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ABSTRACT

Monocular 3D detection (M3D) aims for precise 3D object localization from a
single-view image which usually involves labor-intensive annotation of 3D de-
tection boxes. Weakly supervised M3D has recently been studied to obviate the
3D annotation process by leveraging many existing 2D annotations, but it often re-
quires extra training data such as LiDAR point clouds or multi-view images which
greatly degrades its applicability and usability in various applications. We pro-
pose SKD-WM3D, a weakly supervised monocular 3D detection framework that
exploits depth information to achieve M3D with a single-view image exclusively
without any 3D annotations or other training data. One key design in SKD-WM3D
is a self-knowledge distillation framework, which transforms image features into
3D-like representations by fusing depth information and effectively mitigates the
inherent depth ambiguity in monocular scenarios with little computational over-
head in inference. In addition, we design an uncertainty-aware distillation loss
and a gradient-targeted transfer modulation strategy which facilitate knowledge
acquisition and knowledge transfer, respectively. Extensive experiments show that
SKD-WM3D surpasses the state-of-the-art clearly and its performance is even on
a par with many fully supervised methods.

1 INTRODUCTION

Monocular 3D detection (M3D) has emerged as one key component in the area of autonomous driv-
ing and computer vision. Its primary target is to recognize objects and obtain their 3D localization
from single-view images. Thanks to its low deployment cost, M3D (Chen et al., 2016; Peng et al.,
2022b) has attracted increasing attention in both academic and industrial sectors, achieving very
impressive progress in recent years. On the other hand, most existing studies (Ku et al., 2019; Si-
monelli et al., 2020; Reading et al., 2021; Peng et al., 2022a) adopt a fully supervised setup which
have been facing increasing scalability concern as large-scale 3D boxes are often labor-intensive to
collect. Effective M3D training without 3D annotations has become a critical issue while handling
M3D problems in various research and practical tasks.

Weakly supervised M3D (WM3D) (Peng et al., 2022b) has recently been explored for learning ef-
fective 3D detectors without 3D box annotations, aiming to exploit 2D annotations to make up for
the absence of 3D information. For example, WeakM3D (Peng et al., 2022b) exploits LiDAR point
clouds to infer 3D information as illustrated in Fig.1 (a). However, it requires costly and com-
plicated LiDAR sensors to collect point clouds which limits its applicability and usability greatly.
WeakMono3D (Tao et al., 2023) employs 2D information only by either leveraging multi-view stereo
with images from multiple cameras or constructing pseudo-multi-view perspective from sequential
video frames as illustrated in Fig.1 (b). However, collecting multi-view images is complicated, and
resorting to a pseudo multi-view perspective degrades the detection performance clearly. With the
advance of single-view depth estimation, WM3D with depth from a single-view image presents a
potential solution for compensating the absence of 3D annotations. On the other hand, direct integra-
tion of such depth into existing frameworks often necessitates complex network architectures which
further incurs significant computational costs. This gives rise to a pertinent question: When not
using additional LiDAR point clouds or multi-view image pairs, is it possible to harness the depth
from off-the-shelf depth estimators without introducing much computational overhead in inference?
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Figure 1: Comparison of high-level paradigms in weakly supervised monocular 3D detection. Our
approach in (c) leverages Pseudo Depth Labels from a single-view image to achieve weakly super-
vised monocular 3D detection, requiring no extra training data like LiDAR point clouds or multi-
view images as in (a) and (b) and improving the usability and applicability greatly. Data in red
denotes extra data in network training.

We design SKD-WM3D, a novel weakly supervised monocular 3D object detection method that is
exclusively grounded on single-view images. One key design in SKD-WM3D is a self-knowledge
distillation framework which consists of a Depth-guided Self-teaching Network (DSN) and a
Monocular 3D Detection Network (MDN). As illustrated in Fig. 1 (c), SKD-WM3D utilizes depth
information to enhance the 3D localization ability of DSN and transfers such ability to MDN via self-
knowledge distillation. Such self-distillation design enables MDN to unearth the intrinsic depth in-
formation from single-view images independently, bypassing additional modules such as pre-trained
depth estimation networks and leading to precise and efficient 3D localization with little computa-
tional overhead during inference. On top of DSN and MDN, we design an uncertainty-aware dis-
tillation loss to optimize the utilization of the transferred knowledge by weighting up more certain
knowledge while weighting down less certain knowledge. In addition, we design a gradient-targeted
transfer modulation strategy to synchronize the learning paces of DSN and MDN by prioritizing
MDN learning at the initial stage when MDN lags behind DSN and enabling it to provide more
feedback to DSN when MDN is better trained at late stages.

Our contribution can be summarized in three aspects. First, we design a novel framework that
achieves weakly supervised monocular 3D detection by distilling knowledge between a depth-
guided self-teaching network and a monocular 3D detection network. Without any extra training data
like LiDAR point clouds or multi-view images, the framework exploits depth exclusively from a sin-
gle image with little computational overhead in inference. Second, we design an uncertainty-aware
distillation loss and a gradient-targeted transfer modulation strategy which facilitate knowledge ac-
quisition and knowledge transfer, respectively. Third, the proposed approach clearly outperforms
the state-of-the-art in weakly supervised monocular 3D detection, and its performance is even on
par with several fully supervised methods.

2 RELATED WORK

2.1 MONOCULAR 3D DETECTION

Monocular 3D object detection aims to predict 3D object localization from single-view images.
Standard monocular detectors (He & Soatto, 2019; Brazil & Liu, 2019; Chen et al., 2020; Zhou
et al., 2021; Zhang et al., 2023) operate solely on single images, without utilizing additional data.
However, the inherent depth ambiguity of monocular detection significantly hinders its performance
compared to its stereo counterparts. To address this limitation, various approaches seek solutions
with the help of extra data, such as LiDAR point clouds (Ku et al., 2019; Ma et al., 2019; Chen et al.,
2021; Chong et al., 2022), video sequences (Brazil et al., 2020), 3D CAD models (Chen et al., 2016;
Liu et al., 2021; Murthy et al., 2017), and depth estimation (Ding et al., 2020; Qin et al., 2019; Wang
et al., 2019; You et al., 2020). Specifically, MonoRUn (Chen et al., 2021) adopts an uncertainty-
aware regional reconstruction network for regressing pixel-associated 3D object coordinates with
LiDAR point clouds as extra supervision. MonoDistill (Chong et al., 2022) introduces an effective
distillation-based approach that incorporates spatial information from LiDAR signals into monocular
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3D detection. Additionally, pseudo-LiDAR-based methods (Wang et al., 2019; You et al., 2020)
convert estimated depth maps to simulate the real LiDAR point clouds to utilize the well-designed
LiDAR-based 3D detector. During inference, compared with methods using depth estimation, our
method eliminates the need for pseudo depth labels and complex network architectures, with little
computational overhead. Besides, existing fully supervised methods require large-scale 3D box
ground truth, which is labor-intensive to collect and annotate.

2.2 WEAKLY SUPERVISED 3D OBJECT DETECTION

Due to the high cost of annotating 3D boxes in the 3D object detection task, various weakly su-
pervised approaches have been proposed. For example, WS3D (Meng et al., 2020) presents a
weakly supervised method for 3D LiDAR object detection, which requires only a limited num-
ber of weakly annotated scenes with center-annotated BEV maps. VS3D (Qin et al., 2020) in-
troduces a cross-model knowledge distillation strategy to transfer the knowledge from the RGB
domain to the point cloud domain, using LiDAR point clouds as weak supervision. Recent research
on weakly supervised 3D object detection has turned to exploring the monocular setting. For exam-
ple, WeakM3D (Peng et al., 2022b) generates 2D boxes to select RoI LiDAR point clouds as weak
supervision and then predicts 3D boxes that closely align with the selected RoI LiDAR point clouds.
More recently, WeakMono3D (Tao et al., 2023) eliminates the need for LiDAR, offering both multi-
view and single-view yet multi-frame versions. While the former acquires stereo image inputs from
multiple cameras, the latter constructs a pseudo-multi-view perspective using video frames, suffer-
ing from clear performance degradation. Instead of requiring extra training data like LiDAR point
clouds or multi-view images, we tackle the challenge of weakly supervised monocular 3D detection
by leveraging a single-view image exclusively.

2.3 SELF-KNOWLEDGE DISTILLATION

Knowledge distillation (Hinton et al., 2015; Liu et al., 2019b; Park et al., 2019; Tian et al., 2019;
Romero et al., 2014; Chung et al., 2020; Zhao et al., 2022; Huang et al., 2022) transfers knowl-
edge from a pre-trained teacher network to a student network for improving its performance. Self-
knowledge distillation (Szegedy et al., 2016; Müller et al., 2019; Yang et al., 2023), distinct from
traditional knowledge distillation, leverages the information within the student model to facilitate
its learning without the pre-trained teacher network. Specifically, data augmentation approach (Xu
& Liu, 2019; Yun et al., 2020; Heo et al., 2019) transfers knowledge through different distortions
of the same training data. However, they are susceptible to inappropriate augmentations, such as
improper instance rotation or distortion, potentially introducing noise that hampers network learn-
ing. Another typical approach exploits auxiliary networks (Zhu et al., 2018; Zhang et al., 2019). For
example, DKS (Sun et al., 2019) introduces auxiliary supervision branches and pairwise knowledge
alignments, while FRSKD (Ji et al., 2021) adds a new branch supervised by the original features
and utilizes both soft-label and feature-map distillation. Our work is the first that introduces self-
knowledge distillation with auxiliary networks for weakly supervised monocular 3D detection. It
effectively exploits depth information from a single-view image with little computational overhead
during inference.

3 METHODOLOGY

This section presents the proposed SKD-WM3D. First, the problem definition and overview are
presented in Sec. 3.1. Then detailed designs of SKD-WM3D are introduced, including the self-
knowledge distillation framework in Sec. 3.2, the uncertainty-aware distillation loss in Sec. 3.3 and
the gradient-targeted transfer modulation in Sec. 3.4. Finally, loss functions are presented in Sec. 3.5.

3.1 PROBLEM DEFINITION AND OVERVIEW

Weakly supervised monocular 3D detection takes an RGB image as input, intending to classify
objects and determine the corresponding bounding boxes in 3D space without using 3D box annota-
tions. The prediction of each object is composed of the object category C, a 2D bounding box B2D,
and a 3D bounding box B3D. Specifically, the 3D box B3D can be further decomposed to the object
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Figure 2: The framework of the proposed self-knowledge distillation network. The framework
consists of a depth-guided self-teaching network and a monocular 3D detection network. The
depth-guided self-teaching network acquires comprehensive 3D localization knowledge by leverag-
ing depth information and transfers its learned expertise to the monocular 3D detection network via
soft label distillation to enhance its performance. We design an uncertainty-aware distillation loss
and a gradient-targeted transfer modulation strategy to facilitate the knowledge transfer between the
two networks effectively. During inference, the monocular 3D detection network extracts intrinsic
depth information from single-view images independently with little computational overhead.

3D location (x3D, y3D, z3D), the object dimension with height, width and length (h3D, w3D, l3D),
as well as orientation θ.

We design a self-knowledge distillation framework to tackle the challenge of weakly supervised
monocular 3D detection from a single-view image. As Fig. 2 shows, the framework consists of
two subnetworks including a Depth-Guided Self-Teaching Network and a Monocular 3D Detection
Network. In the Depth-Guided Self-Teaching Network, the global features FG extracted by the
backbone are fed into a Depth Head to obtain depth features. Next, the global features FG and
the extracted depth features are fed into a Fusion Layer to obtain 3D-like features F3D. Then 3D
box B̂3D

p and uncertainty Û are predicted by a Depth-Aware 3D Head with 3D-like features as the
input. In the Monocular 3D Detection Network, the global features FG are first fed into a 2D-to-3D
Head to predict 3D box B̂2D

p and uncertainty U . Besides, the 3D boxes predicted by both networks
are further projected into 2D boxes. Moreover, we design an uncertainty-aware distillation loss
Lud to obtain low-uncertainty knowledge, and a gradient-targeted transfer modulation strategy to
synchronize the learning paces between the two networks by controlling gradients Ĝ and G of Lud.

3.2 SELF-KNOWLEDGE DISTILLATION FRAMEWORK

The self-knowledge distillation framework enhances the 3D localization ability of the depth-guided
self-teaching network by utilizing depth information from an off-the-shelf depth estimator and then
transfers the ability to the monocular 3D detection network via self-knowledge distillation.

Depth-Guided Self-Teaching Network. To equip the self-teaching network with 3D localization
ability, we propose to learn from global features FG and depth information from an off-the-shelf
depth estimator to acquire comprehensive 3D knowledge. The depth information is exploited via
two major designs. Firstly, we introduce a depth head D that extracts depth features FD as follows:

FD = D(FG), (1)

The depth features FD are exploited to generate depth maps Dp, where the depth map generation
is supervised by the pseudo ground truth of the depth map Dgt that is predicted by an off-the-shelf
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depth estimator by using the focal loss (Lin et al., 2017) as depth loss Ldep. Hence, the depth
features can be acquired by the depth-guided self-teaching network effectively.

Secondly, we obtain 3D-like features FG3D by integrating the depth features FD that provide infor-
mation along the depth dimension, as well as the global features FG that capture knowledge about
the 2D image plane. Specifically, we design a fusion layer that fuses the depth features FD with the
global features FG to derive the FG3D as follows:

FG3D = FFN(CrossAttention(SelfAttention(FD), FG)), (2)

where the FFN is the feed-forward network, and the structures of CrossAttention and
SelfAttention employ the standard transformer architecture (Vaswani et al., 2017). The obtained
3D comprehension improves the network’s ability to precisely locate objects, effectively mitigating
depth ambiguity arising from single-view image input.

Monocular 3D Detection Network. The monocular 3D detection network acquires the 3D local-
ization knowledge from the depth-guided self-teaching network. By distilling soft labels generated
by the depth-guided self-teaching network, the monocular 3D detection network can extract intrinsic
depth information from images independently during inference. This kills the need for additional
complex modules such as pre-trained depth estimation networks or depth fusion modules, facilitat-
ing the inference with little computational overhead.

3.3 UNCERTAINTY-AWARE DISTILLATION LOSS

During the knowledge distillation process, uncertain knowledge could affect the network training
negatively if all transferring knowledge is treated equally. To benefit more from certain knowl-
edge and weaken the effect of uncertain knowledge, we design an uncertainty-aware distillation
loss between the 3D boxes that are predicted by the two networks in the self-knowledge distillation
framework. The uncertainty-aware distillation loss exploits the prediction uncertainty to modulate
the distillation loss magnitude as follows:

Lud =
Ld

min((Û + U)/2, α)
+

∥∥∥∥∥min(
Û + U

2
, α)

∥∥∥∥∥
2

, (3)

where Û and U are the uncertainties corresponding to the 3D box predicted by the two networks,∥∥∥min( Û+U
2 , α)

∥∥∥2 is the L2 regularization, and α is a fixed value set to 0.1. Ld denotes the basic
distillations loss, and we employ the commonly used SmoothL1 (Girshick, 2015) loss to enforce the
consistency between the 3D boxes predicted by the two networks. The SmoothL1 loss leaves a soft
margin when computing the difference between the two 3D boxes:

Ld =

{
0.5× (B̂3D

p −B3D
p )2/γ, if |B̂3D

p −B3D
p | < γ

|B̂3D
p −B3D

p | − 0.5× γ, otherwise
, (4)

where B̂3D
p and B3D

p are the predicted 3D boxes from the depth-guided self-teaching network and
the monocular 3D detection network, respectively. γ is the soft margin, which is set to 1.0.

Remark. The proposed uncertainty-aware distillation loss Lud integrates average uncertainty
Û+U

2 as regularization and a weighted component for the basic distillation loss Ld, allowing adap-
tive learning adjustments based on the knowledge’s uncertainty level. Specifically, when dealing
with uncertain knowledge, a smaller weight is assigned to the basic distillation loss Ld to mitigate
potential adverse effects on network learning. Consequently, the network prioritizes optimizing
uncertainty reduction in such scenarios. When dealing with certain knowledge, the network empha-
sizes optimizing the basic distillation loss Ld due to its higher weight. Notably, the basic distillation
loss Ld simply considers box consistency, while integrating uncertainty is beneficial for enhancing
the knowledge distillation process.
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3.4 GRADIENT-TARGETED TRANSFER MODULATION STRATEGY

The depth-guided self-teaching network, which leverages depth information to predict 3D boxes,
transfers its learned 3D knowledge to the monocular 3D detection network. The asynchronous
learning paces of the two networks pose potential challenges to effective 3D knowledge transfer.

We design a gradient-targeted transfer modulation strategy to synchronize the learning pace of the
depth-guided self-teaching network and the monocular 3D detection network. We modulate the
knowledge transfer dynamically, by controlling the gradients from the uncertainty-aware distilla-
tion loss Lud. Specifically, we adapt the gradients based on the 2D projection performance of each
network, assigning smaller backward gradients for good-performing network and higher backward
gradients for bad-performing network. The gradient-targeted transfer modulation strategy is formu-
lated as follows:

Ĝ′ =
2× L̂proj

L̂proj + Lproj

× Ĝ,G′ =
2× Lproj

L̂proj + Lproj

×G, (5)

Where Ĝ and G are the original gradients of the two networks, Ĝ′ and G′ are the modified gradients,
L̂proj and Lproj are projection losses, computed between the projected 2D boxes from 3D box
predictions and 2D box annotations.

The gradient-targeted transfer modulation prioritizes training the monocular 3D detection network
when its learning lags behind the depth-guided self-teaching network at the early training stage. As
the monocular 3D detection network learns and improves gradually, it is enabled to provide more
feedback progressively to the depth-guided self-teaching network.

3.5 LOSS FUNCTIONS

The overall objective consists of three losses including Lud, Ldep and Lbase. Lud is the uncertainty-
aware distillation loss as defined in Sec. 3.3. Ldep is the depth loss for supervising the predicted
depth map. Lbase includes losses for supervising 2D boxes prediction by 2D heads and the 3D box
predictions, which has been adopted in prior CenterNet (Zhou et al., 2019) and WeakMono3D (Tao
et al., 2023). We set the weight for each loss item to 1.0, and the overall loss function can be
formulated as follows:

L = Lud + Ldep + Lbase, (6)

4 EXPERIMENTS

4.1 DATASET

We conduct experiments over the 3D KITTI dataset (Geiger et al., 2012) that has been widely
adopted for benchmarking of 3D object detection methods. The dataset consists of 7,481 images
for training and 7,518 images for testing. The labels of the train set are publicly available and the
labels of the test set are stored on a test server for evaluation. For ablation studies, we follow (Chen
et al., 2016) which divides the 7,481 training samples into a new train set with 3,712 images and a
validation set with 3,769 images.

4.2 EVALUATION PROTOCOLS

Following (Simonelli et al., 2020), we adopt the evaluation metric AP|R40
which is the average of the

AP of 40 recall points. We report the average precision on bird’s eye view and 3D object detection
as APBEV |R40

and AP3D|R40
. In addition, as most weakly supervised 3D object detection methods

apply IoU threshold of 0.7 for the test set and 0.5 for the validation set, we adopt the same thresholds
for fair benchmarking.

4.3 IMPLEMENTATION DETAILS

We conduct experiments on 2 NVIDIA V100 GPUs with batch size of 16, and train the framework
with 150 epochs. We use the Adam optimizer with the initial learning rate 1e−5, which is gradually
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Table 1: Comparison on the performance of the Car category on KITTI test set. For all results, we
use AP|R40 metrics with IoU threshold equals to 0.7. The best results are in bold.

Method Supervision APBEV /AP3D(IoU= 0.7)|R40

Easy Moderate Hard
WeakM3D (Peng et al., 2022b)

Weak
11.82/5.03 5.66/2.26 4.08/1.63

WeakMono3D (Tao et al., 2023) 12.31/6.98 8.80/4.85 7.81/4.45
SKD-WM3D (Ours) 15.71/8.95 10.15/5.54 8.08/4.53

Table 2: Comparison on the performance of the Car category on KITTI val set. For all results, we
use AP|R40

metric with IoU threshold equals to 0.5. * denotes this performance is reproduced from
the official code. The best results of weakly supervised approaches are in bold.

Method Supervision APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard
CenterNet (Zhou et al., 2019)

Full

34.36/20.00 27.91/17.50 24.65/15.57
MonoGRNet (Qin et al., 2019) 52.13/47.59 35.99/32.28 28.72/25.50
M3D-RPN (Brazil & Liu, 2019) 53.35/48.53 39.60/35.94 31.76/28.59
MonoPair (Chen et al., 2020) 61.06/55.38 47.63/42.39 41.92/37.99
MonoDLE (Ma et al., 2021) 60.73/55.41 46.87/43.42 41.89/37.81
GUPNet (Lu et al., 2021) 61.78/57.62 47.06/42.33 40.88/37.59
Kinematic (Brazil et al., 2020) 61.79/55.44 44.68/39.47 34.56/31.26
MonoDistill (Chong et al., 2022) 71.45/65.69 53.11/49.35 46.94/43.49
MonoDETR (Zhang et al., 2023)* 72.34/68.05 51.97/48.42 46.94/43.48
VS3D (Qin et al., 2020)

Weak

31.59/22.62 20.59/14.43 16.28/10.91
Autolabels (Zakharov et al., 2020) 50.51/38.31 30.97/19.90 23.72/14.83
WeakM3D (Peng et al., 2022b) 58.20/50.16 38.02/29.94 30.17/23.11
WeakMono3D (Tao et al., 2023) 54.32/49.37 42.83/39.01 40.07/36.34
SKD-WM3D (Ours) 55.47/50.21 44.35/41.57 41.86/36.92

increased to 1e−3 for the first 5 epochs and decayed with rate 0.1 at the 90 and 120 epochs. We
employ DLA-34 (Yu et al., 2018) as the detector’s backbone. The pseudo ground truth of the depth
map is generated with an off-the-shelf depth estimator without using the ground truth of depth label.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with several state-of-the-art weakly supervised monocular 3D detection
methods on the KITTI test set. As Table 1 shows, our method achieves superior detection per-
formance across all metrics. This superior performance is largely attributed to our designed self-
knowledge distillation framework that extracts and exploits intrinsic depth information from a
single-view image effectively. It should be highlighted that our method employs a single-view im-
age exclusively without involving additional training data such as LiDAR point clouds (Peng et al.,
2022b) or multi-view image pairs (Tao et al., 2023).

Table 2 shows the benchmarking on the KITTI validation set. Specifically, we compare our method
against both state-of-the-art weakly supervised monocular 3D detection methods and fully su-
pervised methods. It can be seen that our method achieves superior performance compared to
WeakM3D (Peng et al., 2022b) and WeakMono3D (Tao et al., 2023) across most metrics. Addi-
tionally, its performance is even on a par with several fully supervised methods (Zhou et al., 2019;
Qin et al., 2019; Brazil & Liu, 2019).

Quantitative Results Fig. 3 shows qualitative illustration with both 2D RGB images and 3D point
clouds. In simple scenarios, our model achieves great prediction precision, which is largely at-
tributed to the proposed self-knowledge distillation framework as well as the uncertainty-aware dis-
tillation loss and gradient-targeted transfer modulation strategy, all working together to facilitate
comprehensive 3D information extraction effectively. But for heavily occluded or distant objects,
the accuracy of orientation and depth estimation drops more or less which is common for monocular
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Figure 3: Qualitative illustration on KITTI val set. Red boxes denote ground-truth annotations
and Green boxes denote our predictions. The ground truth of LiDAR point clouds is utilized for
visualization purposes only. Best viewed with zoom-in.

Figure 4: Qualitative illustration of object detection and the corresponding detection uncertainties on
KITTI val set. Red boxes denote ground-truth annotations and Green boxes denote our predictions.
The detection accuracy is closely correlated with the detection uncertainty.

3D detection due to its ill-posed nature. In addition, we show the visualization of object detection
and the detection uncertainties in Fig. 4. It can be observed that the prediction accuracy has a close
correlation with the prediction uncertainty.

4.5 ABLATION STUDY

We conduct extensive ablation studies on the KITTI validation dataset to evaluate our designs.
Specifically, we evaluated the efficacy of the two individual networks in the proposed self-knowledge
distillation framework. In addition, we examine the effect of the proposed uncertainty-aware distilla-
tion loss and the gradient-targeted transfer modulation strategy. Further, we evaluated the efficiency
of our monocular 3D detection framework.

Self-Knowledge Distillation Framework. We train two models to assess the contributions of the
two networks in our proposed self-knowledge distillation framework. As Table 3 shows, training the
monocular 3D detection network alone produces few meaningful detection results as the absence of
depth information leads to ambiguous object localization along the depth dimension. As a compari-
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Table 3: Ablation study of the proposed self-knowledge distillation framework. The best results are
in bold.

Index Monocular 3D
Detection Network

Depth-Guided
Self-Teaching Network

APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard
1 ✓ 0.00/0.00 0.00/0.00 0.00/0.00
2 ✓ 45.23/40.96 34.27/31.02 30.17/26.27
3 ✓ ✓ 55.47/50.21 44.35/41.57 41.86/36.92

Table 4: Ablation study of the proposed uncertainty-aware distillation loss and the gradient-targeted
transfer modulation strategy. The best results are in bold.

Index Uncertainty-Aware
Distillation Loss

Transfer
Modulation Strategy

APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard
1 49.95/44.61 38.24/35.74 37.28/34.82
2 ✓ 53.16/48.13 41.85/39.02 40.14/35.70
3 ✓ 52.35/46.30 41.45/38.91 39.73/35.44
4 ✓ ✓ 55.47/50.21 44.35/41.57 41.86/36.92

Table 5: Comparison on inference time of methods utilizing dense depth maps.
Method PatchNet

(Ma et al., 2020)
D4LCN

(Ding et al., 2020)
DDMP-3D

(Wang et al., 2021)
MonoDistill

(Chong et al., 2022)
SKD-WM3D

(Ours)
Runtime 400ms 200ms 180ms 40ms 33ms

son, training the depth-guided self-teaching network alone can produce reasonable detection results
thanks to the estimated depth map pseudo labels. In addition, training both subnetworks concurrently
produces the best 3D detection, validating the effectiveness of extracting 3D information from a sin-
gle image. We can also see that including the self-knowledge distillation on top of the depth-guided
self-teaching network greatly improves the detection by reducing the adverse effects of uncertain
knowledge and enabling the communication between the two subnetworks during training.

Uncertainty-Aware Distillation Loss and Gradient-Targeted Transfer Modulation. Table 4
shows the ablation study of the uncertainty-aware distillation loss and the gradient-targeted trans-
fer modulation. We can observe that the baseline does not perform well due to the adverse effect
of uncertain knowledge and the asynchronous learning paces of the two subnetworks. On top of
the baseline, including either the uncertainty-aware distillation loss or the gradient-targeted trans-
fer modulation improves the detection significantly, underscoring the importance of attaining high-
certainty knowledge and synchronizing the learning paces of the two networks. In addition, com-
bining the two designs achieves the best performance, highlighting their complementary nature and
collaborative roles in knowledge acquisition and knowledge transfer.

Inference time comparison. Table 5 compares the inference time on the KITTI validation set.
Compared with other methods utilizing dense depth maps, our method demonstrates superior ef-
ficiency thanks to our designed self-knowledge distillation framework, without utilizing complex
network architectures during inference.

5 CONCLUSION

In this paper, we point out that previous weakly supervised monocular 3D detection methods either
require additional LiDAR point clouds or need paired images from multiple viewpoints or temporal
sequences. To overcome these constraints, we propose a weakly supervised monocular 3D object
detection approach that is exclusively grounded on single-view image inputs. Central to our ap-
proach is a self-knowledge distillation framework, which effectively harnesses the limited depth
information within a single-view image with little computational overhead during inference. We
further introduce an uncertainty-aware distillation loss and a gradient-targeted transfer modulation
strategy, facilitating knowledge acquisition and knowledge transfer. respectively. Finally, extensive
experiments demonstrate the effectiveness of our method.
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A APPENDIX

A.1 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results on the RGB image and 3D space, as shown in Fig. 5. Our
model exhibits accurate predictions in most scenarios, proving its efficacy and robustness.

Figure 5: Qualitative illustration on KITTI val set. Red boxes denote 3D box ground truth and
Green boxes denote our predictions. We can observe that our approach achieves accurate 3D box
predictions. Best viewed with zoom-in.
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Figure 6: Qualitative illustration of failure cases on KITTI val set. Red boxes denote 3D box ground
truth and Green boxes denote our predictions. Objects with inaccurate predictions are typically
distant, occluded, or partially truncated. Best viewed with zoom-in.

Qualitative results of failure cases are presented in Fig. 6. The proposed SKD-WM3D achieves less
accurate performance on challenging objects. It can be observed that SKD-WM3D faces challenges,
particularly in cases involving distant (Columns 1, 2, and 3), occluded (Column 1, 3), or truncated
objects (Column 1). Further research could be explored under such complex scenarios to enhance
performance.

A.2 DISCUSSIONS

Difference between our Method and Knowledge Distillation Method. Our self-knowledge dis-
tillation method is different from knowledge distillation methods, which often require a pre-trained
teacher network. Our self-knowledge distillation method trains the network progressively to distill
and to regularize its own knowledge, without a pre-trained teacher network.

Compared with Other Knowledge-Distillation-Based M3D Methods. MonoDistill (Chong
et al., 2022) is a fully supervised monocular 3D detection method employing knowledge distillation.
In contrast, our novel method, SKD-WM3D, differs from MonoDistill in two key ways. Firstly,
SKD-WM3D does not rely on LiDAR point clouds, eliminating the need for costly and complex
LiDAR sensors. In contrast, MonoDistill relies on LiDAR point clouds for spatial information. Sec-
ondly, the transferred knowledge of MonoDistill has high quality, low uncertainty, and little noise,
since the 3D annotations are utilized. However, for the weakly supervised monocular 3D detection
task without 3D annotations, directly applying MonoDistill is inappropriate due to the relatively
higher uncertainty and more noise in the transferred knowledge. Our method addresses this chal-
lenge by introducing an uncertainty-aware distillation loss to enhance robustness in the presence of
noisy knowledge.

A.3 DETAILS OF NETWORK ARCHITECTURE

The self-knowledge distillation framework first takes an RGB image I as input. After feature en-
coding in the backbone network, we have global features FG. Then the global features FG are fed
into the 2D detection heads and gain 2D head predictions, namely, 2D heatmap H , 2D offset O2D,
and 2D size S2D. By combining these 2D head predictions, we can obtain 2D box predictions. The
global features FG are then fed into the depth-guided self-teaching network and the monocular 3D
detection network.

Depth-Guided Self-Teaching Network. In the depth-guided self-teaching network, the global
features FG are fed into the depth head to produce depth features FD, subsequently employed to
generate depth map Dp To ensure the depth-guided self-teaching network acquires depth informa-
tion, the predicted depth map Dp is supervised by the pseudo ground truth of the depth map Dgt,
adopting the focal loss (Lin et al., 2017) as depth loss Ldep. The depth features FD are integrated
with the global features FG via a fusion layer to derive the 3D-like features FG3D. Single 3D object
features, denoted as F3D, are extracted from the 3D-like features FG3D using RoI Align and fed into
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Table 6: Ablation study of basic distillation loss. The best results are in bold.

Basic Distillation Loss APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard
L1 Loss 53.10/46.04 42.64/37.07 39.34/34.99
SmoothL1 Loss 55.47/50.21 44.35/41.57 41.86/36.92

Table 7: Ablation study of different losses.

Index Ldep Lud
APBEV /AP3D(IoU= 0.5)|R40

Easy Moderate Hard
1 ✓ 0.68/0.25 0.38/0.12 0.32/0.09
2 ✓ 0.00/0.00 0.00/0.00 0.00/0.00
3 ✓ ✓ 55.47/50.21 44.35/41.57 41.86/36.92

the depth-aware 3D head. The predicted 3D boxes B̂3D
p are projected into the 2D image space to ob-

viate the need for 3D box ground truth, following (Tao et al., 2023). We use the L1 loss function for
the projection loss, L̂proj . Furthermore, the predicted uncertainty Û quantifies the reliability of the
predicted 3D boxes B̂3D

p . Specifically, the depth head comprises a sequence of operations: Conv-
BN-ReLU-Conv, where Conv denotes 2D convolutional operation, BN denotes batch normalization,
and ReLU denotes the rectified linear unit function.

Monocular 3D Detection Network. In the monocular 3D detection network, 2D object features,
denoted as F2D, are extracted from the global features FG using RoI Align and subsequently input
into the 2D-to-3D head. This head transforms the 2D object features F2D to the 3D boxes predic-
tions, represented as B3D

p . The supervision of the predicted 3D boxes B3D
p is facilitated by soft

labels generated by the depth-guided self-teaching network. This process enables effective knowl-
edge transfer from the depth-guided self-teaching network to enhance 3D localization within the
monocular 3D detection network. Finally, the predicted 3D boxes B3D

p are projected into the 2D
image space. We employ the L1 loss for the projection loss Lproj , which is the same as the projec-
tion loss utilized in the depth-guided self-teaching network.

A.4 DETAILS OF LOSS FUNCTIONS

In equation 6, Lbase includes losses for supervising 2D boxes predicted by the 2D head and projected
2D boxes from the 3D box predictions. For losses for supervising 2D boxes predicted by the 2D
head, we adopt the loss design from CenterNet (Zhou et al., 2019) for 2D object detection. The 2D
heatmap H signifies the approximate object center in the image, while the 2D offset O2D represents
the bias from the estimated 2D center. The 2D size S2D corresponds to the height and width of
the 2D bounding box. Following CenterNet, we adopt LH , LO2D

, and LS2D
as 2D loss functions

L2D box. The projection losses are computed using L1 loss, denoted as L̂proj and Lproj for the
depth-guided self-teaching network and the monocular 3D detection network, respectively.

A.5 QUANTITATIVE RESULTS

Basic Distillation Loss. Table 6 compares the basic distillation loss Ld used in the uncertainty-
aware distillation loss Lud. It can be observed that compared with L1 loss, using SmoothL1 loss
yields the best results. This is because, during the early training phase, both networks provide
inaccurate predictions, making it impractical to enforce strict consistency between their outputs.
The SmoothL1 loss leaves a soft margin when computing the difference between the two 3D boxes.

Effect of Different Losses. Table 7 presents the results of ablation studies comparing three dif-
ferent loss functions. In this ablation study, the 2D losses, including LH , LO2D

and LS2D
, and

the projection losses, including L̂proj and Lproj are used as default. Solely utilizing the depth loss
leads to performance scores of 0.68/0.25, 0.38/0.12, and 0.32/0.09 for the Easy, Moderate, and Hard
categories, respectively. These suboptimal results underscore the necessity of the uncertainty-aware
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Table 8: Comparison of the performance of the Car category on KITTI test set. For all results,
we use AP|R40 metrics with IoU threshold equals to 0.7. The best results of weakly supervised
approaches are in bold.

Method Supervision APBEV /AP3D(IoU= 0.7)|R40

Easy Moderate Hard
FQNet (Liu et al., 2019a)

Full

5.40/2.77 3.23/1.51 2.46/1.01
GS3D (Li et al., 2019) 8.41/4.47 6.08/2.90 4.94/2.47
ROI-10D (Manhardt et al., 2019) 9.78/4.32 4.91/2.02 3.74/1.46
MonoGRNet (Qin et al., 2019) 18.19/9.61 11.17/5.74 8.73/4.25
MonoPSR (Ku et al., 2019) 18.33/10.76 12.58/7.25 9.91/5.85
M3D-RPN (Brazil & Liu, 2019) 21.02/14.76 13.67/9.71 10.23/7.42
MonoDLE (Ma et al., 2021) 24.79/17.23 18.89/12.26 16.00/10.29
Kinematic (Brazil et al., 2020) 26.69/19.07 17.52/12.72 13.10/9.17
MonoEF (Zhou et al., 2021) 29.03/21.29 19.70/13.87 17.26/11.71
AutoShape (Liu et al., 2021) 30.66/22.47 20.08/14.17 15.59/11.36
MonoDistill (Chong et al., 2022) 31.87/22.97 22.59/16.03 19.72/13.60
MonoDETR (Zhang et al., 2023) 33.60/25.00 22.11/16.47 18.60/13.58
WeakM3D (Peng et al., 2022b)

Weak
11.82/5.03 5.66/2.26 4.08/1.63

WeakMono3D (Tao et al., 2023) 12.31/6.98 8.80/4.85 7.81/4.45
SKD-WM3D (Ours) 15.71/8.95 10.15/5.54 8.08/4.53

Table 9: Comparison of the parameters and flops of our proposed method. The tests are carried out
on a single NVIDIA V100 GPU.

Network Params FLOPs Inference Time
Depth-Guided Self-Teaching Network 24.44M 161.13G 80ms
Monocular 3D Detection Network 20.36M 61.15G 33ms

distillation loss, which enables the M3D network to learn knowledge from the depth-guided self-
teaching network and to extract intrinsic depth information from images during inference. When
uncertainty-aware distillation is employed, zero metrics are achieved, affirming the effectiveness of
incorporating depth information for precise 3D object localization. Finally, employing both losses
yields the highest performance, emphasizing the significance of depth information and knowledge
transfer. In our weakly supervised approach, both the two losses are indispensable, collectively
offering comprehensive guidance for model learning.

Comparison with Fully Supervised Methods. Table 8 shows our comparison of the KITTI test
set against state-of-the-art weakly supervised monocular 3D detection methods and various fully su-
pervised monocular 3D detection approaches. Our approach demonstrates competitive performance
compared to certain fully supervised techniques, such as (Liu et al., 2019a; Li et al., 2019; Manhardt
et al., 2019), even when 3D annotations are not available.

Computational Efficiency of Our Proposed Method. We conduct a comprehensive computa-
tional efficiency analysis of our proposed framework. In Table 9, we present network parame-
ters, floating-point operations per second (FLOPs), and inference time for the networks within the
self-knowledge distillation framework. Compared with the depth-guided self-teaching network, the
monocular 3D detection network requires fewer parameters and smaller FLOPs, obviating the need
for additional modules such as a pre-trained depth network or a depth fusion module. Furthermore,
since only the monocular 3D detection network is utilized during inference, it exhibits less inference
time than the depth-guided self-teaching network, without adding extra computational burdens in
inference.
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