half of 2024.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.
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No

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

Yes

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

The video and narration data were collected following the Ego4D data access guidelines, with the
necessary consent from participants: https://ego4d-data.org/docs/start-here/.

Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.

The Ego4d paper outlined privacy and ethical safeguards, including informed consent from camera
wearers and de-identification of personal data. Details on specific instructions to participants are not
provided. The privacy statement can be accessed at https://ego4d-data.org/pdfs/Ego4D-Privacy-and-
ethics-consortium-statement.pdf

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which the
individuals consented.

The Ego4d paper details privacy measures, such as obtaining informed consent from camera wearers.
Specific instructions to participants are not disclosed. Refer to the Ego4D privacy statement for more
information.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate).

The Ego4d paper details privacy practices, such as permitting camera users to modify their video
footage. The privacy statement is available at https://ego4d-data.org/pdfs/Ego4D-Privacy-and-ethics-
consortium-statement.pdf.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.

We direct readers to the Ego4D paper for detailed discussion on the impact of the video dataset.
Ego4D has implemented multiple privacy measures, such as depersonalizing sensitive data and
anonymizing visuals, to mitigate privacy risks.

G.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of the
questions in this section.

We do not modify the videos provided by Ego4D in any way. We use automated tools to curate our
generated queries. Details are available in the main paper, Sections 4 and E.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.

We include JSON files with all the generations, including redundant, non-specific and non-grounded
ones along with the main dataset release. These can be found in the linked GitHub repository, or
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in files within the sdqesdataset.github.io/dataset/intermediate_generations/ directory (e.g. unfiltered
moments validation data).

Is the software used to preprocess/clean/label the instances available? If so, please provide a link
or other access point.

Yes. All code for generation, filtering etc. is provided in the supplementary materials, as well as at
github.com/sdqesdataset/sdqes_generation.

G.5 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

The dataset will be made publicly available and can be used for both research and commercial
purposes under the Ego4D license.

How will the dataset be distributed (e.g., tarball on website, API, GitHub) Does the dataset have
a digital object identifier (DOI)?

The dataset will be distributed as a JSON file describing the unique identifier for each clip, the
associated question, the five answer options, the label, and additional clip information that facilitates
the tracing of the clip back to the original Ego4D data, such as the Ego4D video identification of the
clip’s source video, among other details. In addition, download tools to acquire and pre-process the
video RGB data will also be provided on our website.

When will the dataset be distributed?

The full dataset will be made available upon the acceptance of the paper before the camera-ready
deadline.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions.

EgoSDQES be publicly released under the MIT license, which allows direct public use of the video
and text data for both research and commercial purposes.

Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

No

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.

No

G.6 Maintenance

Who will be supporting/hosting/maintaining the dataset?

The authors of the paper will support maintaining the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
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The website includes a reference to the official EgoSDQES dataset email: sdqesdataset@gmail.com.

Is there an erratum? If so, please provide a link or other access point.

We will publish errata on the Github repository.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to users (e.g.,
mailing list, GitHub)?

Yes, we plan to improve the quality of the generations by including additional curation steps. Future
versions of the dataset will be posted to the official dataset website at sdqesdataset.github.io.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? If so, please describe these limits and explain how they will
be enforced.

No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.

Yes. We will keep old versions of the data alongside the new versions.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users? If so, please provide a description.

We open-source our query generation pipeline to facilitate future efforts to extend the dataset. If
contributors want to make changes to the official data or code bases they can do so by submitting a
Pull Request on the appropriate GitHub repository. The authors commit to verifying the contribution.
Changes made will only affect future versions of the dataset and will be communicated accordingly.
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