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Abstract

Federated learning is an exciting area within machine learning that allows cross-silo
training of large-scale machine learning models on disparate or similar tasks in a privacy-
preserving manner. However, conventional federated learning frameworks require a syn-
chronous training schedule and are incapable of lifelong learning. To that end, we propose
an asynchronous decentralized federated lifelong learning (ADFLL) method that allows
agents in the system to asynchronously and continually learn from their own previous ex-
periences and others’, thus overcoming the potential drawbacks of conventional federated
learning. We evaluate the ADFLL framework in two experimental setups for deep rein-
forcement learning (DRL) based landmark localization across different imaging modalities,
orientations, and sequences. The ADFLL was compared to central aggregation and conven-
tional lifelong learning for upper-bound comparison and with a conventional DRL model
for lower-bound comparison. Across all the experiments, ADFLL demonstrated excellent
capability to collaboratively learn all tasks across all the agents compared to the baseline
models in in-distribution and out-of-distribution test sets. In conclusion, we provide a
flexible, efficient, and robust federated lifelong learning framework that can be deployed in
real-world applications.
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1. Introduction

Federated Learning (FL) has recently emerged as a promising approach enabling multiple
agents to train a model collaboratively without sharing their data (Adnan et al., 2022),
which protects data privacy and reduces computational costs at the local agent level by
distributing the computation to multiple agents to train the model on their local data and
sharing only the model updates with a central server. FL implementations have shown
promising results in various medical applications (Roth et al., 2020; Jiang et al., 2022; Yan
et al., 2021). FL frameworks often rely on synchronized learning schedules, meaning all
participating agents train simultaneously and synchronously communicate with the server.
Additionally, conventional FL approaches cannot perform Lifelong Learning (LL) to dynam-
ically integrate information from newer nodes joining the federation or retain information
from older nodes leaving the federation, an essential aspect of machine learning applied to
medical imaging with constantly changing medical imaging protocols and emergence of new
diseases such as COVID-19 (Karani et al., 2018a; Zheng et al., 2023; Derakhshani et al.,
2022; Karani et al., 2018b).

Figure 1: Illustration of asynchronous decentralized federated lifelong learning (ADFLL)
set up for cross-modality 3D localization of spleen. The blue, orange, and green
boxes represent different agents in the setup. Each agent sequentially encounters
two different imaging modalities for along with experiences shared by the other
nodes, enabling them to learn to localize the spleen across all four modalities (as
opposed to just the two they encountered).
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To address these limitations, we propose ADFLL, an asynchronous decentralized feder-
ated lifelong learning framework constructed using a network of lifelong learning nodes. We
develop and evaluate ADFLL using deep reinforcement learning (DRL) as the base model
architecture at each node for the task of 3D landmark localization in medical imaging vol-
umes. DRL with LL capability using selective experience replay (SERIL) has previously
been validated for continual landmark localization across different imaging environments
using DRL for medical imaging and also forms the basis of LL for each node in ADFLL
(Isele and Cosgun, 2018; Rolnick et al., 2019; Zheng et al., 2023). SERIL techniques allow
for LL by simultaneously training from a selected sample of a model’s previous experi-
ences in addition to the model’s current task. ADFLL expands this capability of SERIL
to a collaborative setup by allowing SERIL nodes to not only learn from their own previ-
ous experiences but also from experiences shared by collaborator nodes, thereby enabling
continual learning from peers, as shown in Figure 1.

In this work, we evaluated ADFLL across two different experimental setups for cross-
domain 3D landmark localization in multiparametric brain MRI and multi-modality whole
body imaging in-distribution and out-of-distribution datasets using deep reinforcement
learning (DRL). In addition, we evaluated the ability of ADFLL framework to scale with
increase number of agents as well as integrate and retain information without catastrophic
forgetting in different LL scenarios with nodes leaving and joining the framework.

2. Method

2.1. Lifelong deep reinforcement learning

We implemented DRL based on the deep Q-network (DQN) algorithm, as illustrated in
Figure 2. The 3D DQN model implemented in this work was adapted from (Mnih et al.,
2013; Alansary et al., 2018; Vlontzos et al., 2019; Parekh et al., 2020). The environment
was depicted using a 3D imaging volume and the agent was represented by a 3D bounding
box capable of six distinct actions: a ∈ x++, x--, y++, y--, z++, z--. The state was defined
by an agent’s current location (or a chain of locations), each represented by a 3D bounding
box of 45× 45× 11 pixels. The reward is calculated by the change in distance to the target
landmark location before and after the agent takes an action. The agent’s exploration within
the environment generated state-action-reward-resulting state [s, a, r, s′] tuples, which are
recorded and sampled in the experience replay buffer (ERB) over multiple episodes.

We implemented lifelong learning using selective experience replay (Rolnick et al., 2019;
Zheng et al., 2023), a model-agnostic lifelong learning approach that enables sharing experi-
ences across different models. ERBs produced by DRL agents during the previous training
enable us to achieve lifelong learning. To learn a generalized representation of current and
past tasks, the model selects a batch of experiences from the ERB of its current task and
the ERBs of previous tasks during training. The information in the ERBs is non-sensitive
as the state and resulting states are tiny fractions of the total 3D image, roughly 0.3%.

2.2. Asynchronous Decentralized Federated Lifelong Learning

We developed the Asynchronous Decentralized Federated Lifelong Learning (ADFLL) by
constructing a network of lifelong DRL agents with the additional modification in the train-
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Figure 2: Illustration of asynchronous decentralized federated lifelong learning setup. Blue
circles represent individual agents, and orange circles represent the hubs. Each
agent is capable of training from current task ERBs, personal experience ERBs,
and ERBs from other agents.

ing setup that allows each agent to sample experiences from the current dataset ERB, the
agent’s personal experiences, and the incoming experiences from other agents, as shown
in Figure 2. Each agent shares their database of personal experiences with each other to
facilitate learning from each other’s experiences. More specifically, once an agent finishes
training with a dataset, the resulting experience from the training is shared with the net-
work. As a result, every agent in the network can learn from each other’s experiences,
thereby integrating federated lifelong learning capability.

Furthermore, to address the communication inefficiencies of an all-to-all decentralized
federated learning framework, we use a predefined set of hub nodes that act as communica-
tion hubs for spatially adjacent nodes in the network, as shown in Figure 2. Subsequently,
every node in the network exclusively and asynchronously communicates with its nearest
hub node. By periodically synchronizing their databases with each other, the hub nodes
regulate and preserve the experiences in the system in case of communication failures or
node dropouts. Our code is available at: https://github.com/vishwaparekh/ADFLL.

3. Experimentsal Setup

3.1. Baseline Agents

All-knowing agent: Agent X is trained using central aggregation of all the data across
all the ADFLL agents in one place. This gives us the baseline ”upper bound” performance
for comparison to the ADFLL agents.

Conventional lifelong DRL agent: Agent M has sequential access to all the datasets
and forms an ”upper bound” comparison between lifelong learning with and without expe-
rience sharing between lifelong learning DRL agents.

Conventional DRL agent: Agent Y is a conventional DRL with access to only one
dataset, forming our ”lower bound” baseline for performance comparison with ADFLL
agents.
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3.2. Clinical Data

Multiparametric Brain MRI Dataset: We used the multiparametric MRI (mpMRI)
brain tumor segmentation (BraTS) dataset (Menze et al., 2014) in this study. This dataset
consisted of 285 patients and included pre-contrast T1-weight, post-contrast T1-weighted,
T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) sequences in the axial
orientation. We randomly sampled a subset of 100 patients for this study (60 patients with
high-grade glioma (HGG) and 40 patients with low-grade glioma (LGG)). We split the
100 patients into two parts 80:20. 80 were used for training and 20 for evaluation, with the
training set consisting of 48 HGG and 32 LGG tumors and the test set consisting of 12 HGG
and 8 LGG tumors. We reconstructed the dataset to include all three imaging orientations
(coronal, sagittal, and axial). As a result, we obtained twenty-four imaging environments
with combinations of two pathologies, 4 imaging sequences, and 3 image orientations. All
the experiments were performed for the task of left ventricle localization. A sample of 8
task-environment pairs is shown in Appendix Fig. 4.

Multimodality Whole-Body Imaging Dataset: All studies were performed in ac-
cordance with the institutional guidelines for clinical research under a protocol approved
by our Institutional Review Board (IRB), and all HIPAA agreements were followed for this
retrospective study. Our dataset consisted of 50 images volumes, 10 from each imaging
sequence type (PET, CT, MRI-T1, MRI-DIXON-F, and MRI-DIXON-W). The PET/CT
dataset was acquired using a Biograph mCT 128-slice PET/CT scanner (Siemens Health-
ineers). For the 18F-DCFPyL scans, patients were intravenously injected with no more
than 333 MBq (9 mCi) of radiotracer approximately 60 min before image acquisition. The
field of view was vertex to mid-thigh for 18F-DCFPyL. The T1, DIXON-F, and DIXON-W
sequences were sampled from the whole body (WB) multiparametric MRI dataset that was
acquired using an imaging protocol that scanned from the shoulders to the lower mid calf
and described in (Leung et al., 2020). Each of the five imaging sequences was annotated
with 3D spleen localization for the experiments. In addition thirty-seven imaging volumes
were randomly sampled from the same datasets for internal validation (10 PET, 3 CT, 4
MRI-T1, and 10 MRI-DIXON-F and W).

Test Set: All the ADFLL agents and the baseline agents were evaluated using external
out-of-distribution datasets sourced from The Cancer Imaging Archive (TCIA) and the
Medical Segmentation Decathlon (MSD) databases. More specifically, we sampled a total
of 10 PET volumes from the NSCLC-Radiogenomics (N=4) and ACRIN-NSCLC-FDG-PET
(N=6) collections (Gevaert et al., 2012; Clark et al., 2013; Machtay et al., 2013; Bakr et al.,
2017, 2018; Kinahan et al., 2019), 41 CT volumes from the spleen MSD dataset (Antonelli
et al., 2022), and 10 WB mpMRI volumes from the CMB-CRC (N=3), CPTAC-CCRCC
(N=2), CPTAC-PDA (N=3), and CPTAC-UCEC (N=2) (Clark et al., 2013).

3.3. Experiments

Cross-Environment 3D ventricle localization: We initialized this experiment with
four agents and a sub-sample of eight brain mpMRI environments (shown in Fig. 4). We
implemented two agents on an NVIDIA DGX-1, each with an NVIDIA V100, and two on
Google Cloud, each with an NVIDIA T4. The two agents on Google Cloud, A1 and A2,
have their individual hubs, H1 and H2 whereas the remaining two agents, A3 and A4, on
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the DGX-1 were connected to the third hub, H3. We trained all four agents for three
iterations. At the beginning of each iteration, each agent received a randomly selected
training dataset with a different environment. As a result, each agent trained on a total
of only three environments (out of eight) for ventricle localization. In addition, the agents
shared their ERBs with each other at the end of every iteration to facilitate peer-to-peer
experience sharing with lifelong learning.

Each of the agents had different training speeds owing to different GPUs used by each
agent. Subsequently, we implemented asynchronous learning, meaning when the agent
finishes training on a task, it will broadcast its ERBs to the hub and begin training on
the next dataset using its previous ERB and any new ERBs available at the hub. As
a result, the number of ERBs available from other ADFLL agents when starting a new
round of training will significantly vary between the slowest and the fastest agents in the
network. This process is continued until all four agents complete three rounds of training.
For comparison, Agent M was trained for eight rounds, and Agent X was trained to use the
central aggregation of all eight datasets.

Cross-Modality 3D Spleen Localization: While the first experiment evaluated the
ability of the ADFLL framework to perform asynchronous experience sharing with lifelong
learning, the second experiment evaluated the capability of the ADFLL framework to learn
from ERBs that encoded different imaging modalities.

We initialized this experiment with five agents and five training sets, each consisting of
10 volumes from different imaging sequences (PET, CT, MRI-T1, MRI-DIXON-F, MRI-
DIXON-W) for the task of 3D spleen localization. At the beginning of each iteration, each
agent encounters one of the five datasets to train a deep reinforcement learning model for
localization of spleen on that dataset. Each agent was trained for three rounds i.e., each
agent sequentially encountered three datasets (out of five). In addition, the agents shared
their ERBs with each other at the end of every iteration to facilitate peer-to-peer experience
sharing with lifelong learning. At the end of three rounds, we evaluated each ADFLL node
on all five tasks on both the validation and external test sets and compared its performance
to Agent X (that had central access to all the datasets), Agent M (that had sequential
access to all the datasets), and Agent Y (that had access to only the CT dataset)

Evaluation Metric: The performance metric was set as the terminal Euclidean dis-
tance in pixels between the agent’s prediction and the target landmark. We performed
paired t-tests to compare the performance of the ADFLL agents with the traditional
lifelong learning framework, all-knowing deep reinforcement learning agent, and partial-
knowing deep reinforcement learning agent. The p-value for statistical significance was set
to p ≤ 0.05.

4. Results

Cross-Environment 3D Ventricle Localization: As shown in Table 1, all four ADFLL
agents had excellent performance with no significant difference in performance from the all-
knowing Agent X (p > 0.05). In addition, three agents (A1, A3, and A4) had no significant
difference from Agent M (best-case traditional LL agent), and A2 was significantly better
than Agent M (p = 0.01), just after three rounds of training, compared to eight rounds
of training for Agent M. After three rounds of training, A2 was able to achieve a mean
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Table 1: Comparison of distance error between ADFLL agents (Agent 1-4) after round 3,
all-knowing best case DRL agent (Agent X) after round 1, partially-knowing worst
case DRL agent (Agent Y) after round 2.5, and traditional lifelong baseline DRL
agent (Agent M) after round 8 on BrATS dataset

Patient Characteristics AgentX AgentY AgentM Agent1 Agent2 Agent3 Agent4
Best case Worst case Traditional LL ADFLL Agents

Coronal LGG t1 10.05 8.94 10.68 8.06 8.06 10.49 6.08
Coronal LGG t2 9.22 8.31 8.94 9.49 7.35 8.25 33.79
Sagittal LGG flair 10.77 60.42 14.59 11.75 8.12 8.31 10.49
Axial LGG tice 7.07 89.91 16.67 31.19 6.16 6.4 3.74
Axial HGG flair 4.47 90.05 22.16 66.56 4.24 12.04 22.09
Sagittal HGG t1 31.19 65.49 13.15 10.05 6.71 11.75 7.55
Sagittal HGG t2 10.25 68.61 11.58 24.7 12.33 22.67 12.37
Coronal HGG tice 11.22 44.11 23.58 40.47 9.54 39.71 13.19

Mean 11.78 54.48 15.17 25.28 7.81 14.95 13.66
Std. dev 8.16 32.05 5.32 20.46 2.4 11.17 9.87

Ttest (vs. Agent X) 0.01 0.4 0.18 0.22 0.54 0.73
Ttest (vs. Agent M) 0.4 0.01 0.12 0.01 0.95 0.72
Ttest (vs. Agent Y) 0.01 0.01 0.01 0 0.01 0.02

Figure 3: Illustration of the performance of ADFLL agent 2, all-knowing best case DRL
agent (Agent X), partially-knowing worst case DRL agent (Agent Y), and and
traditional lifelong baseline DRL agent (Agent M) on in-distribution Whole body
datasets

distance error of 7.81 ± 2.4 on all eight tasks, compared to the 11.78 ± 8.16 (p=0.22) for
Agent X, significantly lower compared to the lower bound conventional DRL agent, Agent
Y (54.58 ± 32.05; p < 0.001), and Agent M (15.17 ± 5.32; p = 0.01) after eight rounds of
training.

Cross-Modality 3D Spleen Localization: Table 2 summarizes the performance of
all five ADFLL agents along with the three baseline agents, Agent X (all-knowing best-case
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DRL agent), Agent M (traditional lifelong learning agent), and Agent Y (DRL agent trained
on just the CT dataset) for the internal validation dataset. Agent 2 was the best performing
ADFLL agent with the Euclidean distance error of 8.01±5.47. As shown in Appendix Table
2, there was no significant difference in the Euclidean distance error between the four (out
of five) ADFLL agents and the Agent X (d = 8.01±5.47) for the internal validation dataset.
Furthermore, all five agents had no significant difference in Euclidean distance error from
the Agent M (d = 11.22 ± 20.09). Furthermore, all five ADFLL agents had a significantly
lower Euclidean distance error compared to Agent Y (d = 117.82± 70.31) that was trained
only the CT dataset. Figure 3 illustrates the performance of the best performing ADFLL
agent, Agent 2 as well as the baseline agents across all five imaging sequences.

Appendix Tables 3, 4, and 5 summarize the performance of all ADFLL and baseline
agents across the three external datasets. Apart from spleen MSD CT dataset where Agent
M significantly (p < 0.05) outperformed three (out of five) ADFLL agents, there was no
significant difference between the ADFLL agents and the best-case baseline agents, X and
M across all the experiments.

5. Discussion

In this work, we proposed the asynchronous decentralized federated learning framework
to achieve collective intelligence via continual learning from peers with excellent results
across all experiments. The ADFLL framework’s performance was similar to upper bound
baselines: the all-knowing baseline with all the datasets centrally aggregated in one location
and the conventional LL baseline, where an agent sequentially trains across all the datasets.

The cross-environment ventricle localization experiment allowed us to evaluate the real-
world setting where different agents with different compute environments train at different
speeds leading to asynchronous communication. Despite training asynchronously and on
different sets of shared experiences, all four agents had a similar performance to the conven-
tional lifelong learning model. However, the fastest agent (A1) had the worst performance
across all ADFLL agents owing to being trained on only a subset of experiences shared
across the network. Similarly, the cross-modality spleen localization experiment allowed us
to evaluate the capability of ADFLL agents to learn from peer ERBs encoding different
modalities from disparate datasets. Our results that ADFLL agents are not only capable
of learning from ERBs that encode significantly different imaging environments, but also
demonstrate excellent generalization performance when when evaluated on external datasets
with different modalities.

Asynchronous federated learning has also been explored in other areas (Chen et al.,
2019). They offer the ability to deal with nodes with different computational power but
lack the decentralization that allows the system to be more flexible. Similarly, in (Liu et al.,
2022; Huang et al., 2022), the cost of removing a central node is a quadratic complexity com-
munication scheme in that every node communicates with every node. Our work has certain
limitations. This preliminary study focused on a single landmark localization task with deep
reinforcement learning. Our future work will expand this framework to multi-agent systems
and other medical imaging tasks such as segmentation and classification. In conclusion, we
demonstrated a privacy-aware, asynchronous, decentralized federated learning system with
robust and efficient system topology.
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Appendix A. Clinical Data

Figure 4 illustrates the eight environments used for the cross-environment 3D ventricle
localization experiment.
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Figure 4: Illustration of the 8 task-environment pairs. The red boxes indicate the true
landmark location of the top left ventricle. The yellow box is a predicted location
from ADFLL agents during their training progressions

Appendix B. Simulation Experiments

We conducted multiple simulation experiments to evaluate our framework’s scalability, flex-
ibility, and robustness. We evaluated the agents’ average performance to localize the top
left ventricle across all 24 imaging environments for both experiments. Additionally, since
it is prohibitively expensive to experiment on 24 different machines, these systems were
simulated on the NVIDIA DGX-1 with a synchronous training protocol.

B.1. Addition and Deletion of agents:

Addition experiment: We initialized this experiment with a system of four ADFLL
agents. We subsequently increased the number of agents in the system from 4 to 16 over
4 rounds (4,8,12,16). At the beginning of every round, each ADFLL agent in the system
receives a new training dataset with a different imaging environment. Each agent performs
ADFLL using ERBs from its previous tasks in addition to ERBs being communicated across
the network from other agents. We further simulated a communication dropout of 75% to
account for network communication issues in the real world, leading to information loss
while transmitting ERBs across agents. This experiment aimed to demonstrate how newer
agents joining the system at different points in time can take advantage of the information
within the system and learn the collective knowledge available in the system within just
one round.

Deletion experiment: In the deletion experiment, we gradually decreased The number
of agents in the system from 24 to 1 agent over the progression of 5 rounds (24,12,6,3,1).
Similar to the addition experiment, each agent remaining in the system receives a new
training dataset every round, and the ERBs are communicated across the network. The
communication for this experiment was also simulated with a 75% dropout. This experi-
ment aimed to demonstrate how the proposed ADFLL framework preserves the collective
knowledge in a lifelong learning manner across all the tasks, even as the agents contributing
the knowledge leave the system.
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Results: In the two simulation studies, our framework showed scalability of up to 24
agents, robustness against network dropout, and flexibility in system topology. As shown
in Fig. 5, we see that the average Euclidean distance error across all agents and all 24
tasks decreases as more agents are added to the system, with an average Euclidean distance
error of 16.89± 16.34 at the end of 4 rounds. This demonstrates the capability of ADFLL
agents to directly train from peer experiences without pre-training, allowing newer agents
joining the system directly learn existing knowledge within the system in one round. For
the deletion experiment, the average Euclidean distance error across all agents decreases
while half of the agents are deleted every round, resulting in an average Euclidean distance
error of 8.55± 7.12 after the final remaining agent at the end of 5 rounds (shown in Fig.5).
In comparison, the average Euclidean distance error was 8.34 ± 7.26 (p > 0.05) for Agent
X and 8.15 ± 5.42 (p > 0.05) for Agent M. This shows that the knowledge agents learned
and captured in ERBs are not lost when agents are removed from the system. When agents
are added, the new agents can catch up with existing agents in one round. Moreover,
the 75% dropout rate applied to every round of both experiments shows the robustness
of our framework against network failures, a significant bottleneck for federated learning
frameworks.

Figure 5: Left: Comparison of distance error of all agents in the system across 4 rounds
of training as agents join the system. Right: Comparison of distance error of all
agents in the system across 4 rounds of training as agents leave the system.

B.2. Scalability Experiments

B.2.1. Systems of 2,4,8,16,24 Agents

To test the influence of agent count in a system on its performance, we tested systems
with 2, 4, 8, 16, or 24 Agents training for two rounds on their performance to localize
the top left ventricle in all 24 imaging environments. Since it is prohibitively expensive to
experiment on 24 different machines, these systems were simulated on the NVIDIA DGX-1
with a synchronous training protocol.

Result: Figure 6 demonstrates the comparison of Agent Rewards (AR) when different
ADFLL systems consisting of 2, 4, 8, 16, and 24 agents were trained for two rounds in
addition to the best outcome agent. The ADFLL agent systems with ≥ 4 agents learned
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more than 80% of the environments within just two rounds. Finally, the ADFLL systems
with 16 and 24 agents learned greater than 90% of the environments.

Figure 6: Comparison of Euclidean distance error between different experimental setups
involving all the base cases and ADFLL setups with 2, 4, 8, 16, and 24 agents

Figure 7: Illustration of the average distance error for the 48 new agents using different
dropout rates

B.3. 72 Agents with significant network dropout

To further test the scalability limit of our framework, we designed an experiment that
involves 72 agents. We will use the 24 agents from the previous experiments and add 48
agents to the system, and the 48 agents will run for two rounds. They will be randomly
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assigned to an imaging environment each round. In the first round, they will learn from
their local data and ERBs of the previous 24 agents. In the second round, they will learn
from their local data, ERBs of the previous 24 agents, and ERBs from the first round of
the 48 agents. Additionally, the robustness of our framework against communication failure
is tested, and 50%, 75%, 90% dropout rate is applied to the number of ERBs each agent
receives, meaning only 50%, 25%, 10% ERBs reached the agents.

Result: Figure 7 shows the difference in average distance error when using different
dropout rates during ERB sharing. 90% dropout rate performs the worst out of the three
dropout rates, with higher average distance error and higher deviation in performance.
Performance 75% and 50% are very similar, with 50% dropout rates having a slightly lower
average distance error. Compared to no sharing in round 1, sharing just a tiny fraction (10%)
of the ERB in the system still can have a massive boost in performance. Figure 7 shows
the highest dropout rate the new 48 agents can accommodate without losing significant
performance.

Appendix C. Internal and External Validation results for cross-modality
3D spleen localization

Table 2: Comparison of distance error between ADFLL agents (Agent 0-4) after round 3,
all-knowing best case DRL agent (Agent X) after round 1, partially-knowing worst
case DRL agent (Agent Y) after round 1, and traditional lifelong baseline DRL
agent (Agent M) after round 5 on the in-distribution whole-body dataset.

Image source AgentX AgentM AgentY agent0 agent1 agent2 agent3 agent4

Mean 8.01 11.32 117.82 9.77 9.87 8.01 10.55 11.33
Std. dev 5.47 20.09 70.31 9.67 7.59 5.47 13.05 16.24

TTEST with X 0.34 0.00 0.20 0.02 1.00 0.16 0.22
TTEST with M 0.34 0.00 0.68 0.68 0.33 0.84 1.00
TTEST with Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Comparison of distance error between ADFLL agents (Agent 0-4) after round 3,
all-knowing best case DRL agent (Agent X) after round 1, partially-knowing worst
case DRL agent (Agent Y) after round 1, and traditional lifelong baseline DRL
agent (Agent M) after round 5 on the out-of-distribution MSD CT dataset.

Image source agentX agentM agentY agent0 agent1 agent2 agent3 agent4

Mean 10.65 8.87 13.78 9.31 11.17 11.24 10.78 10.72
Std. dev 4.88 3.68 11.28 4.51 6.57 4.46 5.17 6.13

TTEST(vs AgentX) 0.01 0.09 0.11 0.52 0.24 0.83 0.94
TTEST(vs AgentM) 0.02 0.01 0.70 0.04 0.00 0.01 0.08
TTEST(vs AgentY) 0.07 0.00 0.01 0.21 0.19 0.09 0.08
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Table 4: Comparison of distance error between ADFLL agents (Agent 0-4) after round 3,
all-knowing best case DRL agent (Agent X) after round 1, partially-knowing worst
case DRL agent (Agent Y) after round 1, and traditional lifelong baseline DRL
agent (Agent M) after round 5 on the out-of-distribution TCIA MRI dataset.

Image Source agentX agentM agentY agent0 agent1 agent2 agent3 agent4

Mean 30.98 19.05 133.75 18.00 23.00 25.83 21.30 27.48
Std. dev 34.00 16.48 73.81 10.47 21.68 37.25 23.63 17.73

TTEST(vs AgentX) 0.33 0.01 0.29 0.53 0.77 0.46 0.78
TTEST(vs AgentM) 0.33 0.00 0.82 0.49 0.62 0.50 0.24
TTEST(vs AgentY) 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Comparison of distance error between ADFLL agents (Agent 1-4) after round 3,
all-knowing best case DRL agent (Agent X) after round 1, partially-knowing worst
case DRL agent (Agent Y) after round 1, and traditional lifelong baseline DRL
agent (Agent M) after round 5 on the out-of-distribution TCIA PET dataset.

Image source agentX agentM agentY agent0 agent1 agent2 agent3 agent4

Mean 20.21 20.37 105.78 18.92 20.77 18.04 22.62 18.62
Std. dev 30.35 30.52 64.22 30.15 30.33 30.50 29.67 29.83

TTEST(vs AgentX) 0.93 0.01 0.25 0.72 0.24 0.40 0.32
TTEST(vs AgentM) 0.93 0.01 0.46 0.77 0.34 0.44 0.28
TTEST(vs AgentY) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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