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ABSTRACT

Existing studies of training state-of-the-art Contrastive Language-Image Pretrain-
ing (CLIP) models on large-scale data involve hundreds of or even thousands of
GPUs due to the requirement of a large batch size. However, such a large amount of
resources is not accessible to most people. While advanced compositional optimiza-
tion techniques for optimizing global contrastive losses have been demonstrated
effective for removing the requirement of a large batch size, their performance on
large-scale data remains underexplored and not optimized. To bridge the gap, this
paper explores several aspects of CLIP training with limited resources (e.g., up to
tens of GPUs). First, we introduce FastCLIP, a general CLIP training framework
built on advanced compositional optimization techniques while designed and op-
timized for the distributed setting. Our framework is equipped with an efficient
gradient reduction strategy to reduce communication overhead. Second, to further
boost training efficiency, we investigate three components of the framework from
an optimization perspective: the schedule of the inner learning rate, the update rules
of the temperature parameter and the model parameters, respectively. Experiments
on different strategies for each component shed light on how to conduct CLIP
training more efficiently. Finally, we evaluate the performance of FastCLIP and the
state-of-the-art training baseline (OpenCLIP) on different compute scales up to 32
GPUs on 8 nodes, and three data scales ranging from 2.7 million, 9.1 million to 315
million image-text pairs to demonstrate the significant improvement of FastCLIP
in the resource-limited setting.

1 INTRODUCTION

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) is a popular approach for
vision-language representation learning (Cherti et al., 2023 |Sun et al., 2024} |Chen et al.| 2023c; |Li
et al.,[2023a; |Qiu et al.| [2023)). The method effectively embeds data from the image and language
modality into a joint embedding space by optimizing a contrastive loss in a self-supervised manner. It
has demonstrated strong performance on various downstream tasks (e.g., zero-shot classification and
retrieval) and has been adopted in various applications, including text-to-image generation (Ramesh
et al.| [2022; [Zhou et al., 2022 [Crowson et al., 2022}, image captioning (Yu et al.,2022; Mokady et al.}
2021), and evaluation of image generation (Hessel et al.| 2021). Its popularity is further fueled by
releases of web-scale datasets (Schuhmann et al., 2021} [2022; (Gadre et al.,[2023; Fang et al.| [2023).

However, vanilla mini-batch based methods for self-supervised contrastive learning are known to
require a large batch size to obtain satisfactory performance (Chen et al.|2023bj2020). Theoretically,
it has been shown that the optimization error of mini-batch based contrastive learning methods
inversely depends on the batch size (Yuan et al.,[2022). Empirically, state-of-the-art CLIP models
are typically trained using a large batch size on a large number of GPUs (e.g., 84k batch size and
1024 Nvidia A100 GPUs in OpenCLIP (Cherti et al.l 2023))). Such a large amount of resources is
not accessible to most researchers and practitioners in academia and small companies. Recently,
Yuan et al.[(2022) proposed an algorithm named SogCLR to address the large batch size issue, which
leverages finite-sum coupled compositional optimization (FCCO) techniques to optimize a global
contrastive loss (GCL) that contrasts each anchor data with all other data in a compositional structure.
A key feature of compositional optimization is the inner and outer steps where the inner steps
maintain and update a sequence of estimators to track the inner functions on the solution path, which
can be interpreted as an SGD update with a learning rate called the inner learning rate (Wang & Yang|
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2022). Later, SogCLR has been leveraged by |Qiu et al.| (2023)) to design the iSogCLR algorithm for
optimizing a robust global contrastive loss (RGCL) with individualized learnable temperatures for
training CLIP models. However, these algorithms are not fully optimized for large-scale training of
CLIP models since they were examined only on small-scale datasets.

This paper aims to scale up the advanced optimization algorithms for optimizing global contrastive
losses of CLIP training on large-scale data with limited compute resources. We introduce a distributed
training framework named FastCLIP by employing data parallelism such that each worker computes
the gradient estimator using their respective data and then reduces (averages) them through com-
munication, based on which the model is updated. A novel gradient reduction strategy is designed,
which requires less communication than the existing distributed framework. This distributed training
framework lays the foundation for scaling up CLIP training with limited resources. To further boost
the efficiency of our framework, we investigate its three aspects from an optimization perspective:
the schedule of the inner learning rate (LR) of compositional optimization, the update rule of the
temperature parameter, and the update rule of the model parameters, respectively.

e Previous studies (Yuan et al., [2022; |Qiu et al.| [2023)) set the inner LR to a constant value less
than but close to one, which could slow down the training for large-scale data at earlier iterations.
Inspired by the learning rate schedule of existing optimizers of Deep Learning (Loshchilov &
Hutter, 2017), we examine a cosine decay schedule for the inner LR by comparing its performance
with the constant schedule.

* For the update rule of the temperature parameter, we compare four different strategies in the
FastCLIP framework, including a heuristic approach based on the gradient of GCL, a constant
strategy as used in SogCLR, learning individualized temperatures as used in iSogCLR, and learning
global temperature by optimizing a new RGCL with a single learnable temperature.

* For the update rule of the model parameters, we compare the performance of commonly-used
optimizers for CLIP training in the FastCLIP framework, including AdamW (Loshchilov & Hutter|
2019), LAMB (You et al.l [2020), Lion (Chen et al., 2023a)) and SGD with momentum (Polyak}
1964).

Moreover, in order to study the scaling capability of FastCLIP, we compare the performance of
FastCLIP and state-of-the-art baseline OpenCLIP (Ilharco et al., 2021) on three data scales and four
compute scales. The data scales include 2.7 million (CC3M (Sharma et al., 2018]))), 9.1 million
(CC12M (Changpinyo et al., |2021)), and 315 million (LAION400M (Schuhmann et all 2021))
image-text pairy'| The compute scales include 1, 2, 4, and 8 nodes, with 4 GPUs on each node.

The contributions of this paper are summarized as follows: (1) We propose FastCLIP, an efficient
distributed framework to scale up CLIP training with limited computing resources. (2) We study
the performance of different strategies for three components of FastCLIP, providing insights on
how to conduct CLIP training more efficiently. (3) We compare the performance of FastCLIP on
different data scales and compute scales. The results show that FastCLIP consistently outperforms
state-of-the-art training baseline OpenCLIP by a large margin. A quick comparison between FastCLIP
and OpenCLIP on different data scales and compute scales are shown in Figure[] with more detailed
results presented in Section [6]

Roadmap: In Section [2| we review the literature of CLIP training, in Section [3| we introduce the
objective of interest and provide background on the Global Contrastive Learning framework. We
propose our FastCLIP framework and explain its gradient reduction strategy in Section[d Then in
Section 5| we compare different strategies for different components within the FastCLIP framework,
and we compare the scaling performance of FastCLIP and OpenCLIP under different settings in
Section[6] Finally, we conclude this paper in Sections [7]and 8]

2 RELATED WORKS

CLIP training in the distributed setting: Radford et al.| (2021) train CLIP models in a distributed
setting, but few details regarding the implementation are provided. |Ilharco et al.| (2021) develop
OpenCLIP, an open-source implementation of CLIP. They leverage the PyTorch distributed data-
parallel module (Li et al.,[2020) to automatically communicate features and gradients. EVA-CLIP

'The size of downloaded sets are smaller than their original versions since some links are no longer valid.



Under review as a conference paper at ICLR 2025

== OpenCLIP FastCLIP-v3 (Ours)
20 20 ) 20 ) 20 i
Py f+4.35 fra07 87

15 157 A 159 S - 15
............... »,/
1.76x Speedup 1.46x Speedup /\'_/ 1.32x Speedup
1.74x Speedup -
10 10 107 /
/ /
‘ /

5{/ 5(/ 5(/ 5/
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Samples Seen (million) Samples Seen (million) Samples Seen (million) Samples Seen (million)
(a) 1 Node, Medium (b) 2 Nodes, Medium (c) 4 Nodes, Medium (d) 8 Nodes, Medium
* +3.25 % i+3.70 N feoa7| % sy

..................... e

20 20 /// 20 1.34x Speedup 20 1.31x Speedup
1.44x Speedup 1.49x Speedup

1 / 15 15

10 10) / 10 10
5 5 / 5 5
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Samples Seen (million) Samples Seen (million) Samples Seen (million) Samples Seen (million)
(e) 1 Node, Large (f) 2 Nodes, Large (g) 4 Nodes, Large (h) 8 Nodes, Large

Figure 1: Zero-shot accuracy curves on ImageNet & its variants of OpenCLIP and FastCLIP-v3
trained on 1 to 8 node(s) with 4 GPUs per node on medium and large-scale settings (c.f. Section @)

(Sun et al., [2023}; [2024])) scales the number of parameters of the image encoder in CLIP up to 18
billion by applying several techniques from the system perspective, including the ZeRO optimizer
(Rajbhandari et al.,|2020) and global half-precision training with DeepSpeed (Rasley et al.,|2020).
The key difference between existing works and this work is that they all use a simple mini-batch
based contrastive loss, which suffers from the issue of requiring a large batch size. This in turn
requires hundreds and even thousands of GPUs (e.g., 592 V100 in CLIP, 1024 A100 in OpenCLIP,
256 A100 in EVA-CLIP). Our work focuses on scaling up CLIP training in a resource-limited setting
with only tens of GPUs.

Benchmark for CLIP training: Cherti et al.| (2023) study the scaling performance of CLIP training.
They measure the performance of CLIP across different model sizes and dataset sizes, and study
the relationships between downstream task performance and resource consumption. |Gadre et al.
(2023) investigate the impact of different data filtering strategies on the trained model’s downstream
performance. They conduct experiments across different data scales ranging from 12.8 million to 12.8
billion and provide insights on how to curate CLIP’s training data. |Cui et al.|(2022) examine the impact
of data quality, supervision strategies (e.g., additional image supervision), and model architectures.
Li et al|(2024)) explore different aspects of CLIP training under a limited training budget, including
the impact of the quality and quantity of the training data, different model architectures, and different
existing training strategies. Different from these works, we study different algorithmic components
of CLIP training in an advanced optimization framework for optimizing the global contrastive loss.

Improved CLIP training: Many works have studied efficient CLIP training with limited resources.
Yuan et al.|(2022) propose SogCLR to improve the performance of contrastive learning with small
batch size. Our work scales up SogCLR in the distributed setting and incorporates several algorithmic
strategies to accelerate its training speed. Besides the algorithm, other directions are also explored for
more efficient CLIP training, including augmenting mini-batch based contrastive losses (Li et al.|
2023c; |[Zhai et al., 2023} Mu et al., [2022; [Li1 et al., 2022} [Mo et al., [2023}; [Lee et al.l 2022; |Goel
et al.} 2022)), model compression (Wu et al., 2023} [Li et al., [2023b}; [Fang et al., 2021), and system
optimization (Chen et al.l 2023bj |Sun et al., [2023}; |Rajbhandari et al., [2020).

Temperature scheme: The temperature parameter in contrastive losses plays an important role in
CLIP training. Many techniques have been proposed to update or set the temperature parameter.
Radford et al.| (2021) treat the temperature as part of the learnable parameters in the mini-batch
contrastive loss. [Zhang et al.|(2022) propose to use different temperatures for positive and negative
samples to independently control intra-anchor and inter-anchor hardness-awareness. Kukleva et al.
(2023)) study a cosine decay schedule for setting the temperature. [Huang et al.| (2023b)) propose
to set the temperature parameter proportional to the alignment between positive pairs. |Qiu et al.
(2023) propose a robust global contrastive loss (RGCL) with individualized temperatures inspired by
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Distributionally Robust Optimization and optimize it with the iSogCLR algorithm which extends
SogCLR. However, their performance on large-scale data remains unknown. This work discovers
a new strategy by learning a global temperature in the RGCL that yields better performance for
large-scale data.

Optimizers for CLIP training: Different optimizers for updating the learnable parameters have
been employed in CLIP training, including AdamW (Loshchilov & Hutter| [2019) used by |Radford
et al.| (2021); [Cherti et al.| (2023)); |Gadre et al.| (2023));|Chen et al.|(2023c)); [Li et al.| (2023a)); |Q1u et al.
(2023), and LAMB (You et al.}[2020) used by |Sun et al.| (2023)); | Xie et al.[(2023); Huang et al.[(2023a).
A recently proposed optimizer named Lion (Chen et al.,[2023a)) also provides promising results for
this task (Chen et al., [2023a; |Wortsman et al.| 2023)). In this work, we compare the performance of
AdamW, LAMB and Lion to determine which optimizer is most suitable in FastCLIP for training
CLIP models from scratch. We also include SGD with momentum (Polyak, [1964) for comparison.

3 PRELIMINARIES

Notations: Given a dataset S of n images x; and their corresponding text descriptions z;: S =
{(x1,21),...,(@n, 2,)}, we aim to learn an image encoder and a text encoder (jointly represented
by w) from the data. We use e;; = e;(w,z;) € R? and es; = ea(w, z;) € R? to denote the
encoded vector of the input x; and z;, respectively. And we use e; = (e ;,e5,)" to denote the
concatenation of e; ; and e ;. Denote by B C S a mini-batch of image-text pairs. With slight
abuse of notation, we also use B (and S) to denote the indices of the image-text pairs it contains.
S;— := S\{i} denotes the subset of S without i-th pair. We consider the data parallel setting such that
S is partitioned evenly across K workers denoted by Sy, . .., Sk . For a function £(-, -), let V1£(-, -)
and Vo/(-, -) denote the partial gradient in terms of the first and second argument, respectively.

Mini-batch Contrastive Loss (MBCL) and Global Contrastive Loss (GCL): The core idea of
CLIP training is to leverage a contrastive loss to push features of paired image and text close to each
other (i.e., to maximize the similarity between e; ; and e5 ;), while pushing features of non-paired
image and text away from each other (i.e., minimizing the similarity between e; ; and ey ; for i # j).
Mathematically, let s; ; denote the cosine similarity between e; ; and ej ;. Define

li(ei, €2,,7) == exp ((sij — 8i4)/7), Lo(ei er, 7)== exp((sji — $ii)/7T),
where 7 > 0 is the temperature parameter. Given a mini-batch B of image—text pairs, let

g1(w, 7,4, B) \B\ deB (e ex;,7), go(w,T,i,B): |B| Z;eB 2(ei, er 5, 7).

In the literature, a large number of works (e.g., |Cherti et al., |2023}; |(Gadre et al., {2023 |Sun et al.,
2023)), following Radford et al.|(2021)), minimize the mini-batch contrastive loss (MBCL):

1
Ezies Epcs,_ (log (|B| + g1(w, T,z,B)> + log <|B| + g2 (w, T,z,B))> . (MBCL)

which contrasts the i-th pair with other pairs within only a mini-batch 5. However, this loss suffers
from the large-batch size issue, which has been addressed by the Global Contrastive Loss (GCL) (Yuan
et al.,[2022) that contrasts the i-th pair with all other pairs in the dataset S:

5] Z (log (€ + g1(w,7,4,8;-)) + log (¢ + g2(w, 7,4, S;-))) , (GCL)

where ¢ is a small constant.

Robust Global Contrastive Loss (RGCL): To improve CLIP training, |Qiu et al.| (2023)) designed
a robust global contrastive loss (RGCL) with individualized temperature parameters inspired by
Distributionally Robust Optimization. It is defined as:

min 71, - (log (e + g1(w, T 4,4, Si—)) +
nfz>m|8|§ 1i - (log (e + g1 (w, 7y )) + )

+T2,i : (1Og (5 + gQ(wa 72,45 2781*)) + p))v

where 71 = (T11,...,T1,n), T2 = (T2,1, ..., T2,n), To is a small value, p > 0 is a hyperparameter.

(RGCL)

Optimization Algorithms. To optimize GCL, |Yuan et al|(2022)) proposed the SogCLR algorithm
based on advanced compositional optimization known as Finite-sum Coupled Compositional Op-
timization (FCCO) (Wang & Yang, 2022). Specifically, GCL is formulated as + 3. _ s f(g:(w)),
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Algorithm 1: The FastCLIP Framework (Sketch)

Input: Initial model parameters w", 70, (u?, u3), Number of iterations 7.
fort=0,...,7T—1do
for each worker k do in parallel

Sample a batch B., from Sj, and compute features £}, = {(e1 ;, €2,j)}jent
ALL_GATHER &' = Ui}, to obtain global features

Compute mini-batch contrastive losses g} ;, g5 ; for i € By, (c.f. Proc.]2]in Appendix [A)
Update ui %', u;" using Eqn. (T for i € Bf. Set uf;" = ut ; ubt! = ub , fori ¢ B,
SetUy = {(uil}, u5"')}jepy, and ALL_GATHER U" = Upld],

Compute gradient estimators G%, , for w using techniques of FCCO (c.f. Proc. )
ALL_REDUCE G, = & Z{il G, across all workers

Update w'*! from w' using an optimizer (c.f. Proc. {4).
Update 7'+ from 7* (c.f. Proc.[5).

where f(g) = log(e + g) and g;(w) is the inner function inside the log. The main challenge is to
compute a gradient estimator using a mini-batch of samples such that the algorithm can converge
without requiring a large batch size. The key idea of SogCLR is to maintain and update an estimator
for each inner function g;(w) denoted by u;, by using Equation . As a result, the gradient at
the ¢-th iteration is estimated by ﬁ Sies VW)V (wt), where B is a mini-batch and §;(w)
is a mini-batch estimator of g;(w). To optimize RGCL, Qiu et al.| (2023) proposed the iSogCLR
algorithm by combining SogCLR with stochastic coordinate updates for the temperature parameters.

4 FASTCLIP: A DISTRIBUTED TRAINING FRAMEWORK OF CLIP MODELS

FastCLIP is a distributed training framework for optimizing global contrastive losses (including
(GCL) and (RGCL)). Its key updates are built upon the SogCLR algorithm. The main difference
between SogCLR and mini-batch based methods such as CLIP is that SogCLR maintains two scalar
sequences u; ; and ug ; to keep track of g1 (w, 7,4, S;—) and ga(w, 7,7, S,;_) as stated in Section
At iteration ¢, for i selected in the batch BY, u; ; and uy ; will be updated using a moving average
estimator with hyperparameter v; € (0, 1]:

Uﬁl = (1 - ’Yt)uiz + ’Ytgl(wta’rtaiagg—), ué—;l = (1 - ’yt)ug,i + 7t92(wt77—t77;785—)7 (H

and the gradient estimator is computed by ‘B—ltl Yient Vf (ul™)Vgi(w?). The core of FastCLIP
(Algorithm ] is how to compute the gradient estimator in a distributed manner.

Next, we use (GCL) as an example to present our gradient computation strategy that effectively
reduces the communication cost. We only present key steps and defer the complete derivation to
Appendixdue to space limit. Let Bf denote local mini-batch on k-th worker. Below, we omit the
superscript ¢ and use By, for simplicity. Note that is the sum of two parts: the image part (loss
g1) and the text part (loss g2). Due to their symmetric structure, we only present the gradient of the
image part. The gradient estimator of is computed by G104 + Guw,1,:

Guw,1,a,i

JEBs i local local

1 & 1 1 1 & 1
G =7 — — —_— = —_— Vili( e ,es;,7)- Ve,
o K,; |B| Z etu,; K Z By i| 2 W 1(\/1-/\2,’1 NG
= i€By, ~— k'=1
~—— global

ALL_REDUCE local

1 & 1 1 1
Gw,l,b =T - EZ W Z ?ng ‘ | Z 7€—|—u .V2€1( €; »‘32,j>7')'ve2,j'
k=1 Kl ep, k=1 PRI ien, Li It
N~~~ global local local
ALL_REDUCE global

Both Go,1,q and G4, 1,5 have two averages over B due to compositional structure of the loss. For
FastCLIP, the inner average (e.g. Gq,1,4,i) is computed on a single worker after gathering global
parts (shaded, e.g., ez ;) from all workers. The outer average is then computed using ALL_REDUCE.
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Table 1: Comparison between different algorithms. In Temperature Scheme, “G” denotes global
temperature parameter, while “T” denotes individualized temperature parameters for each data.

Algorithm Loss FCCO Distributed Inner LR Schedule Temperature Scheme

OpenCLIP (Ilharco et al.|[2021) No Yes N/A G, Learnable
SogCLR (Yuan et al.||[2022) Yes No Constant G, Constant
iSogCLR (Qiu et al.[[2023) (RGCL} Yes No Constant I, Learnable
FastCLIP-vO GCL Yes Yes Cosine G, Learnable
FastCLIP-v1 GCL Yes Yes Cosine G, Constant
FastCLIP-v2 GCL Yes Yes Cosine 1, Learnable
FastCLIP-v3 (RGCL-g] Yes Yes Cosine G, Learnable

Difference from OpenCLIP. Algorithmically, OpenCLIP does not use the u sequence, which
is equivalent to setting v, = 1. In terms of distributed implementation, for computing G 1 4,
OpenCLIP first computes ﬁvgél(ei, €2, 7) on the worker where i-th pair resides, then all

workers gather them using REDUCE_SCATTER and uses them to compute the inner average.

FastCLIP has the same communication and computation cost for computing G,,1, as OpenCLIP, but
has an effective communication reduction for computing G4 1,5. Specifically, REDUCE_SCATTER
in OpenCLIP requires O(K |B|d) communication cost, where d is the feature dimensionality (>512
in practice). While ALL_GATHER of u, ; in FastCLIP requires only O(K|B|) communication since
each u, ; is a scalar. This leads to a communication reduction, as verified empirically in Sec. @

5 IMPROVEMENT OF OPTIMIZATION COMPONENTS

In this section, we propose different strategies to improve three components of the FastCLIP frame-
work, i.e., the schedule for inner LR ~;, the update rule of the temperature parameter, and the
optimizer for updating the model parameters.

The Inner LR Schedule: We first explore different schedules for +; in Equation (I)), which is
interpreted as an SGD step with learning rate (LR) ~, by |Wang & Yang| (2022)). They showed in
theory that v, should be set to a very small value close to 0 in order to guarantee convergence.
However, in practice a large 7, value close to 1 is adopted (Yuan et al.| 2022). Ideally, ~; should be
large to rely more on the current mini-batch at earlier iterations and be smaller to rely more on history
in later iterations. To achieve this, we consider a cosine schedule to decrease 7;: Let ¢ be the current
iteration, £ be the number of iterations per epoch and E be the number of decay epochs, then we set
Yo = 0.5 (1+ cos(r[t/E|/E)) - (1 = Ymin) + Ymin- With this schedule, 7; will decrease from 1.0
{0 Ymin. Note that |¢/E | denotes the current epoch, which means the value of +; stays unchanged
within one epoch. Also, The number of decay epochs E is a hyperparameter, and it is not necessarily
equal to the total number of training epochs. If the current epoch exceeds F, v will be set to ypin.

The Temperature Parameter Updates: At Line|12|of Algorithm (1] the temperature parameter T
is updated. The update rule is not explicitly provided due to its variety. We consider four different
versions, named v0 to v3. Specifically, v1 sets 7 to a constant as in SogCLR and the other three view
T as a learnable parameter: v2 leverages the same 7 update as iSogCLR, which maintains individual
temperature parameters for each data and updates them using gradient of w.r.t. 7. A potential
issue of maintaining and updating individualized temperature is that it may overfit the data and hence
harm the generalization for large-scale data. To mitigate this issue, we also consider the following
loss, which unifies the individual temperature in (RGCL)) into a single global one:

Z (log (e + g1(w, 7,1,S;—)) + log (¢ + g2 (w, 7,1,5,;_))) + 2pT. (RGCL-g)
€S

. T
270 18]
We refer to this version as v3. We also include a baseline version named vO that updates 7 using the
gradient of an unscaled version of that does not multiply 7, similar to the 7 updates in existing
works (Radford et al/, 2021} [Cherti et al.| [2023)) based on (MBCL). The explicit rules of all updates
are deferred to Proc. [5in Appendix [A] Combining the four versions of updating/setting 7 with the
cosine inner LR schedule, we get four algorithms FastCLIP-v0 to v3. A comparison between them
and existing algorithms is shown in Table[I] Different updates of 7 also lead to slightly different
ways of computing the contrastive losses and gradient estimator (Line[6]and Line[9]in Algorithm /T,
and the details are deferred to Appendix [A|due to space limit.
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Table 2: Overview of the experiment settings. # Samples denotes the size of the dataset downloaded.
Batch Size denotes per-GPU batch size, with global batch size specified in parentheses. H100 has
80GB memory. Some epochs of tested algorithms for the xlarge-scale setting were run on a different
system with 16xA100 (40GB) using a local batch size 320. We rename the downloaded 315M subset
of LAION400M (Schuhmann et al.l 2021)) as LAION315M to indicate its actual size.

Setting Dataset # Samples/Epochs  Vision Encoder  Batch Size GPUs

Medium CC3M 2.7M/37 epochs ResNet50 128 (1024) 8 Tesla T4
Large CCI2M 9.1M/33 epochs ViT-B/32 256 (2048) 8 Tesla T4
xLarge LAION315M  315M/42 epochs ViT-B/16 640 (5120) 8 H100

The Optimizer: We compare the performance of four optmizers (i.e., the update rule of model
parameters and temperature at Line [IT|to[I2]in Algorithm|I)) in FastCLIP: AdamW (Loshchilov &
Hutter, [2019), LAMB (You et al.|2020)), Lion (Chen et al., 2023a)) and SGD with momentum (Polyakl
1964). The update rules of these optimizers are presented in Proc. []in Appendix [A]for completeness.

Experiment Settings: We conduct experiments in three different settings, which differ in data
scale, model architecture (vision encoder in particular), and training environment. The difference is
presented in Table[2] In all settings, we use a 12-layer transformer (Vaswani et al.,|2017) as the text
encoder. All the experiments are conducted in a multi-node setting where each node has 4 GPUs.
Due to its extreme size, xlarge-scale setting is only used to compare the best version of FastCLIP
with OpenCLIP. The value of ¢ is set to le-14 for all but the xlarge-scale setting, where we use a
large value of le-6. This is discussed in Section[6|and Appendix

Metrics: To evaluate the performance of the trained models, we leverage the Datacomp Benchmark
(Gadre et al., 2023), which includes 38 zero-shot downstream tasks. The evaluation metric is the
average performance, which is called Datacomp. We also report the average performance on two
subsets of the tasks: ImageNet and its different variants (IN & Variants), and Retrieval. IN & Variants
consists of top 1 accuracy on ImageNet-1k (Deng et al.,[2009) and 6 ImageNet distribution shift
datasets (Wang et al., 2019} |[Recht et al.,[2019; |[Hendrycks et al.} 202 1bjaj; Barbu et al., 2019)) (Gadre
et al.| [2023] Section 3.5). Retrieval consists of mean recall at 1 on Flickr30k (Young et al.,[2014),
MSCOCO (Chen et al.,|2015)), and jaccard score on WinoGAViL (Bitton et al.,|2022)). We refer the
readers to|Gadre et al.|(2023)) for detail of all the tasks.

5.1 RESULTS

In this subsection, we present the experiment results. We report results averaged over 3 runs with
different seeds, and standard deviation in parentheses. Training details are provided in Appendix [B]

The Inner LR Schedule: We first present results of different v schedules. We compare three pairs
of approaches: SogCLR and FastCLIP-v1; iSogCLR and FastCLIP-v2; FastCLIP-v3 with Constant
~ and FastCLIP-v3, where the former of each pair uses constant v schedule and the latter uses
cosine 7 schedule. SogCLR and iSogCLR are implemented in the same framework as FastCLIP. The
results are presented in Table [3] We can observe that all of the three approaches obtain a significant
performance gain when equipped with the cosine schedule. This indicates that cosine schedule
performs better than the constant schedule. Also, when tuning the + value for the two schedules, we
observe that constant schedule favors larger -y values (0.6 or 0.8), while cosine schedule favors small
7 value (0.2) in the end (c.f. Table[§]in Appendix [B). These results suggest: (1) vy needs to be set to a
small value as the theory predicts, (2) but instead of being constant, its value should decrease.

The Temperature Parameter Updates: Next, we present the experiment results of different 7
updates. We compare the four versions of FastCLIP. The results are presented in Table d] We have
the following observations. In the medium-scale setting, the average performance on Datacomp of
the four algorithms are close to each other. FastCLIP-v3 has better performance than others either on
Retrieval or IN & Variants. In the large-scale setting, FastCLIP-v3 outperforms other algorithms on
Datacomp and Retrieval. This demonstrates the effectiveness of FastCLIP-v3. Also we can see that
FastCLIP-v0, v2 are comparable to each other while FastCLIP-v1 is generally worse in this setting.

The Optimizer: We use FastCLIP-v3 as the base algorithm and compare the AdamW, LAMB, Lion
and SGD with momentum optimizers. The results are presented in Table[5] We observe that AdamW
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Table 3: Performance of different inner LR schedules. Shaded algorithms use the cosine schedule,
while the others use the constant schedule. Improvement denotes the absolute difference between two
algorithms on the three metrics. *: v3 (Const. ) denotes FastCLIP-v3 with constant  schedule. The
meaning of each metric is provided in Section E}

Setting Algorithm Datacomp Retrieval IN & Variants Improvement
SogCLR  23.41(0.34) 27.48(0.24)  16.90 (0.01)
FastCLIP-vl  24.87 (0.13) 29.28(0.30) 18.86(0.09) 146 1.80.1.96
. iSogCLR  23.35(0.63) 27.92(0.34) 17.05(0.14)

Mediom  pogCLIP-v2  24.10 (034) 29.32(129)  18.52(037) 7 140147
v3 (Const 7)” 2360 (0.18) 2768 (0.17) 1733(022) | 0,0 =
FastCLIP-v3  24.76 (0.26) 30.36 (0.18) 19.08 (0.16) 'O <% %

SogCLR  29.91(0.23) 30.16 (0.36)  22.98 (0.07)
FastCLIP-vl  30.65(0.11) 32.66(0.12) 2426 (0.06) 0-7% 270 1.28
iSogCLR  30.32(0.18) 30.27 (0.41)  24.96 (0.09)

Large B GCLIP-v2  30.94 (020) 31.84(0.17) 25.52(0.17) 062 157.0.56
v3 (Const. 7)" 2946 (0.39) 3033(058) 23.69(009) . o5 ;0o
FastCLIP-v3  31.60 (0.46) 34.88(0.28) 24.78(0.28) <% #2214

Table 4: Performance of different temperature parameter updates. All algorithms use AdamW as the
optimizer. The meaning of each metric is provided in Section@

Setting Algorithm Datacomp Retrieval IN & Variants
FastCLIP-vO 24.71 (0.21) 30.36 (0.26)  17.50 (0.33)
FastCLIP-vl 24.87 (0.13) 29.28 (0.30)  18.86 (0.09)

Medium  FastCLIP-v2 24.21 (0.76) 30.35(0.47) 17.86(0.21)
FastCLIP-v3  24.76 (0.26) 30.36 (0.18)  19.08 (0.16)
FastCLIP-vO 31.47 (0.31) 34.86(0.53) 24.55(0.21)
FastCLIP-vl  30.65(0.11) 32.66(0.12)  24.26 (0.06)

Large  FastCLIP-v2 30.95(0.32) 33.71(0.20) 24.94 (0.18)
FastCLIP-v3  31.60 (0.46) 34.88 (0.28) 24.78 (0.28)

Table 5: Performance of different optimizers. SGDM denotes SGD with momentum. The base
algorithm is FastCLIP-v3 for all optimizers. The meaning of each metric is provided in SectionE}

Setting  Algorithm  Datacomp Retrieval IN & Variants
SGDM 22.25(0.13) 26.06 (0.03) 16.32 (0.06)

Medium LAMB 22.63 (0.30) 24.87(0.27) 16.43 (0.06)
Lion 24.50 (0.12) 29.41(0.26)  18.03 (0.10)

AdamW  24.76 (0.26) 30.36 (0.18)  19.08 (0.16)

SGDM 30.15(0.48) 33.09 (0.28)  22.95(0.22)

Larce LAMB 30.54 (0.24) 34.02(0.26) 24.11(0.21)
& Lion 30.99 (0.09) 33.78 (0.22)  25.01(0.18)
AdamW  31.60 (0.46) 34.88 (0.28)  24.78 (0.28)

outperforms other optimizers on most of the metrics in both settings. This indicates that AdamW

should be chosen for FastCLIP training.

6 SCALING PERFORMANCE OF FASTCLIP

In this section, we compare the performance of FastCLIP using AdamW on different number of nodes
in comparison with OpenCLIP. We conduct experiments on 1, 2, 4, and 8 node(s). Except for the
number of nodes, other settings are kept the same as the experiment settings specified in Section 3]
Training details and additional experiment results are provided in Appendix [B]and[E} respectively.
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Figure 2: Comparison between OpenCLIP and FastCLIP-v3. The numbers in between represent the
improvement of FastCLIP-v3 over OpenCLIP.
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Figure 3: Comparison of per-iteration running time (ms) between OpenCLIP and FastCLIP. Each
bar in (a), (b) is divided into three parts (top to bottom): computation, communication (not over-
lapped with computation), and others. Each bar in (c), (d) is divided into two pars (top to bottom):
communication-computation overlap and pure communication.
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Figure 4: Subfigure (a) presents the ImageNet-1k Top1 accuracy curve of OpenCLIP and FastCLIP-v3
in the xLarge-scale setting, with numbers denoting the improvement. Subfigures (b), (c) present the
speedup of different algorithms in the medium and large-scale settings, respectively.

Performance: The results of selected models based on the average Datacomp performance are
presented in Figure[2] Subfigures (a) and (b) are the IN & Variants and Retrieval performance in the
medium-scale setting, and subfigures (c) and (d) are the results in the large-scale setting. We can
observe that FastCLIP-v3 consistently outperforms OpenCLIP across different number of nodes. This
clearly illustrates the advantage of GCL family over MBCL. Also, the performance of FastCLIP-v3
plateaus at 2 nodes, which verifies that FastCLIP does not require a large amount of computing
resources. In contrast, OpenCLIP has a significant performance gain when scaling from 2 nodes to 8
nodes, meaning that it requires a large amount of computing resources to obtain good performance.
Additionally, Figure[T]demonstrates the significant speedup of FastCLIP-v3 over OpenCLIP.

Training Time: In addition to the performance on downstream tasks, we also compare the training
time of OpenCLIP and FastCLIP-v1 to v3. We use PyTorch (Paszke et al.l 2019)) Profiler to record
the data. We break down per-iteration training time into 3 parts: computation, pure communication
(not overlapped with computation), and others. The results are plotted in Figure E] (a) and (b). We
also break down communication into two parts: communication overlapped with computation and
pure communication, which are plotted in Figure[3|(c) and (d). From subfigures (a) and (b) we can
see that the running time of FastCLIP is similar to OpenCLIP when the number of nodes is small (1
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and 2), and becomes shorter than OpenCLIP when the number of nodes scales up (4 and 8). This
is because OpenCLIP has a longer communication time on 4 and 8 nodes (subfigures (c) and (d)),
which demonstrates the effectiveness of our efficient gradient computation/communication strategy
described in Sectionl The above results are obtained from a cluster with InfiniBand interconnect.
We also profile the training time of the algorithms on two other clusters with Slingshot interconnect,
where we observe the same trend. We defer the additional results to Appendix [E]due to space limit.
For each algorithm, we also plot its speedup over 1 node in terms of training time in Figure ] (a) and
(b). All algorithms have similar speedup over 1 node and the gap between the ideal speedup (which
is number of nodes) and the real speedup becomes larger when the number of nodes scales up. This
indicates that training with more resources has a diminishing return.

Table 6: Summary of existing and our results of training CLIP models on xlarge-scale data.

Work Architecture Data Size (M) Batch Size  Samples (B) IN 0-shot (%)
Cherti et al.|(2023) ViT-B/16 80 90112 13 60.24
Cherti et al.|(2023) ViT-B/16 400 33792 13 67.00
Cherti et al.|(2023) ViT-B/16 2000 90112 13 68.13
Chen et al.|(2023b) ViT-B/32 400 65536 13 64.30
OpenCLIP (our impl.) ViT-B/16 315 5120 13 62.90
FastCLIP-v3 ViT-B/16 315 5120 13 64.49

Results in the xlarge-scale setting. Moreover, we evaluate the performance of FastCLIP-v3 and
OpenCLIP in the xlarge-scale setting with 8 H100 GPUs. We plot the ImageNet- 1k top 1 accuracy
curve in Figure[d] (a). After seeing 13B examples, OpenCLIP achieves a top1 accuracy of 62.90% on
ImageNet-1k, while FastCLIP-v3 achieves an accuracy of 64.49%, resulting in a 1.59% gain. This
result is competitive with the state-of-the-art results of CLIP training using much more compute
resources as shown in Table[6] We also note that the result of our OpenCLIP implementation is lower
than those reported in other works, e.g., 67% in OpenCLIP paper that uses a batch size of 33,792 and
400M dataset (Cherti et al.,[2023)). This is because in our setting we use a smaller dataset (315M)
and a smaller batch size (5120). We provide a discussion of the impact of dataset size and batch size
in Appendix [C| For FastCLIP-v3 in the xlarge-scale setting, we found that assigning a larger value
of le-6 to the constant ¢ than the default le-14 in loss computation of (RGCL-g) leads to improved
ImageNet-1k top 1 accuracy. We provide a brief discussion of this observation in Appendix [D} We
also evaluate the Datacomp performance of FastCLIP-v3 and OpenCLIP in the xlarge-scale setting,
which exhibits similar result, as shown in Appendix [E]

In summary, the results in this section demonstrate the effectiveness of FastCLIP across different data
scales (3 million to 315 million) and compute scales (1 to 8 nodes) in the limited-resource setting.

7 CONCLUSION

In this paper, we have proposed a distributed training framework of CLIP models in a resource-
limited setting named FastCLIP. It leverages advanced compositional optimization with a novel
gradient computation strategy to reduce the communication cost. We have investigated different
optimization components, by proposing new techniques and benchmarking different techniques for
each component under different settings to provide valuable insights on which techniques to use.
Finally, leveraging the best-performant techniques from the experiment results, we compare the
performance of FastCLIP with OpenCLIP on different data scales and compute scales, from 3 million
to 315 million image-text pairs and from 1 node to 8 nodes. The results demonstrate that FastCLIP
outperforms OpenCLIP by a large margin and achieves a significant speedup. This helps accelerate
research in the areas of CLIP training and its various applications, as more researchers would be able
to contribute their ideas and train CLIP models without access to a large amount of resources.

8 LIMITATIONS AND FUTURE WORK

Due to limited computing resources, we were unable to perform an extensive ablation study on the
LAION315M dataset. As a future work, we will explore how to further improve the performance of
FastCLIP in various aspects, e.g., reducing communication time and improving the convergence rate.

10
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A DETAILS OF THE FASTCLIP FRAMEWORK

Procedure 2: contrastive_loss

/* global, individual 7: temperature scheme (c.f. Table )
if global T then

| Compute gf ; = g1 (w', 7,4, B]_), g5 ; = ga(w', 7%,4, B )
else if individual T then

‘ Compute gii = gl(wtaTiivLBff)agéﬁ = gZ(wthQtﬁvi’Bff)

Procedure 3: gradient_estimator
/+ global, individual 7: temperature scheme (c.f. Table ) */
if global T then
| Compute GY, , , and G}, , , using () and (3), respectively
else if individual T then
| Compute G, , , and G, , , using (€) and (7)), respectively

Derivation of gradient of w.r.t. w: Given a global batch 5, the gradient of w.I.t. w is
given by Gy q + G b, Where

Gw,a,l,k
S|
Gw,a - ?Z? Z €+ Uty K Z ‘Bk/ i—‘ Z v1€1(6i7e27jv7—)'vei
=1 B JEB i
Gw,a,2,k
S
?287 Z £+ ug, 'K Z |Bk,A | Z Vily(e;,e14,7) - Ve;.
k=1 €By, ( k=1 — J€Bw 5
11
Gt =7 5 2 TR;] Vali(en e, r) - Vea,
b =T KZ|Bk| Z€+u11 Z|Bk" Z 216 €2, T ) e
k=1 i€By, ]GBk/ i

Z |Bk/ ] Z Vgﬁg(ei,el’j,r) ~Vel}j.

k/ 1 i-| JEB,

K

yi—

To compute G.y,4, We first gather all the e, ; and e; ; using ALL_GATHER to each worker, then
compute G .1,k aNd Gy q,2,1 On the k-th worker, and average Gy o1,k and Gy .21 OVer each
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Procedure 4: parameter_update

Input: Parameter 6 (can be w or 7) and its gradient estimator G, Weight decay \, Learning
rate 7
Optimizer SGD with momentum
Additional Input : Momentum parameter p
Compute m'™ = yum® + Gl + \0*
Set 9!t = 9t — pymitt
Optimizer LAMB
Additional Input : Hyperparameters (31, (2, €
Compute m'™ = gym! + (1 — 51)G}
Compute v' ! = Bovt + (1 — B2)(GY)?
Compute i1 = m*1 /(1 (51)+1), 61 = v+ /(1 — (B2)+1)
Compute 7'+ = !t /(Vot+] 4 ¢)
for each layer %) in 6 do
Compute ay, () = [|6% ]|/ [[r@ + 26|
Set 911 = g() —p, .,y (10 4 AGED)
Optimizer Lion
Additional Input : Hyperparameters 31, 32
Compute ¢! ™! = gym! + (1 — B1)GY
Compute m'™! = Bom® + (1 — B2)G}
Set 9+ = 0" — n, (sign(c') + A6?)
Optimizer AdamW
Additional Input : Hyperparameters (31, 5o, €
Compute m'™ = gym! + (1 — 31)G}
Compute v+! = Byut + (1 — B,)(GY)?
Compute !t = m!+1 /(1 — (1)), 60 = T /(1 — (B2)PH)

Set 9! = gt — 1y, (mtﬂ J(VOH T+ €) + Aat)

Procedure 5: temperature_update

if constant T then /* FastCLIP-vl =/
‘ Set i+l = 7t

else if learnable T then

if loss is (GCL) then /* FastCLIP-v0 */

Compute G, using (8) and All_Reduce G% = £ 3°,° | G%

Update 7t from 7¢ and G% using Proc. EI(With A=0)*

else if /oss is (RGCL) then /* FastCLIP-v2 */
Compute G* | ;,G%. 24 for i € By, using 9)

Update 7{ 1" from 7{ ; and G*
(with A = 0) for i € B},

else if loss is@then /* FastCLIP-v3 =/

Compute G* ok usmg (TO) and All_Reduce G: = % leil G .

Update Tt+1 from 7* and G% using Proc. E] (with X\ = 0)

+1.i» and update Téfl from 73 ; and G% , ; using Proc I

*: Following OpenCLIP, we set the weight decay of the temperature parameter to 0.

worker using ALL_REDUCE. To compute G, 5, we first switch the inner and outer averages:

Gw.b,l,k’
K 1~ 1 1
Gup =7 ?Z Z\Bm | Z e+u v2£1(6“62]’ ™) Ve,
=1 ]EBk/ ? 1EB, -
Gw,b 2,k/
K K
1 1 1 1 1
+7 = Z *Z Z V2€2(ei;el,j77—)'velvj'

K = 1Byl 5, K = By | = et u
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Then we gather all the u; ; and ug ; using ALL_GATHER to each worker, and compute G, 51,5/
and Gy b2,k On the k'- th worker, then average G b1,k and Gopp 2,5 Over each worker using
ALL_REDUCE to get Gy 5. For practical con51derat10n we switch the inner and outer averages in
Guw,b1,k and Gy, p 2 5 again so that we can compute them along with Gy o,1.% and G 4,2, USing
the same function:

1
Guwp,1,6 = |B ‘ Z Z| B Z €+u1’iV2£1(ei762,j57)'V€2,j

zEBk,j,

(%) 1
: 14 s ) j
|Bk,\ Z B Z srur, e T) Ve

jeBy I 168 _
1 1 |B|
=— . . V2€1(€‘,€2)‘,7—) -Vez,’,
|B| zeZB etui; |Bwl| |Bj—| jesz;- B !

where () uses the fact that the average over local batch and workers is equal to the average over the
global batch. Similarly,

1 |B|
Gw 14 iy j 5 . j -
b2,k |B| E Ty |Bk" B, ] jeBEkl B Vals(ei, ey ;,7) - Vey

Deferred Computation in Algll} At iteration ¢, for SogCLR and other algorithms with global
temperature parameter (except FastCLIP-v0), the gradient estimator for w on k-th worker is computed
as

1
Gw a,k — ‘Bt| Z €+u Z V1€1 61,82737 )Vez
o e 2
1
"‘m | Z Vily(ei e, 7") - Ve,
2,1 EBt7
Tt 1 1 |B|
Grobk = iy —1 | = Vali(e; es;,7") Ve ;
wo = 1] 2 Sty \ BT 2 J .
k,i—
3
1 1 |Bt
— | o7 Vals(ei el j,7°) - Ve
e \ BT & Velenennt) Ve
k,i—
For FastCLIP-v0, we need to remove the 7¢ at the front:
Vit (ei, ez ;,7°) - Ve,
o = \Bt| Z swﬁl |Bt | 2 Vihilen e
jeBt_ @
1
+€+ut+1 |Bt Z Vils(e;, e j,7") Ve,
jeBt_
1 |B|
w Tt T T T Vzél(ei,627'77't) . Veg,-
bk — |Bt‘ gl; E+ut+1 IBL| 1B ]6; J J
k,i—
)
1 1 |B|

Z Vals(ei, e1j,7") - Ve

B ————
= st \TBIIBLT 2
k,i—
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For iSogCLR and other algorithms with individual temperature parameter, it is computed using a
slightly different formula (the 7 part is different)

7_17,
wak |Bt| Z t+1 |Bt | Z V1‘€1 61782,J77—1 z) vez
i€B], et u JEB}

B (6)
t
T Vilo( v
41 t Z 1t2 ehel J?TZ ’L) €;

E+7.L21 | |JEBt

le 1 ‘B .
nie = IBtI 2 e+ttt \ B [BL e; Vali(ei ez, 71 ;) - Ve
J kyi—
(M
! ¢
+L 1 . 1B
et+uyy \ B 1Bi|

t
Y Valy(eier,75,) Vey;
JjeBt

FastCLIP-v0O computes the following gradient estimator for 7:

t
GT, ‘Btl Z 5+ut+1 : |Bt | Z V3£1 87762]7 )7

t eBt

®)
|Bf‘ Z €+ut+1 . ‘B Z V3€2 61,817]77' )

JEBL_
FastCLIP-v2 computes the following gradient estimators for 7:

1
lo 5+ut+1+ +r —— = Vsli(ei, e25,71 ;) |
g( ) pT T, €+u§—;1 |B Z 3¢1 2.55T1,i)

1
G _
1,5 — ‘S|

€))

1 1
GL,, :E log (¢ + ut+1) +p+T5 o |B Z Vsly(eie1;,7355) | »
2,1 1 JeBt

FastCLIP-v3 computes the following gradient estimator for 7:

Gf;’k |Bt| Z log E—i—utﬂ) + log (e—l—utﬂ)) +2p
ieBt

1
o |5t| Z et |Bt 2 Vshileiens,) (10)

1 jer

1 t
+T |Bt| Z E+Ut+1 : |Bt | Z VJKQ el7elja )

1 ]er

B EXPERIMENT HYPERPARAMETERS

Unless otherwise specified, for both FastCLIP and OpenCLIP, we use AdamW as the optimizer. For
all settings, we use a cosine learning rate (LR) schedule for updating model parameters, which first
linearly increases the LR from O to peak LR in the warmup stage, then decreases it following a cosine
function. The hyperparameters we use are specified in Table[7] Other hyperparameters regarding
the inner learning rate schedule, temperature parameter updates, and the LAMB optimizer will be
introduced in the paragraphs that follow.
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Table 7: Hyperparameters for different settings. i, 32, € are hyperparameters in the AdamW
optimizer. Ir denotes the peak learning rate. min_Ir denotes the learning rate at the end of training.
wd denotes the weight decay. warmup denotes the number of iterations in the warmup stage.

Setting [ Bo € Ir min_Ir wd warmup

Medium 0.9 0.999 1le-8 le-3 0 0.1 10k
Large 09 098 le-6 4e4 0 0.1 10k
xLarge 09 098 le-6 2e-4 0 0.2 13k

Experiments benchmarking the inner LR schedule: We compare three pairs of approaches:
SogCLR and FastCLIP-v1; iSogCLR and FastCLIP-v2; FastCLIP-v3 with constant v and FastCLIP-
v3, where the former of each pair uses constant y schedule and the latter uses cosine y schedule. Any
two approaches of each pair only differ in v schedule. For approaches using constant v schedule,
we tune the value of y in {0.2,0.4, 0.6, 0.8}. For approaches using cosine + schedule, we tune the
value of Yy (the value v will decay to in the end) in {0.2,0.6} and decay epochs in {50%, 100% }
of the number of training epochs. The « values for each algorithm are presented in Table (8] Other
hyperparameters are kept the same within each pair. For SogCLR and FastCLIP-v1, we set the
temperature parameter to 0.03. For iSogCLR and FastCLIP-v2, we set the initial temperature
parameter to 0.03, p to 9.0, and the learning rate of 7 to le-2. For FastCLIP-v3 with constant ~y
schedule and FastCLIP-v3, we set the initial temperature parameter to 0.07, p to 6.5 in the medium-
scale setting and 8.5 in the large-scale setting, and learning rate of 7 to 2e-4 in the medium-scale
setting and le-4 in the large-scale setting. For FastCLIP-v3, its learning rate of 7 decays to 1/3 of its
original value when 7 becomes smaller than 0.03.

Table 8: Values of ~ for different schedules in different settings. For Cosine y schedule, we report
the ~ value along with number of y decay epochs E (c.f. Section[5). *: v3 (Const. ) denotes
FastCLIP-v3 with constant  schedule.

. Constant 7y Cosine vy
Setting A jgorithm ~ Algorithm  Yin, B
SogCLR 0.6 FastCLIP-v1 02,18
Medium iSogCLR 0.6 FastCLIP-v2 0.2, 18
v3 (Const. y)* 0.6 FastCLIP-v3 0.2, 18
SogCLR 0.6 FastCLIP-v1 0.2, 16
Large iSogCLR 0.8 FastCLIP-v2 0.6, 16
v3 (Const. v)* 0.6 FastCLIP-v3 0.2, 16
xLarge - - | FastCLIP-v3 0.8, 10

Experiments benchmarking the temperature parameter updates: For all algorithms we leverage
a cosine 7y schedule with y,;, = 0.2 and decay epochs E equal to 50% of the number of training
epochs. For all algorithms, we tune their initial temperature parameter in {0.03,0.05,0.07}. For
FastCLIP-v2 and -v3, we tune p in [6.0,9.0], we also tune the learning rate of 7 in [le — 4, le — 2].
Other hyperparameters are kept the same for the four algorithms. The tuned initial temperature is 0.07
for FastCLIP-v3 and 0.03 for other algorithms. The p values are presented in Table[9] For FastCLIP-
v2, the tuned learning rate of 7 is le-2 in the medium-scale setting and 1e-4 in the large-scale setting.
For FastCLIP-v3, the tuned learning rate of 7 is 2e-4 in the medium-scale setting and le-4 in the
large-scale setting. For FastCLIP-v3, its learning rate of 7 decays to 1/3 of its original value when 7
becomes smaller than 0.03.

Table 9: Value of p for FastCLIP-v2 and -v3 in different settings.

Algorithm  Medium Large xLarge

FastCLIP-v2 7.0 8.5 -
FastCLIP-v3 6.5 8.5 16.0
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Experiments benchmarking the optimizer: We use FastCLIP-v3 as the base algorithm. For SGD
with momentum, we tune its learning rate of model parameters in [4e-5, 4e0] and weight decay
in [le-6, 0.2]. For all other optimizers, we tune their learning rate of model parameters in [4e-5,
4e-3] and weight decay in [0.01, 0.2]. Other hyperparameters are kept the same as in Temperature
Parameter Updates. The tuned learning rate of model parameters and weight decay are reported in
Table [I0] Following OpenCLIP (Cherti et al.l [2023), we set the weight decay of the temperature
parameter to 0. And following EVA-CLIP (Sun et al.;,|2023)) in the implementation of LAMB, we set
« at Line[0]in Proc. ]to 1.0 when updating the temperature parameter, leading to the same update as
AdamW.

Table 10: Values of learning rate of model parameters and weight decay for different optimizers.
SGDM denotes SGD with momentum.

Hyperparameters Medium Large
yperp SGDM LAMB Lion AdamW | SGDM LAMB Lion AdamW

Learning rate 1.0 2e-3 2e-4 le-3 2.0 2e-3 le-4 4e-4
Weight decay 3e-6 0.1 0.3 0.1 3e-6 0.1 0.3 0.1

Experiments demonstrating the scaling performance: We tune the learning rate of model pa-
rameters of OpenCLIP on 2 nodes in the medium-scale and large-scale setting in [4e — 5, 4e — 3],
and on 4 nodes in the xlarge-scale setting in [4e — 5,4e — 4]. The tuned learning rate of model
parameters of OpenCLIP is le-3, 4e-4 and 2e-4 in the medium-scale, large-scale and xlarge-scale
setting, respectively. Other hyperparameters are set according to Table[7]to[0] In the xlarge-scale
setting, we set the learning rate of model parameters of FastCLIP-v3 to the same value as OpenCLIP.
For different number of nodes in the medium-scale and large-scale setting, we scale the learning rate
of model parameters and temperature parameter linearly in proportion to global batch size and keep
other hyperparameters unchanged. For FastCLIP-v3 in the xlarge-scale setting, we set p to 16.0 and
the learning rate of temperature parameter to Se-5. We leverage a cosine y schedule with i, = 0.8
and decay epochs F¥ = 10.

Choice of v,,;, in the xlarge-scale setting: Note that in the xlarge-scale setting we use a larger viin
value than in the medium-scale and large-scale settings. We find that the batch size impacts how we
should set the vy, value. To illustrate this, we conduct two sets of experiments in the large-scale
setting on 2 nodes and 8 nodes, respectively. Each set is FastCLIP-v3 with different ~,;,, value.
The results are plotted in Figure[5] Comparing a larger vy, (0.8) with a smaller one (0.2) in the
same setting, we find that the training can be split into three stages. In the first stage, the two runs
have similar performance. In the second stage, larger ,,;, outperforms the smaller one, while the
smaller one catches up with the larger one and outperforms it in the last stage. From Figure 5] we
can also observe that with a larger global batch size, the second stage becomes longer. Note that in
the medium-scale and large-scale settings we use a global batch size of 1024 and 2048 respectively,
while we set it to 5120 in the xlarge-scale setting. We also conjecture that the second stage becomes
longer as the data scales up, though we did not validate this due to resource limits. The large batch
size and large data scale in the xlarge-scale setting motivate our use of a larger 7,,;, value than in the
medium-scale and large-scale settings.

C THE IMPACT OF BATCH SIZE AND DATASET SIZE ON OPENCLIP

The ImageNet-1k top 1 accuracy of OpenCLIP in the xlarge-scale setting (LAION315M for 13B
samples, batch size 5120) is 62.90%, while the result of OpenCLIP reported in|Cherti et al.| (2023)
(LAION400M for 13B samples, batch size 33792) is 67.00%. We attribute the gap to smaller batch
size and smaller dataset size. We first summarize some existing results that demonstrate the impact of
these two factors:

 Batch size: We use a smaller batch size of 5120 for the xlarge scale training due to limited compute
resources, which is 6 times smaller than the batch size used in |Cherti et al.[(2023)) (33792, with
67% performance of ViT-B/16) and 12.8 times smaller than that in |Chen et al.| (2023b)) (65536,
with 64.3% performance of ViT-B/32). As reported in existing works, e.g.,|Chen et al.| (2023b),
batch size has an important impact on OpenCLIP. The results in the table above clearly demonstrate
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Figure 5: Datacomp average performance of FastCLIP-v3 with v decay epochs 16 (145 million
samples seen) and different ~,,;, in the large-scale setting. Batch size denotes global batch size. The
vertical dashed lines divided the plot into three parts (c.f. Choice of v,i, in the xlarge-scale Setting

in Appendix [B).

Table 11: Summary of existing results of training using OpenCLIP.

‘Work Architecture  Data Size (M) Batch Size  Samples (B) Performance (%)
Cherti et al.|(2023) ViT-B/16 80 90112 13 60.24
Cherti et al.|(2023) ViT-B/16 400 33792 13 67.00
Cherti et al.|(2023) ViT-B/16 2000 90112 13 68.13
Chen et al.|{(2023b) ViT-B/32 100 8192 1.6 48.76
Chen et al.|(2023b) ViT-B/32 100 16384 1.6 50.95
Chen et al.|(2023b) ViT-B/32 100 32768 1.6 51.64
Chen et al.|(2023b) ViT-B/32 100 65536 1.6 5191
Chen et al.|(2023b) ViT-B/32 400 65536 13 64.3
OpenCLIP (our impl.) ViT-B/16 315 5120 13 62.90

this. If we fit the performance in|Chen et al.|(2023b) for different batch sizes (rows 4-7 in the table
above) with a reciprocal function p = —a/x + b, where x is the batch size and p is the ImageNet-1k
top 1 accuracy, the results (plotted in Figure [6] (a)) showed that the predicted performance with
batch size 5120 has a 5% drop compared with batch size 32768. This is somewhat consistent with
that our result using 5120 batch size has a 4.1% drop in performance for OpenCLIP than using
33792 batch size as in Cherti et al.| (2023)).

* Dataset size: Although we intended to use LIAON400M, due to broken URLs we could only
download a subset of the LAION400OM dataset, which consists of 315M image-text pairs. This is
also a factor contributing to the worse performance of OpenCLIP as|Cherti et al.| (2023 reported
that using 80M data leads to a performance drop by 7% compared with 400M data (rows 1-2 in
the table above). If we fit the results in (Cherti et al.|(2023)) for different data sizes with a power
function p = ax® + py, where z is the dataset size and p is the ImageNet-1k top 1 accuracy. The
results (plotted in Figure @ (b)) showed that the predicted performance of OpenCLIP training
ViT-B/16 on a 315M dataset with 13B samples seen and at least 33K batch size is 64.5%. Our
OpenCLIP using a smaller batch size of 5120 (last row of the table) achieves 62.90%, which is
expected considering the small batch size.
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Figure 6: ImageNet-1k top 1 accuracy plots. ‘bsz’ denotes batch size and ‘acc’ denotes accuracy.

D THE EFFECT OF € IN

We found that in the xlarge-scale setting, the constant € plays an important role in the performance of
FastCLIP-v3. In particular, the gradient estimators G, , ; and G%, , ;. of (RGCL-g) in Equation (2)
and (3) are scaled by two factors: 1/(¢ + uﬁl) and 1/(e + utztl) Recall that u; ; and s ; are
approximations of g; (w?, 7%,i,S;_) and go(w®, 7,4, S;_), respectively. Thus, in the later stage of
training many examples (those that are well-learned) will have very small uﬁl and utztl Then with
a very small € the scaling factors in the estimated gradient for these samples will be very large, which
may suffer from over-optimization for those examples and harm generalization. In the following
figure, we plot the performance of FastCLIP-v3 with two schemes of € along with the performance of
OpenCLIP (in blue): i) e= le-14 (in orange) and ii) e= le-6 (in green). The value 1e-6 is not tuned
due to limited compute resources and the three experiments were run for only 30 epochs (9.45B
samples seen). From Figure[7]we can see that with larger ¢, both the ImageNet-1k top 1 accuracy and
Datacomp Average performance improve by a large margin.

== OpenCLIP FastCLIP-v3 (€ = 1e-14) = FastCLIP-v3 (¢ = 1e-6)
57.5
48
55.0
46
52.5
50.0 44
47.5 42
45.0
40
425
40.0 %
375 36
0 2 4 6 8 0 2 4 6 8
Samples Seen (billion) Samples Seen (billion)
(a) ImageNet-1K Topl, xLarge (b) Datacomp, xLarge

Figure 7: ImageNet-1k Top 1 accuracy (left) and Datacomp Average performance (right) of FastCLIP-
v3 with different € in the xlarge-scale setting.
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E MORE EXPERIMENT RESULTS

E.1 OPTIMIZATION COMPONENTS

We plot the Datacomp average performance curves of different algorithms with constant y schedule
and cosine v schedule in Figure[8] which corresponds to Table3]in Section[5} We plot the Datacomp
average performance curves of algorithms with different temperature updates in Figure 9] (a) and
(b), which corresponds to Table[d]in Section[5] We plot the Datacomp average performance curves
of FastCLIP-v3 with AdamW and LAMB optimizer in Figure[9](c) and (d), which corresponds to
TableBlin Section
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Figure 8: Datacomp performance of algorithms with constant  schedule and cosine ~y schedule. v3
(Const. ) denotes FastCLIP-v3 with constant v schedule.
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Figure 9: Subfigures (a), (b) present the Datacomp performance of algorithms with different tempera-
ture parameter updates in the medium-scale and large-scale setting, respectively. Subfigures (c), (d)
present the Datacomp performance of FastCLIP-v3 with different optimizers in the medium-scale
and large-scale setting, respectively.

E.2 SCALING PERFORMANCE

In this subsection we provide more results to complement the figures in Section [6]

Performance of OpenCLIP and FastCLIP-v3: The data to plot Figure2]is presented in Table [I3]
and Table[T4] We also provide the Datacomp performance in Table[T2] The Datacomp performance
of OpenCLIP and FastCLIP-v3 in the xlarge-scale setting is plotted in Figure[I0} In the xlarge-scale
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setting, we also conduct experiments of FastCLIP-v3 on a 1.4B subset of the DFN-2B dataset (Fang
et al.}[2023)) that originally includes 1.9B image-text pairs. The ImageNet-1K top 1 accuracy and
Datacomp Average performance of FastCLIP-v3 on different datasets are shown in Figure[TT} We
can see that our approach is still effective on extremely large-scale data.

Table 12: Datacomp Average performance of OpenCLIP and FastCLIP-v3 trained on different number
of nodes. Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes
OpenCLIP  21.82(0.59) 21.84(0.23) 21.65(0.13) 22.22(0.37)
Medium  FastCLIP-v3  24.54 (0.25) 24.76 (0.26) 24.43 (0.20) 25.23 (0.28)
Improvement 2.72 2.92 2.78 3.01
OpenCLIP  27.55(0.46) 27.91(0.73) 28.93(0.29) 28.75(0.59)
Large  FastCLIP-v3 30.81(0.38) 31.60 (0.46) 31.65(0.13) 31.45(0.32)
Improvement 3.26 3.69 2.72 2.70

Table 13: Retrieval performance of OpenCLIP and FastCLIP-v3 trained on different number of nodes.

Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes
OpenCLIP  24.07 (0.16) 25.20(0.22) 25.07 (0.26) 26.20 (0.10)
Medium FastCLIP-v3  30.02 (0.57) 30.36 (0.18) 30.42(0.24) 30.42(0.24)
Improvement 5.95 5.16 5.35 4.22
OpenCLIP  29.17 (0.17) 29.58 (0.62) 30.25(0.31) 30.87 (0.11)
Large  FastCLIP-v3 33.90 (0.28) 34.88(0.28) 34.91(0.16) 34.74(0.31)
Improvement 4.73 5.30 4.66 3.87

Table 14: ImageNet & Variants accuracy of OpenCLIP and FastCLIP-v3 trained on different number

of nodes. Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes
OpenCLIP  14.16 (0.11) 14.73(0.22) 15.24(0.26) 16.03 (0.23)
Medium FastCLIP-v3 18.37 (0.26) 19.08 (0.16) 19.21(0.18) 19.20 (0.16)
Improvement 4.21 4.35 3.97 3.17
OpenCLIP  20.51 (0.14) 21.08 (0.09) 22.32(0.23) 22.77 (0.14)
Large  FastCLIP-v3 23.76 (0.38) 24.78 (0.28) 24.79 (0.20) 24.93 (0.16)
Improvement 3.25 3.70 2.47 2.16

Training Time Comparison between OpenCLIP and FastCLIP-v3: We present the training time
breakdown of OpenCLIP and FastCLIP-v3 in Table[I5]and [I6] for the medium-scale and large-scale
settings, respectively. We can see that as the number of nodes scales up, the computation time of
OpenCLIP and FastCLIP-v3 is always close to each other, while the gap in communication time
becomes much larger, which is also depicted in subfigures (c) and (d). Even if we exclude the part of
communication that overlaps with computation, the gap in pure communication still becomes larger
with increasing number of nodes, and thus FastCLIP-v3 has a shorter running time on 4 and 8 nodes.
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Figure 11: ImageNet-1k Top 1 accuracy (left) and Datacomp Average performance (right) of
FastCLIP-v3 on different datasets in the xlarge-scale setting.

Table 15: Comparison between OpenCLIP and FastCLIP-v3 in terms of training time in the medium-
scale setting. The shaded results are from FastCLIP-v3, and the others are from OpenCLIP. Com-
putation denotes the whole computation time. Communication denotes the whole communication
time. Pure Comm. denotes the communication time that is not overlapped with computation. Overlap
denotes the overlapped time between computation and communication.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

Total 867.85(11.04)  880.19 (53.45)  925.47 (27.77) 1049.90 (32.44)
866.36 (5.89)  879.91 (52.17) 917.54 (25.46) 1028.06 (32.26)
Computation 770.57 (6.10)  738.87 (21.58)  726.07 (1.53)  742.93 (15.91)
771.80 (5.53)  737.93 (21.73)  725.40 (2.01)  742.90 (15.90)
Communication 222.01 (4.43) 403.40 (130.80) 548.07 (60.97)  698.87 (26.24)
223.34 (5.51) 400.76 (125.78) 536.15 (59.29)  675.43 (25.97)
Pure Comm 27.18 (1.61) 68.74 (25.45) 127.39 (30.29)  224.71 (16.05)
) 25.50 (2.24) 64.32 (22.47)  116.21 (28.48)  200.97 (15.58)
Overlap 194.84 (2.88)  334.66 (105.36) 420.68 (30.80) 474.16 (10.23)
197.84 (3.65) 336.44 (103.35) 419.94 (30.83) 474.46 (10.41)

Others 70.09 (8.17) 72.58 (6.59) 72.01 (2.73) 82.26 (0.93)

69.06 (1.67) 77.66 (8.14) 75.93 (2.83) 84.19 (0.86)
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Table 16: Comparison between OpenCLIP and FastCLIP-v3 in terms of training time in the large-

scale setting. The shaded results are from FastCLIP-v3, and the others are from OpenCLIP. The
meaning of each category is the same as Table@

Category 1 Node 2 Nodes

4 Nodes 8 Nodes
Total 1125.29 (14.14) 1234.06 (151.37) 1396.76 (47.86) 1564.46 (47.92)
1128.75 (9.75)  1234.82 (153.86) 1394.91 (48.35) 1542.32 (47.87)
Computation 960.14 (12.00) 910.77 (10.48) 891.71 (6.09) 896.54 (8.02)
964.16 (9.10) 910.94 (11.55) 892.72 (4.72) 897.59 (9.09)
Communication 360.34 (15.55) 655.30 (175.45) 876.13 (71.52) 1061.52 (55.08)
363.38 (16.66) 652.78 (173.41) 870.01 (69.56) 1035.03 (56.84)
Pure Comm 56.73 (4.09) 192.89 (129.45) 379.10 (58.13) 525.78 (57.22)
) 55.44 (2.23) 190.56 (127.48) 371.30 (55.62) 498.95 (59.72)
Overlap 303.62 (14.70) 462.41 (46.02) 497.02 (13.45) 535.74 (2.33)
307.94 (18.14) 462.22 (45.93) 498.71 (13.97) 536.08 (2.99)
Others 108.42 (5.54) 130.40 (12.26) 125.95 (5.57) 142.14 (2.08)

109.14 (2.67)

133.33 (15.30)

130.89 (4.34)

145.78 (3.13)

Training Time of OpenCLIP and FastCLIP in Different Network Environments: The results
above (and in Section [6) are obtained from a cluster with InfiniBand interconnect. We conduct
additional experiments on two different clusters with Slingshot interconnect. The results are presented

below. It can be seen that our gradient reduction strategy has consistent improvement over the strategy
used in OpenCLIP in different network environments.
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Table 17: OpenCLIP vs. FastCLIP-v3 (shaded) in the medium-scale setting on Cluster 1 with

Slingshot interconnect. The meaning of each category is the same as Table

Category 1 Node 2 Nodes 4 Nodes 8 Nodes
Total 218.42 (14.87) 35299 (2.91) 410.14(0.94) 462.18 (8.12)
221.46 (7.96)  359.04 (12.21) 412.67 (1.08) 447.42 (4.18)
Computation 157.03 (0.26)  160.53 (0.09) 160.11 (0.04) 160.02 (0.09)
158.99 (1.75)  160.88 (0.23)  160.34 (0.06) 160.35 (0.08)
Communication 23.58 (13.49)  250.21 (2.74) 313.26 (2.33) 354.59 (2.33)
29.88 (14.20) 251.58 (12.11) 312.32(1.28) 349.45 (4.46)
Pure Comm 14.28 (11.86)  149.42 (2.71)  210.57 (1.51) 251.45(2.11)
’ 12.13 (5.20)  150.19 (12.06) 208.20 (1.29) 245.39 (4.49)
Overlap 9.31 (1.63) 100.79 (0.03)  102.69 (0.87) 103.14 (0.25)
17.75 (9.04) 101.39 (0.04) 104.11 (0.09) 104.06 (0.03)
Others 47.12 (2.77) 43.04 (0.27) 39.45(0.69)  50.72 (9.91)
50.35 (1.03) 47.97 (0.52) 44.13 (0.38)  41.69 (0.40)

Table 18: OpenCLIP vs. FastCLIP-v3 (shaded) in the large-scale setting on Cluster 1 with Slingshot

interconnect. The meaning of each category is the same as Table@

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

Total 301.54 (22.83) 510.42(6.59) 587.59 (7.53) 660.99 (23.63)
329.86 (40.84) 511.80(6.53) 586.17 (8.97) 637.16 (13.73)

Computation 153.12 (2.47)  155.06 (0.05) 154.63 (0.08) 154.45 (0.05)
154.22 (3.44)  155.53 (0.14) 155.10(0.05) 155.19 (0.11)
Communication 84.86 (23.74) 389.90 (6.59) 472.84 (6.84) 545.75 (18.81)
110.76 (36.62) 389.36 (6.43) 467.79 (9.38) 520.98 (15.02)
Pure Comm 58.00 (22.62)  291.70 (6.63) 371.31(7.25) 443.20 (18.99)
’ 79.80 (35.59) 288.68 (5.59) 363.71 (8.58) 416.43 (15.11)

Overlap 26.86 (12.35)  98.20(0.07) 101.53 (0.57) 102.55 (0.87)
30.96 (17.49) 100.68 (1.06) 104.08 (0.88)  104.55 (0.10)

Others 90.42 (4.26) 63.66 (1.09)  61.66 (0.91) 63.34 (4.74)

) 95.84 (7.48) 67.59 (1.28)  67.36 (0.49) 65.54 (1.62)

Table 19: OpenCLIP vs. FastCLIP-v3 (shaded) in the xlarge-scale setting on Cluster 1 with Slingshot

interconnect. The meaning of each category is the same as Table@

Category 1 Node 2 Nodes 4 Nodes 8 Nodes
Total 511.28 (8.46) 597.15 (3.50) 643.54 (4.69) 725.58 (35.32)
520.66 (6.96) 597.52 (8.42) 648.67 (6.48) 717.43 (24.75)
Computation 418.29 (0.59) 44258 (0.41) 442.63 (0.19) 441.86 (0.09)
419.27 (1.48) 442.86 (0.10) 442.99 (0.28) 442.86 (0.17)
Communication 2452 (9.71)  380.79 (2.92) 432.24 (4.58) 514.46 (32.87)
33.34 (12.27) 378.48 (7.59) 436.70 (6.90) 492.55 (15.62)
Pure Comm 12.29 (7.00)  79.79 (3.19)  127.27 (4.15) 207.18 (32.94)
' 16.68 (4.62)  75.38 (6.89) 127.03 (6.40) 182.89 (15.91)
Overlap 12.23 (2.73)  301.00 (0.32) 304.98 (0.65) 307.28 (0.52)
16.66 (8.19)  303.11 (0.94) 309.67 (0.80) 309.65 (0.69)

Others 80.70 (1.53)  74.78 (0.87)  73.65(0.59) 76.54 (2.76)

84.71 (1.27)  79.29 (1.84)  78.65(0.52)  91.68 (13.55)
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Table 20: OpenCLIP vs. FastCLIP-v3 (shaded) in the medium-scale setting on Cluster 2 with

Slingshot interconnect. The meaning of each category is the same as Table

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

Total 218.62 (1.49) 239.22 (0.18) 273.94 (1.10) 278.21 (2.74)
219.67 (4.87) 239.04 (2.73) 271.29 (1.17) 274.94 (4.29)

Computation 157.47 (1.03) 160.47 (0.14) 167.51(0.89) 164.75 (0.05)
157.94 (1.08) 160.85 (0.15) 167.94 (1.33) 164.89 (0.37)

Communication 31.41 (6.16) 105.83 (2.74) 15537 (1.14) 165.85 (4.20)
31.12(7.51) 98.51(2.14) 150.03 (1.52) 160.95 (3.00)

Pure Comm 10.63 (2.02)  33.37(1.17) 62.29(1.24)  69.99 (2.41)
) 10.02 (2.23) 3041 (2.10) 55.13(2.08)  62.52 (4.06)

Overlap 20.78 (5.31)  72.46(1.63)  93.08 (0.12)  95.86 (1.96)
21.10(5.28)  68.10(0.22) 94.91 (0.91) 98.43 (1.17)

Others 50.52 (1.01) 4537(0.88) 44.14(0.42) 43.47 (0.88)
51.72 (2.28)  47.78 (1.46)  48.22 (0.60)  47.53 (0.39)

Table 21: OpenCLIP vs. FastCLIP-v3 (shaded) in the large-scale setting on Cluster 2 with Slingshot

interconnect. The meaning of each category is the same as Table@

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

Total 261.73 (5.81) 293.85(7.66) 341.99 (6.88) 387.59 (29.84)
260.15 (2.71) 295.25 (5.15) 350.30 (12.59) 365.01 (31.42)

Computation 158.96 (0.59) 16537 (1.34) 174.27(1.08)  169.39 (0.47)
158.86 (0.71) 166.24 (0.48) 173.65 (2.33)  168.31 (0.63)
Communication 42.37(6.16) 149.25(8.76) 205.88 (3.59) 250.92 (31.40)
38.83 (2.64) 148.16 (3.75) 208.68 (9.40) 227.15 (31.55)
Pure Comm 17.33(3.89) 58.19 (5.73) 98.24 (5.08)  146.62 (32.25)
) 16.45(0.70)  54.01 (3.58)  98.83 (11.70)  120.91 (30.43)

Overlap 25.04 (3.56) 91.05(3.12) 107.63 (1.83)  104.30 (1.00)
22.39(291) 94.14(0.28)  109.84 (2.31)  106.24 (1.56)

Others 85.44 (2.76)  70.29 (0.78) 69.48 (2.97) 71.58 (3.20)

84.84 (2.27)  74.99 (2.13) 77.82 (3.60) 75.79 (0.83)

Table 22: OpenCLIP vs. FastCLIP-v3 (shaded) in the xlarge-scale setting on Cluster 2 with Slingshot

interconnect. The meaning of each category is the same as Table

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

Total 496.14 (0.84) 516.82 (5.65) 581.00 (3.16) 636.00 (16.93)
502.32 (5.29) 515.99 (0.56) 582.50(2.89) 626.40 (7.16)

Computation 41530 (0.10) 422.40(0.25) 433.71 (1.03) 433.66 (0.41)
415.34 (0.13) 422.89 (0.21) 432.92 (0.22) 434.92 (0.48)
Communication 26.49 (0.97) 14577 (7.14) 287.66 (7.36) 369.86 (12.53)
25.13 (247) 14439 (2.93) 277.56 (1.98) 362.24 (11.25)
Pure Comm 9.31 (0.46) 23.58 (4.66)  70.29 (1.96) 123.79 (15.56)
’ 8.65 (1.86) 17.89 (0.62)  67.45(3.26)  111.46 (6.13)

Overlap 17.18 (0.61) 122.19 (2.57) 217.36 (8.75) 246.07 (3.60)
16.48 (0.80) 126.50 (2.31) 210.11 (3.54) 250.77 (5.46)

Others 71.53(0.55) 70.84 (0.88)  76.99 (2.15) 78.56 (1.92)

78.33 (3.30)  75.20(0.55)  82.14 (2.26) 80.01 (0.87)
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