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ABSTRACT

In the heterophilic regime (HR), vanilla GNNs learn latent spaces where nodes
with different labels may have similar embeddings. As a result, the performance of
node classification degrades significantly in this context. However, existing metrics
for heterophily count local discontinuities instead of characterizing heterophily in
a structural way. In the ideal (homophilic) regime, nodes belonging to the same
community have the same label: most of the nodes are harmonic (their unknown
labels result from averaging those of their neighbors given some labeled nodes).
Harmonic solvers are natural minimizers of the Laplacian Dirichlet energy. There-
fore, a homophilic network is more harmonic than any heterophilic version of the
same network. In other words, heterophily can be seen as a “loss of harmonicity”.
In this paper, we define “structural heterophily” in terms of the ratio between the
harmonicity of the network (Laplacian Dirichlet energy) and the harmonicity of its
homophilic version (the so-called “ground” energy).
In this paper, we also propose a novel GNN model (Diffusion-Jump GNN) that
bypasses structural heterophily by “jumping” through the network in order to relate
distant homologs. However, instead of using hops as standard High-Order (HO)
GNNs (MixHop) do, our jumps are rooted in a structural well-known metric: the
diffusion distance. Given the diffusion distances matrix (DM), we explore different
orders of distances wrt each node (closest node, second closest node, etc.) in
parallel. Each parallel exploration defines a “jump” that masks the network: it is a
new graph that feeds a vanilla GNN layer. Consequently, different GNNs attend to
different slices of the DM. As a result, we allow distant homologs to have similar
embeddings in (at least) one of the jumps. In addition, as the final embedding of
each node depends on the concatenation of its parallel embeddings, we can capture
the explainability of each jump via learnable coefficients.
Since computing the DM is the core of this method, our main contribution is that
we learn both the diffusion distances and the “coefficients” of the edges associated
with each jump, thus defining “learnable structural filters”. In order to learn the DM,
we exploit the fact that diffusion distances have a spectral interpretation. Instead of
computing the eigenvectors of the Laplacian, we learn orthogonal approximations
of the Fiedler vector solving a trace-ratio optimization problem while the prediction
loss is minimized. This leads to an interplay between a Dirichlet loss, which
captures low-frequency content, and a prediction loss which refines that content
leading to empirical eigenfunctions. Finally, our experimental results show that we
are very competitive with the SOTA both in homophilic and heterophilic datasets,
even in large graphs.

1 INTRODUCTION

The success of Graph Neural Networks (GNNs) relies on their convolutional architecture Kipf
& Welling (2017)Hamilton et al. (2017)Veličković et al. (2018). Their aggregate and combine
mechanism provides a significant degree of expressiveness. Consider, for instance, the task of
semi-supervised node classification Song et al. (2021). Given an input graph, where each node is
attributed with a matrix of features, some of the nodes are labeled. The goal of node classification is
to infer the unknown labels by using the network structure Zhu et al. (2020). GNNs usually work in
two steps: (a) computing a new (latent) representation for each node and (b) using the representations
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of nodes with known labels to infer those of the unlabeled nodes. Actually, the focus of GNNs is
on computing the latent representations whereas the classification is performed by a subsequent
multi-layer perceptron (MLP). In this regard, the latent representation of a given node is computed by
aggregating the features of its neighbors and then combining this aggregation with its own features in
a robust way (usually through a local MLP Hamilton et al. (2017)).
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Figure 1: Structural heterophily.

Under homophily (neighboring nodes tend to have the same la-
bel McPherson et al. (2001)), aggregating the features of neigh-
boring nodes and combining them in robust representations
leads to hash the latent representations of homologs (nodes of
the same class) pretty close. For instance, in Fig. 1-Top (graph
A), only the nodes in the bottleneck (belonging to the edges
defining the cut between two communities) tend to mix het-
erogeneous features, thus being potentially misclassified. In
the heterophilic regime (HR), however, linked nodes are likely
from different classes (Fig. 1-Bottom, graph B), and the risk
of misclassification is higher. Consequently, for a vanilla GNN,
the level of heterophily is a proxy of the misclassification risk.
For instance, node homophily hnode is the fraction of nodes
connected with homologs Pei et al. (2020b). However, edge
homophily hedge is the fraction of edges that connect nodes that
have the same class label (i.e., intra-class edges) Zhu et al. (2020). Finally, class homophily hk,
where k is a class-index, is the ratio between the sum of restricted degrees (count only neighbors of
the same class) for nodes of class k and the sum of degrees for the same nodes Lim et al. (2021).

In this paper, we propose structural heterophily, R, a measure that is more complex than counting
pairwise interactions but simpler than hypergraph-based measures Veldt et al. (2023). We leverage
the combinatorial nature of graphs, i.e. A and B in Fig. 1 represent different ways of coloring the
same structure, say G = (V,E). From the point of view of spectral graph theory Chung (1997), the
A coloring encodes the partition of G minimizing the normalized cut Shi & Malik (2000), i.e. only
nodes in the bottleneck are not linked with their homologs. Such a partition is approximated by the
second non-trivial eigenvector of the graph Laplacian (the Fiedler vector) and the corresponding
eigenvalue (the spectral gap) quantifies the so-called ground energy associated with G. Consequently
this labeling the minimal structural heterophily R = 1 (wlog, this also applies to graphs with
k > 1 communities). As a result, any sub-optimal labeling wrt the normalized cut problem, e.g.
B, is approximated by a Laplacian eigenvector associated with a larger eigenvalue: the structural
heterophily for G labeled with B is R = 4.61 (almost five times more heterophilic than G labeled
with A). In the figure, high-energy edges are displayed in bold.

Figure 2: Hop-hierarchy (Top) vs
Jump-hierarchy (Bottom). Diffu-
sion distances contract the similar-
ity space due to structural forces.

Structural heterophily can be interpreted as a loss of harmonic-
ity. Harmonic structures are low-energy configurations where
the label of a node is the average of those of its neighbors. If
only some labels are known, as in semi-supervised learning, the
"gaps" are naturally filled attending to maximize harmonicity.
It is not surprising that harmonic solvers are natural minimizers
of the Laplacian Dirichlet energy Doyle & Snell (2000)Grady
(2006). This suggests that enforcing harmonicity under strong
heterophily is a good idea: we will learn eigenvectors (called
empirical eigenfunctions) which will be as much harmonic as
possible while they react to heterophilic labelings.

It seems also reasonable to solve the heterophily issue by surfing
through the graph to link distant homologs. As we will review in
the Related-Work Section 6, our approach is aligned with High-
Order GNNs Yan et al. (2022)Abboud et al. (2022) Song et al.
(2023) Abu-El-Haija et al. (2019)Maurya et al. (2021)Maurya
et al. (2022)Frasca et al. (2020). Most of these works are hop-
based, i.e. they rely on powers of the transition matrix. As
we show in Fig. 2-Top, these methods build a hop-hierarchy.
However, such a hierarchy does not encode the dynamics of the
random walks implicitly defined by the powers of the transition

2



Under review as a conference paper at ICLR 2024

matrix. For instance, a random walk rooted in the white node tends to visit its own community before
leaving it: the so-called escape probability depends on the ground energy or spectral gap Meilă
& Shi (2001) (see below and Appendixes B.3 and B.4). One way of designing a hierarchy that
encodes the dynamics of random walks is to learn diffusion distances Nadler et al. (2005) (see
below and Appendix B.2) which emphasizes the notion of a cluster. These distances have a spectral
interpretation and they can be computed from our empirical eigenfunctions. The resulting hierarchy
(Fig. 2-Bottom), whose level sets are called jumps, incorporates the dynamics of the random walks,
thus relying on what we call structural forces (the inverses of the escape probabilities).

Summarizing, our two main contributions are a) a novel measure for heterophily called structural
heterophily, and b) a novel High-Order GNN architecture inspired by this measure which relies on a
fully learnable jump hierarchy. This implies both learning the empirical eigenfunctions and exploring
many jumps in parallel. The final objective is to bypass the structure of the graph so that distant
homologs have similar representations in the latent space. This process is called homophiliation.

2 HETEROPHILY AS THE LOSS OF HARMONICITY

Node-classification under heterophily can be posed as the following semi-supervised learning
problem. Given an input graph, G = (V,E) with adjacency matrix A and node features X, there is a
node subset B ⊂ V whose labels ℓ(B) are known by the learner (border nodes). Similarly, the labels
ℓ(U) of the remaining nodes, those in U = V −B, are hidden (interior nodes).

Given the graph Laplacian △ := D−A, where D is the diagonal degree matrix, and a regularizer
(minimizer of xT△x :=

∑
i∼j(xi−xj)

2), we obtain ℓ∗ = argminℓ ℓ
T△ℓ, where ℓ∗ is the smoothest

labeling of V after propagating ℓ(B) to ℓ(U) through the edges of the graph. A Dirichlet solver
ensures that the labeling ℓ∗ is harmonic (the label of a given unknown node is the average of those of
its neighbors) subject to the labeling of the border nodes ℓ(B) (see details in Appendixes A and C).

In the HR, two neighboring nodes rarely share their labels. As a result, ℓ∗T△ℓ∗ ≫ uT△u, where u
are the vectorized labels obtained by an alternative unsupervised learner (minimizer of the normalized-
cut). The unsupervised learner typically assumes that the labels u are similar within each cluster
(homophily). In other words, heterophily can be posed in terms of how much harmonicity is lost wrt
the homophilic assumption.

The objective of a GNN is to learn a parametric function fΘ(A,X, ℓ(B)) returning H, a matrix
(embedding) of latent representations (one row per node) so that the embeddings of either border
nodes or hidden nodes with the same label are grouped together. However, fΘ(.) does not necessarily
minimize c(H)T△c(H), where c(.) contains the vectorized classification labels. We need to infer
a hidden graph G′ = (V,E′) where c(H)T△G′c(H) is minimized. Actually, the edges E in the
hidden graph should link nodes with the same label, even if they are in the same community or not.

Structural Heterophily. Given the above formulation, we may characterize heterophily in a structural
way, namely as the departure from a structural unsupervised grouping. In particular, the ratio

R =
ℓT△ℓ

uT△u
≥ 1 (1)

is close to the unit if the graph is homophilic (cuts in the structure mean discontinuities in the labeling).
For R > 1 the graph is heterophilic. The larger the ratio the larger the heterophily.

We use the example in Fig. 2-Bottom to illustrate how R works. We have two communities,
V = A

⋃
Ā (left and right respectively). The white node belongs naturally to the right one Ā, and this

is what an unsupervised structural clustering detects: the Fiedler vector u = argminx ̸=0,x⊥1 x
T△x

has positive components (≈ +1) in A and negative components (≈ −1) in Ā.

The vector u is the smallest nontrivial eigenvector of △ as well as the largest nontrivial eigenvector
of the transition matrix P := D−1A, where A is the adjacency matrix. It has been argued that the
top eigenvectors of P may be used to decompose the state space into metastable subspaces Huisinga
et al. (2004). In other words, each of the two graph communities in Fig. 2 defines a metastable state
from which a random walker tries to escape (Appendix B.4).

The average escape time is the inverse of the top nontrivial eigenvalue of the transition matrix P, i.e.
the inverse of the approximated spectral gap Matkowsky & Schuss (1981)Hänggi et al. (1990)Nadler
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& Galun (2006). In our example, the spectral gap is very tiny so we can expect large escape times. In
particular, the two states defined by the Fiedler vector are very compact (they have low variability).
As a result, all the pairs of nodes (i, j) inside each community have very similar diffusion distances
d(i, j) (defined in Appendix B.2) according to the structural forces characterizing each metastable
state.

Consequently, the jump hierarchy defines a succession of unstable states u1,u2, . . . resulting from
the expansion from Ā: Ā ⊆ Ā1 ⊆ Ā2 ⊆ . . .. They are unstable because their Dirichlet energies
uT
k△uk are greater than that of the unsupervised clustering (ground energy) uT△u.

Last, but by no means least, if we label the white node as belonging to A instead of belonging to
Ā (i.e., we introduce heterophily), we also increase the Dirichlet energy wrt the ground energy, i.e.
ℓT△ℓ > uT△u. Why? This is because the new Fiedler vector uℓ leading to the labeling ℓ does no
longer induce a sharp step function. This is consistent with the increase of the spectral gap and the
reduction of the escape time.

Therefore, one useful interpretation of heterophily in structural terms (departure from the ground
energy) is the fact that heterophily relaxes Dirichlet energies in such a way that it is possible to escape
from a community in a few jumps and then find nodes with the same label in other communities.
Therefore, paying attention to several jumps simultaneously increases the chance of aggregating
homologs, thus solving the heterophily issue.

Input Graph

c(ik, jk)

GraphJk
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Figure 3: Homophiliation. Top-Left: a heterophilic graph. Center-Left: The current distance matrix
D leads to a tridimensional weight distribution c(i, j) = e−d(i,j). Yellow points denote the support
Ek = {(ik, jk)} of the filter Jk. The filter coefficients are given by the weights of the support
Ck = {c(ik, jk)}. Bottom-Left: graph used for aggregation with this filter. In the right panel, we
show the weight distribution (top), a couple of filters (middle), and the resulting homophiliation
(bottom) for some epochs. In particular, we show H0, H30 and H100. In each epoch e, all the
embeddings {Hk

e} contribute to identifying potential links between distant homologs. If any of these
links is wrong the matrix of pairwise distances D is updated.

3 HOMOPHILIATION: LOSSES AND MODULES

Homophiliation. Our computational model for node-classification under heterophily cannot only
rely on enforcing harmonic labelings, even when it reacts to the training labels. It must also transform
the matrix of node features X into a piecewise-smooth embedding H. The rows in H associated with
nodes with the same label must be clustered together and these labels must be consistent with those
of the border nodes ℓ(B). Such a process, i.e. the learning of the GNN fΘ(A,X, ℓ(B)), results from
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solving the following optimization problem:

min L = Tr[fθ(A)T△fθ(A)] + Lc({Jk},X, ℓ(B))

s.t. UTU = I

U = fθ(A), D(i, j) = ∥∇Uij∥ and Jk = Πk · exp (−D) , (2)

where we have an interplay between the Dirichlet loss Tr[fθ(A)T△fθ(A)] and the classification loss
Lc as follows.

Diffusion Pump. Minimizing the structural heterophily so that R ≈ 1 (Eq. 1) in G′ = (V,E′) implies
learning Dirichlet energies close to the ground energy. However, in the heterophilic regime, we
cannot minimize c(H)T△G′c(H) before discovering the optimal embedding H∗. In the meanwhile,
the Dirichlet formulation allows us to learn the smallest nontrivial eigenvectors of △ as we do in
the unsupervised setting (e.g. the Fiedler vector). These eigenvectors will be in the columns of U,
but they are parameterized as follows. The notation U = fθ(A), where fθ is an MLP, goes beyond
emphasizing the learnability of U: they are the projections/transformations of the adjacency A. In
addition, they react to the classification loss during backpropagation (empirical eigenfunctions).

We learn the eigenvectors U because it is key to computing diffusion distances between the nodes. In
the following, we will replace d(i, j) by D(i, j) when we need to emphasize the matrix nature of the
pairwise distances. Each pairwise distance D(i, j) comes from the norm of ∇Uij = Ui: −Uj: (row-
difference). As we will detail in Section 4 , ∥∇Uij∥ approximates the diffusion distance between
two nodes i and j. Herein, we focus on the fact that nodes belonging to the same sub-structure
(e.g. cluster or community) have similar distances. Back to Fig. 2, if i and j belong to the same
community, two random walks placed in i and j have similar escape probabilities. Therefore, we
build an anisotropic hierarchy of escape probabilities to characterize the respective reachability of
any node from a given one. This latter hierarchy is built by specifying binary projection matrices
Πk which select the pairs of distances that support the creation/update of each structural filter Jk

(Section 4).

Exploration by Parallel Jumping. The diffusion pump triggers the creation of K + 1 structural
filters {J0,J1, . . . ,JK} derived from their respective jumps Jk. Each filter Jk = (V,Ek, Ck)
is the weight matrix of and edge-attributed graph with support Ek = {(ik, jk)} and coefficients
c(ik, jk) = e−d(ik,ik). We illustrate this process in Fig. 3 over a heterophilic graph. At any epoch,
the optimizer creates a distance matrix D and weighs it: C = exp[−D]. The result is a weight
distribution (middle-left). Each yellow point in the weight distribution belongs to the jump Jk.
Consequently, the yellow points denote the edges of the filter support Ek and they are projected in the
adjacency matrix below the distribution. The coefficients c(ik, jk) of the filter are the heights of the
yellow points. Finally, the edges in the graph depicted below the distribution are exactly those of the
filter support. Neighbor aggregation wrt this filter JkX exploits both that graph and these weights.

The right panel in Figure 3 shows the evolution of the weight distributions (top), some filters (center),
and the status of the homophiliation process (bottom). The optimization process is initially dominated
by the diffusion pump since random weight distributions are explored first. As a result, distant
homologs can be potentially aggregated: we start to implicitly build the hidden graph G′ = (V,E′).
The probability of aggregating distant nodes is leveraged by the fact that, during the first epochs, most
of the K + 1 filters Jk have a random nature independently of k, the filter order. Escape probabilities
are relaxed during this exploration stage.

Classification/prediction Loss. Each filter, Jk = (V,Ek, Ck) is a learnable graph that feeds a
vanilla GNN σ(JkXWk) which generates the embedding Hk. This embedding is weighted by a
learnable parameter αk and concatenated with the remaining embeddings to feed a classification
layer. Therefore, as soon as the structural filters discover interesting bonds for minimizing Lc, the
weights Wk of all the GNNs, the filters’ coefficients, and the distance matrix will become more
and more stable. At some point in the optimization process, the Dirichlet loss will be stabilized and
the exploration stage ends. Later on, the classification loss will refine the almost-homophilic global
embedding H. As a result, the embeddings of either border nodes or hidden nodes with the same
label are grouped together in the latent space (for instance, see the column of Epoch 100 in Figure 3).
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4 METHODOLOGICAL DETAILS

4.1 NETWORK ARCHITECTURE

DIFFUSION-JUMP GNNS are neural networks fΘ(A,X, ℓ(B)) resulting from the optimization
problem stated in Eq. 2. The interplay between the Dirichlet loss and the classification loss is
described above. In this section, we give some technical details about the architecture of the network.

Diffusion pump. The pump is responsible for generating and updating the matrix of pairwise
diffusion distances D. For the generation, we solve any of the following equivalent problems:

min
Tr[UT△UT ]

Tr[UTDUT ]
≡ max

Tr[UTAUT ]

Tr[UTDUT ]
, (3)

both s.t. UTU = I, where Un×p = fθ(A), n = |V |. Since D is the diagonal degree matrix, we
have △ := D−A. As a result, the min problem approximates the p smallest nontrivial eigenvectors
of the normalized Laplacian △̃ := D−1/2△D−1/2 = I − Ã, where Ã := D−1/2AD−1/2 is
the normalized adjacency. Equivalently, the max problem approximates the p largest nontrivial
eigenvectors of the transition matrix P = D−1A. Note that Ã and P have the same eigenvectors
and also that if λ is an eigenvalue of P then 1 − λ an eigenvalue for △̃. Note also, that we use
"approximates" instead of "finds". This is due to the limitations of Stochastic Gradient Descent (SGD)
when solving the Trace-Ratio problems Wang et al. (2007)Jia et al. (2009)Ngo et al. (2012) in Eq. 3.
In this regard, we have the following results with practical implications:
Theorem 4.1 (Fiedler Environments). The SGD solution of the Trace-Ratio Min problem in Eq. 3
can be posed in terms of Min Tr[UT (△− ρD)U] under orthonormality constraints. This leads to
△U = ρ∗DU, i.e. to the orthogonal eigenfunctions of the normalized Laplacian △̃ associated with
ρ∗. However, ρ∗ is not necessarily an eigenvalue of △̃, but an approximation of the Fiedler value
λ2: ∃ ϵ > 0 : |λ2 − ρ∗| < ϵ. As a result, the p columns ui of U satisfy: ∃ δ > 0 : ∥ϕ2 − ui∥ < δ,
where ϕ2 denotes the Fiedler vector. Then, we obtain what we call a Fiedler environment.
Corollary 4.2 (Asymptotic Diffusion Distances). The norm of ∇Uij := Ui: −Uj: (row-difference)
is proportional to the approximate commute time between nodes i and j, which is

∑∞
t=0 d(i, j)

t,
where d(i, j) := ∥∇Uij∥. Therefore, the matrix D relies on Euclidean distances.

We prove both results in Appendix A. In Appendix B.1, we also give practical evidence of the need
to solve Trace-Ratio problems in an SGD context, instead of solving the original Trace problem in
Eq. 2. We also justify the convenience of conditioning U to A, U = fθ(A). Actually, this setting is
inspired by how the LINKX method Lim et al. (2021) exploits the graph topology.

Jumps and Filters. The bank of learnable structural filters {J0,J1, . . . ,JK} is the core of the
high-order exploration. Each filter Jk = (V,Ek, Ck) is an edge-attributed graph whose edges or
support Ek = {(ik, jk) ∈ V × V : ik, jk ∈ Jk} are given by the pairs of nodes belonging to the
jump Jk. In Eq. 2, this is implicitly defined with the expression Jk = Πk · exp (−D), where Πk is a
{0, 1}n×n projection matrix defined, for k > 0, as follows:

Πk(i, j) =

{
1−Πk−1(i, j) if j ∈ Idx[topk−1(i)]

0 otherwise (4)

with Π0(i, j) = I and topk−1(i) = {d(i, j1), . . . , d(i, jk)}, where d(i, jl) ≤ d(i, jl+1) for jl, jl+1 ∈
V and l = 1, 2, . . . , k− 1. Then, Idx[topk−1(i)] are the sorted positions of the distances wrt the node
i, i.e. the distance ranks. In this way, the product Jk = Πk · exp (−D) yields Ck and it is derivable
wrt D as in Gao & Ji (2019). Alternatively, we could also rely on the topK network Xie et al. (2020).

Individual GNNs. Each structural filter Jk feeds a vanilla GNN which obtains a partial embedding
Hk = σ(JkXWk). The GNN also receives the n× F matrix of node features X and xi denotes the
transpose of the i−th row of X. Since Jk = Πk · exp (−D), then, for a given node i, its aggregation
is given by xi =

∑
j e

−d(i,j)xj instead of being xi = Pkxi as in MixHop Abu-El-Haija et al. (2019)
or xi =

(∑
k βkP

k
)
xj as in Simple Graph Convolution (SGG) Chanpuriya & Musco (2022b).

Combining GNNs. Each partial embedding Hk = σ(JkXWk) is weighted by a learnable parameter
αk, where all the αk form a convex combination. Then, we concatenate all the weighted embeddings

6



Under review as a conference paper at ICLR 2024

to form the global embedding H := ∥Kk=1αkH
k = ∥Kk=1αkσ

(
JkXWk

)
. Since H feeds an MLP in

order to minimize the classification loss Lc as in MixHop, the global embedding tends to retain the
best partial embeddings for each node.

Homophilic Branch. One limitation of our method is that setting a small value for the hyperparameter
K is not enough to deal with homophilic graphs. For this reason, we have added an extra GNN
(the homophilic branch) that works as follows: HHB = σ(AXWHB). Therefore we concatenate
H := H|αHBH

HB , where
∑K

k=0 αk + αHB = 1. See, the optimal learned coefficients in Fig. 4
and the complete architecture in Appendix F.

5 RELATED WORK

In this paper, we explore High-Order GNNs (HO-GNNs) as a means for addressing heterophily Zhu
et al. (2020). One type of HO-GNN results from rewiring the edges in the graph. For instance, the
method in Bi et al. (2022) explores neighborhoods of several orders (hops) selecting those orders
that provide a high correlation between the node features. GATs Veličković et al. (2018) are also a
well-known rewiring method: the strength of each edge in the input graph is given by a trainable
weight. Diffwire Arnaiz-Rodríguez et al. (2022) is another trainable rewiring method. The basic idea
of Diffwire is to estimate the commute-times distance between each pair of nodes and use such a
distance matrix to mask the original adjacency matrix. Other non-differentiable rewiring methods
are mainly addressed to alleviate the over-squashing issue (bottlenecks obstruct the message-passing
process):Topping et al. (2022) and Giovanni et al. (2023).

A second type of HO-GNNs are Deep/Sequential hop-based methods, i.e. those models that address
the over-smoothing with a deep architecture. GGCNs Yan et al. (2022) attenuate over-smoothing
by performing edge correction (corrected edge weights are learned from node degrees, and signed
edges are learned from node features). However, Shortest-Paths-MPNNs Abboud et al. (2022) and
Ordered-GNNs Song et al. (2023) are more focused on performing robust aggregations. Shortest-
Paths-MPNNs compute the shortest paths between any pair of nodes. Then, for each node, several
separate aggregations are performed (each one for increasing lengths of the shortest paths); then,
the resulting embeddings are weighted. Ordered-GNNs rely on a similar principle: for each node,
the hierarchy of a tree rooted in that node is aligned with the hops wrt this node in the graph. As
neighboring nodes within k hops form a depth−k subtree, aggregations for shallow sub-trees precede
those for deeper ones. Ordered-GNNs introduce a differentiable method for splitting sub-trees.

Finally, Shallow/Parallel hop-based methods explore several hop orders in parallel and then integrate
the resulting embedding (e.g. via concatenation). MixHop Abu-El-Haija et al. (2019), FSGNNs Mau-
rya et al. (2021) and DualNets Maurya et al. (2022) compute several powers Pk, k = 1, . . . ,K
of the normalized adjacency matrix (transition matrix) P. Each power feeds a different GNN. The
resulting embeddings are weighed and concatenated for later discrimination. SIGN Frasca et al.
(2020) is similar to MixHop but it precomputes the aggregations PkX for the sake of scalability.
The Simple Graph Convolution (SGG) method Chanpuriya & Musco (2022b) improves MixHop by
learning polynomials of the transition matrix.

Finally, Generalized PageRank GNNs (GPR-GNNs)Chien et al. (2021a)learns jointly the best em-
bedding of each node feature and the best weight of each hop. This is very interesting, since the
suitability of Pk, which is encoded by a weight γk, influences the latent space of the features
H0 = fΘ(X) through a learnable function fΘ(.). As a result the k−th embedding is Hk = PkH0.
This mechanism allows GPR-GNNs to avoid over-smoothing and trade node and topology feature
informativeness. However, this strategy produces inconsistent results since GPR-GNNs are better
suited for heterophilic graphs, instead of being also useful for homophilic graphs.

Main Limitation of HO-GNNs. Most of the existing HO-GNNs explore different powers of the
normalized adjacency matrix (transition matrix) P. In other words, they are completely hop-based.
As a result, the HO-GNNs exploit the labels of the semi-supervised learning process either to alleviate
the over-smoothing issue (in the sequential case) or to weigh the importance of each hop order (in
the parallel case). However, as the structure of the input graph is static, the hops are static as well.
Consequently, the labels cannot be backpropagated to change the structure of the hops, but only the
relative importance of each hop or the extent of its aggregation support.
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Implications. As a result, dealing with heterophilic graphs goes beyond the potential achievements
of hop-based approaches (see our Experiments in section 6). Despite high-order hops being able to
connect distant nodes with the same label, such connections can be neither attenuated nor amplified
for the sake of classification loss. In this regard, parallel HO-GNNs claim that the powers Pk can
be interpreted as a bank of structural filters, i.e. a bunch of aggregators inspired by convolutional
filters such as Gabor filters Abu-El-Haija et al. (2019). However, an expressive characterization of a
structural filter requires that both its support and coefficients are learnable.

6 EXPERIMENTS AND DISCUSSION

Figure 4: Optimal attention for each jump.

Experimental settings.Table 1 presents the re-
sults obtained by each model on the standard
small-medium datasets Sen et al. (2008) Pei
et al. (2020a) Rozemberczki et al. (2019).
To ensure consistency, we used the same
10 random splits (48%/32%/20%) provided
by Pei et al. (2020a), along with the best
configuration for each model. We place
the code at https://anonymous.4open.science/r/
Diffusion-Jump-GNNs-8EE2/. The above configu-
rations were extracted from Table 1 Di Giovanni
et al. (2022) and Tables 3, 10, and 11 in Lim et al.
(2021). Overall, our model outperformed all
others or achieved a close second place, demon-
strating strong competitiveness. We assessed the
degree of structural heterophily using our metric R. For the sake of clarity, we define two HRs:
R < 8 indicating mid-low heterophily, and R ≥ 8 indicating high heterophily.

Table 1: Node-classification accuracies. Top three models are coloured by First, Second, Third.

TEXAS WISCONSIN CORNELL ACTOR SQUIRREL CHAMELEON CITESEER PUBMED CORA

HOM LEVEL 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
R 18.37 6.90 6.03 209.58 20.62 8.30 5.78 7.64 7.36
# NODES 183 251 183 7,600 5,201 2,277 3,327 19,717 2,708
# EDGES 295 466 280 26,752 198,493 31,421 4,676 44,324 5,278
# CLASSES 5 5 5 5 5 5 7 3 6

GGCN YAN ET AL. (2021) 84.86± 4.55 86.86± 3.29 85.68± 6.63 37.54± 1.56 55.17± 1.58 77.14± 1.84 77.14± 1.45 89.15± 0.37 87.95± 1.05
GPRGNN CHIEN ET AL. (2021B) 78.38± 4.36 82.94± 4.21 80.27± 8.11 34.63± 1.22 31.61± 1.24 46.58± 1.71 77.13± 1.67 87.54± 0.38 87.95± 1.18
H2GCN ZHU ET AL. (2020) 84.86± 7.23 87.65± 4.89 82.70± 5.28 35.70± 1.00 36.48± 1.86 60.11± 2.15 77.11± 1.57 89.49± 0.38 87.87± 1.20
GCNII CHEN ET AL. (2020) 77.57± 3.83 80.39± 3.40 77.86± 3.79 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.33± 1.48 90.15± 0.43 88.37± 1.25
GEOM-GCN PEI ET AL. (2020A) 66.76± 2.72 64.51± 3.66 60.54± 3.67 31.59± 1.15 38.15± 0.92 60.00± 2.81 78.02± 1.15 89.95± 0.47 85.35± 1.57
PAIRNORM ZHAO & AKOGLU (2019) 60.27± 4.34 48.43± 6.14 58.92± 3.15 27.40± 1.24 50.44± 2.04 62.74± 2.82 73.59± 1.47 87.53± 0.44 85.79± 1.01
GRAPHSAGE HAMILTON ET AL. (2017) 82.43± 6.14 81.18± 5.56 75.95± 5.01 34.23± 0.99 41.61± 0.74 58.73± 1.68 76.04± 1.30 88.45± 0.50 86.90± 1.04
GCN KIPF & WELLING (2017) 55.14± 5.16 51.76± 3.06 60.54± 5.30 27.32± 1.10 53.43± 2.01 64.82± 2.24 76.50± 1.36 88.42± 0.50 86.98± 1.27
GATVELIČKOVIĆ ET AL. (2018) 52.16± 6.63 49.41± 4.09 61.89± 5.05 27.44± 0.89 40.72± 1.55 60.26± 2.50 76.55± 1.23 87.30± 1.10 86.33± 0.48
MLP 80.81± 4.75 85.29± 6.40 81.89± 6.40 36.53± 0.70 28.77± 1.56 46.21± 2.99 74.02± 1.90 75.69± 2.00 87.16± 0.37
CGNNYAMAMOTO (2019) 71.35± 4.05 74.31± 7.26 66.22± 7.69 35.95± 0.86 29.24± 1.09 46.89± 1.66 76.91± 1.81 87.70± 0.49 87.10± 1.35
MIXHOP ABU-EL-HAIJA ET AL. (2019) 77.84± 7.73 75.88± 4.90 73.51± 6.34 32.22± 2.34 43.80± 1.48 60.50± 2.53 76.26± 1.33 85.31± 0.61 87.61± 0.85
FSGNN(8-HOP) MAURYA ET AL. (2021) 87.30± 5.29 87.84± 3.37 85.13± 6.07 35.75± 0.96 74.10± 1.89 78.27± 1.28 77.40± 1.90 77.40± 1.93 87.93± 1.00
GRAFF DI GIOVANNI ET AL. (2022) 88.38± 4.53 88.83± 3.29 84.05± 6.10 37.11± 1.08 58.72± 0.84 71.08± 1.75 77.30± 1.85 90.04± 0.41 88.01± 1.03
LINKX LIM ET AL. (2021) 74.60± 8.37 75.49± 5.72 77.84± 5.81 36.10± 1.55 61.81± 1.80 68.42± 1.38 73.19± 0.99 87.86± 0.77 84.64± 1.13
ACMII-GCN++ LUAN ET AL. (2022) 88.38± 3.43 88.43± 3.66 86.49± 6.73 37.09± 1.32 67.40± 2.21 74.76± 2.20 77.12± 1.58 89.71± 0.48 88.25± 0.96
ORDERED GNN SONG ET AL. (2023) 86.22± 4.12 88.04± 3.63 87.03± 4.73 37.99± 1.00 62.44± 1.96 72.28± 2.29 77.31± 1.73 90.15± 0.38 88.37± 0.75
ASGC CHANPURIYA & MUSCO (2022B) 85.14± 3.06 86.06± 3.75 86.22± 3.58 36.33± 0.79 58.38± 1.08 73.16± 1.07 66.86± 0.86 78.72± 0.88 77.52± 1.61

DJ-GNN 92.43± 3.15 92.54± 3.70 87.56± 1.32 36.93± 0.84 73.48± 1.59 80.48± 1.46 77.50± 1.33 90.08± 0.32 88.43± 0.91

Low Structural Heterophily. For these datasets, we list their optimal number of jumps (hyperpa-
rameter K): WISCONSIN (K = 5), CORNELL (K = 5), CITESEER (K = 5), PUBMED (K = 5)
and CORA (K = 5)). We find that a few jumps are enough for achieving or improving the SOTA.
However, not all jumps are equally important. For instance, WISCONSIN and CORNELL rely mostly
on the first two jumps (Fig. 4), while the remaining datasets rely on the homophilic branch (no jump).
Actually, CITESEER, PUBMED, and CORA are the datasets with the smallest edge heterophily (HOM
LEVEL). In addition, we are the best method in this regime except for CITESEER, where we are
very competitive (77.50 (ours) vs 78.02 (GEOM-GCN)). In the only case where we lose, we note
that the GEOM-GCN method relies on the geometry of the latent space. In this regard, CITESEER
is the dataset with the lowest structural heterophily (R = 5.78), i.e. the geometry of the latent
space is a fair representation of the topology of the graph. As a result, adding jumps may compli-
cate that geometry: actually, the most important branches are J0 and the homophilic branch (no jump).
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High Structural Heterophily. For these datasets Traud et al. (2011) Hu et al. (2020), we also
list their optimal number of jumps (hyperparameter K): TEXAS (K = 20), SQUIRREL (K = 8),
CHAMELEON (K = 12) and ACTOR (K = 3). Our best result is for TEXAS (R = 18.37), where we
significantly improve the SOTA (92.43 (ours) vs 88.38 (ACMII-GCN++, which is a multi-channel
GCN with adaptive channel mixing)). In SQUIRREL, we are slightly outperformed by FSGNN(8-
HOP) (73.48 vs 74.10) since our method needs higher frequency eigenfunctions in order to capture
the extreme degree variability of this dataset. However, we are very competitive in this dataset since
the SQUIRREL graph is very dense and we only need K = 8 jumps to achieve good results. We are
also the best model in CHAMELEON (whose structural heterophily is the smallest in this set): we
obtain 80.48 vs the second-best model FSGNN(8-HOP).

Parallel (Shallow) vs Sequential (Deep). Our method is Parallel (multi-branch shallow GNN) and
its performance is the best or it is very competitive in small-medium real-world datasets. There is one
exception, the PUBMED dataset, where we obtain 90.09, slightly outperformed by ORDERED GNN
with only 5 layers (90.15). This also happens with GCNII which explores 2 to 26 layers. We can
conclude that deep methods have a good performance in homophilic datasets but such a performance
decays significantly in heterophilic ones.

Table 2: Node-classification accuracies in large graphs. Top three models are coloured by First,
Second, Third.

PENN94 ARXIV-YEAR OGBN-ARXIV

HOM LEVEL 0.47 0.21 0.66
# NODES 41,554 169,343 169,343
# EDGES 1,362,229 1,166,243 1,166,243
# CLASSES 5 5 40

MLP 73.61± 0.40 36.70± 0.21 55.91± 0.15
GCN 82.47± 0.27 46.02± 0.26 59.61± 0.23
GAT 81.53± 0.55 46.05± 0.51 60.27± 0.21
MIXHOP 83.47± 0.71 51.81± 0.17 OOM
LINKX 84.71± 0.52 56.00± 1.34 55.31± 0.81

DJ-GNN 84.84± 0.34 49.21± 0.20 63.23± 0.12

We have also tested our model in Very Large Graphs (see Table 2). In this regard, we note that
the memory requirements of our method − O(n2), where n is the number of nodes −, force us to
decouple the diffusion pump from the jump exploration. We first learn the matrix of pairwise diffusion
distances in an unsupervised way. Later, we use it in a static way to minimize the classification loss.
Despite that limitation, we obtain a very competitive performance both for PENN94 (84.84 vs 84.71
with LINKX) and OGBN-ARXIV (63.23 vs 60.27 with GAT). However, our performance decreases
in ARXIV-YEAR which is more heterophilic than the others: memory limitations force us to use only
K = 3 hops for the three datasets.

Finally, we extend our experimental results in Appendixes D (SBMs) and E (hyper-parameters).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose DIFFUSION-JUMP GNNS, a multi-branch GNN architecture that addresses
the heterophily issue from a structural perspective. Firstly, we define node-classification in terms of
a Dirichlet problem. This allows us to define a new measure of heterophily: structural heterophily.
Having this measure in mind we formulate a loss function that governs the interplay between the two
main components of our architecture: the diffusion pump (which generates diffusion distances) and
the parallel jumps (which drive the exploration of links between nodes with similar labels). The
most important contribution of our model is that the diffusion distances, and consequently the jumps
and the structural filters derived from them, are fully learnable. Our experiments show that our model
outperforms the SOTA or it is very competitive. Finally, our future work includes: a) scalability, in
terms of memory, b) automatic jump selection, and c) improving SGD for Trace-Ratio problems.
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A INSPIRING METHODS

We devote this appendix to introduce some links with very inspiring methods in the literature. For
instance, our Dirichlet formulation is inspired by classical graph-based semi-supervised methods. In
particular, the work in Zhou et al. (2003) poses the problem of propagating known labels ℓ(B) to
unknown nodes u ∈ U . Let Y be a n× c matrix where Y(i, j) = 1 means that node i ∈ B has label
j and Y(i, j) = 0 otherwise. Then, we have the following result:
Theorem A.1 (Dichilet label propagation Zhou et al. (2003)). The optimal label of each node i

is given by y(i) = argmaxj≤c F(i, j), where F = β (I− αP)
−1, being P the transition matrix

and α + β = 1. In addition, F minimizes 1
2

(
Tr[FT△F] + µ

∑
i ∥Fi: −Yi:∥2

)
, where µ > 0 is a

regularization parameter satisfying α = 1/(1 + µ).

Consequently, the diffusion pump in our model is governed by a similar equation: Eq. 2. We prove
the above theorem and its relationship with absorbing random walks Doyle & Snell (2000) and
semi-supervised image segmentation Grady (2006) in Appendix C.

Finally, another important source of inspiration was the design of escape probabilities in terms of
diffusion equations. Actually, there is a substantial body of theory linking spectral clustering, random
walks, diffusion distances, and meta-stable states Meilă & Shi (2001)Nadler et al. (2005)Nadler &
Galun (2006) to be analyzed also in the same appendix. Herein, we only highlight the following
result:
Theorem A.2 ( Nadler & Galun (2006)). Given a probability function in Boltzmann form p(x) =
e−U(x) in a given latent space X, the random walk with transition matrix P converges to the
stochastic differential equation ẋ(t) = −∇U(x) +

√
2ẇ(t), where w denotes Brownian motion.

Also, the potential time scales describing the expected time of passage between clusters rely on the
potential function U(x).

We expand this result, and more links with meta-stable states, in Appendix B.4.

B FORMAL RESULTS WITH PRACTICAL IMPLICATIONS

For the sake of clarity, in this appendix we develop the key concepts of the theorems stated in the
paper instead of providing detailed proofs. Our emphasis here is on the practical implications of each
result. For more details, we refer the reader to the cited papers.

B.1 TRACE RATIO AND SGD

The Trace Ratio Problem. Min UT△U is achieved by Vn×p whose p columns are given by
the eigenvectors of the p smallest eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λp of the Laplacian △. Then,
Tr[VT△V] = λ2 + . . . + λp, when the graph G = (V,E) with adjacency matrix A is connected.
However, V does not necessarily minimize Tr[VTDV]. As a result, we have that

ρ∗ := MinUTU=I
Tr[UT△U]

Tr[UTDU]
≤ Tr[VT△V]

Tr[VTDV]
≤ λ2 + . . .+ λp

d1 + . . .+ dp
, (5)

where d1 ≤ d2 ≤ . . . ≤ dn are the sorted degrees. As a result, we have the following bounds:

λ2 + . . .+ λp

dp+1 + . . .+ dn
≤ ρ∗ ≤ λ2 + . . .+ λp

d1 + . . .+ dp
. (6)

The definition of ρ∗ plays a key role in the original trace-ratio optimization. Following Ngo et al.
(2012), such a problem is formulated in scalar terms, i.e. in terms of finding

ρ∗ = arg min
UTU=I

f(ρ) := Tr[UT△U]− ρTr[UTDU] . (7)

Actually, for ρ∗ we have have that

MinUTU=ITr[UT (△− ρ∗D)U] = 0 . (8)

Therefore, the trace-ratio problem can be solved by alternating two updating steps:
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U : Given ρ, apply the Lanczos method to obtain the p largest eigenvalues of the transition
matrix P− ρD (the smallest of △− ρD) and their associated eigenvectors U.

ρ : Given the current eigenvectors U, update ρ = Tr[UT△U]
Tr[UTDU]

In the above process, the update of U ensures the orthogonality constraint.

The Trace Ratio and SGD. However, solving the trace-ratio problem through gradient descent
drives us to a different solution from the eigenvectors of △ − ρ∗D. For instance, consider the
Dirichlet loss LD = Tr[UT△U]

Tr[UTDU]
. Then, its gradient (supposing that the orthogonality is enforced by a

complementary loss) is given by:

∇LD :=
2△U− 2ρDU

Tr[UTDU]
. (9)

Therefore, ∇LD = 0 implies △U = ρ∗DU, where ρ∗ → 0 is the asymptotic value of the trace ratio.
As a result, we have that the optimal U satisfy △̃U = ρ∗U, i.e. the gradient descent converges to
the (orthonormal) functions of the normalized Laplacian △̃ associated with the value ρ∗. However,
as ρ∗ is not necessarily an eigenvalue of △̃, but it is close to the Fiedler value λ2, we denote U as a
Fiedler environment. It is an environment since the p columns u:j are mutually orthonormal and
close to the Fiedler vector ϕ2 insofar their Dirichlet energies ρ∗j = u:j

T △̃u:j satisfy |λ2 − ρ∗j | < ϵ
with ϵ → 0 (Theorem 4.1).

In our experiments, we have chosen the trace-ratio formulation because:

a) It leads an implicit normalization of the gradient ∇LD, namely Tr[UTDU].

b) The gradient is more structured when we apply the constrain U = fθ(A), where A is the
adjacency matrix.

Regarding a), our implicit normalization alleviates the problem of landing in local minima due to
the orthonormalization constraint (that we also enforce in the global loss). As noted Edelman et al.
(1998), constraints of the form UTU = I define a Riemannian manifold and the trace problem s.t.
them is not geodesically convex. In Xu et al. (2018) this is addressed by introducing a Riemannian
gradient and retraction normalization.

However, our main gain in performance is achieved when we address b) via the joint effect of
normalization and U = fθ(A). In our preliminary experiments, we compared the gradient when
applying the constraint U = fθ(A) vs the one when doing only U = fθ(I). Discarding the biases,
and the non-linearities in both cases, we have U = AW vs U = W. For simplicity, we consider the
gradient wrt a single column, i.e. we analyze u = Aw vs u = w

∇L′
D,θ :=

2(△− ρD)(Aw)

Tr[(Aw)TD(Aw)]
vs ∇LD,θ :=

2(△− ρD)w

Tr[wTDw]
. (10)

Given a random initialization of w, this vector plays the role of a random projector of the rows
in A. Following, the Johnson-Lindenstrauss Lemma, ŵ = Aw tends to replicate the structure
of the adjacency. Actually, if the entries of wi ∼ N (0, 1) then, those of the projection satisfy
ŵi ∼ N (0, d2i ), where di is the degree of node i. As a result, if we have c well-defined communities
in the graph G = (V,E) with adjacency matrix Aw, then the projection ŵ is near piecewise constant
(actually the norm of the i−th row is preserved: ∥Ai:∥ ≈ ∥x̂∥). As a result, the projection ŵ is more
structured than w and this is propagated and even amplified during gradient descent. In addition, the
normalization of ∇L′

D,θ is stronger than that of ∇LD,θ.

Overall, when evaluating the performance in SQUIRREL and CHAMELEON using only U = fθ(I)
(i.e. using ∇LD,θ) we only obtain 41.38 ± 2.98 and 58.48 ± 4.69. However, using U = fθ(A)
(gradient ∇L′

D,θ) leads to 73.48± 1.59 and 80.48± 1.46 respectively.

Finally, a detailed impact of the two above formulations in the variance of the SGD as in An et al.
(2021) is beyond the scope of this paper.
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B.2 DIFFUSION DISTANCES

As explained above, optimizing the Dirichlet loss leads to Fiedler environments, i.e. the rows
Ui: contain the p nearly orthogonal eigenvectors with eigenvalues γ1 = 1 > γ2 ≥ . . . ≥ γp.
Following Nadler et al. (2005), the diffusion distance Dt(i, j) at time t between two nodes i and j is
defined spectrally as:

D2
t (i, j) :=

∑
k

1

π(k)
(p(k, t|i)− p(k, t|j))2 = Γ2t∥U∗

i: −U∗
j:∥2 , (11)

where π(k) := dk/vol(G) are the components from the stationary probability distribution
limt→∞ p(j, t|i) = π, i.e. the eigenvector U∗

:1 corresponding to γ1 = 1. In the above equa-
tion, U∗ denote the true eigenvectors of the transition matrix P, and Γ := diag(γ1, γ2, . . . , γp) is the
diagonal matrix with the corresponding eigenvalues. Thus, Eq. 11 can be explained in the following
terms:

a) D2
t (i, j) compare the probabilities that two random walks (one starting in i and another one

in j) reach any other node k in time t.
b) The spectral interpretation relies on the spectral theorem applied to the transition matrix

P = U∗ΛU∗T . As a result, Pt = U∗ΓtU∗T =
∑n

r=1 γ
t
rU

∗
:rU

∗
:r
T , with n = |V |.

However, since determining what is the correct diffusion time is very hard (it is usually a hyper-
parameter in some GNNs), we are interested in the asymptotic diffusion distance D2

t→∞. Qiu and
Hancock Qiu & Hancock (2007) determined that

∞∑
t=0

D2
t (i, j) =

n∑
r=2

1

1− γr

(
U∗

ri −U∗
rj

)2
(12)

i.e. eigenvalues {1− γr} of the normalized Laplacian △̃ are used instead of those of P. Actually,
the right side of the above equation is the well-known commute times Chandra et al. (1989) distance
CT(i, j). Note that such a distance is dominated by the Fiedler value and vector: λ2 = (1− γ2) and
U∗

:2, respectively. This fact simplifies the interpretation of our approximate diffusion distance as
follows:

a) Our approximated eigenvectors, contained in the p columns of U have eigenvalues (Dirichlet
energies) ρ∗r close to ρ∗ (the optimal trace ratio achieved by the Dirichlet loss).

b) Theorethically, we have that the smallest ρ∗rmin
satisfies λ2 ≤ ρ∗rmin

. Therefore, if we order ρ∗r
in ascending order, then we obtain

∞∑
t=0

D2
t (i, j) ≈

p∑
r=1

1

ρ∗r
(Uri −Urj)

2 ≈ CT(i, j) . (13)

c) However, in the heterophilic regime (where the labels break the structure) we usually have
λ2 ≪ ρ∗rmin

. See for instance the Fiedler environments obtained for SBMs in Figure 5 and
the discussion below (Appendix D). As a result, in practice we have

d(i, j) :=

p∑
r=1

(Uri −Urj)
2
= ∥Ui: −Uj:∥2 = αCT(i, j) where α ≪ 1. (14)

This proofs Corollary 4.2.

B.3 ESCAPE PROBABILITIES

Approximating commute times distances is very convenient for our jump-based analysis, since it
is well known that the escape probability is related to the commute times distance Doyle & Snell
(2000): pesc = 1

CT(i,j) . Escape probabilities are actually dependent on the spectral gap (approximated
by the Fiedler value λ2). This is illustrated in the very first Figure of this paper (Figure 2), where a
random walker tries to escape from the community Ā. A classic result Meilă & Shi (2001) shows that
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the probability that a random walk started in its asymptotic (t → ∞) distribution π is transitioning
from i ∈ Ā to j ∈ A in one step is pesc(Ā, A) = cut(Ā,A)

vol(Ā)
, where cut(Ā, A) =

∑
i∈Ā,j∈A eij (in the

Figure we have that cut(Ā, A) = 1).

Therefore, as d(i, j) = αCT(i, j), with α ≪ 1 our jump-hierarchy is closer to that of the escape
probability than choosing CT(i, j) as asymptotic diffusion distance. In addition, we are sensitive to
the spectral gap since the Fiedler environment contains approximations of the Fiedler vector, and the
spectral gap is approximated in turn by the Dirichlet energy of the Fiedler vector.

B.4 CLUSTERING AND METASTABLE STATES

Minimizing the Dirichlet loss in conjunction with the classification loss (see Eq 2) leads to a trade-off
between two clustering problems. On the one hand, we infer a piecewise-smooth latent space. On the
other hand, we simultaneously try to preserve the structure of the input graph as much as possible. In
both cases, we try to find metastable states. A metastable state is a concept borrowed from dynamical
systems but basically, it is an equilibrium state in a random process (for instance the one defined
by a random walk that tries to escape from a community in Figure 2). Metastable states are also
characterized by wells in potential functions U(x), where x is a state and its probability is given by
the Boltzmann distribution p(x) = e−U(x). Then, the characteristic relaxation processes and time
scales of a given space are usually described by a Stochastic Diffusion Equation (SDE):

ẋ(t) = −∇U(x) +
√
2ẇ(t) (15)

where w denotes Brownian motion. In the above equation, we have a drag term (the gradient) that
drives the process to a deep well, and a random term (the Brownian motion) that allows us to escape
from local minima. During this process, we find different time scales: fast scales while we are moving
through a given well, and slow scales when we try to escape from it. For instance, escaping from the
right community in Fig. 2 takes a long time which depends on the difference between the potential at
the well U(xmin) and that of the saddle point U(xmax) Nadler & Galun (2006). This time is in turn
the inverse of the spectral gap, i.e. there is a spectral interpretation of the SDE. Such interpretation
comes from the analysis of the Fokker-Planck equation:

∂tp(x, t) = ∇ · [∇p(x, t) + p(x, t)∇U(x)] , (16)

This equation leads to the pdf of the SDE and it has a spectral interpretation. More precisely, the eigen-
vectors of P converge to the eigenfunctions Ψ(x) of the Fokker-Planck equation as follows Nadler &
Galun (2006)Nadler et al. (2006):

∇̃Ψ(x) := △Ψ−∇Ψ · ∇U = −µΨ(x) , (17)

where △ = ∇ · ∇ is the Laplacian and µ the eigenstates (eigenvalues). As a result, we may use the
Fiedler vector to characterize the separation between two clusters. The steepest the Fiedler vector,
the better the separation (Theorem A.2). Interestingly, the third eigenvector ∇̃ may not work well as
a state separator when we have different spatial scales Nadler & Galun (2006).

C DIRICHLET LABEL PROPAGATION

Herein, we expand the Dirichlet methods for semi-supervised learning cited in Appendix A. In
particular, the work in Zhou et al. (2003) poses the problem of propagating known labels ℓ(B) to
unknown nodes u ∈ U . Let Y be a n × c matrix where Y(i, j) = 1 means that node i ∈ B has
label j and Y(i, j) = 0 otherwise. Then, the optimal label of each node i is given by y(i) =
argmaxj≤c F(i, j), where

F = β (I− αP)
−1

, (18)
being P the transition matrix and α+β = 1. The n×c matrix F works as a basic node representation
(not exactly a latent space) since each of is c rows is stochastic. However, its construction exploits
the powers of P as follows:

F(t) = (αP)t−1Y + (1− α)

t−1∑
i=0

(αP)iY . (19)
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and
F = lim

t→∞
F(t) = (1− α)(I− αP)−1 . (20)

In addition, we also noted that F is also the solution of the Dirichlet problem:

Min LQ =
1

2

(
Tr[FT△F] + µ

∑
i

∥Fi: −Yi:∥2
)

. (21)

where µ > 0 is a regularization parameter satisfying α = 1/(1 + µ). The proof is obtained by setting
the gradient to zero:

∇LQF = F−PF+ µ(F−Y)

= F− 1

1 + µ
PF− µ

1 + µ
Y

= F− αPF− βY = 0 , (22)

which leads to Eq. 19.

Concerning the relationship of this formulation with absorbing random walks Doyle & Snell (2000),
the main idea is to extend the n× n transition matrix P so that:

a) We include an upper block with the p × p identity matrix I. This block represents the p
absorbing states, where p = |ℓ(B)|. Then the n× p block R encodes the prior probabilities
of reaching an absorbing state from a non-absorbing one.

b) The absorbing probabilities are given by B := (In×n −P)−1R .

Finally, the random-walker version Grady (2006) is quite similar to the above one, but reorganizes
the Laplacian matrix (Theorem A.1).

D SBM ANALYSIS

The following experiment aims to illustrate the interplay between our novel measure of structural
heterophily R and the extent of the spectral gap. We also show the Fiedler Environments and
how they are influenced by the classification loss (labels). For each heterophilic regime, we show
both the corresponding pairwise distance matrix (diffusion map) and the resulting homophiliation.
We have depicted in Figure 5 the main ingredients of our approach as a means of illustrating some
technical details introduced in Appendix A. In particular, when analyzing SBM graphs under structural
heterophily we observe several interesting phenomena.

Original vs Learned. Instead of precalculating the eigenvectors, as in Directional GNNs Beaini et al.
(2021), we learn them. Our learned (approximate) eigenvectors are relatively close to the Fiedler
vector (in terms of how they discriminate the two classes). This is what we call Fiedler Environments
but, in a semi-supervised setting, i.e. the learned eigenvectors are reactive both to the Dirichlet loss
and to the classification loss. Despite being noisy, the vectors in the Fiedler Environments are able of
partitioning a class when needed (especially for high values of R).

Diffusion Map. Our pairwise distances are also reactive to semi-supervised classification. However,
the Dirichlet loss tends to flatten the intra-communities distances as much as possible. Flattening
is a mechanism to enforce intra-community diffusion in the homophilic regime. In the heterophilic
regime, however, the diffusion map enforces exploration via high-order jumping (see lateral steps in
the blue region and the loss of the red peak in the small community).

Embedding. We can also see how the embedding is affected by structural heterophily. When we
have a structural cluster with nodes of two classes, the respective embeddings are correctly separated,
but the margin of this separation decreases as R increases. This can be seen in graphs that have high
R ≫ 1, where it is common to find subclusters of nodes that belong to the other classes.

Interplay between R and the gap. Finally, we extend the experiments of Chanpuriya & Musco
(2022a) by incorporating a third axis in addition to variate p and q. This new axis is the structural
heterophily. We proceed as follows. We generate four basic SBMs attending to increasing spectral
gaps: p−q

p+q ∈ {0.2, 0.5, 0.67, 0.98}. For each basic SBM we have generated six levels of increasing
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Input Graph = 1 = 5.80= 3.74 = 9.68

Eigenvectors

Pairwise Distance

Embedding

Figure 5: Structural Heterophily in SBMs. Left: The original homophilic graph (First row), its
p = 3 eigenvectors (Second row), the pairwise distance matrix (Third row), and the resulting
embedding. The remaining columns to the right have the same structure for increasing levels of
structural heterophily. Note the evolution of the Fiedler Environments and the homophiliations. In all
cases, we use K = 10 jumps.

Figure 6: Interplay between heterophily and the spectral gap p−q
p+q . Left: Results wrt structural

heterophily. Right: Results wrt node homophily.

structural heterophily R. In parallel, we also generate six levels of increasing node homophily as a
means of complementing structural heterophily.

We show our results in Figure 6.

a) Small Gaps help. Our method is based on spectral clustering, which means that keeping the
gap low factor is key. This helps our method to choose whether to jump outside the cluster

19



Under review as a conference paper at ICLR 2024

looking for a node with the same label (Heterophilic regime) or to stay and only look around
(homophilic regime). This common case is supported by our method without problems.

b) Low/Medium Structural Heterophily. If the structure is quite correlated with the label
and the spectral gap is not too high, our method is able of achieving good results even when
the structure is noisy.

c) Large Gaps lead to oversmoohing. Our worst performance is achieved when the inter-class
message passing is massive. This leads to oversmothing due to the high connectivity of the
graph. This high connectivity cannot be controlled by our pump (see the blue dots).

We have also performed the same experiment, but changing the structural heterophily measure to
node homophily, in order to display the difference between both. Note that our measure fails when
the spectral gap is large. This happens because the Dirichlet energy in a near-complete graph is
minimal. This lack of structure leads R to consider that all the nodes are in the same cluster, i.e. is
no heterophily).

E EXPERIMENTAL AND COMPUTATIONAL DETAILS

In this section, we provide details about the datasets (see Table 3) and all the parameters and
configurations of our experiments (see Table 4 in order to clarify the architecture and the results
better. DIFFUSION-JUMP GNNS is implemented in PyTorch Paszke et al. (2019), using PyTorch
Geometric Fey & Lenssen (2019) and ogbn datasets Hu et al. (2020). For reproducibility, code, and
instructions are available on our GitHub with all the selected configurations and logs. We have also
included the computational (See Figure 7) in order to clarify the derivability of topk in PyTorch.

Table 3: Statistics of the datasets used in our experiments.

DATASET AVG D DENSITY NODE H CLASS H

TEXAS 1.77 0.0090 0.07 0.001
WISCONSIN 2.05 0.0080 0.17 0.094
CORNELL 1.62 0.0080 0.11 0.047
ACTOR 3.94 0.0005 0.16 0.011
SQUIRREL 41.73 0.0080 0.09 0.025
CHAMELEON 15.85 0.0070 0.10 0.062
CITESEER 2.73 0.0008 0.71 0.627
PUBMED 4.49 0.0002 0.79 0.664
CORA 3.89 0.0014 0.83 0.776
PENN94 3.89 0.0014 0.83 0.776
OGBN-ARXIV 7 0.0004 0.66 0.444
ARXIV-YEAR 7 0.0004 0.22 0.272

In the following Table 4, we include the hyperparameters that have yielded the best results during the
experimentation phase. It is worth noting that the experiments were conducted using the same 10
random splits as in Pei et al. (2020c), training during 700 epochs and utilizing early stopping.

Table 4: Best hyperparameters for our datasets.

DATASET HIDDEN CHANNELS DROPOUT LR WEIGHT DECAY K/#JUMPS

TEXAS 64 0.2 0.03 0.0005 20
WISCONSIN 64 0.5 0.03 0.0005 5
CORNELL 128 0.5 0.03 0.001 5
ACTOR 16 0.2 0.03 0.0001 3
SQUIRREL 128 0.5 0.003 0.0005 8
CHAMELEON 128 0.35 0.003 0.0005 12
CITESEER 128 0.5 0.003 0.0005 5
PUBMED 128 0.3 0.01 0.0005 3
CORA 128 0.5 0.002 0.0005 5
PENN94 16 0.5 0.001 0.0001 3
OGBN-ARXIV 128 0.3 0.01 0.0005 3
ARXIV-YEAR 128 0.2 0.003 0.0005 3
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Figure 7: The Computational Graph for K = 3 jumps. All branches depend on the diffusion pump
(top-left) except HB (the Homophily Branch, top-right).
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Figure 8: Proposed architecture, for k = 3, where we can see 3 branches that use the structural filters
{J0,J1,J2}, and one additional branch that uses the initial adjacency (the homophilic branch).

F THE ARCHITECTURE OF DIFFUSION-JUMP GNNS

DIFFUSION-JUMP GNNS have the following elements (see Fig. 8):

a) We have a diffusion pump (in blue) which generates diffusion distances d(i, j) by learning
the nontrivial top eigenvectors of P subject to the labeling of the training set. These distances
are adjusted during backpropagation.
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a) Given the diffusion distances d(i, j) we compute the jump hierarchy (see Figure 2). Given a
node i we have that i ∈ J0

i (k = 0) is the closest node wrt itself, j1 ∈ J1
i (k = 1) are nodes

so that only j1 is closer to node i than any of them, j2 ∈ J2
i (k = 2) are nodes so that only

the nodes in J1 are closer to i than any of them, and so on. Each of the sets Jk =
⋃|V |

i=1 J
k
i ,

where V are the nodes of the graph G = (V,E), is called a jump.
b) The edges Ek = {(ik, jk) ∈ V × V : ik, jk ∈ Jk} define the support of the jump and the

coefficients c(ik, jk) = g(d(ik, ik)) are given by a function g(.) of the diffusion distances
(for example the neg-exponential).

c) Then, the structural filter Jk = (V,Ek, Ck) is an edge-attributed graph where the edge
attributes are the coefficients Ck = {c(ik, jk)}. Each structural filter is fully learnable

d) Each structural filter Jk with k = 0, 1, . . . ,K feeds a GNN parameterized by Wk and the
resulting embedding Hk = σ(JkXWk) is weighted by a learnable parameter αk subject to∑K

k=0 αk = 1. All the weighted embeddings are concatenated and feed a forward network
for classification.
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