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Abstract
Bayesian inference in function space has gained
attention due to its robustness against overparam-
eterization in neural networks. However, approx-
imating the infinite-dimensional function space
introduces several new challenges. In this work,
we discuss function space inference via particle
optimization and present practical modifications
that improve uncertainty estimation and, most im-
portantly, make it applicable for large and pre-
trained networks. First, we demonstrate that the
input samples, where particle predictions are en-
forced to be diverse, are detrimental to the model
performance. While diversity on training data
itself can lead to underfitting, the use of label-
destroying data augmentation, or unlabeled out-
of-distribution data can improve prediction diver-
sity and uncertainty estimates. Furthermore, we
take advantage of the function space formulation,
which imposes no restrictions on network param-
eterization other than sufficient flexibility. Instead
of using full deep ensembles to represent parti-
cles, we propose a single multi-headed network
that introduces a minimal increase in parameters
and computation. This allows seamless integra-
tion to pretrained networks, where this repulsive
last-layer ensemble can be used for uncertainty
aware fine-tuning at minimal additional cost.

1. Introduction
Particle-optimization variational inference (POVI) approxi-
mates the posterior distribution of Bayesian neural networks
(BNNs) using a set of discrete and interacting particles (Liu
& Wang, 2016; Liu, 2017; Liu et al., 2019). For deep ensem-
bles (DEs), this entails modifying the optimization proce-
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dure by incorporating a kernelized repulsion term to enforce
diverse ensemble members. Although the particles are dis-
tant in the parameter space, they might still correspond to
similar prediction functions because of the overparamter-
ized nature of neural networks (NNs). One way to avoid
this issue and to achieve truly diverse particles is to perform
inference directly in the space of functions, explicitly en-
forcing prediction diversity (Wang et al., 2019; D’Angelo
& Fortuin, 2021). Despite its appeal, function space POVI
has not been able to empirically outperform standard DEs
regarding accuracy and uncertainty prediction (D’Angelo
& Fortuin, 2021; Trinh et al., 2023; Yashima et al., 2022).
In this work, we show that the lack of empirical perfor-
mance is not because of the function space formulation
itself, but rather because of approximation errors of the
infinite-dimensional function space.

First, we highlight the importance of choosing appropriate
input samples that lead to particles with diverse predictions;
we refer to these as repulsion samples. It remains practi-
cally infeasible to achieve function space diversity over the
whole input domain (particularly for high dimensional input
data). Therefore, good repulsion samples must not only be
diverse but also capture the most relevant parts of the input
domain. The training data itself is generally not rich enough
and, as such, insufficient for accurate uncertainty estima-
tion (D’Angelo & Fortuin, 2021; Trinh et al., 2023). We
show that the use of unlabeled out-of-distribution (OOD)
data significantly improves uncertainty estimates without
compromising domain accuracy. If OOD data is unavail-
able, label-destroying data augmentation1 achieves similar
quality. Enforcing diversity within those samples reduces
the effect of spurious features and improves uncertainty
calibration and OOD detection on unseen distributions.

Second, we address the computational limitations of training
and storing DEs. For large models, training and maintaining
multiple copies of the network may not be feasible; this is
particularly problematic as the interactive repulsion term re-
quires joint optimization of the whole ensemble. We exploit
the fact that the function-space formulation of the inference
problem does not impose any constraints on its parameteri-

1Modification of input samples such that the original labels do
not apply, e.g., shuffling of random image patches.
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zation, besides requiring sufficient flexibility. Inspired by
ensemble distillation methods (Tran et al., 2020), we pro-
pose a multi-headed network architecture, where each head
represents a particle in function space. This allows utiliz-
ing a base network that learns a shared representation, and
thus drastically reduces computational and memory costs.
Prediction diversity is not introduced by random weight
initialization but by the repulsion term in function space.
This also allows for seamless integration with pre-trained
networks, where the repulsive last-layer ensemble (RLL-E)
is used for uncertainty-aware fine-tuning of the model.

We empirically evaluate our method for regression and clas-
sification tasks on synthetic and real-world datasets. We
show that our network is able to (i) disentangle aleatoric
and epistemic uncertainty for active learning (App. C.3),
(ii) improve detection of both near and far OOD data (App.
C.4), and (iii) provide calibrated uncertainty estimates under
distribution shifts (App. C.5). Related work is summarized
in App. D.

2. Background
We consider supervised learning tasks. Let D =
{xi,yi}Ni=1 = (X,Y) denote the training data set consist-
ing of N i.i.d. data samples with inputs xi ∈ X and targets
yi ∈ Y . We define a likelihood model p(y|x, θ) with the
mapping f(·; θ) : X → RK parameterized by a NN.

2.1. Bayesian neural networks (BNNs)

BNNs treat the network parameters θ as random vari-
ables instead of point estimates. This entails defin-
ing a prior distribution of the parameters p(θ) to infer
the posterior distribution of the parameters p(θ|D) ∝
p(θ)p(Y|X, θ). Predictions for a test data point xtest are
obtained by marginalizing over all possible parameters
p(ytest|xtest,D) =

∫
θ
p(ytest|xtest, θ)p(θ|D)dθ.

2.2. Particle-optimization variational inference (POVI)

Variational inference approximates the posterior p(θ|D) by
a simpler parametric distribution q(θ). POVI methods (Liu
& Wang, 2016; Chen et al., 2018) aim to provide more flex-
ibility by considering a non-parametric distribution, spec-
ified by a discrete set of particles {θ(i)}ni=1 according to
q(θ) ≈ 1

n

∑n
i=1 δ(θ − θ(i)), where δ(·) is the Dirac func-

tion. The particles can then be optimized iteratively via

θ
(i)
l+1 ← θ

(i)
l + ϵlv(θ

(i)
l ) (1)

where ϵl is the step size at time step l. By viewing the
particle optimization as a gradient flow in Wasserstein space,
D’Angelo & Fortuin (2021) derive the following update rule

that decomposes into an attraction and repulsion term

v(θ(i)l ) = ∇
θ
(i)
l

log p(θ
(i)
l |D)︸ ︷︷ ︸
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−

∑n
j=1∇θ

(i)
l

k
(
θ
(i)
l , θ

(j)
l

)
∑n

j=1 k
(
θ
(i)
l , θ

(j)
l

)
︸ ︷︷ ︸

REPULSION

(2)

where k(·, ·) denotes a kernel function. The attraction term
drives particles into high-density regions of the posterior
distribution, while the repulsion term induces diversity by
preventing particles from collapsing into the same optima.
The training procedure reduces to the standard maximum
a posteriori (MAP) training in the one-particle limit, and
it converges to the posterior distribution for n→∞ and a
properly defined kernel (D’Angelo & Fortuin, 2021).

2.3. Diversity of prediction functions

The distance kernel needs to capture the variations in the
predictions to enforce diverse particle predictions effectively.
To achieve this objective, inference should be performed
directly in the function space, with the kernel functions
incorporating the predictions (Wang et al., 2019; D’Angelo
& Fortuin, 2021). Then, the n particles represent functions
f (1)(X ), . . . , f (n)(X ) that are updated as

f
(i)
l+1(X )← f

(i)
l (X ) + ϵlv(f

(i)
l (X )). (3)

However, to solve the problem we must rely on gradient
based optimization procedures that in turn require a parame-
terized representation of the particles.

Function parameterization Each particle f (i)(X ) is rep-
resented by a specific parameterization f (i)(X ; θ(i)). The
parameterization f (i)(X ; θ(i)) must be sufficiently flexible
to effectively approximate the underlying function space.

Repulsion samples Moreover, it remains prohibitive to
evaluate f (i)(X ; θ(i)) across the entire input domain X . In-
stead, prior work (Wang et al., 2019) adopted a mini-batch
approximation, where the evaluation over the full set X is
replaced with B repulsion samples drawn from an arbitrary
distribution xrep ∼ µ with support on XB . The variational
distribution is shown to converge to the true posterior if
the posterior is determined by almost all B-dimensional
marginals {p(f(x)|X,Y) : x ∈ supp(µ)} (Wang et al.,
2019).

We summarize the importance of incorporating a repulsion
term for a finite number of particles in App. A.
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3. Improving function space approximations:
Practical choices and implications

The function space formulation effectively circumvents
issues regarding overparameterization and identifiability
(Kirsch, 2024). Still, empirical results lack improvement
over unregularized DEs, especially for large-scale image
tasks (Wang et al., 2019; D’Angelo & Fortuin, 2021). In
the following section, we show that these results are ex-
pected given previous choices for the approximations of the
function space. Additionally, we highlight possibilities to
perform function space inference with minimal computa-
tional overhead compared to single neural networks.

3.1. Choice of function parameterization

A key benefit of function space inference entails the theo-
retical justification to use any flexible network parameteri-
zation. Still, prior work has utilized the same DE structure,
where each particle is parameterized by a separate neural
network (Wang et al., 2019; D’Angelo & Fortuin, 2021).
This choice limits the number of particles in large scale prob-
lems, where it might be difficult to train and store several
networks. Additionally, due to the interaction of all particles
through the repulsion kernel, the training procedure is fur-
ther complicated by requiring parallel training. Empirically,
it has not been analyzed how parameter-efficient network
structures perform as alternative parametric approximations.
Thus, we propose to use a shared base network with multi-
ple heads that represent the particles in function space, i.e.
f (i)(x; θbase, θ

(i)
head) = f

(i)
head(fbase(x; θbase); θ

(i)
head). By shar-

ing the latent representation of the base model fbase(x; θbase),
our model is highly parameter-effective. We demonstrate in
several experiments that an ensemble of linear layer is suffi-
cient to improve uncertainty estimates of a single network.

Justification Multi-headed network architectures have
been used successfully to distill DEs and replicate their func-
tional behavior (Tran et al., 2020), demonstrating sufficient
flexibility of a single shared network (Hinton et al., 2015).
Performing particle optimization in function space mitigates
the need for training a full DE prior to distillation. The use
of a shared deterministic base network aligns with partially
stochastic BNNs, where a subnetwork of the parameters is
treated probabilistically. Most prominently, Bayesian last-
layer networks are employed as practical means to reduce
computational demands (Sharma et al., 2023). In App. B
we provide arguments for the retrospective use of fs-RLL-E
in pretrained networks.

Deep ensembles are not necessary: A single neural
network with multiple heads is sufficiently flexible to
provide diverse predictions for uncertainty estimation.

MNIST Patches-8 Patches-16 eMNIST

CIFAR10 Patches-8 Patches-16 TinyImagenet

Figure 1. Example of repulsion samples for DirtyMNIST (top row)
and CIFAR10/100 (bottom row).

3.2. Choice of repulsion evaluation samples

Evaluation of the function-space repulsion term requires se-
lecting a set of repulsion samples xrep ∈ Drep. This choice
significantly impacts the valid input domain for uncertainty
estimates of fs-POVI methods. Prior work proposed to draw
repulsion samples from the kernel density estimation (KDE)
over training data (Wang et al., 2019), or take samples from
the training data directly (D’Angelo & Fortuin, 2021). This
choice, however, limits the applicability of the BNN approx-
imation to situations where samples are coming from the
same distribution as the training data. Selecting good re-
pulsion samples becomes particularly challenging for high-
dimensional spaces, for which drawing random samples
from the entire input domain is simply infeasible. Instead,
one must restrict the selection to an informative subset that
covers the domain of interest from the input space. For
image tasks, this often includes natural images from varying
distributions. We can thus exploit the abundance of available
unlabeled image data. For example, using eMNIST as repul-
sion samples for models trained on MNIST, or TinyImagenet
for models trained on CIFAR10/100, leverages natural vari-
ability across different image sets. If unlabeled OOD data
is unavailable, repulsion samples can be generated from the
training data by label-destroying data augmentation tech-
niques. One such effective method is the random shuffling
of image patches, which destroys the shape information of
objects that is crucial for human perception (see Figure 1).

Justification Enforcing diversity directly on the training
data has been shown to degrade performance by artificially
inflating epistemic uncertainty at data points where indepen-
dent training would yield confident predictions (Abe et al.,
2022; Jeffares et al., 2024). This approach often fails to
detect OOD data, which may be characterized by spurious
features present in the training data or features that are com-
pletely absent in the training set. Using unlabeled OOD
data as repulsion samples provides an effective solution to
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these challenges. These samples may contain features that
are problematic or absent in the training data, allowing the
models to meaningfully enforce diversity and improve OOD
detection capabilities. Similarly, label-destroying data aug-
mentation mitigates robust features that are indicative of
the class label. By promoting diversity on those augmented
images, it can prevent the model from depending on features
that are not truly indicative of the class, thus mitigating the
risk of overconfident and erroneous predictions. Compared
to methods that rely on feature density to detect OOD data,
repulsion samples offer the benefit of learning to ignore
spurious features that may be present in the training data.

Encouraging diverse predictions on the training data
itself is not sufficient to improve epistemic uncertainty
estimation – we need random sampling, label-destroying
data augmentation, or OOD data as repulsion samples.

4. Experiments
A single neural network (MAP) serves as the base model
and backbone for all post-hoc uncertainty techniques. For
unregularized DEs, we retrain the base network 5 times
with random initializations (DE-5). We have selected two
baselines for deterministic distance-based methods: DDU
(Mukhoti et al., 2023) and SNGP (Liu et al., 2023). As a
representative of single-mode Bayesian methods, we use the
last-layer Laplace approximation (LL-Laplace) (Kristiadi
et al., 2020). For our method, we compare the unregularized
last-layer ensemble (LL-E), repulsion in parameter space
(RLL-E), and repulsion in function space (fs-RLL-E) with
varying repulsion samples. The LL-E consists of 10 parti-
cles with linear layers, introducing minimal computational
overhead. To quantify epistemic uncertainty we use the
softmax entropy (MAP, SNGP), mutual information (LL-
Laplace, LL-E, DEs), and GMM density (DDU).

Common image classification datasets do not contain data
points that are inherently ambiguous, i.e., data points that
correspond to multiple classes. Even if aleatoric uncertainty
(AU) and epistemic uncertainty (EU) are confounded, the
evaluation would not reveal it. Thus, we use the DirtyM-
NIST dataset (Mukhoti et al., 2023) to evaluate the ability to
distinguish ambiguous data (AU) and OOD data (EU). The
DirtyMNIST dataset consists of clean MNIST digits and ar-
tificially generated ambiguous digits that belong to multiple
classes. For OOD data, we use kMNIST (Clanuwat et al.,
2018), Fashion MNIST (Xiao et al., 2017), and Omniglot
(Lake et al., 2015).

Table 1 summarizes the ID performance and OOD detection
gain we obtain by using the repulsive ensemble head with
different choices of repulsion samples. Enforcing diversity
of the parameters of the last layer particles (RLL-E) shows

no improvement over the unregularized case (LL-E). Still,
retraining the last layer increases accuracy, improving cali-
bration, and enhancing OOD detection quality compared to
the single network. Further improvements can be achieved
with function space repulsion (fs-RLL-E), and an appropri-
ate choice of repulsion samples (patches, eMNIST).

We present additional experimental results in the Appendix,
specifically on disentangling aleatoric and epistemic uncer-
tainty in active learning (App. C.3), further experiments on
OOD detection (App. C.4), and on uncertainty calibration
under distribution shifts (App. C.5).

5. Conclusion
We have shown that particle optimization in function space
is not limited to DE architectures. A significant number
of parameters can be saved by exploring different network
architectures to parameterize the function space. We pro-
posed a hybrid approach using a multi-headed network. The
shared base network acts as a feature extractor for the re-
pulsive ensemble head. This offers a principled way to pro-
vide already trained networks with retrospective uncertainty
estimates, and to incorporate prior functional knowledge
into the training procedure. Additionally, we highlighted
the inherent limitations of enforcing diversity on training
data alone. By utilizing augmented training data, or unla-
beled OOD data, we achieved significant improvements on
OOD detection without harming classification accuracy. We
empirically demonstrate that our method successfully disen-
tangles aleatoric and epistemic uncertainty, improves OOD
detection, provides calibrated uncertainty estimates under
distribution shifts, and performs well in active learning. At
the same time, we significantly reduce the computational
and memory requirements compared to DEs.

For future work, an important focus will be developing a
rigorous relationship between the selection of the repulsion
samples and the implications for the uncertainty estimates.
We further aim to utilize data-augmentation schemes for
generating task-specific repulsion samples.
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Table 1. Comparison of uncertainty decomposition on DirtyMNIST. Aleatoric uncertainty (AU), and epistemic uncertainty (EU) are used
to detect ambiguous, and OOD samples. Mean and standard deviation are computed over 10 runs. Best results are in bold, second best are
underlined.

Method ACC. ↑ [%] NLL ↓ [%] ECE ↓ [%] OOD AUROC ↑ [%]

MNIST vs ambig. (AU) MNIST vs. OOD (EU) ambig. vs OOD (EU)

MAP 79.97±0.77 58.12±1.77 2.82±0.65 93.83±0.7 97.71±0.65 76.11±4.75

DDU 79.97±0.77 58.12±1.77 2.82±0.65 93.83±0.7 99.78±0.02 99.96±0.01

SNGP 83.49±0.11 49.78±0.13 3.98±0.09 88.76±0.39 94.68±1.68 73.88±4.49

LL-Laplace 80.73±1.30 55.90±2.78 2.03±0.57 94.3±1.6 98.41±0.46 93.15±2.64

LL-E (ours) 83.53±0.16 48.32±0.24 1.00±0.14 96.82±0.34 99.41±0.22 96.16±1.53

RLL-E (ours) 83.53±0.16 48.32±0.24 1.00±0.14 96.82±0.34 99.41±0.22 96.16±1.53

fs-RLL-E (ours)
+ dirtyMNIST 83.24±0.20 49.21±0.29 1.18±0.12 96.38±0.34 99.29±0.43 95.36±2.82

+ eMNIST 83.52±0.20 48.91±0.24 1.18±0.20 95.27±2.07 99.3±0.3 99.52±0.23

+ Patches-16 83.51±0.16 48.35±0.24 1.03±0.13 96.74±2.14 99.52±0.26 97.69±1.38

+ Patches-8 83.52±0.15 48.40±0.24 1.02±0.15 96.63±1.81 99.4±0.25 98.59±0.61

+ Patches-4 83.50±0.18 48.59±0.23 1.05±0.17 96.44±2.0 99.45±0.21 99.09±0.38

DE-5 83.31±0.15 50.26±0.40 5.01±0.67 96.23±0.15 98.96±0.2 93.88±1.57
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A. Why repulsion matters for a finite number of particles
Importantly, the guarantee of convergence to the posterior distribution p(θ|D) is only valid in the limit of infinite number of
particles. Although fascinating from a theoretical perspective, practical importance lies in the analysis of the behavior for a
finite number of particles. In this section, we discuss the importance of the repulsion term in the regime where the number
of particles is significantly smaller than the number of local minima.

Estimating epistemic uncertainty

Uncertainty estimates in model predictions are typically derived from the disagreement among ensemble members. Following
(Depeweg et al., 2018; Wimmer et al., 2023; Schweighofer et al., 2023), this uncertainty can be decomposed into aleatoric
and epistemic components, represented as conditional entropy and mutual information, respectively:

H[Ep(θ|D)[p(y|x, θ)]]︸ ︷︷ ︸
Total

= Ep(θ|D)[H[p(y|x, θ)]]︸ ︷︷ ︸
Aleatoric

+ I[y; θ|x,D]︸ ︷︷ ︸
Epistemic

(4)

The total uncertainty is given by the entropy of the model’s predictions, aleatoric uncertainty represents the variability in
outcomes due to inherent randomness in the data, and epistemic uncertainty reflects our lack of knowledge about which
model generated the data. The mutual information, obtained by integrating over the Kullback-Leibler divergence, estimates
the expected epistemic uncertainty:

I[y;θ|x,D] = Ep(θ|D) [DKL (p(y|x, θ) || p(y|x,D))] (5)

If a test sample x can be explained by many disagreeing models p(y|x, θ), each plausible under the posterior distribution
p(θ|D), epistemic uncertainty is high. By acquiring additional training data close to x, the space of plausible models and
thus inconsistent predictions is decreased.

Finite particle approximation

If the posterior distribution is approximated by a finite set of discrete particles θ(i), epistemic uncertainty estimation
simplifies to a Monte Carlo integration (Wimmer et al., 2023):

1

n

n∑
i=1

DKL

p
(
y|x, θ(i)

) ∣∣∣∣∣∣ 1
n

n∑
j=1

p
(
y|x, θ(j)

) (6)

Given practical constraints on the number of particles (typically five to ten), many posterior modes remain unexplored. The
estimate of the epistemic uncertainty is shaped largely by a very limited number of posterior modes. This limitation stresses
the need for guiding particles towards representative and diverse posterior modes to avoid underestimation of epistemic
uncertainty.

Repulsion in finite deep ensembles

Deep ensembles can be viewed as an unregularized case of Equation (2), lacking a repulsion term. Particles move according
to the gradient flow towards high-density posterior modes p(θ(j)l |D), with diversity stemming from their random initial
positions θ(j)l=0 in the loss landscape. Recent research has raised concerns about the effectiveness of this approach in achieving
diverse posterior modes. The loss landscape, heavily influenced by input features correlated with the target, may render
diverse posterior modes inaccessible to the unregularized gradient flow (Schweighofer et al., 2023). In addition, empirical
evidence has demonstrated that the epistemic uncertainty provided by DEs does not reliably identify distribution shifts. In
several cases, the aleatoric uncertainty of a single model has been more effective in detecting OOD data (Schweighofer
et al., 2023; Xia & Bouganis, 2022).

Repulsive deep ensembles (RDEs) introduce a repulsion kernel, k
(
θ(i), θ(j)

)
, to prevent particles from converging to

identical posterior modes. Theoretically, when the number of particles approaches infinity, this repulsion mechanism ensures
convergence to the true posterior distribution (D’Angelo & Fortuin, 2021; Wild et al., 2023). In practical applications, where
the number of particles is finite and vastly smaller than the number of local optima, studies show that random initialization is
sufficient to prevent the particles from collapsing into the same local optimum (Wild et al., 2023). Still, it is not guaranteed
that those distinct local optima result in diverse prediction functions.
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Consequently, to improve performance of unregularized DEs, the repulsion kernel needs to actively direct particles towards
distinct and diverse posterior modes. Specifically, in this work we aim to meet the following desiderata:

D1 The repulsion term should steer particles towards diverse posterior modes, which provide a useful approximation for
the epistemic uncertainty in Equation (5).

D2 Particles should reach diverse posterior modes from the same initial parameters through the use of the repulsion term.
This enables the fine-tuning of pre-trained models to better approximate epistemic uncertainty.

B. Retrospective uncertainties for pre-trained models
The multi-headed network approach provides a principled approach to computing retrospective uncertainties for a pre-trained
base network. We replace the last layer of the base network with an ensemble of linear layers trained with the function space
repulsion term. In this way, representation learning and function space inference are decoupled, allowing the computation of
diverse decision boundaries while leveraging pre-learned representations. If the function space repulsion term is included
post hoc, features indicative of OOD data may not be extracted by the base network due to feature collapse, where data
points far apart in input space collapse into indistinguishable parts in feature space (van Amersfoort et al., 2020). Fortunately,
pre-trained deep neural networks are often trained with mechanisms that help mitigate feature collapse. In the following,
we discuss important techniques commonly used in training deep networks that lead to feature space regularization of the
learned representations. In Section 4, we evaluate whether the last-layer retraining is sufficiently flexible to enforce diverse
predictions on OOD data. This directly addresses our second goal (D2) of obtaining diverse posterior modes from the same
initial parameters.

Spectral normalization and residual connections Distance-aware representations can be achieved by imposing bi-
Lipschitz constraints KLdI(x1,x2) ≤ dF (fbase(x1), fbase(x2)) ≤ KUdI(x1,x2). Here, dI and dF represent distance
measures in the input and feature spaces, while KL and KU are the lower and upper Lipschitz constants, respectively.
These constraints enforce a bounded relationship between distances in the input (dI ) and feature (dF ) space. Models with
constrained Lipschitz constants have demonstrated improved generalization and adversarial risk mitigation (Miyato et al.,
2018). Spectral normalization and residual connections serve as effective techniques to impose these constraints (Miyato
et al., 2018). They prevent feature collapse while introducing smoothness (upper Lipschitz constant) in the feature space.
While most pretrained models are not trained with spectral normalization, employing a network structure with residual
connections alone often suffices to maintain distance awareness in feature space.

Data augmentation Data augmentation is an important training technique that aims to enrich the data set by generating
different variations of the original samples. Techniques such as Mixup or CutMix are often used for this purpose. They
introduce variations by combining or interpolating between different samples, thereby expanding the model’s exposure to a
broader range of data distributions. Suppose we train a classifier to distinguish between the digits ”0” and ”1”. Initially, the
model might rely on simple features, such as the presence or absence of a straight line, to make accurate predictions. While
this approach may be sufficient for distinguishing between ”0” and ”1”, it may struggle when faced with more complex
tasks, such as identifying the digit ”7” as OOD. This difficulty stems from the model’s limited exposure to diverse features
during training. Next, consider CutMix augmentation, where parts of different images are combined to create new synthetic
samples. For example, by merging the top half of a ”0” image with the bottom half of a ”1” image, we create a synthetic
sample that resembles a ”7”. Incorporating such augmented samples into the training data forces the model to learn more
nuanced features that distinguish not only between ”0” and ”1”, but also between ”7” and the other digits. This process
enriches the model’s representation of the data and promotes the extraction of more diverse features.

Pre-trained neural networks are often trained with methods that avoid feature collapse. We can decouple the problem
into two stages: representation learning and uncertainty-aware fine-tuning using function-space inference.
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Figure 2. Function-space RLL-E (fs-RLL-E), with N particles. Colored dots correspond to the prediction of a particle. Unlabeled data
points from a different distribution are used as repulsion samples for the function space repulsion loss. Epistemic uncertainty (EU) is the
lowest, when all particle predictions agree, and increases with the spread of the particles. The aleatoric uncertainty (AU) increases with
ambiguous samples, e.g. the digit on the lower right belonging to both classes, resulting in particle predictions centered in the probability
region.

C. Additional experimental results
C.1. Training details

For particle-based inference in function space (Wang et al., 2019; D’Angelo & Fortuin, 2021), we relied on the implemen-
tation available at https://github.com/ratschlab/repulsive_ensembles, and for DDU (Mukhoti et al.,
2023) at https://github.com/omegafragger/DDU. Table 2 summarizes relevant hyperparameters for training
the base networks and the repulsive ensemble head.

Spectral normalization We follow the implementation of (Mukhoti et al., 2023) and utilize base networks with residual
connections and spectral normalization. As proposed in SNGP and DDU (Liu et al., 2023; Mukhoti et al., 2023), spectral
normalization is used to bound the Lipschitz constant of the network. Online spectral normalization with a one step power
iteration is applied to convolutional weights, and exact spectral normalization is applied to 1x1 convolutional layers
(Mukhoti et al., 2023).

Computational overhead In all experiments, we use a pretrained base network as the feature extractor for the uncertainty
estimation. For the image classification experiments, we do not modify the base network and add an ensemble head
consisting of linear layers only. Thus, the number of trainable parameters of our method is determined by the dimension of
the feature space of the base network d, the number of classes K, and the number of particles n, i.e., (d×K +K)× n.
The feature space dimension for various base networks is shown in Table 3.
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Table 2. Implementation details and hyperparameter for the different experiments.
TASK ARCHITECTURE HYPERPARAMETER VALUE

IMAGE CLASSIFICATION
BASE NETWORK

RESNET-18
WIDE-RESNET-28-10

EPOCHS
50 (DirtyMNIST)

300 (CIFAR10/100)

OPTIMIZER SGD

LEARNING RATE
0.1

0.01 – epoch 25 (DirtyMNIST), epoch 150 (CIFAR10/100)
0.001 – epoch 40 (DirtyMNIST), epoch 250 (CIFAR10/100)

MOMENTUM 0.9

ACTIVE LEARNING
BASE NETWORK

RESNET-18
EPOCHS 20

OPTIMIZER Adam

LEARNING RATE 0.001

LAST-LAYER-ENSEMBLE FULLY CONNECTED

EPOCHS 30

# HIDDEN LAYER 0
# NEURONS PER LAYER 10

LEARNING RATE 0.0001

# BATCH SIZE TRAINING DATA 128
# BATCH SIZE REPULSION SAMPLES 128

Table 3. Feature space dimension of different base network architectures.
LENET d = 84
VGG-16 d = 512
RESNET-18 d = 512
WIDERESNET-28-10 d = 640
RESNET-50 d = 2048
RESNET-101 d = 2048

C.2. Synthetic Data

On two toy examples, we illustrate the effectiveness of the multi-head architecture as a lightweight parameterization and
the advantages of performing inference in function space. We estimate the epistemic uncertainty for a one-dimensional
regression and a two-dimensional classification problem using full DEs and fs-RLL-E. A feed-forward neural network with
3 hidden layers and 128 neurons is used as the base network. The repulsive head consists of 30 particles with linear layers.
Results are shown in Figure 3. Deep ensemble predictions show low uncertainty far from the training data. By performing
particle inference in function space, we can enforce diverse predictions outside the training distribution even with a simpler
network structure.

(a) Unregularized DEs (b) Function space RLL-E

Figure 3. Predictions of DEs and the proposed fs-RLL-E. For regression, we show the prediction of individual particles, the mean and the
standard deviation. For classification on the two-moons data, we show the standard deviation of the predicted probabilities p(y|x, θ).
All DE members learn the same decision boundary and are thus highly confident in regions distant from training data, while fs-RLL-E
predictions are enforced to be diverse outside of the training data.
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Figure 4. Test accuracy of the model as a function of the data samples that are acquired using the different uncertainty estimates. Using
the mutual information (MI) of the LL-E and fs-RLL-E prediction outperforms softmax entropy of the single network and performs on par
with the other uncertainty baselines.

C.3. Uncertainty decomposition for active learning

We evaluate the performance of our LL-E and fs-RLL-E uncertainty estimates on an active learning task proposed in
(Mukhoti et al., 2023). Given a small number of initial training points and a large pool of unlabeled data, the aim is to
select the most informative data points, which are subsequently used to retrain the network. We report the results using
softmax entropy of a single Resnet-18, DDU density, mutual information (MI) and predictive entropy (PE) of an ensemble
of 3 Resnet-18, LL-E, and fs-RLL-E (xC = POOL). We start with an initial training set of 20 samples and a pool of clean
and ambiguous MNIST samples. The ratio of clean to ambiguous is 1:60. In each iteration, we add the 5 samples with
the highest epistemic uncertainty in the pool set. Thus, disentangling aleatoric and epistemic uncertainty is essential to
select informative samples that improve prediction accuracy. Fig. 4 shows that DDU, LL-E and fs-RLL-E are all able to
compete with DEs. All methods achieve a similar accuracy on the test set at the end of the iterations. We clearly see the
importance of using epistemic uncertainty to avoid selecting ambiguous samples with high aleatoric uncertainty. The results
are averaged over 5 runs with different random seed.

C.4. Semantic shift detection

To further verify the epistemic uncertainty estimates of our method, we perform OOD detection on larger image classification
tasks. The results are summarized in Tables 4 and 5. We train a Wide-Resnet-28-10 for CIFAR10 and CIFAR100. Again,
our LL-E head consists of 10 particles with linear layers only.
In terms of accuracy and in-distribution (ID) calibration, DEs perform the best, followed by our function-space RLL-E
(fs-RLL-E). As we only retrain the last layer of the base network, we do not expect to improve the prediction accuracy. We
emphasize that our aim is to introduce computationally cheap uncertainty estimates that are informative about erroneous
predictions and OOD data. For both CIFAR10 and CIFAR100, retraining the last layer leads to improvements over the base
network (MAP) for all examined uncertainty scores. While last-layer retraining does not lead to improved accuracy, NLL
and ECE are consistently improved, which indicates better calibration of the uncertainty estimates. Also, function space
diversity on augmented training data can lead to further improvements for ID uncertainty estimates.
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Table 4. Comparison of uncertainty estimation for ID calibration, and OOD detection on CIFAR10. Mean and standard deviation are
computed over 10 runs. Best results are in bold, second best are underlined.

Method ACC. ↑ [%] NLL ↓ [%] ECE ↓ [%] OOD AUROC ↑ [%]

Cifar100 TinyIm. Places365 Texture SVHN FakeData

MAP 95.91±0.13 15.94±0.61 2.33±0.13 89.71±0.26 89.25±0.26 90.00±0.35 89.21±0.90 93.46±2.54 97.06±3.60

DDU 95.91±0.13 15.94±0.61 2.33±0.13 89.00±0.46 89.14±0.43 90.81±0.38 97.62±0.30 98.62±0.37 100.00±0.00

SNGP 95.90±0.13 13.66±0.46 1.25±0.12 89.44±0.26 88.73±0.30 91.85±0.39 95.30±0.48 93.15±3.09 97.13±3.91

LL-Laplace 95.89±0.10 14.39±0.47 1.13±0.10 88.77±0.29 88.57±0.24 89.63±0.49 89.15±0.70 92.30±1.82 96.74±3.26

LL-E (ours) 95.87±0.15 13.64±0.41 0.97±0.20 89.80±0.37 89.73±0.40 91.06±0.53 89.90±0.91 92.56±2.51 97.97±2.39

RLL-E (ours) 95.88±0.15 13.68±0.41 0.97±0.20 89.74±0.33 89.65±0.37 91.03±0.43 89.87±0.88 92.40±2.51 97.79±2.53

fs-RLL-E (ours)
+ Cifar10 95.87±0.16 19.08±0.56 5.73±0.25 45.16±6.63 44.78±6.43 44.67±9.05 42.01±11.49 39.41±13.19 35.12±21.10

+ Cifar100 95.78±0.12 17.25±0.33 3.69±0.27 91.93±0.22 91.46±0.23 91.45±0.41 94.06±0.53 96.34±1.24 98.45±1.05

+ TinyImagenet 95.83±0.14 15.78±0.47 1.58±0.29 89.47±0.97 90.40±0.46 91.64±0.48 94.23±1.15 94.22±2.42 99.58±0.41

+ Texture 95.82±0.15 15.91±0.39 1.97±0.27 89.48±0.59 89.92±0.48 89.48±0.54 95.60±0.37 95.54±1.51 98.51±1.84

+ Patches-32 95.86±0.15 14.01±0.40 0.66±0.14 86.54±1.31 86.39±1.63 84.71±2.83 90.80±3.18 91.08±5.05 99.69±0.93

+ Patches-16 95.88±0.15 14.33±0.40 0.62±0.14 82.11±1.62 84.22±1.50 85.89±1.73 87.36±2.32 77.91±6.26 98.42±2.11

DE-5 96.55±0.08 11.17±0.11 0.81±0.06 91.59±0.07 90.63±0.08 90.93±0.14 94.20±0.25 96.95±0.42 99.75±0.41

Table 5. Comparison of uncertainty estimation for ID calibration, and OOD detection on CIFAR100. Mean and standard deviation are
computed over 10 runs. Best results are in bold, second best are underlined.

Method ACC. ↑ [%] NLL ↓ [%] ECE ↓ [%] OOD AUROC ↑ [%]

TinyIm. Places365 Texture SVHN FakeData

MAP 80.84±0.19 79.31±0.97 6.83±0.22 82.78±0.15 79.41±0.16 78.52±0.79 84.00±1.40 82.05±15.51

DDU 80.84±0.19 79.31±0.97 6.83±0.22 54.14±2.55 59.59±1.90 80.64±2.29 70.67±2.38 99.94±0.13

SNGP 80.65±0.20 83.18±1.16 9.51±0.33 79.62±1.14 85.77±1.80 96.72±0.93 73.95±2.57 68.48±24.75

LL-Laplace 80.47±0.27 81.04±1.68 6.49±0.36 83.29±0.35 79.97±0.41 81.44±0.67 81.57±1.69 84.84±17.10

LL-E (ours) 80.58±0.20 75.83±0.72 3.64±0.25 82.54±0.19 78.77±0.35 85.55±0.77 85.86±1.90 90.25±20.87

RLL-E (ours) 80.55±0.21 75.94±0.72 3.60±0.26 82.55±0.18 78.79±0.36 85.65±0.83 85.85±1.76 91.63±19.52

fs-RLL-E (ours)
+ Cifar100 80.56±0.19 78.28±0.69 6.38±0.32 57.05±2.96 57.65±3.99 51.52±4.49 45.82±6.93 50.75±18.87

+ TinyImagenet 80.51±0.19 77.77±0.76 4.05±0.23 82.61±0.56 82.35±1.06 90.40±0.99 94.34±1.60 99.94±0.08

+ Texture 80.33±0.16 80.14±0.83 4.55±0.27 79.29±0.61 76.49±1.07 97.13±0.20 96.24±1.43 99.60±0.30

+ Patches-32 80.59±0.18 75.85±0.73 3.63±0.26 81.51±0.46 76.95±0.63 87.98±1.64 86.08±2.80 100.00±0.00

+ Patches-16 80.59±0.17 75.98±0.71 3.68±0.28 81.22±0.48 81.34±1.18 90.15±1.13 86.11±2.92 100.00±0.00

DE-5 83.31±0.14 61.22±0.21 1.73±0.16 80.65±0.19 77.69±0.12 83.86±0.44 82.33±1.34 99.87±0.18
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Figure 5. NLL and uncertainty calibration of the different methods on CIFAR10-C (left) and CIFAR100-C (right), for different levels of
corruption intensity, averaged over all corruption types. By retraining the last linear layer only, our method fs-RLL-E improves NLL, and
achieves similar ECE scores as DEs.

C.5. Covariate shift calibration

We analyze the behavior of our model when presented with corrupted data (CIFAR10-C and CIFAR100-C (Hendrycks &
Dietterich, 2019)) for the same base network, Wide-Resnet-28-10. These datasets contain 19 types of corruptions, each with
5 different severity levels. Figure 5 shows the NLL and ECE results averaged over all corruption types. Retraining the last
layer without any regularization (LL-E) improves the uncertainty calibration of the single network (MAP) for both datasets.
Function space repulsion further improves calibration on CIFAR10-C, outperforming LL-Laplace and SNGP, and achieving
competitive uncertainty calibration to DEs. If the final layer of the network is sensitive to features that are not relevant to the
target class, corrupted data might activate these irrelevant features, resulting in overconfident and inaccurate predictions.
Enforcing predictive diversity on specified repulsion samples can help to down-weight the influence of non-robust features
(through the repulsion term) and focus on robust features for prediction, thereby improving the model’s calibration and
performance on corrupted data. Interestingly, for CIFAR100-C, the benefits of performing inference in function space are
not as evident as for CIFAR10-C. Here, random initialization and retraining of the last layer (LL-E) achieves comparable
results to the other uncertainty methods at minimal parameter and computational cost.
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D. Related work
Scalable Bayesian Neural Networks

Bayesian neural network provide a principled way to quantify uncertainty in neural networks. Unfortunately, the com-
putational cost of training and inference is often prohibitive. Gradient based Monte Carlo methods, such as Hamiltonian
Monte Carlo (Neal, 1995), are powerful tools for sampling from complex distributions. However, they are computationally
expensive and require careful tuning of hyperparameters. Thus, much research has been invested in finding efficient methods
to approximate the posterior distribution and to make BNNs scalable, including variational inference (Blundell et al., 2015),
dropout as variational inference (Gal & Ghahramani, 2016), and Laplace approximation (Daxberger et al., 2021). Partially
stochastic networks reduce the computational demands of BNNs by treating only a subset of the parameters probabilistically
(Daxberger et al., 2021; Sharma et al., 2023). In particular, last-layer approaches have been shown to be effective in reducing
overconfidence (Dusenberry et al., 2020; Kristiadi et al., 2020; Harrison et al., 2024). Our multi-headed structure can be
interpreted as a partially stochastic network where the last layer is trained using particle optimization in function space.

(Repulsive) Deep Ensembles

Deep ensembles combine the predictions of several deep neural networks, where each network is initialized randomly
and trained independently. Originally considered an uncertainty heuristic, DEs have been shown to outperform Bayesian
methods in empirical evaluations regarding prediction accuracy, uncertainty calibration, and out-of-distribution detection
(Lakshminarayanan et al., 2017; Gustafsson et al., 2020; Ovadia et al., 2019). Subsequently, there has been considerable
research on DEs and the conditions under which they be considered a Bayesian method (Wilson, 2020; D’Angelo & Fortuin,
2021; Wild et al., 2023). Repulsive DEs introduce a kernelized repulsion term that prevents ensemble members from
collapsing to the same local optimum. They differ in the space in which diversity is enforced: network parameters (Wang
et al., 2019; D’Angelo & Fortuin, 2021), feature representations (Yashima et al., 2022), input gradients (Trinh et al., 2023),
or function space (Wang et al., 2019; D’Angelo & Fortuin, 2021).

Function-space Inference

A number of inference methods for BNNs consider the shift from inference in the space of network parameters to the
function space (Sun et al., 2019; Ma et al., 2019; Burt et al., 2020; Wang et al., 2019; Ma & Hernández-Lobato, 2021;
Rudner et al., 2022). This allows to specify meaningful prior distributions over the network parameters. Recent work
proposed a tractable variational inference method by linearizing the function mapping of the neural network around a
Gaussian distribution (Rudner et al., 2022; 2023). POVI methods approximate the posterior distribution using a set of
discrete particles to capture its multimodal structure (Wang et al., 2019; D’Angelo & Fortuin, 2021).

Auxiliary out-of-distribution data

Function space inference methods enforce the function prior on a set of input points, in some work referred to as measurement
(Sun et al., 2019; Wang et al., 2019; Ma & Hernández-Lobato, 2021) or context samples (Rudner et al., 2022; 2023). In
low-dimensional problems, such samples can be obtained by drawing from a distribution with support over the domain
of interest (Sun et al., 2019; Wang et al., 2019; Ma & Hernández-Lobato, 2021). For high-dimensional problems with
structured data, such as natural images, samples from an OOD data set have shown improvements (Rudner et al., 2022;
2023). Similar work on OOD detection methods for single networks has used auxiliary OOD datasets to maximize softmax
entropy (Hendrycks et al., 2019).

Multi-headed architectures

Various approaches have used multi-headed network architectures to reduce memory requirements by sharing parameters of
a base network (Song & Chai, 2018; Sercu et al., 2016; Lee et al., 2015). In reinforcement learning, bootstrapping using a
multi-headed network has been employed to improve exploration tasks (Osband et al., 2016). In addition, multi-headed
networks were used to perform online distillation of a teacher model (Zhu et al., 2018), and to replicate functional behavior
of deep ensembles (Tran et al., 2020). The trade-off between ensembling the whole network and a selection of specific
layers has been analyzed in (Valdenegro-Toro, 2023).
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Distance based uncertainty methods

Distance-based uncertainty methods consider the epistemic uncertainty of a given test input to be proportional to the distance
to the support of the training data. If a test sample is close to the training distribution, the predictions are considered
trustworthy. If the distance is large, the model should abstain from making predictions. Computing distances directly
in high-dimensional input spaces, however, is often impractical. Thus, most methods depend on well-informed latent
representations of the network and estimate epistemic uncertainty by considering feature space densities (Charpentier
et al., 2020; Postels et al., 2020; Mukhoti et al., 2023; Winkens et al., 2020) or distances (Liu et al., 2020; van Amersfoort
et al., 2020; Tagasovska & Lopez-Paz, 2019). This requires appropriate regularization of the feature space to avoid feature
collapse and to ensure that densities and distances are meaningful (van Amersfoort et al., 2021). Common methods to
achieve bi-Lipschitz conditions include gradient penalties (Gulrajani et al., 2017; van Amersfoort et al., 2020), and spectral
normalization (Miyato et al., 2018; Liu et al., 2020). In extensive experiments, (Postels et al., 2021) demonstrate that relying
solely on the feature space density of a model is not sufficient to indicate correctness of a prediction and results in poor
calibration under distribution shifts.
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