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Abstract

There is an increasing trend towards evaluating001
NLP models with LLMs instead of human002
judgments, raising questions about the validity003
of these evaluations, as well as their repro-004
ducibility in the case of proprietary models.005
We provide JUDGE-BENCH, an extensible006
collection of 20 NLP datasets with human an-007
notations covering a broad range of evaluated008
properties and types of data, and comprehen-009
sively evaluate 11 current LLMs, covering both010
open-weight and proprietary models, for their011
ability to replicate the annotations. Our evalu-012
ations show substantial variance across models013
and datasets. Models are reliable evaluators014
on some tasks, but overall display substantial015
variability depending on the property being016
evaluated, the expertise level of the human017
judges, and whether the language is human018
or model-generated. We conclude that LLMs019
should be carefully validated against human020
judgments before being used as evaluators.021

1 Introduction022

For many natural language processing (NLP) tasks,023

the most informative evaluation is to ask humans024

to judge the model output. Such judgments are tra-025

ditionally collected in lab experiments or through026

crowdsourcing, with either expert or non-expert027

annotators, as illustrated in Fig. 1. Recently, there028

has been a trend towards replacing human judg-029

ments with automatic assessments obtained via030

large language models (LLMs) (Chiang and Lee,031

2023; Wang et al., 2023a; Liu et al., 2023; Li et al.,032

2024; Zheng et al., 2024, inter alia). For exam-033

ple, the LLM could be instructed to rate a response034

generated by a dialogue system for its perceived035

plausibility on a scale from 1 to 5. This drasti-036

cally reduces the evaluation effort and is claimed037

to yield more reliable results across multiple eval-038

uation rounds (Landwehr et al., 2023; Jiang et al.,039

2023b; Reiter, 2024; Dubois et al., 2024).040

Instruction: On a scale of 1 (very 
unlikely) to 5 (very likely), how plausible 
is it that the last response belongs to the 
dialogue?

A: Made it all the way through four 
years of college playing ball but 
B: I also like The Cosby Show

1 1
1

3

2 1

2

2

non-experts

Instruction: Your task is to evaluate the quality 
of machine translation output on a scale from 0 
to 100 [...]. Evaluation Criteria: [...]

Source: Great backpack but overkill on the straps
Reference: Toller Rucksack, aber bei den Riemen 
übertrieben
Translation: Toller Rucksack, aber übertrieben auf 
den Riemen

90

96

95

expert

59

Switchboard Telephone Corpus WMT 2023 - EnDe

Figure 1: Evaluation by expert and non-expert human
annotators and by LLMs for two tasks involving human-
generated (left) and machine-generated text (right).

At the same time, the use of LLMs as judges 041

of linguistic output raises new concerns: LLMs 042

may be prone to errors or systematic biases that 043

differ from those of humans, especially on subtle 044

tasks such as evaluating toxicity, or reasoning. 045

This may distort evaluation results and lead to 046

incorrect conclusions. The problem is aggravated 047

by explicit or implicit data leakage (Balloccu et al., 048

2024), which undermines the ability to make broad, 049

generalisable claims beyond the single specific 050

dataset under analysis. Specifically for closed 051

models such as OpenAI’s GPT series, there are 052

serious reproducibility concerns, as LLMs may be 053

retrained or retired at any time, making subsequent 054

comparisons invalid or impossible. 055

Previous studies offer mixed evidence regarding 056

the reliability of LLM evaluators. Some research 057

concludes that they are effective, correlating well 058

with human judgments (Liu et al., 2023; Zheng 059

et al., 2024; Chen et al., 2023; Verga et al., 2024; 060

Törnberg, 2023; Huang et al., 2024; Naismith 061

et al., 2023; Gilardi et al., 2023; Kocmi and Fe- 062

dermann, 2023b), albeit with some caveats (Wang 063

et al., 2023a; Wu and Aji, 2023; Hada et al., 2024; 064

Pavlovic and Poesio, 2024). In some cases, LLM 065

evaluators can also provide pairwise preference 066
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judgments (Kim et al., 2024; Liusie et al., 2024; Liu067

et al., 2024a; Park et al., 2024; Tan et al., 2024) or068

fine-grained evaluation beyond a single score, such069

as error spans (Fernandes et al., 2023; Kocmi and070

Federmann, 2023a). In contrast, some studies high-071

light substantial biases in LLMs’ behaviour as eval-072

uators, both as compared against human judgments073

(Koo et al., 2023; Zeng et al., 2024; Baris Schlicht074

et al., 2024) and through intrinsic analyses (Wang075

et al., 2023b; Liu et al., 2024b; Stureborg et al.,076

2024). These discrepancies likely stem from the077

limitations of this previous work, which typically078

relies on a few datasets and models, often restricted079

to closed-source proprietary models.080

In this paper, we examine how well current081

LLMs can approximate human evaluators on a082

large scale. We prompt 11 among the most re-083

cent open-weight and proprietary LLMs to gen-084

erate judgments on 20 datasets with human an-085

notations on a wide range of quality dimensions,086

prompt styles, and tasks. Our evaluation goes be-087

yond existing work by including a wide variety of088

datasets that differ in the type of task (e.g., transla-089

tion, dialogue generation, etc.), the property being090

judged (e.g., coherence, fluency, etc.), the type of091

judgments (categorical or graded), and the exper-092

tise of human annotators (experts or non-experts).093

We provide JUDGE-BENCH, a benchmark which094

includes upon release a total of over 70,000 test095

instances with associated human judgments with096

an extensible codebase.1097

Our results indicate that LLMs align well with098

human judgments on certain tasks, like instruction099

following. However, their performance is incon-100

sistent across and within annotation tasks. Elici-101

tation methods like Chain-of-Thought prompting102

do not reliably improve agreement, in line with103

recent findings (Sprague et al., 2024). Some propri-104

etary models—in particular, GPT-4o—align better105

to humans, but there is a rather small gap with106

large open-source models, holding promise for the107

reproducibility of future evaluation efforts. Alto-108

gether, at the current stage of LLM development,109

we recommend validating LLM judges against task-110

specific human annotations before deploying them111

for any particular task.112

2 Construction of JUDGE-BENCH113

One key feature that differs across the datasets in-114

cluded in JUDGE-BENCH is the source of the data115

1https://anonymous.4open.science/r/judge-bench-32CC

being evaluated, i.e., whether the items to be judged 116

are generated by a model or produced by humans 117

(Fig. 1). For model-generated items, the goal is to 118

evaluate an NLP system. This includes both classic 119

tasks such as machine translation or dialogue re- 120

sponse generation, as well as less standard tasks for 121

which automation has recently become an option 122

thanks to LLMs, such as the generation of plans or 123

logical arguments. For human-generated items, the 124

goal is to assess properties of interest such as gram- 125

maticality or toxicity. This distinction allows us 126

to understand whether LLMs have a positive bias 127

towards machine-generated outputs—a tendency 128

reported in prior work (Xu et al., 2024). 129

The datasets we consider cover a wide span of 130

properties of interest, ranging from grammaticality 131

and toxicity to coherence, factual consistency, and 132

verbosity, inter alia. Many properties are relevant 133

across multiple tasks (e.g., fluency and coherence), 134

while others are more task-specific (e.g., the suc- 135

cess of a generated plan or the correctness of a 136

multi-step mathematical reasoning trace). 137

Our study focuses on English datasets or lan- 138

guage pairs which include English as one of the 139

languages. We keep track of whether the original 140

annotation guidelines are available and whether the 141

annotations are provided by expert or non-expert 142

annotators. We retain all available individual an- 143

notations. Dataset information is summarised in 144

Tab. 2, App. A. All 20 datasets are formatted fol- 145

lowing a precise data schema to facilitate the inte- 146

gration of additional datasets. This makes JUDGE- 147

BENCH easily extensible. 148
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Figure 2: Average model correlation with human experts
vs. non-experts in datasets with graded annotations.

3 Model Selection and Experiment Design 149

Models. We select representative proprietary and 150

open-weight models of various sizes that show high 151
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Dataset (# properties judged) GPT-4o Llama-3.1-70B Mixtral-8x22B Gemini-1.5 Mixtral-8x7B Comm-R+ σ UB
C

at
eg

or
ic

al
A

nn
ot

at
io

ns

CoLa (1) 0.34 0.46 0.54 0.45 0.55 0.12 0.16 -
CoLa-grammar (63) 0.47 ±0.22 0.28 ±0.24 0.28 ±0.23 0.26 ±0.24 0.21 ±0.18 0.13 ±0.14 0.14 -
ToxicChat (2) 0.49 ±0.36 0.41 ±0.26 0.45 ±0.27 0.45 ±0.35 0.36 ±0.12 0.28 ±0.35 0.1 -
LLMBar-natural (1) 0.84 0.8 0.72 0.79 0.54 0.56 0.13 -
LLMBar-adversarial (1) 0.58 0.46 0.2 0.29 0.06 0.11 0.2 -
Persona Chat (2) 0.24 ±0.34 0.24 ±0.33 0.58 ±0.59 -0.03 ±0.04 0.54 ±0.65 0.48 ±0.74 0.2 0.88
Topical Chat (2) 0.05 ±0.07 -0.02 ±0.02 -0.03 ±0.04 -0.03 ±0.04 0.02 ±0.03 0.01 ±0.02 0.07 0.58
ROSCOE-GSM8K (2) 0.59 ±0.35 0.64 ±0.27 0.62 ±0.38 0.6 ±0.24 0.58 ±0.36 0.0 0.15 -
ROSCOE-eSNLI (2) 0.29 ±0.06 0.38 ±0.08 0.13 ±0.13 0.11 ±0.18 0.1 ±0.11 0.03 ±0.05 0.14 -
ROSCOE-DROP (2) 0.29 ±0.08 0.27 ±0.07 0.2 ±0.12 0.08 ±0.05 0.13 ±0.21 0.03 ±0.04 0.13 -
ROSCOE-CosmosQA (2) 0.16 ±0.07 0.25 ±0.02 0.09 ±0.17 0.14 ±0.17 0.19 ±0.05 -0.03 ±0.01 0.1 -
QAGS (1) 0.72 0.7 0.66 0.65 0.68 0.13 0.23 0.74
Medical-safety (2) 0.01 ±0.03 -0.03 ±0.06 -0.02 ±0.09 -0.03 ±0.08 0.0 ±0.06 0.01 ±0.02 0.03 -
DICES-990 (1) -0.24 -0.17 -0.16 -0.12 -0.2 -0.09 0.05 0.27
DICES-350-expert (1) -0.2 -0.13 -0.15 -0.03 -0.11 0.01 0.08 -
DICES-350-crowdsourced (1) -0.22 -0.18 -0.08 -0.02 -0.11 -0.08 0.07 0.32
Inferential strategies (1) 0.42 0.4 0.02 0.22 0.06 -0.02 0.19 1.0

Average Cohen’s κ 0.28 ±0.32 0.28 ±0.30 0.24 ±0.30 0.22 ±0.28 0.21 ±0.28 0.10 ±0.18

G
ra

de
d

A
nn

ot
at

io
ns

Dailydialog (1) 0.69 0.6 0.55 0.63 0.63 0.52 0.06 0.79
Switchboard (1) 0.66 0.45 0.63 0.59 0.56 0.36 0.11 0.8
Persona Chat (4) 0.22 ±0.11 -0.02 ±0.2 0.16 ±0.1 0.1 ±0.09 0.02 ±0.15 0.07 ±0.13 0.2 0.61
Topical Chat (4) 0.26 ±0.03 0.28 ±0.1 0.13 ±0.04 0.17 ±0.12 0.21 ±0.18 0.14 ±0.05 0.07 0.56
Recipe-generation (6) 0.78 ±0.05 0.66 ±0.07 0.6 ±0.15 0.67 ±0.09 0.57 ±0.24 0.32 ±0.28 0.18 0.65
ROSCOE-GSM8K (2) 0.82 ±0.12 0.83 ±0.11 0.81 ±0.14 0.81 ±0.12 0.79 ±0.13 0.68 ±0.2 0.15 -
ROSCOE-eSNLI (2) 0.49 ±0.24 0.4 ±0.16 0.38 ±0.17 0.35 ±0.21 0.32 ±0.12 0.09 ±0.08 0.14 -
ROSCOE-DROP (2) 0.57 ±0.22 0.59 ±0.16 0.44 ±0.15 0.44 ±0.13 0.32 ±0.12 0.21 ±0.22 0.13 -
ROSCOE-CosmosQA (2) 0.57 ±0.18 0.55 ±0.18 0.51 ±0.16 0.57 ±0.17 0.53 ±0.21 0.33 ±0.25 0.1 -
NewsRoom (4) 0.59 ±0.02 0.59 ±0.03 0.44 ±0.05 0.55 ±0.03 0.5 ±0.07 0.36 ±0.06 0.1 0.62
SummEval (4) 0.35 ±0.06 0.44 ±0.14 0.54 ±0.08 0.38 ±0.02 0.48 ±0.02 0.19 ±0.06 0.13 -
WMT 2020 En-De (1) 0.63 0.37 0.51 0.46 0.2 0.42 0.15 0.81
WMT 2020 Zh-En (1) 0.54 0.39 0.48 0.41 0.25 0.42 0.1 0.62
WMT 2023 En-De (1) 0.22 0.14 0.23 0.16 0.17 0.22 0.04 -
WMT 2023 Zh-En (1) 0.17 0.14 0.19 0.14 0.15 0.15 0.02 -

Average Spearman’s ρ 0.50 ±0.21 0.43 ±0.22 0.44 ±0.19 0.43 ±0.21 0.38 ±0.22 0.30 ±0.17

Table 1: Scores per dataset for the models with ≥98% valid response rates (results for all models in Tab. 5, App. F):
Cohen’s kappa for categorical annotations and Spearman’s correlation for graded annotations. Boldface marks
best model performance per dataset. Datasets with both categorical and graded annotations appear twice. Datasets
in blue concern human-generated language, while those in red concern model-generated text. ‘σ’ denotes the
standard deviation of the scores across models per dataset (averaged over properties if more than one is judged per
dataset). Upper-bound estimates (UB) indicate the agreement between individual and aggregated human judgments.

performance across several tasks on the Open LLM152

and Chatbot Arena Leaderboards (Chiang et al.,153

2024): GPT-4o (OpenAI, 2024), LLaMA-3.1 (8B154

and 70B; AI@Meta 2024), Gemini-1.5 (Reid et al.,155

2024), Mixtral (8x7B and 8x22B; Jiang et al. 2024),156

Command R and Command R+ (Cohere and Co-157

here for AI, 2024a,b), OLMo (Groeneveld et al.,158

2024), Starling-7B (Zhu et al., 2023), and Mis-159

tral (Jiang et al., 2023a). See App. C for inference160

procedure details.161

Prompts. Since most datasets include the origi-162

nal instructions used to gather human judgments,163

we use these instructions directly as prompts for the164

model, with additional guidelines to constrain the165

models’ output and minimise verbosity: ‘Answer166

with one of {}. Do not explain your answer.’ When167

the original instruction for collecting human judg-168

ments is unavailable, we create a prompt based on169

relevant information from the original paper, such 170

as the task description and the definitions of the 171

evaluation metrics. We also experimented with al- 172

ternative prompting strategies, including Chain-of- 173

Thought, few-shot and system prompts, and prompt 174

paraphrases. We do not observe systematic im- 175

provements. See App. F for full details and results. 176

All prompts are provided in the codebase. 177

Evaluation. Models do not always respond to 178

the prompts as requested (e.g., they may refuse to 179

answer if they perceive the prompt as sensitive). 180

We therefore use the following evaluation protocol: 181

(i) To obtain the same number of judgments 182

across models for a given dataset, we replace 183

invalid LLM responses with judgments randomly 184

sampled from the relevant set of categorical or 185

graded annotations. Fig. 4 in App. D shows the 186

rate of valid responses per model. (ii) For graded 187
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Figure 3: Correlation for properties with graded judg-
ments. Averages and error bars when the property is
present in more than one dataset.

annotations, we compute Spearman’s correla-188

tion (ρ) between model and human judgments; for189

categorical annotations, we compute Cohen’s κ.190

(iii) When multiple individual human judgments191

are available, we estimate an upper bound by192

computing the average Spearman’s ρ or Cohen’s193

κ between bootstrapped single-rater responses and194

the aggregated responses across raters.2195

4 Results196

Scores vary substantially across models. For any197

given model, they vary both across datasets and198

properties being judged. Tab. 1 presents detailed re-199

sults for the 6 models that exhibit the largest rate of200

valid responses (≥98%). GPT-4o ranks first across201

several evaluation scenarios, but the Llama-3.1-202

70B and Mixtral-8x22B open models are relatively203

close and outperform GPT-4o on some assessment204

types, such as categorical sentence acceptability205

(CoLa) and graded summary quality (SummEval).206

Overall, the high degree of variability is not fully207

accounted for by the inherent difficulty of the anno-208

tation tasks as reflected in the human upper bound.209

Moreover, except for a few datasets (e.g., QAGS,210

Recipe-generation, and NewsRoom), model scores211

remain notably below the upper bound.212

Among the property types with the lowest213

human-model alignment are toxicity and safety214

(in particular on DICES and Medical-safety),215

where model scores can be even negative and216

valid response rates particularly low (see Fig. 5217

in App. D). This is due in part to the guardrails218

associated with these tasks (Weidinger et al., 2023).219

2More details on the upper bound calculation are in App. B.
Tab. 3 (App. A) reports Krippendorff’s α. Datasets containing
multiple human judgments are marked in Tab. 2 (App. A).

We find that, especially in the medical domain, 220

many models tend to provide explanations instead 221

of producing a judgment (see App. E). 222

Despite the high variability across models and 223

datasets, we observe several notable trends. For 224

graded annotations (Fig. 2), all models achieve 225

higher correlations with annotations by non-expert 226

human judges compared to expert annotators, 227

echoing recent findings by Aguda et al. (2024). 228

Figure 3 shows correlation results across differ- 229

ent datasets for the subset of properties that ex- 230

clusively have graded judgments. The proprietary 231

models GPT-4o and Gemini-1.5 exhibit the high- 232

est scores when evaluating acceptability and ver- 233

bosity, while the two Mixtral open models show 234

the strongest correlations for coherence and con- 235

sistency. Overall, no single model demonstrates a 236

clear superiority over others across all categories; 237

instead, different quality dimensions are better as- 238

sessed by different models. 239

Finally, all models achieve better alignment with 240

human judgments when evaluating human lan- 241

guage than when assessing machine-generated text, 242

both for categorical and graded annotations (see 243

Fig. 6 in App. F). This emphasises the need for cau- 244

tion when using LLMs to automatically evaluate 245

the output of NLP systems. 246

5 Conclusions 247

In response to current trends in evaluation, in this 248

paper we conducted a large-scale study of the corre- 249

lation between human and LLM judgments across 250

20 datasets, considering factors such as the prop- 251

erties being assessed, the expertise level of the hu- 252

man judges, and whether the data is model- or 253

human-generated. On some tasks, such as instruc- 254

tion following and the generation of mathemati- 255

cal reasoning traces, models can be reliably used 256

as evaluators. Overall, however, models’ agree- 257

ment with human judgments varies widely across 258

datasets, evaluated properties, and data sources; 259

and elicitation strategies such as Chain-of-Thought 260

prompting do not consistently improve agreement 261

levels, in line with recent findings (Sprague et al., 262

2024). We recommend validation and calibration of 263

LLMs against task-specific human judgments prior 264

to their deployment as evaluators. To facilitate this 265

process, we release JUDGE-BENCH, a benchmark 266

that enables systematic evaluation across a diverse 267

range of tasks and is easily extensible to include 268

any new task of interest. 269
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Limitations270

As pointed out by one of the reviewers, correlation271

with human judges may not be the most appropri-272

ate way to validate LLM evaluators. Indeed, if the273

responses of an LLM were found to contain some274

harmful bias that does not affect the overall cor-275

relation or to be systematically aligned with the276

beliefs of one specific group (without taking into277

account other perspectives), this would arguably278

not be a good reason to conclude that LLMs are279

good evaluators. However, we believe that there280

are tasks where it is still useful and informative281

to compare LLM judgments against human ones,282

especially if human annotations come from experts.283

The reviewer also highlights the potential dangers284

of reusing pre-existing tasks and datasets without285

verifying their quality or how well they reflect ac-286

tual downstream tasks. While we did our best to287

select a set of tasks that would be representative288

and meaningful for the NLP community, we ac-289

knowledge that there are potential shortcomings290

(such as data leakage) in using pre-existing tasks291

and datasets without revalidating them.292

In contrast to approaches that use LLMs for pair-293

wise preference evaluation, e.g., PairEval (Park294

et al., 2024) or JudgeBench (Tan et al., 2024),295

this paper focuses on evaluating the performance296

of LLMs on generating judgements for categor-297

ical or graded responses. We leave extending298

JUDGE-BENCH to include pairwise preference eval-299

uation and other recent evaluation methods like300

Prometheus 2 (Kim et al., 2024) to future work.301

Finally, our work mostly focuses on English-302

language datasets—with the exception of datasets303

focussing specifically on machine-translation out-304

puts. It remains to be seen whether LLMs’ meta-305

evaluation abilities vary across different languages.306
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Appendix749

A Datasets750

This section provides brief descriptions of the751

datasets employed in our study. Table 2 sum-752

marises relevant dataset information. Note that753

dataset sizes as reported in Table 2 refer to the num-754

ber of annotated samples (not to the total number755

of collected annotations) and might therefore differ756

from the figures reported in the original papers.757

CoLa (Warstadt et al., 2019). The Corpus of758

Linguistic Acceptability (CoLA) consists of 10657759

sentences from 23 linguistics publications, expertly760

annotated for acceptability (grammaticality) by761

their original authors.762

CoLa-grammar (Warstadt and Bowman, 2020).763

The dataset consists of a grammatically annotated764

version of the CoLA development set. Each sen-765

tence in the CoLA development set is labelled with766

boolean features indicating the presence or absence767

of a particular grammatical construction (usually768

syntactic in nature). Two related sets of features 769

are considered: 63 minor features correspond to 770

fine-grained phenomena, and 15 major features cor- 771

respond to broad classes of phenomena. 772

ToxicChat (Lin et al., 2023). collect binary judg- 773

ments on the toxicity and ‘jailbreaking’ nature 774

(prompt hacks deliberately intended to bypass 775

safety policies and induce models to generate un- 776

safe content) of human prompts to LLMs. While 777

the original dataset contains a mix of human- and 778

automatically-annotated instances, here we only 779

consider the human-annotated prompts. 780

LLMBar (Zeng et al., 2024). LLMBar is a 781

dataset targeted at evaluating the instruction- 782

following abilities of LLMs. Each entry of this 783

dataset consists of an instruction paired with two 784

different outputs, one correctly following the in- 785

struction and the other deviating from it. LLMBar 786

has an adversarial split where deviating outputs 787

are carefully constructed to ‘fool’ LLM-based eval- 788

uators and a natural split where deviating outputs 789

are more naturalistic. 790

Topical Chat and Persona Chat (Mehri and 791

Eskenazi, 2020). These datasets contain hu- 792

man judgments on the quality of machine- and 793

human-generated responses based on the pro- 794

vided dialogue context. The annotated dialogues 795

were selected from Topical Chat (Gopalakrish- 796

nan et al., 2019)—a dataset collecting human- 797

human conversations on provided facts—and Per- 798

sona Chat (Zhang et al., 2018), which contains 799

human-human persona-conditioned conversations. 800

Each response is evaluated on 6 attributes: Under- 801

standable, Natural, Maintains Context, Interesting, 802

Uses Knowledge, and Overall Quality. 803

ROSCOE (Golovneva et al., 2023). collect hu- 804

man judgments assessing the quality of GPT- 805

3’s reasonings. The output reasonings are 806

elicited by inputting GPT-3 with questions selected 807

from 4 commonly used reasoning datasets, i.e., 808

CosmosQA (Huang et al., 2019), DROP (Dua 809

et al., 2019), e-SNLI (Camburu et al., 2018) and 810

GSM8K (Cobbe et al., 2021). While ROSCOE 811

provides annotations on each step of the reasoning 812

trace, here we only consider the global judgments 813

over the whole reasoning. 814

QAGS (Wang et al., 2020). QAGS consists of 815

annotations judging the factual consistency of one- 816

sentence model-generated summaries of news arti- 817
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Dataset Task Size Type Guidelines Expert Agreement Leaked

CoLA (Warstadt et al., 2019) Acceptability 1,043 Categorical ✗ ✓ ✗ ✓

CoLA-grammar (Warstadt and Bowman, 2020) Acceptability 1,043 Categorical ✗ ✓ ✗ ✓

Switchboard (Wallbridge et al., 2022) Acceptability 100 Graded ✓ ✗ ✓

Dailydialog (Wallbridge et al., 2022) Acceptability 100 Graded ✓ ✗ ✓

Inferential strategies (Mondorf and Plank, 2024) Reasoning 300 Categorical ✓ ✓ ✗ ✗

ROSCOE (Golovneva et al., 2023) Reasoning 756 Categorical + Graded ✓ ✓ ✗

Recipe-generation (Stein et al., 2023) Planning 52 Graded ✓ ✗

Medical-safety (Abercrombie and Rieser, 2022) Toxicity & Safety 3,701 Preference ✓ ✓ ✗

DICES (Aroyo et al., 2023) Toxicity & Safety 1,340 Categorical ✗ Mixed ✓

ToxicChat (Lin et al., 2023) Toxicity & Safety 5,654 Categorical ✗ ✓ ✗

Topical Chat (Mehri and Eskenazi, 2020) Dialogue 60 Graded + Categorical ✗ ✓ ✓

Persona Chat (Mehri and Eskenazi, 2020) Dialogue 60 Graded + Categorical ✗ ✓ ✓

WMT 2020 En-De (Freitag et al., 2021) Machine Translation 14,122 Graded ✗ ✓ ✓

WMT 2020 Zh-En (Freitag et al., 2021) Machine Translation 19,974 Graded ✗ ✓ ✓

WMT 2023 En-De (Kocmi et al., 2023) Machine Translation 6,588 Graded ✗ ✓ ✗

WMT 2023 Zh-En (Kocmi et al., 2023) Machine Translation 13,245 Graded ✗ ✓ ✗

G-Eval / SummEval (Liu et al., 2023) Summarisation 1,600 Graded ✓ ✗ ✓

QAGS (Wang et al., 2020) Summarisation 953 Categorical ✓ ✗ ✓

NewsRoom (Grusky et al., 2018) Summarisation 420 Graded ✓ ✗ ✓ ✓

LLMBar (Zeng et al., 2024) Instruction Following 419 Categorical ✓ ✓ ✗ ✗

Table 2: Overview of the main features of the datasets considered in the study. Note that ‘Size’ refers to the
number of annotated samples, not to the total number of human annotations. ‘Agreement’ indicates whether
multiple annotations are available for the same instance or not. Information on possible data leakage was retrieved
from Balloccu et al. (2024).

cles. The gold-standard summaries and articles are818

collected from CNN/DailyMail (Hermann et al.,819

2015) and XSUM (Narayan et al., 2018).820

Medical-safety (Abercrombie and Rieser, 2022).821

This dataset consists of 3701 pairs of medical822

queries (collected from a subreddit on medical823

advice) and both machine-generated and human-824

generated answers. Queries were classified by hu-825

man annotators according to their severity (from826

‘Not medical’ to ‘Serious’, with ‘Serious’ indicat-827

ing that emergency care would be required) and828

answers were categorised based on their risk level829

(from ‘Non-medical’ to ‘Diagnosis/Treatment’).830

DICES (Aroyo et al., 2023). The DICES831

datasets consist of a series of machine-generated832

responses whose safety is judged based on the pre-833

vious conversation turns (context). While the origi-834

nal dataset provides fine-grained annotations with835

answers to questions targeting specific aspects of836

safety, here we only consider the ‘overall’ cate-837

gorisation comprehensive of all aspects. In DICES838

990 safety is judged by crowdsourced annotators,839

whereas in DICES 350 both expert and crowd-840

sourced annotations are provided.841

Inferential strategies (Mondorf and Plank,842

2024). This dataset contains annotations on the843

logical validity of reasoning steps that models—844

in this case, Llama-2-chat-hf3 (Touvron et al.,845

2023), Mistral-7B-Instruct-v0.2 (Jiang et al.,846

2023a) and Zephyr-7b-beta (Tunstall et al.,847

2023)—generate when prompted to solve problems 848

of propositional logic. Binary labels are assigned to 849

each response, indicating whether the rationale pro- 850

vided by the model is sound (True) or not (False). 851

Each model is assessed on 12 problems of proposi- 852

tional logic across 5 random seeds, resulting in a 853

total of 60 responses per model. 854

Switchboard and Dailydialog (Wallbridge et al., 855

2022). Switchboard includes acceptability judg- 856

ments collected using stimuli from the Switchboard 857

Telephone Corpus (Godfrey et al., 1992). More 858

specifically, the judgments refer to how plausible it 859

is that a specific response belongs to a telephonic 860

dialogue. The same kind of judgments are provided 861

for Dailydialog, which collects written dialogues 862

intended to mimic conversations that could happen 863

in real life. 864

Recipe-generation (Stein et al., 2023). This 865

dataset contains human annotations assessing the 866

quality of machine-generated recipes based on 6 867

attributes: grammar, fluency, verbosity, structure, 868

success, overall. 869

NewsRoom (Grusky et al., 2018). This dataset 870

includes human judgments on the quality of system- 871

generated summaries of news articles. More specif- 872

ically, annotators evaluated summaries across two 873

semantic dimensions (informativeness and rele- 874

vancy) and two syntactic dimensions (fluency and 875

coherence). 876
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SummEval and G-Eval (Fabbri et al., 2021; Liu877

et al., 2023). These datasets include summaries878

generated by multiple recent summarisation mod-879

els trained on the CNN/DailyMail dataset (Her-880

mann et al., 2015). Summaries are annotated by881

both expert judges and crowdsourced workers on 4882

dimensions: coherence, consistency, fluency, rele-883

vance.884

WMT 2020 En-De and Zh-En (Freitag et al.,885

2021). These datasets are a re-annotated version886

of the English-to-German and Chinese-to-English887

test sets taken from the WMT 2020 news transla-888

tion task. The annotation was carried out by raters889

who are professional translators and native speak-890

ers of the target language using a Scalar Quality891

Metric (SQM) evaluation on a 0–6 rating scale.892

WMT 2023 En-De and Zh-En (Kocmi et al.,893

2023). These datasets are the English-to-German894

and Chinese-to-English test sets taken from the895

General Machine Translation Task organised as896

part of the 2023 Conference on Machine Transla-897

tion (WMT). In contrast to previous editions, the898

evaluation of translation quality was conducted by899

a professional or semi-professional annotator pool900

rather than utilising annotations from MTurk. An-901

notators were asked to provide a score between 0902

and 100 on a sliding scale.903

Dataset Krippendorf’s α

C
at

eg
or

ic
al

Topical Chat 0.08
QAGS 0.49
DICES-990 0.14
DICES-350-crowdsourced 0.16
Persona Chat 0.33
Inferential strategies 1.0

G
ra

de
d

Dailydialog 0.59
Switchboard 0.57
Persona Chat 0.33
Topical Chat 0.08
Recipe-generation 0.41
NewsRoom 0.11
WMT 2020 En-De 0.5
WMT 2020 Zh-En 0.09

Table 3: Inter-rater agreement for datasets with multiple
human annotations. Datasets in blue concern human-
generated language, while those in red concern model-
generated text.

B Upper Bound Estimation for Model 904

Correlations 905

Whenever multiple human annotations were pub- 906

licly available for a property, we computed upper- 907

bound estimates for the correlations achievable by 908

models. The intuition behind these estimates, bor- 909

rowed from neuroscience (Nili et al., 2014), is 910

that the maximum correlation a model can achieve 911

with aggregated human responses is bounded by 912

the average correlation between single-participant 913

responses and the aggregated responses across 914

participants. We applied a similar logic to the 915

human judgments used in the present study and 916

combined it with a bootstrapping approach. For 917

each annotated property, we bootstrapped single- 918

participant responses by sampling 1000 times from 919

the available human responses, excluding data 920

points where a single annotation was available. 921

Next, we computed the alignment between each 922

of the bootstrapped-participant arrays and the array 923

of aggregated responses. Alignment was computed 924

as Spearman’s correlation for graded judgments 925

and Cohen’s kappa for categorical judgments. Fi- 926

nally, we estimated the upper bound as the average 927

of the 1000 alignment measures. In cases where 928

alignment between bootstrapped and aggregated 929

responses could not be computed—because the 930

variance of the bootstrapped responses was null— 931

values were replaced with an average of the ‘non- 932

nan’ correlations. 933

We emphasise that these upper bounds are esti- 934

mates and, as such, are subject to errors. Therefore, 935

it may happen that model performance exceeds 936

these upper bounds. 937

C Inference Details 938

All open-model checkpoints were obtained using 939

the HuggingFace pipeline and we access all pro- 940

prietary models using their corresponding API li- 941

braries. The proprietary models were accessed 942

from 06-06-2024 to 13-06-2024, for standard 943

prompting and from 09-10-2024 to 13-12-2024, for 944

CoT prompting. We obtain the model responses us- 945

ing greedy decoding, which we operationalise for 946

the proprietary models by setting the temperature 947

parameter to 0. We allow open models to generate 948

a maximum of 25 new tokens and proprietary mod- 949

els to generate a maximum of 5 new tokens. For 950

CoT prompting, we allow for a maximum of 1000 951

new tokens. 952

We leverage Nvidia A100 (80 GB) GPUs for a 953
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total of 321 compute hours. The cost of running954

experiments using Gemini-1.5-flash was C30.31,955

while the cost of experiments using GPT-4o was956

approximately $565.957

D Valid Response Rates958

Table 4 reports the rate of valid responses for each959

model and dataset. Valid response rates are sum-960

marised per model and dataset in Figures 4 and 5.961
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Figure 4: Valid response rate per model.

E More Details on Toxicity and Safety962

Evaluation963

For the Medical-safety dataset, models often re-964

fused to answer. Instead they tended to generate965

explanations, copy what they had in the prompt,966

or tried to be generally helpful because they saw967

that it was a medical issue. Since we take a random968

answer when no answer could be detected, this con-969

tributes to lower the results obtained on this task.970

Scores for the DICES dataset were also low, even971

though the valid response rate was high, because in972

this case there is the ‘Unsure’ option, which (along973

with ‘Unsafe’) models preferred over calling any-974

thing ‘Safe’. For ToxicChat, models performed975

reasonably well.976

F Additional Results977

In Table 5 we report human-model alignment978

scores per dataset for all models tested, thus com-979

plementing Table 1 in the paper. Figure 6 shows980

alignment scores broken down according to the981

source of the material to be judged, i.e., human or982

machine-generated output.983

984

Chain-of-Thought Prompts. For the results 985

with CoT prompting, we use the same original 986

instructions used to gather human judgments as 987

prompts for the model but adapt the additional 988

guidelines to emphasise multi-step reasoning rather 989

than constrain the models’ output. Specifically, we 990

append the original instructions with the follow- 991

ing additional guideline: ‘Always end your answer 992

with either {} regarding the entire context. Let’s 993

think step by step.’, in which {} is replaced with an 994

enumeration of all possible answer labels format- 995

ted as ‘Therefore, {label A} is correct, or therefore, 996

{label B} is correct, or therefore [...].’. This also 997

allows for automatically extracting the final an- 998

swers from model responses during evaluation. In 999

this study, we evaluate nine models and exclude 1000

Mixtral-8x22B and Comm-R+ due to computa- 1001

tional constraints. For the CoLa-grammar dataset, 1002

we obtain GPT-4o responses only for ten percent 1003

of its instances (that are randomly sampled) to ad- 1004

dress the slow processing times and rate limitations. 1005

While CoT prompting leads to improved agreement 1006

scores and correlations when used with some mod- 1007

els for certain datasets (see Table 6), its overall 1008

effectiveness compared to the results obtained us- 1009

ing standard prompts without CoT (see Table 5) is 1010

inconsistent. 1011

Prompt Paraphrases. We experiment with para- 1012

phrased prompts for three datasets that models 1013

struggle with: DICES-350-expert, WMT 2023 1014

En-De, and WMT 2023 Zh-En. The paraphrase 1015

for dices-350-expert elaborates on the concept 1016

of safety, compared to its short original prompt, 1017

whereas the paraphrases for the WMT datasets are 1018

more concise regarding what comprises a good 1019

translation compared to the original. We do not 1020

observe consistent improvements when using para- 1021

phrased prompts compared to the original prompts 1022

(Table 7). 1023

Few-shot Prompts. For the three datasets 1024

above—DICES-350-expert, WMT 2023 En-De, 1025

and WMT 2023 Zh-En—we also experiment with 1026

few-shot prompts (Table 7), where we provide the 1027

model with 6 examples for DICES-350-expert, 3 of 1028

safe conversations and 3 of unsafe conversations, 1029

and 4 examples for each WMT 2023 dataset, 2 1030

of high-scoring translations and 2 of low-scoring 1031

translations. Using few-shot prompts does not im- 1032

prove correlations for dices-350-expert. On the 1033

WMT 2023 datasets, we observe higher correla- 1034

tions for Llama 3.1 8B but very moderate or no 1035

12



improvements on the other two models. Given1036

that these improvements are inconsistent across1037

datasets, we did not scale up the experiments to all1038

20 datasets and 11 models.1039
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Prompt Llama 3.1 8B Llama 3.1 70B Mixtral-8x7B

DICES-350-expert

Original 0.01 -0.13 -0.11
CoT -0.07 -0.26 -0.02
Few-shot 0.01 -0.22 -0.01
Paraphrase -0.13 -0.36 -0.09

WMT 2023 En-De

Original 0.08 0.14 0.17
CoT 0.34 0.16 0.20
Few-shot 0.19 0.21 0.20
Paraphrase 0.02 ±0.08 0.08 ± 0.12 0.14 ±0.05

WMT 2023 Zh-En

Original 0.02 0.14 0.15
CoT 0.36 0.16 0.13
Few-shot 0.15 0.21 0.14
Paraphrase 0.08 ±0.04 0.09 ±0.06 0.13 ±0.03

Table 7: Spearman’s correlation for three datasets with graded annotations, comparing the original prompt and CoT
prompt to few-shot prompts and prompt paraphrases for a selection of models. For datasets with more than one
paraphrased prompt, we report the average and standard deviation across paraphrases.

19


	Introduction
	Construction of Judge-Bench
	Model Selection and Experiment Design
	Results
	Conclusions
	Datasets
	Upper Bound Estimation for Model Correlations
	Inference Details
	Valid Response Rates
	More Details on Toxicity and Safety Evaluation
	Additional Results

