
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FASTCLIP: A SUITE OF OPTIMIZATION TECHNIQUES
TO ACCELERATE CLIP TRAINING WITH LIMITED
RESOURCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing studies of training state-of-the-art Contrastive Language-Image Pretrain-
ing (CLIP) models on large-scale data involve hundreds of or even thousands of
GPUs due to the requirement of a large batch size. However, such a large amount of
resources is not accessible to most people. While advanced compositional optimiza-
tion techniques for optimizing global contrastive losses have been demonstrated
effective for removing the requirement of a large batch size, their performance on
large-scale data remains underexplored and not optimized. To bridge the gap, this
paper explores several aspects of CLIP training with limited resources (e.g., up to
tens of GPUs). First, we introduce FastCLIP, a general CLIP training framework
built on advanced compositional optimization techniques while designed and op-
timized for the distributed setting. Our framework is equipped with an efficient
gradient reduction strategy to reduce communication overhead. Second, to further
boost training efficiency, we investigate three components of the framework from
an optimization perspective: the schedule of the inner learning rate, the update rules
of the temperature parameter and the model parameters, respectively. Experiments
on different strategies for each component shed light on how to conduct CLIP
training more efficiently. Finally, we evaluate the performance of FastCLIP and the
state-of-the-art training baseline (OpenCLIP) on different compute scales up to 32
GPUs on 8 nodes, and three data scales ranging from 2.7 million, 9.1 million to 315
million image-text pairs to demonstrate the significant improvement of FastCLIP
in the resource-limited setting.

1 INTRODUCTION

Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) is a popular approach for
vision-language representation learning (Cherti et al., 2023; Sun et al., 2024; Chen et al., 2023c; Li
et al., 2023a; Qiu et al., 2023). The method effectively embeds data from the image and language
modality into a joint embedding space by optimizing a contrastive loss in a self-supervised manner. It
has demonstrated strong performance on various downstream tasks (e.g., zero-shot classification and
retrieval) and has been adopted in various applications, including text-to-image generation (Ramesh
et al., 2022; Zhou et al., 2022; Crowson et al., 2022), image captioning (Yu et al., 2022; Mokady et al.,
2021), and evaluation of image generation (Hessel et al., 2021). Its popularity is further fueled by
releases of web-scale datasets (Schuhmann et al., 2021; 2022; Gadre et al., 2023; Fang et al., 2023).

However, vanilla mini-batch based methods for self-supervised contrastive learning are known to
require a large batch size to obtain satisfactory performance (Chen et al., 2023b; 2020). Theoretically,
it has been shown that the optimization error of mini-batch based contrastive learning methods
inversely depends on the batch size (Yuan et al., 2022). Empirically, state-of-the-art CLIP models
are typically trained using a large batch size on a large number of GPUs (e.g., 84k batch size and
1024 Nvidia A100 GPUs in OpenCLIP (Cherti et al., 2023)). Such a large amount of resources is
not accessible to most researchers and practitioners in academia and small companies. Recently,
Yuan et al. (2022) proposed an algorithm named SogCLR to address the large batch size issue, which
leverages finite-sum coupled compositional optimization (FCCO) techniques to optimize a global
contrastive loss (GCL) that contrasts each anchor data with all other data in a compositional structure.
A key feature of compositional optimization is the inner and outer steps where the inner steps
maintain and update a sequence of estimators to track the inner functions on the solution path, which
can be interpreted as an SGD update with a learning rate called the inner learning rate (Wang & Yang,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2022). Later, SogCLR has been leveraged by Qiu et al. (2023) to design the iSogCLR algorithm for
optimizing a robust global contrastive loss (RGCL) with individualized learnable temperatures for
training CLIP models. However, these algorithms are not fully optimized for large-scale training of
CLIP models since they were examined only on small-scale datasets.

This paper aims to scale up the advanced optimization algorithms for optimizing global contrastive
losses of CLIP training on large-scale data with limited compute resources. We introduce a distributed
training framework named FastCLIP by employing data parallelism such that each worker computes
the gradient estimator using their respective data and then reduces (averages) them through com-
munication, based on which the model is updated. A novel gradient reduction strategy is designed,
which requires less communication than the existing distributed framework. This distributed training
framework lays the foundation for scaling up CLIP training with limited resources. To further boost
the efficiency of our framework, we investigate its three aspects from an optimization perspective:
the schedule of the inner learning rate (LR) of compositional optimization, the update rule of the
temperature parameter, and the update rule of the model parameters, respectively.

• Previous studies (Yuan et al., 2022; Qiu et al., 2023) set the inner LR to a constant value less
than but close to one, which could slow down the training for large-scale data at earlier iterations.
Inspired by the learning rate schedule of existing optimizers of Deep Learning (Loshchilov &
Hutter, 2017), we examine a cosine decay schedule for the inner LR by comparing its performance
with the constant schedule.

• For the update rule of the temperature parameter, we compare four different strategies in the
FastCLIP framework, including a heuristic approach based on the gradient of GCL, a constant
strategy as used in SogCLR, learning individualized temperatures as used in iSogCLR, and learning
global temperature by optimizing a new RGCL with a single learnable temperature.

• For the update rule of the model parameters, we compare the performance of commonly-used
optimizers for CLIP training in the FastCLIP framework, including AdamW (Loshchilov & Hutter,
2019), LAMB (You et al., 2020), Lion (Chen et al., 2023a) and SGD with momentum (Polyak,
1964).

Moreover, in order to study the scaling capability of FastCLIP, we compare the performance of
FastCLIP and state-of-the-art baseline OpenCLIP (Ilharco et al., 2021) on three data scales and four
compute scales. The data scales include 2.7 million (CC3M (Sharma et al., 2018)), 9.1 million
(CC12M (Changpinyo et al., 2021)), and 315 million (LAION400M (Schuhmann et al., 2021))
image-text pairs1. The compute scales include 1, 2, 4, and 8 nodes, with 4 GPUs on each node.

The contributions of this paper are summarized as follows: (1) We propose FastCLIP, an efficient
distributed framework to scale up CLIP training with limited computing resources. (2) We study
the performance of different strategies for three components of FastCLIP, providing insights on
how to conduct CLIP training more efficiently. (3) We compare the performance of FastCLIP on
different data scales and compute scales. The results show that FastCLIP consistently outperforms
state-of-the-art training baseline OpenCLIP by a large margin. A quick comparison between FastCLIP
and OpenCLIP on different data scales and compute scales are shown in Figure 1, with more detailed
results presented in Section 6.

Roadmap: In Section 2 we review the literature of CLIP training, in Section 3 we introduce the
objective of interest and provide background on the Global Contrastive Learning framework. We
propose our FastCLIP framework and explain its gradient reduction strategy in Section 4. Then in
Section 5 we compare different strategies for different components within the FastCLIP framework,
and we compare the scaling performance of FastCLIP and OpenCLIP under different settings in
Section 6. Finally, we conclude this paper in Sections 7 and 8.

2 RELATED WORKS

CLIP training in the distributed setting: Radford et al. (2021) train CLIP models in a distributed
setting, but few details regarding the implementation are provided. Ilharco et al. (2021) develop
OpenCLIP, an open-source implementation of CLIP. They leverage the PyTorch distributed data-
parallel module (Li et al., 2020) to automatically communicate features and gradients. EVA-CLIP

1The size of downloaded sets are smaller than their original versions since some links are no longer valid.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350
Samples Seen (million)

0

20

40

60

80

100

1.31x Speedup
+2.24

OpenCLIP FastCLIP-v3 (Ours)

0 25 50 75 100
Samples Seen (million)

5

10

15

20

1.74x Speedup

+4.21

(a) 1 Node, Medium

0 25 50 75 100
Samples Seen (million)

5

10

15

20

1.76x Speedup

+4.35

(b) 2 Nodes, Medium

0 25 50 75 100
Samples Seen (million)

5

10

15

20

1.46x Speedup

+3.97

(c) 4 Nodes, Medium

0 25 50 75 100
Samples Seen (million)

5

10

15

20

1.32x Speedup

+3.17

(d) 8 Nodes, Medium

0 100 200 300
Samples Seen (million)

5

10

15

20

25

1.44x Speedup

+3.25

(e) 1 Node, Large

0 100 200 300
Samples Seen (million)

5

10

15

20

25

1.49x Speedup

+3.70

(f) 2 Nodes, Large

0 100 200 300
Samples Seen (million)

5

10

15

20

25

1.34x Speedup

+2.47

(g) 4 Nodes, Large

0 100 200 300
Samples Seen (million)

5

10

15

20

25

1.31x Speedup

+2.24

(h) 8 Nodes, Large

Figure 1: Zero-shot accuracy curves on ImageNet & its variants of OpenCLIP and FastCLIP-v3
trained on 1 to 8 node(s) with 4 GPUs per node on medium and large-scale settings (c.f. Section 5).

(Sun et al., 2023; 2024) scales the number of parameters of the image encoder in CLIP up to 18
billion by applying several techniques from the system perspective, including the ZeRO optimizer
(Rajbhandari et al., 2020) and global half-precision training with DeepSpeed (Rasley et al., 2020).
The key difference between existing works and this work is that they all use a simple mini-batch
based contrastive loss, which suffers from the issue of requiring a large batch size. This in turn
requires hundreds and even thousands of GPUs (e.g., 592 V100 in CLIP, 1024 A100 in OpenCLIP,
256 A100 in EVA-CLIP). Our work focuses on scaling up CLIP training in a resource-limited setting
with only tens of GPUs.

Benchmark for CLIP training: Cherti et al. (2023) study the scaling performance of CLIP training.
They measure the performance of CLIP across different model sizes and dataset sizes, and study
the relationships between downstream task performance and resource consumption. Gadre et al.
(2023) investigate the impact of different data filtering strategies on the trained model’s downstream
performance. They conduct experiments across different data scales ranging from 12.8 million to 12.8
billion and provide insights on how to curate CLIP’s training data. Cui et al. (2022) examine the impact
of data quality, supervision strategies (e.g., additional image supervision), and model architectures.
Li et al. (2024) explore different aspects of CLIP training under a limited training budget, including
the impact of the quality and quantity of the training data, different model architectures, and different
existing training strategies. Different from these works, we study different algorithmic components
of CLIP training in an advanced optimization framework for optimizing the global contrastive loss.

Improved CLIP training: Many works have studied efficient CLIP training with limited resources.
Yuan et al. (2022) propose SogCLR to improve the performance of contrastive learning with small
batch size. Our work scales up SogCLR in the distributed setting and incorporates several algorithmic
strategies to accelerate its training speed. Besides the algorithm, other directions are also explored for
more efficient CLIP training, including augmenting mini-batch based contrastive losses (Li et al.,
2023c; Zhai et al., 2023; Mu et al., 2022; Li et al., 2022; Mo et al., 2023; Lee et al., 2022; Goel
et al., 2022), model compression (Wu et al., 2023; Li et al., 2023b; Fang et al., 2021), and system
optimization (Chen et al., 2023b; Sun et al., 2023; Rajbhandari et al., 2020).

Temperature scheme: The temperature parameter in contrastive losses plays an important role in
CLIP training. Many techniques have been proposed to update or set the temperature parameter.
Radford et al. (2021) treat the temperature as part of the learnable parameters in the mini-batch
contrastive loss. Zhang et al. (2022) propose to use different temperatures for positive and negative
samples to independently control intra-anchor and inter-anchor hardness-awareness. Kukleva et al.
(2023) study a cosine decay schedule for setting the temperature. Huang et al. (2023b) propose
to set the temperature parameter proportional to the alignment between positive pairs. Qiu et al.
(2023) propose a robust global contrastive loss (RGCL) with individualized temperatures inspired by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Distributionally Robust Optimization and optimize it with the iSogCLR algorithm which extends
SogCLR. However, their performance on large-scale data remains unknown. This work discovers
a new strategy by learning a global temperature in the RGCL that yields better performance for
large-scale data.

Optimizers for CLIP training: Different optimizers for updating the learnable parameters have
been employed in CLIP training, including AdamW (Loshchilov & Hutter, 2019) used by Radford
et al. (2021); Cherti et al. (2023); Gadre et al. (2023); Chen et al. (2023c); Li et al. (2023a); Qiu et al.
(2023), and LAMB (You et al., 2020) used by Sun et al. (2023); Xie et al. (2023); Huang et al. (2023a).
A recently proposed optimizer named Lion (Chen et al., 2023a) also provides promising results for
this task (Chen et al., 2023a; Wortsman et al., 2023). In this work, we compare the performance of
AdamW, LAMB and Lion to determine which optimizer is most suitable in FastCLIP for training
CLIP models from scratch. We also include SGD with momentum (Polyak, 1964) for comparison.

3 PRELIMINARIES

Notations: Given a dataset S of n images xi and their corresponding text descriptions zi: S =
{(x1, z1), . . . , (xn, zn)}, we aim to learn an image encoder and a text encoder (jointly represented
by w) from the data. We use e1,i = e1(w,xi) ∈ Rd and e2,i = e2(w, zi) ∈ Rd to denote the
encoded vector of the input xi and zi, respectively. And we use ei = (e⊤1,i, e

⊤
2,i)

⊤ to denote the
concatenation of e1,i and e2,i. Denote by B ⊂ S a mini-batch of image-text pairs. With slight
abuse of notation, we also use B (and S) to denote the indices of the image-text pairs it contains.
Si− := S\{i} denotes the subset of S without i-th pair. We consider the data parallel setting such that
S is partitioned evenly across K workers denoted by S1, . . . ,SK . For a function ℓ(·, ·), let ∇1ℓ(·, ·)
and ∇2ℓ(·, ·) denote the partial gradient in terms of the first and second argument, respectively.

Mini-batch Contrastive Loss (MBCL) and Global Contrastive Loss (GCL): The core idea of
CLIP training is to leverage a contrastive loss to push features of paired image and text close to each
other (i.e., to maximize the similarity between e1,i and e2,i), while pushing features of non-paired
image and text away from each other (i.e., minimizing the similarity between e1,i and e2,j for i ̸= j).
Mathematically, let si,j denote the cosine similarity between e1,i and e2,j . Define

ℓ1(ei, e2,j , τ) := exp ((si,j − si,i)/τ) , ℓ2(ei, e1,j , τ) := exp ((sj,i − si,i)/τ) ,

where τ > 0 is the temperature parameter. Given a mini-batch B of image-text pairs, let

g1(w, τ, i,B) := 1

|B|
∑

j∈B
ℓ1(ei, e2,j , τ), g2(w, τ, i,B) := 1

|B|
∑

j∈B
ℓ2(ei, e1,j , τ).

In the literature, a large number of works (e.g., Cherti et al., 2023; Gadre et al., 2023; Sun et al.,
2023), following Radford et al. (2021), minimize the mini-batch contrastive loss (MBCL):

1

|S|
∑

i∈S
EB⊂Si−

(
log

(
1

|B|
+ g1(w, τ, i,B)

)
+ log

(
1

|B|
+ g2(w, τ, i,B)

))
, (MBCL)

which contrasts the i-th pair with other pairs within only a mini-batch B. However, this loss suffers
from the large-batch size issue, which has been addressed by the Global Contrastive Loss (GCL) (Yuan
et al., 2022) that contrasts the i-th pair with all other pairs in the dataset S:

τ

|S|
∑

i∈S
(log (ε+ g1(w, τ, i,Si−)) + log (ε+ g2(w, τ, i,Si−))) , (GCL)

where ε is a small constant.

Robust Global Contrastive Loss (RGCL): To improve CLIP training, Qiu et al. (2023) designed
a robust global contrastive loss (RGCL) with individualized temperature parameters inspired by
Distributionally Robust Optimization. It is defined as:

min
τ1,τ2≥τ0

1

|S|
∑
i∈S

(τ1,i · (log (ε+ g1(w, τ1,i, i,Si−)) + ρ)

+τ2,i · (log (ε+ g2(w, τ2,i, i,Si−)) + ρ)) ,

(RGCL)

where τ1 = (τ1,1, . . . , τ1,n), τ2 = (τ2,1, . . . , τ2,n), τ0 is a small value, ρ ≥ 0 is a hyperparameter.

Optimization Algorithms. To optimize GCL, Yuan et al. (2022) proposed the SogCLR algorithm
based on advanced compositional optimization known as Finite-sum Coupled Compositional Op-
timization (FCCO) (Wang & Yang, 2022). Specifically, GCL is formulated as 1

n

∑
i∈S f(gi(w)),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: The FastCLIP Framework (Sketch)
1 Input: Initial model parameters w0, τ0, (u0

1,u
0
2), Number of iterations T .

2 for t = 0, . . . , T − 1 do
3 for each worker k do in parallel
4 Sample a batch Bt

k from Sk and compute features Et
k = {(e1,j , e2,j)}j∈Bt

k

5 ALL_GATHER Et = ∪kEt
k to obtain global features

6 Compute mini-batch contrastive losses gt1,i, g
t
2,i for i ∈ Bt

k (c.f. Proc. 2 in Appendix A)
7 Update ut+1

1,i , ut+1
2,i using Eqn. (1) for i ∈ Bt

k. Set ut+1
1,i = ut

1,i, u
t+1
2,i = ut

2,i for i /∈ Bt
k

8 Set U t
k = {(ut+1

1,j , ut+1
2,j)}j∈Bt

k
, and ALL_GATHER U t = ∪kU t

k

9 Compute gradient estimators Gt
w,k for w using techniques of FCCO (c.f. Proc. 3)

10 ALL_REDUCE Gt
w = 1

K

∑K
l=1 G

t
w,l across all workers

11 Update wt+1 from wt using an optimizer (c.f. Proc. 4).
12 Update τ t+1 from τ t (c.f. Proc. 5).

where f(g) = log(ε + g) and gi(w) is the inner function inside the log. The main challenge is to
compute a gradient estimator using a mini-batch of samples such that the algorithm can converge
without requiring a large batch size. The key idea of SogCLR is to maintain and update an estimator
for each inner function gi(w) denoted by ui, by using Equation (1). As a result, the gradient at
the t-th iteration is estimated by 1

|B|
∑

i∈B ∇f(ut+1
i)∇ĝi(w

t), where B is a mini-batch and ĝi(w)

is a mini-batch estimator of gi(w). To optimize RGCL, Qiu et al. (2023) proposed the iSogCLR
algorithm by combining SogCLR with stochastic coordinate updates for the temperature parameters.

4 FASTCLIP: A DISTRIBUTED TRAINING FRAMEWORK OF CLIP MODELS

FastCLIP is a distributed training framework for optimizing global contrastive losses (including
(GCL) and (RGCL)). Its key updates are built upon the SogCLR algorithm. The main difference
between SogCLR and mini-batch based methods such as CLIP is that SogCLR maintains two scalar
sequences u1,i and u2,i to keep track of g1(w, τ, i,Si−) and g2(w, τ, i,Si−) as stated in Section 3.
At iteration t, for i selected in the batch Bt, u1,i and u2,i will be updated using a moving average
estimator with hyperparameter γt ∈ (0, 1]:

ut+1
1,i = (1− γt)u

t
1,i + γtg1(w

t, τ t, i,Bt
i−), ut+1

2,i = (1− γt)u
t
2,i + γtg2(w

t, τ t, i,Bt
i−), (1)

and the gradient estimator is computed by 1
|Bt|

∑
i∈Bt ∇f(ut+1

i)∇ĝi(w
t). The core of FastCLIP

(Algorithm 1) is how to compute the gradient estimator in a distributed manner.

Next, we use (GCL) as an example to present our gradient computation strategy that effectively
reduces the communication cost. We only present key steps and defer the complete derivation to
Appendix A due to space limit. Let Bt

k denote local mini-batch on k-th worker. Below, we omit the
superscript t and use Bk for simplicity. Note that (GCL) is the sum of two parts: the image part (loss
g1) and the text part (loss g2). Due to their symmetric structure, we only present the gradient of the
image part. The gradient estimator of (GCL) is computed by Gw,1,a +Gw,1,b:

Gw,1,a =τ · 1

K

K∑
k=1︸ ︷︷ ︸

ALL_REDUCE

1

|Bk|
∑
i∈Bk

1

ε+ u1,i︸︷︷︸
local

·

Gw,1,a,i︷ ︸︸ ︷
1

K

K∑
k′=1

1

|Bk′,i−|
∑

j∈Bk′,i−

∇1ℓ1(ei︸︷︷︸
local

, e2,j︸︷︷︸
global

, τ) · ∇ei︸︷︷︸
local

,

Gw,1,b =τ · 1

K

K∑
k′=1︸ ︷︷ ︸

ALL_REDUCE

1

|Bk′ |
∑

j∈Bk′

· 1
K

K∑
k=1

1

|Bk,j−|
∑

i∈Bk,j−

1

ε+ u1,i︸︷︷︸
global

∇2ℓ1(ei︸︷︷︸
global

, e2,j︸︷︷︸
local

, τ) · ∇e2,j︸ ︷︷ ︸
local

.

Both Gw,1,a and Gw,1,b have two averages over B due to compositional structure of the loss. For
FastCLIP, the inner average (e.g. Gw,1,a,i) is computed on a single worker after gathering global
parts (shaded, e.g., e2,j) from all workers. The outer average is then computed using ALL_REDUCE.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison between different algorithms. In Temperature Scheme, “G” denotes global
temperature parameter, while “I” denotes individualized temperature parameters for each data.

Algorithm Loss FCCO Distributed Inner LR Schedule Temperature Scheme

OpenCLIP (Ilharco et al., 2021) (MBCL) No Yes N/A G, Learnable
SogCLR (Yuan et al., 2022) (GCL) Yes No Constant G, Constant
iSogCLR (Qiu et al., 2023) (RGCL) Yes No Constant I, Learnable

FastCLIP-v0 (GCL) Yes Yes Cosine G, Learnable
FastCLIP-v1 (GCL) Yes Yes Cosine G, Constant
FastCLIP-v2 (RGCL) Yes Yes Cosine I, Learnable
FastCLIP-v3 (RGCL-g) Yes Yes Cosine G, Learnable

Difference from OpenCLIP. Algorithmically, OpenCLIP does not use the u sequence, which
is equivalent to setting γt = 1. In terms of distributed implementation, for computing Gw,1,b,
OpenCLIP first computes 1

ε+u1,i
∇2ℓ1(ei, e2,j , τ) on the worker where i-th pair resides, then all

workers gather them using REDUCE_SCATTER and uses them to compute the inner average.

FastCLIP has the same communication and computation cost for computing Gw,1,a as OpenCLIP, but
has an effective communication reduction for computing Gw,1,b. Specifically, REDUCE_SCATTER
in OpenCLIP requires O(K|B|d) communication cost, where d is the feature dimensionality (>512
in practice). While ALL_GATHER of u1,i in FastCLIP requires only O(K|B|) communication since
each u1,i is a scalar. This leads to a communication reduction, as verified empirically in Sec. 6.

5 IMPROVEMENT OF OPTIMIZATION COMPONENTS

In this section, we propose different strategies to improve three components of the FastCLIP frame-
work, i.e., the schedule for inner LR γt, the update rule of the temperature parameter, and the
optimizer for updating the model parameters.

The Inner LR Schedule: We first explore different schedules for γt in Equation (1), which is
interpreted as an SGD step with learning rate (LR) γt by Wang & Yang (2022). They showed in
theory that γt should be set to a very small value close to 0 in order to guarantee convergence.
However, in practice a large γt value close to 1 is adopted (Yuan et al., 2022). Ideally, γt should be
large to rely more on the current mini-batch at earlier iterations and be smaller to rely more on history
in later iterations. To achieve this, we consider a cosine schedule to decrease γt: Let t be the current
iteration, Ê be the number of iterations per epoch and E be the number of decay epochs, then we set
γt = 0.5 · (1 + cos(π⌊t/Ê⌋/E)) · (1− γmin) + γmin. With this schedule, γt will decrease from 1.0
to γmin. Note that ⌊t/Ê⌋ denotes the current epoch, which means the value of γt stays unchanged
within one epoch. Also, The number of decay epochs E is a hyperparameter, and it is not necessarily
equal to the total number of training epochs. If the current epoch exceeds E, γt will be set to γmin.

The Temperature Parameter Updates: At Line 12 of Algorithm 1, the temperature parameter τ
is updated. The update rule is not explicitly provided due to its variety. We consider four different
versions, named v0 to v3. Specifically, v1 sets τ to a constant as in SogCLR and the other three view
τ as a learnable parameter: v2 leverages the same τ update as iSogCLR, which maintains individual
temperature parameters for each data and updates them using gradient of (RGCL) w.r.t. τ . A potential
issue of maintaining and updating individualized temperature is that it may overfit the data and hence
harm the generalization for large-scale data. To mitigate this issue, we also consider the following
loss, which unifies the individual temperature in (RGCL) into a single global one:

min
τ≥τ0

τ

|S|
∑
i∈S

(log (ε+ g1(w, τ, i,Si−)) + log (ε+ g2(w, τ, i,Si−))) + 2ρτ. (RGCL-g)

We refer to this version as v3. We also include a baseline version named v0 that updates τ using the
gradient of an unscaled version of (GCL) that does not multiply τ , similar to the τ updates in existing
works (Radford et al., 2021; Cherti et al., 2023) based on (MBCL). The explicit rules of all updates
are deferred to Proc. 5 in Appendix A. Combining the four versions of updating/setting τ with the
cosine inner LR schedule, we get four algorithms FastCLIP-v0 to v3. A comparison between them
and existing algorithms is shown in Table 1. Different updates of τ also lead to slightly different
ways of computing the contrastive losses and gradient estimator (Line 6 and Line 9 in Algorithm 1),
and the details are deferred to Appendix A due to space limit.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Overview of the experiment settings. # Samples denotes the size of the dataset downloaded.
Batch Size denotes per-GPU batch size, with global batch size specified in parentheses. H100 has
80GB memory. Some epochs of tested algorithms for the xlarge-scale setting were run on a different
system with 16xA100 (40GB) using a local batch size 320. We rename the downloaded 315M subset
of LAION400M (Schuhmann et al., 2021) as LAION315M to indicate its actual size.

Setting Dataset # Samples/Epochs Vision Encoder Batch Size GPUs

Medium CC3M 2.7M/37 epochs ResNet50 128 (1024) 8 Tesla T4
Large CC12M 9.1M/33 epochs ViT-B/32 256 (2048) 8 Tesla T4

xLarge LAION315M 315M/42 epochs ViT-B/16 640 (5120) 8 H100

The Optimizer: We compare the performance of four optmizers (i.e., the update rule of model
parameters and temperature at Line 11 to 12 in Algorithm 1) in FastCLIP: AdamW (Loshchilov &
Hutter, 2019), LAMB (You et al., 2020), Lion (Chen et al., 2023a) and SGD with momentum (Polyak,
1964). The update rules of these optimizers are presented in Proc. 4 in Appendix A for completeness.

Experiment Settings: We conduct experiments in three different settings, which differ in data
scale, model architecture (vision encoder in particular), and training environment. The difference is
presented in Table 2. In all settings, we use a 12-layer transformer (Vaswani et al., 2017) as the text
encoder. All the experiments are conducted in a multi-node setting where each node has 4 GPUs.
Due to its extreme size, xlarge-scale setting is only used to compare the best version of FastCLIP
with OpenCLIP. The value of ε is set to 1e-14 for all but the xlarge-scale setting, where we use a
large value of 1e-6. This is discussed in Section 6 and Appendix D.

Metrics: To evaluate the performance of the trained models, we leverage the Datacomp Benchmark
(Gadre et al., 2023), which includes 38 zero-shot downstream tasks. The evaluation metric is the
average performance, which is called Datacomp. We also report the average performance on two
subsets of the tasks: ImageNet and its different variants (IN & Variants), and Retrieval. IN & Variants
consists of top 1 accuracy on ImageNet-1k (Deng et al., 2009) and 6 ImageNet distribution shift
datasets (Wang et al., 2019; Recht et al., 2019; Hendrycks et al., 2021b;a; Barbu et al., 2019) (Gadre
et al., 2023, Section 3.5). Retrieval consists of mean recall at 1 on Flickr30k (Young et al., 2014),
MSCOCO (Chen et al., 2015), and jaccard score on WinoGAViL (Bitton et al., 2022). We refer the
readers to Gadre et al. (2023) for detail of all the tasks.

5.1 RESULTS

In this subsection, we present the experiment results. We report results averaged over 3 runs with
different seeds, and standard deviation in parentheses. Training details are provided in Appendix B.

The Inner LR Schedule: We first present results of different γ schedules. We compare three pairs
of approaches: SogCLR and FastCLIP-v1; iSogCLR and FastCLIP-v2; FastCLIP-v3 with Constant
γ and FastCLIP-v3, where the former of each pair uses constant γ schedule and the latter uses
cosine γ schedule. SogCLR and iSogCLR are implemented in the same framework as FastCLIP. The
results are presented in Table 3. We can observe that all of the three approaches obtain a significant
performance gain when equipped with the cosine schedule. This indicates that cosine schedule
performs better than the constant schedule. Also, when tuning the γ value for the two schedules, we
observe that constant schedule favors larger γ values (0.6 or 0.8), while cosine schedule favors small
γ value (0.2) in the end (c.f. Table 8 in Appendix B). These results suggest: (1) γ needs to be set to a
small value as the theory predicts, (2) but instead of being constant, its value should decrease.

The Temperature Parameter Updates: Next, we present the experiment results of different τ
updates. We compare the four versions of FastCLIP. The results are presented in Table 4. We have
the following observations. In the medium-scale setting, the average performance on Datacomp of
the four algorithms are close to each other. FastCLIP-v3 has better performance than others either on
Retrieval or IN & Variants. In the large-scale setting, FastCLIP-v3 outperforms other algorithms on
Datacomp and Retrieval. This demonstrates the effectiveness of FastCLIP-v3. Also we can see that
FastCLIP-v0, v2 are comparable to each other while FastCLIP-v1 is generally worse in this setting.

The Optimizer: We use FastCLIP-v3 as the base algorithm and compare the AdamW, LAMB, Lion
and SGD with momentum optimizers. The results are presented in Table 5. We observe that AdamW

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Performance of different inner LR schedules. Shaded algorithms use the cosine schedule,
while the others use the constant schedule. Improvement denotes the absolute difference between two
algorithms on the three metrics. ∗: v3 (Const. γ) denotes FastCLIP-v3 with constant γ schedule. The
meaning of each metric is provided in Section 5.

Setting Algorithm Datacomp Retrieval IN & Variants Improvement

SogCLR 23.41 (0.34) 27.48 (0.24) 16.90 (0.01)
FastCLIP-v1 24.87 (0.13) 29.28 (0.30) 18.86 (0.09) 1.46, 1.80, 1.96

iSogCLR 23.35 (0.63) 27.92 (0.34) 17.05 (0.14)
FastCLIP-v2 24.10 (0.34) 29.32 (1.29) 18.52 (0.37) 0.75, 1.40, 1.47

v3 (Const. γ)∗ 23.60 (0.18) 27.68 (0.17) 17.33 (0.22)

Medium

FastCLIP-v3 24.76 (0.26) 30.36 (0.18) 19.08 (0.16) 1.16, 2.68, 1.75

SogCLR 29.91 (0.23) 30.16 (0.36) 22.98 (0.07)
FastCLIP-v1 30.65 (0.11) 32.66 (0.12) 24.26 (0.06) 0.74, 2.50, 1.28

iSogCLR 30.32 (0.18) 30.27 (0.41) 24.96 (0.09)
FastCLIP-v2 30.94 (0.20) 31.84 (0.17) 25.52 (0.17) 0.62, 1.57, 0.56

v3 (Const. γ)∗ 29.46 (0.39) 30.33 (0.58) 23.69 (0.09)

Large

FastCLIP-v3 31.60 (0.46) 34.88 (0.28) 24.78 (0.28) 2.14, 4.55, 1.09

Table 4: Performance of different temperature parameter updates. All algorithms use AdamW as the
optimizer. The meaning of each metric is provided in Section 5.

Setting Algorithm Datacomp Retrieval IN & Variants

FastCLIP-v0 24.71 (0.21) 30.36 (0.26) 17.50 (0.33)
FastCLIP-v1 24.87 (0.13) 29.28 (0.30) 18.86 (0.09)
FastCLIP-v2 24.21 (0.76) 30.35 (0.47) 17.86 (0.21)Medium
FastCLIP-v3 24.76 (0.26) 30.36 (0.18) 19.08 (0.16)
FastCLIP-v0 31.47 (0.31) 34.86 (0.53) 24.55 (0.21)
FastCLIP-v1 30.65 (0.11) 32.66 (0.12) 24.26 (0.06)
FastCLIP-v2 30.95 (0.32) 33.71 (0.20) 24.94 (0.18)Large
FastCLIP-v3 31.60 (0.46) 34.88 (0.28) 24.78 (0.28)

Table 5: Performance of different optimizers. SGDM denotes SGD with momentum. The base
algorithm is FastCLIP-v3 for all optimizers. The meaning of each metric is provided in Section 5.

Setting Algorithm Datacomp Retrieval IN & Variants

SGDM 22.25 (0.13) 26.06 (0.03) 16.32 (0.06)
LAMB 22.63 (0.30) 24.87 (0.27) 16.43 (0.06)

Lion 24.50 (0.12) 29.41 (0.26) 18.03 (0.10)Medium

AdamW 24.76 (0.26) 30.36 (0.18) 19.08 (0.16)

SGDM 30.15 (0.48) 33.09 (0.28) 22.95 (0.22)
LAMB 30.54 (0.24) 34.02 (0.26) 24.11 (0.21)

Lion 30.99 (0.09) 33.78 (0.22) 25.01 (0.18)Large

AdamW 31.60 (0.46) 34.88 (0.28) 24.78 (0.28)

outperforms other optimizers on most of the metrics in both settings. This indicates that AdamW
should be chosen for FastCLIP training.

6 SCALING PERFORMANCE OF FASTCLIP

In this section, we compare the performance of FastCLIP using AdamW on different number of nodes
in comparison with OpenCLIP. We conduct experiments on 1, 2, 4, and 8 node(s). Except for the
number of nodes, other settings are kept the same as the experiment settings specified in Section 5.
Training details and additional experiment results are provided in Appendix B and E, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350
Samples Seen (million)

5

10

15

20

25

1.49x Speedup

+3.70

OpenCLIP FastCLIP-v3

(a) IN & Variants, Medium (b) Retrieval, Medium (c) IN & Variants, Large (d) Retrieval, Large

Figure 2: Comparison between OpenCLIP and FastCLIP-v3. The numbers in between represent the
improvement of FastCLIP-v3 over OpenCLIP.

1 2 4 8
Number of Nodes

0

200

400

600

800

1000

1200

1400

1600

OpenCLIP FastCLIP-v1 FastCLIP-v2 FastCLIP-v3

1 2 4 8
Number of Nodes

0

250

500

750

1000

(a) Total, Medium

1 2 4 8
Number of Nodes

0

500

1000

1500

(b) Total, Large

1 2 4 8
Number of Nodes

0

200

400

600

(c) Comm., Medium

1 2 4 8
Number of Nodes

0

250

500

750

1000

(d) Comm., Large

Figure 3: Comparison of per-iteration running time (ms) between OpenCLIP and FastCLIP. Each
bar in (a), (b) is divided into three parts (top to bottom): computation, communication (not over-
lapped with computation), and others. Each bar in (c), (d) is divided into two pars (top to bottom):
communication-computation overlap and pure communication.

0 50 100 150 200 250 300 350
Samples Seen (million)

5

10

15

20

25

1.49x Speedup

+3.70

OpenCLIP FastCLIP-v3 OpenCLIP FastCLIP-v1 FastCLIP-v2 FastCLIP-v3 Ideal

0.0 2.5 5.0 7.5 10.0 12.5
Samples Seen (billion)

40

45

50

55

60

65

(a) ImageNet-1K Top1,
xLarge

1 2 4 8
Number of Nodes

2
0

2
1

2
2

2
3

(b) Speedup, Medium

1 2 4 8
Number of Nodes

2
0

2
1

2
2

2
3

(c) Speedup, Large

Figure 4: Subfigure (a) presents the ImageNet-1k Top1 accuracy curve of OpenCLIP and FastCLIP-v3
in the xLarge-scale setting, with numbers denoting the improvement. Subfigures (b), (c) present the
speedup of different algorithms in the medium and large-scale settings, respectively.

Performance: The results of selected models based on the average Datacomp performance are
presented in Figure 2, Subfigures (a) and (b) are the IN & Variants and Retrieval performance in the
medium-scale setting, and subfigures (c) and (d) are the results in the large-scale setting. We can
observe that FastCLIP-v3 consistently outperforms OpenCLIP across different number of nodes. This
clearly illustrates the advantage of GCL family over MBCL. Also, the performance of FastCLIP-v3
plateaus at 2 nodes, which verifies that FastCLIP does not require a large amount of computing
resources. In contrast, OpenCLIP has a significant performance gain when scaling from 2 nodes to 8
nodes, meaning that it requires a large amount of computing resources to obtain good performance.
Additionally, Figure 1 demonstrates the significant speedup of FastCLIP-v3 over OpenCLIP.

Training Time: In addition to the performance on downstream tasks, we also compare the training
time of OpenCLIP and FastCLIP-v1 to v3. We use PyTorch (Paszke et al., 2019) Profiler to record
the data. We break down per-iteration training time into 3 parts: computation, pure communication
(not overlapped with computation), and others. The results are plotted in Figure 3 (a) and (b). We
also break down communication into two parts: communication overlapped with computation and
pure communication, which are plotted in Figure 3 (c) and (d). From subfigures (a) and (b) we can
see that the running time of FastCLIP is similar to OpenCLIP when the number of nodes is small (1

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and 2), and becomes shorter than OpenCLIP when the number of nodes scales up (4 and 8). This
is because OpenCLIP has a longer communication time on 4 and 8 nodes (subfigures (c) and (d)),
which demonstrates the effectiveness of our efficient gradient computation/communication strategy
described in Section 4. The above results are obtained from a cluster with InfiniBand interconnect.
We also profile the training time of the algorithms on two other clusters with Slingshot interconnect,
where we observe the same trend. We defer the additional results to Appendix E due to space limit.
For each algorithm, we also plot its speedup over 1 node in terms of training time in Figure 4 (a) and
(b). All algorithms have similar speedup over 1 node and the gap between the ideal speedup (which
is number of nodes) and the real speedup becomes larger when the number of nodes scales up. This
indicates that training with more resources has a diminishing return.

Table 6: Summary of existing and our results of training CLIP models on xlarge-scale data.

Work Architecture Data Size (M) Batch Size Samples (B) IN 0-shot (%)

Cherti et al. (2023) ViT-B/16 80 90112 13 60.24
Cherti et al. (2023) ViT-B/16 400 33792 13 67.00
Cherti et al. (2023) ViT-B/16 2000 90112 13 68.13
Chen et al. (2023b) ViT-B/32 400 65536 13 64.30

OpenCLIP (our impl.) ViT-B/16 315 5120 13 62.90

FastCLIP-v3 ViT-B/16 315 5120 13 64.49

Results in the xlarge-scale setting. Moreover, we evaluate the performance of FastCLIP-v3 and
OpenCLIP in the xlarge-scale setting with 8 H100 GPUs. We plot the ImageNet-1k top 1 accuracy
curve in Figure 4 (a). After seeing 13B examples, OpenCLIP achieves a top1 accuracy of 62.90% on
ImageNet-1k, while FastCLIP-v3 achieves an accuracy of 64.49%, resulting in a 1.59% gain. This
result is competitive with the state-of-the-art results of CLIP training using much more compute
resources as shown in Table 6. We also note that the result of our OpenCLIP implementation is lower
than those reported in other works, e.g., 67% in OpenCLIP paper that uses a batch size of 33,792 and
400M dataset (Cherti et al., 2023). This is because in our setting we use a smaller dataset (315M)
and a smaller batch size (5120). We provide a discussion of the impact of dataset size and batch size
in Appendix C. For FastCLIP-v3 in the xlarge-scale setting, we found that assigning a larger value
of 1e-6 to the constant ε than the default 1e-14 in loss computation of (RGCL-g) leads to improved
ImageNet-1k top 1 accuracy. We provide a brief discussion of this observation in Appendix D. We
also evaluate the Datacomp performance of FastCLIP-v3 and OpenCLIP in the xlarge-scale setting,
which exhibits similar result, as shown in Appendix E.

In summary, the results in this section demonstrate the effectiveness of FastCLIP across different data
scales (3 million to 315 million) and compute scales (1 to 8 nodes) in the limited-resource setting.

7 CONCLUSION

In this paper, we have proposed a distributed training framework of CLIP models in a resource-
limited setting named FastCLIP. It leverages advanced compositional optimization with a novel
gradient computation strategy to reduce the communication cost. We have investigated different
optimization components, by proposing new techniques and benchmarking different techniques for
each component under different settings to provide valuable insights on which techniques to use.
Finally, leveraging the best-performant techniques from the experiment results, we compare the
performance of FastCLIP with OpenCLIP on different data scales and compute scales, from 3 million
to 315 million image-text pairs and from 1 node to 8 nodes. The results demonstrate that FastCLIP
outperforms OpenCLIP by a large margin and achieves a significant speedup. This helps accelerate
research in the areas of CLIP training and its various applications, as more researchers would be able
to contribute their ideas and train CLIP models without access to a large amount of resources.

8 LIMITATIONS AND FUTURE WORK

Due to limited computing resources, we were unable to perform an extensive ablation study on the
LAION315M dataset. As a future work, we will explore how to further improve the performance of
FastCLIP in various aspects, e.g., reducing communication time and improving the convergence rate.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf.

Yonatan Bitton, Nitzan Bitton Guetta, Ron Yosef, Yuval Elovici, Mohit Bansal, Gabriel Stanovsky,
and Roy Schwartz. Winogavil: Gamified association benchmark to challenge vision-and-language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 26549–26564. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/a96fe863f85c59789bba63588a9557b4-Paper-Datasets_
and_Benchmarks.pdf.

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing
web-scale image-text pre-training to recognize long-tail visual concepts. In CVPR, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/chen20j.html.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL
https://openreview.net/forum?id=ne6zeqLFCZ.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

Yihao Chen, Xianbiao Qi, Jianan Wang, and Lei Zhang. Disco-clip: A distributed contrastive loss for
memory efficient clip training. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 22648–22657, June 2023b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023c.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2829, June 2023.

Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Cas-
tricato, and Edward Raff. Vqgan-clip: Open domain image generation and editing with natural
language guidance. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 88–105, Cham, 2022. Springer Nature
Switzerland. ISBN 978-3-031-19836-6.

Yufeng Cui, Lichen Zhao, Feng Liang, Yangguang Li, and Jing Shao. Democratizing contrastive
language-image pre-training: A clip benchmark of data, model, and supervision. arXiv preprint
arXiv:2203.05796, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a96fe863f85c59789bba63588a9557b4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a96fe863f85c59789bba63588a9557b4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a96fe863f85c59789bba63588a9557b4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=ne6zeqLFCZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal
Shankar. Data filtering networks. arXiv preprint arXiv:2309.17425, 2023.

Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lijuan Wang, Yezhou Yang, and Zicheng Liu. Com-
pressing visual-linguistic model via knowledge distillation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 1428–1438, October 2021.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim
Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe,
Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei W Koh, Olga
Saukh, Alexander J Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont,
Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig
Schmidt. Datacomp: In search of the next generation of multimodal datasets. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 27092–27112. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
56332d41d55ad7ad8024aac625881be7-Paper-Datasets_and_Benchmarks.
pdf.

Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan Rossi, Vishwa Vinay, and Aditya
Grover. Cyclip: Cyclic contrastive language-image pretraining. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 6704–6719. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/2cd36d327f33d47b372d4711edd08de0-Paper-Conference.pdf.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8340–8349,
October 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 15262–15271, June 2021b.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7514–7528, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.595. URL https://aclanthology.org/2021.emnlp-main.595.

Runhui Huang, Yanxin Long, Jianhua Han, Hang Xu, Xiwen Liang, Chunjing Xu, and Xiaodan
Liang. Nlip: Noise-robust language-image pre-training. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(1):926–934, Jun. 2023a. doi: 10.1609/aaai.v37i1.25172. URL
https://ojs.aaai.org/index.php/AAAI/article/view/25172.

Zizheng Huang, Haoxing Chen, Ziqi Wen, Chao Zhang, Huaxiong Li, Bo Wang, and Chunlin
Chen. Model-aware contrastive learning: Towards escaping the dilemmas. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 13774–13790. PMLR, 23–29 Jul 2023b. URL
https://proceedings.mlr.press/v202/huang23c.html.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip. https://doi.org/10.5281/zenodo.
5143773, July 2021. URL https://doi.org/10.5281/zenodo.5143773.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/56332d41d55ad7ad8024aac625881be7-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/56332d41d55ad7ad8024aac625881be7-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/56332d41d55ad7ad8024aac625881be7-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2cd36d327f33d47b372d4711edd08de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2cd36d327f33d47b372d4711edd08de0-Paper-Conference.pdf
https://aclanthology.org/2021.emnlp-main.595
https://ojs.aaai.org/index.php/AAAI/article/view/25172
https://proceedings.mlr.press/v202/huang23c.html
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature
schedules for self-supervised contrastive methods on long-tail data. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ejHUr4nfHhD.

Janghyeon Lee, Jongsuk Kim, Hyounguk Shon, Bumsoo Kim, Seung Hwan Kim, Honglak
Lee, and Junmo Kim. Uniclip: Unified framework for contrastive language-image pre-
training. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 1008–1019. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/072fd0525592b43da661e254bbaadc27-Paper-Conference.pdf.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: bootstrapping language-image
pre-training for unified vision-language understanding and generation. CoRR, abs/2201.12086,
2022. URL https://arxiv.org/abs/2201.12086.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: experiences on
accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, aug 2020. ISSN 2150-
8097. doi: 10.14778/3415478.3415530. URL https://doi.org/10.14778/3415478.
3415530.

Xianhang Li, Zeyu Wang, and Cihang Xie. An inverse scaling law for clip training. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 49068–49087. Curran Associates, Inc.,
2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/996e2b446391fcb8bf32a3d1645cc799-Paper-Conference.pdf.

Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling large
vision-language model with out-of-distribution generalizability. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 2492–2503, October 2023b.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-
image pre-training via masking. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23390–23400, 2023c.

Zichao Li, Cihang Xie, and Ekin Dogus Cubuk. Scaling (down) CLIP: A comprehensive analysis
of data,architecture, and training strategies. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=t4nnCi5AO6.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Sangwoo Mo, Minkyu Kim, Kyungmin Lee, and Jinwoo Shin. S-clip: Semi-supervised
vision-language learning using few specialist captions. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 61187–61212. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/c06f788963f0ce069f5b2dbf83fe7822-Paper-Conference.pdf.

Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734, 2021.

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
language-image pre-training. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 529–544, Cham, 2022.
Springer Nature Switzerland. ISBN 978-3-031-19809-0.

13

https://openreview.net/forum?id=ejHUr4nfHhD
https://openreview.net/forum?id=ejHUr4nfHhD
https://proceedings.neurips.cc/paper_files/paper/2022/file/072fd0525592b43da661e254bbaadc27-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/072fd0525592b43da661e254bbaadc27-Paper-Conference.pdf
https://arxiv.org/abs/2201.12086
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://proceedings.neurips.cc/paper_files/paper/2023/file/996e2b446391fcb8bf32a3d1645cc799-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/996e2b446391fcb8bf32a3d1645cc799-Paper-Conference.pdf
https://openreview.net/forum?id=t4nnCi5AO6
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper_files/paper/2023/file/c06f788963f0ce069f5b2dbf83fe7822-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c06f788963f0ce069f5b2dbf83fe7822-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, and Tianbao Yang. Not
all semantics are created equal: Contrastive self-supervised learning with automatic temperature
individualization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 28389–28421. PMLR,
23–29 Jul 2023. URL https://proceedings.mlr.press/v202/qiu23a.html.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford21a.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16, 2020. doi: 10.1109/SC41405.2020.00024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, pp. 3505–3506, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https:
//doi.org/10.1145/3394486.3406703.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5389–5400. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/recht19a.html.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong Wang.
Eva-clip-18b: Scaling clip to 18 billion parameters. arXiv preprint arXiv:2402.04252, 2024.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.mlr.press/v202/qiu23a.html
https://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Bokun Wang and Tianbao Yang. Finite-sum coupled compositional stochastic optimization: Theory
and applications. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 23292–23317. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/wang22ak.html.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/3eefceb8087e964f89c2d59e8a249915-Paper.pdf.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 10271–10298. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/20bd42d82998bc61732c00452228e814-Paper-Conference.pdf.

Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan, Michael
Valenzuela, Xi Stephen Chen, Xinggang Wang, et al. Tinyclip: Clip distillation via affinity
mimicking and weight inheritance. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 21970–21980, 2023.

Chen-Wei Xie, Siyang Sun, Xiong Xiong, Yun Zheng, Deli Zhao, and Jingren Zhou. Ra-clip:
Retrieval augmented contrastive language-image pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19265–19274, June 2023.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the Association for Computational Linguistics, 2:67–78, 2014.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models. Transactions on Machine Learn-
ing Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=
Ee277P3AYC.

Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not harm
performance. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 25760–25782. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/yuan22b.html.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 11975–11986, October 2023.

Chaoning Zhang, Kang Zhang, Trung X. Pham, Axi Niu, Zhinan Qiao, Chang D. Yoo, and In So
Kweon. Dual temperature helps contrastive learning without many negative samples: Towards

15

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v162/wang22ak.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/3eefceb8087e964f89c2d59e8a249915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3eefceb8087e964f89c2d59e8a249915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/20bd42d82998bc61732c00452228e814-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/20bd42d82998bc61732c00452228e814-Paper-Conference.pdf
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Ee277P3AYC
https://openreview.net/forum?id=Ee277P3AYC
https://proceedings.mlr.press/v162/yuan22b.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

understanding and simplifying moco. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 14441–14450, June 2022.

Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang
Gu, Jinhui Xu, and Tong Sun. Towards language-free training for text-to-image generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17907–17917, 2022.

A DETAILS OF THE FASTCLIP FRAMEWORK

Procedure 2: contrastive_loss
/* global, individual τ: temperature scheme (c.f. Table 1) */

1 if global τ then
2 Compute gt1,i = g1(w

t, τ t, i,Bt
i−), g

t
2,i = g2(w

t, τ t, i,Bt
i−)

3 else if individual τ then
4 Compute gt1,i = g1(w

t, τ t1,i, i,Bt
i−), g

t
2,i = g2(w

t, τ t2,i, i,Bt
i−)

Procedure 3: gradient_estimator
/* global, individual τ: temperature scheme (c.f. Table 1) */

1 if global τ then
2 Compute Gt

w,a,k and Gt
w,b,k using (2) and (3), respectively

3 else if individual τ then
4 Compute Gt

w,a,k and Gt
w,b,k using (6) and (7), respectively

Derivation of gradient of (GCL) w.r.t. w: Given a global batch B, the gradient of (GCL) w.r.t. w is
given by Gw,a +Gw,b, where

Gw,a =τ · 1

K

K∑
k=1

Gw,a,1,k︷ ︸︸ ︷
1

|Bk|
∑
i∈Bk

1

ε+ u1,i
· 1

K

K∑
k′=1

1

|Bk′,i−|
∑

j∈Bk′,i−

∇1ℓ1(ei, e2,j , τ) · ∇ei

+ τ · 1

K

K∑
k=1

Gw,a,2,k︷ ︸︸ ︷
1

|Bk|
∑
i∈Bk

1

ε+ u2,i
· 1

K

K∑
k′=1

1

|Bk′,i−|
∑

j∈Bk′,i−

∇1ℓ2(ei, e1,j , τ) · ∇ei .

Gw,b =τ · 1

K

K∑
k=1

1

|Bk|
∑
i∈Bk

1

ε+ u1,i
· 1

K

K∑
k′=1

1

|Bk′,i−|
∑

j∈Bk′,i−

∇2ℓ1(ei, e2,j , τ) · ∇e2,j

+ τ · 1

K

K∑
k=1

1

|Bk|
∑
i∈Bk

1

ε+ u2,i
· 1

K

K∑
k′=1

1

|Bk′,i−|
∑

j∈Bk′,i−

∇2ℓ2(ei, e1,j , τ) · ∇e1,j .

To compute Gw,a, we first gather all the e2,j and e1,j using ALL_GATHER to each worker, then
compute Gw,a,1,k and Gw,a,2,k on the k-th worker, and average Gw,a,1,k and Gw,a,2,k over each

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Procedure 4: parameter_update
Input: Parameter θt (can be w or τ) and its gradient estimator Gt

θ, Weight decay λ, Learning
rate ηt

Optimizer SGD with momentum
Additional Input :Momentum parameter µ

1 Compute mt+1 = µmt +Gt
θ + λθt

2 Set θt+1 = θt − ηtm
t+1

Optimizer LAMB
Additional Input :Hyperparameters β1, β2, ϵ

3 Compute mt+1 = β1m
t + (1− β1)G

t
θ

4 Compute vt+1 = β2v
t + (1− β2)(G

t
θ)

2

5 Compute m̂t+1 = mt+1/(1− (β1)
t+1), v̂t+1 = vt+1/(1− (β2)

t+1)

6 Compute rt+1 = m̂t+1/(
√
v̂t+1 + ϵ)

7 for each layer θt,(i) in θt do
8 Compute αt,(i) = ∥θt,(i)∥2/∥rt,(i) + λθt,(i)∥2
9 Set θt+1,(i) = θt,(i) − ηt · αt,(i)

(
rt,(i) + λθt,(i)

)
Optimizer Lion

Additional Input :Hyperparameters β1, β2

10 Compute ct+1 = β1m
t + (1− β1)G

t
θ

11 Compute mt+1 = β2m
t + (1− β2)G

t
θ

12 Set θt+1 = θt − ηt
(
sign(ct+1) + λθt

)
Optimizer AdamW

Additional Input :Hyperparameters β1, β2, ϵ
13 Compute mt+1 = β1m

t + (1− β1)G
t
θ

14 Compute vt+1 = β2v
t + (1− β2)(G

t
θ)

2

15 Compute m̂t+1 = mt+1/(1− (β1)
t+1), v̂t+1 = vt+1/(1− (β2)

t+1)

16 Set θt+1 = θt − ηt

(
m̂t+1/(

√
v̂t+1 + ϵ) + λθt

)
Procedure 5: temperature_update

1 if constant τ then /* FastCLIP-v1 */
2 Set τ t+1 = τ t

3 else if learnable τ then
4 if loss is (GCL) then /* FastCLIP-v0 */

5 Compute Gt
τ,k using (8) and All_Reduce Gt

τ = 1
K

∑K
l=1 G

t
τ,k

6 Update τ t+1 from τ t and Gt
τ using Proc. 4 (with λ = 0)∗

7 else if loss is (RGCL) then /* FastCLIP-v2 */
8 Compute Gt

τ,1,i, G
t
τ,2,i for i ∈ Bt

k using (9)
9 Update τ t+1

1,i from τ t1,i and Gt
τ,1,i, and update τ t+1

2,i from τ t2,i and Gt
τ,2,i using Proc. 4

(with λ = 0) for i ∈ Bt
k

10 else if loss is (RGCL-g) then /* FastCLIP-v3 */

11 Compute Gt
τ,k using (10) and All_Reduce Gt

τ = 1
K

∑K
l=1 G

t
τ,k

12 Update τ t+1 from τ t and Gt
τ using Proc. 4 (with λ = 0)

∗: Following OpenCLIP, we set the weight decay of the temperature parameter to 0.

worker using ALL_REDUCE. To compute Gw,b, we first switch the inner and outer averages:

Gw,b =τ · 1

K

K∑
k′=1

Gw,b,1,k′︷ ︸︸ ︷
1

|Bk′ |
∑

j∈Bk′

· 1
K

K∑
k=1

1

|Bk,j−|
∑

i∈Bk,j−

1

ε+ u1,i
∇2ℓ1(ei, e2,j , τ) · ∇e2,j

+ τ · 1

K

K∑
k′=1

Gw,b,2,k′︷ ︸︸ ︷
1

|Bk′ |
∑

j∈Bk′

· 1
K

K∑
k=1

1

|Bk,j−|
∑

i∈Bk,j−

1

ε+ u2,i
∇2ℓ2(ei, e1,j , τ) · ∇e1,j .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then we gather all the u1,i and u2,i using ALL_GATHER to each worker, and compute Gw,b,1,k′

and Gw,b,2,k′ on the k′-th worker, then average Gw,b,1,k′ and Gw,b,2,k′ over each worker using
ALL_REDUCE to get Gw,b. For practical consideration, we switch the inner and outer averages in
Gw,b,1,k′ and Gw,b,2,k′ again so that we can compute them along with Gw,a,1,k and Gw,a,2,k using
the same function:

Gw,b,1,k′ =
1

|Bk′ |
∑

j∈Bk′

· 1
K

K∑
k=1

1

|Bk,j−|
∑

i∈Bk,j−

1

ε+ u1,i
∇2ℓ1(ei, e2,j , τ) · ∇e2,j

(∗)
=

1

|Bk′ |
∑

j∈Bk′

· 1

|Bj−|
∑

i∈Bj−

1

ε+ u1,i
∇2ℓ1(ei, e2,j , τ) · ∇e2,j

=
1

|B|
∑
i∈B

1

ε+ u1,i
· 1

|Bk′ |
· |B|
|Bj−|

∑
j∈Bk′,i−

∇2ℓ1(ei, e2,j , τ) · ∇e2,j ,

where (∗) uses the fact that the average over local batch and workers is equal to the average over the
global batch. Similarly,

Gw,b,2,k′ =
1

|B|
∑
i∈B

1

ε+ u2,i
· 1

|Bk′ |
· |B|
|Bj−|

∑
j∈Bk′,i−

∇2ℓ2(ei, e1,j , τ) · ∇e1,j .

Deferred Computation in Alg.1: At iteration t, for SogCLR and other algorithms with global
temperature parameter (except FastCLIP-v0), the gradient estimator for w on k-th worker is computed
as

Gt
w,a,k =

τ t

|Bt
k|

∑
i∈Bt

k

 1

ε+ ut+1
1,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ1(ei, e2,j , τ
t) · ∇ei


+

1

ε+ ut+1
2,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ2(ei, e1,j , τ
t) · ∇ei

 .

(2)

Gt
w,b,k =

τ t

|Bt|
∑
i∈Bt

 1

ε+ ut+1
1,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ1(ei, e2,j , τ
t) · ∇e2,j


+

1

ε+ ut+1
2,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ2(ei, e1,j , τ
t) · ∇e1,j

 .

(3)

For FastCLIP-v0, we need to remove the τ t at the front:

Gt
w,a,k =

1

|Bt
k|

∑
i∈Bt

k

 1

ε+ ut+1
1,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ1(ei, e2,j , τ
t) · ∇ei


+

1

ε+ ut+1
2,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ2(ei, e1,j , τ
t) · ∇ei

 .

(4)

Gt
w,b,k =

1

|Bt|
∑
i∈Bt

 1

ε+ ut+1
1,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ1(ei, e2,j , τ
t) · ∇e2,j


+

1

ε+ ut+1
2,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ2(ei, e1,j , τ
t) · ∇e1,j

 .

(5)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For iSogCLR and other algorithms with individual temperature parameter, it is computed using a
slightly different formula (the τ part is different)

Gt
w,a,k =

1

|Bt
k|

∑
i∈Bt

k

 τ t1,i

ε+ ut+1
1,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ1(ei, e2,j , τ
t
1,i) · ∇ei


+

τ t2,i

ε+ ut+1
2,i

 1

|Bt
i−|

∑
j∈Bt

i−

∇1ℓ2(ei, e1,j , τ
t
2,i) · ∇ei

 .

(6)

Gt
w,b,k =

1

|Bt|
∑
i∈Bt

 τ t1,i

ε+ ut+1
1,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ1(ei, e2,j , τ
t
1,i) · ∇e2,j


+

τ t2,i

ε+ ut+1
2,i

 1

|Bt
k|

· |Bt|
|Bt

i−|
∑

j∈Bt
k,i−

∇2ℓ2(ei, e1,j , τ
t
2,i) · ∇e1,j

 .

(7)

FastCLIP-v0 computes the following gradient estimator for τ :

Gt
τ,k =

1

|Bt
k|

∑
i∈Bt

k

1

ε+ ut+1
1,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ1(ei, e2,j , τ
t),

+
1

|Bt
k|

∑
i∈Bt

k

1

ε+ ut+1
2,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ2(ei, e1,j , τ
t).

(8)

FastCLIP-v2 computes the following gradient estimators for τ :

Gt
τ,1,i =

1

|S|

log
(
ε+ ut+1

1,i

)
+ ρ+ τ t1,i ·

1

ε+ ut+1
1,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ1(ei, e2,j , τ
t
1,i)

 ,

Gt
τ,2,i =

1

|S|

log
(
ε+ ut+1

2,i

)
+ ρ+ τ t2,i ·

1

ε+ ut+1
2,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ2(ei, e1,j , τ
t
2,i)

 ,

(9)

FastCLIP-v3 computes the following gradient estimator for τ :

Gt
τ,k =

1

|Bt
k|

∑
i∈Bt

k

(
log

(
ε+ ut+1

1,i

)
+ log

(
ε+ ut+1

2,i

))
+ 2ρ

+ τ t · 1

|Bt
k|

∑
i∈Bt

k

1

ε+ ut+1
1,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ1(ei, e2,j , τ
t)

+ τ t · 1

|Bt
k|

∑
i∈Bt

k

1

ε+ ut+1
2,i

· 1

|Bt
i−|

∑
j∈Bt

i−

∇3ℓ2(ei, e1,j , τ
t).

(10)

B EXPERIMENT HYPERPARAMETERS

Unless otherwise specified, for both FastCLIP and OpenCLIP, we use AdamW as the optimizer. For
all settings, we use a cosine learning rate (LR) schedule for updating model parameters, which first
linearly increases the LR from 0 to peak LR in the warmup stage, then decreases it following a cosine
function. The hyperparameters we use are specified in Table 7. Other hyperparameters regarding
the inner learning rate schedule, temperature parameter updates, and the LAMB optimizer will be
introduced in the paragraphs that follow.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters for different settings. β1, β2, ϵ are hyperparameters in the AdamW
optimizer. lr denotes the peak learning rate. min_lr denotes the learning rate at the end of training.
wd denotes the weight decay. warmup denotes the number of iterations in the warmup stage.

Setting β1 β2 ϵ lr min_lr wd warmup

Medium 0.9 0.999 1e-8 1e-3 0 0.1 10k
Large 0.9 0.98 1e-6 4e-4 0 0.1 10k
xLarge 0.9 0.98 1e-6 2e-4 0 0.2 13k

Experiments benchmarking the inner LR schedule: We compare three pairs of approaches:
SogCLR and FastCLIP-v1; iSogCLR and FastCLIP-v2; FastCLIP-v3 with constant γ and FastCLIP-
v3, where the former of each pair uses constant γ schedule and the latter uses cosine γ schedule. Any
two approaches of each pair only differ in γ schedule. For approaches using constant γ schedule,
we tune the value of γ in {0.2, 0.4, 0.6, 0.8}. For approaches using cosine γ schedule, we tune the
value of γmin (the value γ will decay to in the end) in {0.2, 0.6} and decay epochs in {50%, 100%}
of the number of training epochs. The γ values for each algorithm are presented in Table 8. Other
hyperparameters are kept the same within each pair. For SogCLR and FastCLIP-v1, we set the
temperature parameter to 0.03. For iSogCLR and FastCLIP-v2, we set the initial temperature
parameter to 0.03, ρ to 9.0, and the learning rate of τ to 1e-2. For FastCLIP-v3 with constant γ
schedule and FastCLIP-v3, we set the initial temperature parameter to 0.07, ρ to 6.5 in the medium-
scale setting and 8.5 in the large-scale setting, and learning rate of τ to 2e-4 in the medium-scale
setting and 1e-4 in the large-scale setting. For FastCLIP-v3, its learning rate of τ decays to 1/3 of its
original value when τ becomes smaller than 0.03.

Table 8: Values of γ for different schedules in different settings. For Cosine γ schedule, we report
the γ value along with number of γ decay epochs E (c.f. Section 5). ∗: v3 (Const. γ) denotes
FastCLIP-v3 with constant γ schedule.

Constant γ Cosine γSetting Algorithm γ Algorithm γmin, E

SogCLR 0.6 FastCLIP-v1 0.2, 18
iSogCLR 0.6 FastCLIP-v2 0.2, 18Medium

v3 (Const. γ)∗ 0.6 FastCLIP-v3 0.2, 18

SogCLR 0.6 FastCLIP-v1 0.2, 16
iSogCLR 0.8 FastCLIP-v2 0.6, 16Large

v3 (Const. γ)∗ 0.6 FastCLIP-v3 0.2, 16

xLarge - - FastCLIP-v3 0.8, 10

Experiments benchmarking the temperature parameter updates: For all algorithms we leverage
a cosine γ schedule with γmin = 0.2 and decay epochs E equal to 50% of the number of training
epochs. For all algorithms, we tune their initial temperature parameter in {0.03, 0.05, 0.07}. For
FastCLIP-v2 and -v3, we tune ρ in [6.0, 9.0], we also tune the learning rate of τ in [1e− 4, 1e− 2].
Other hyperparameters are kept the same for the four algorithms. The tuned initial temperature is 0.07
for FastCLIP-v3 and 0.03 for other algorithms. The ρ values are presented in Table 9. For FastCLIP-
v2, the tuned learning rate of τ is 1e-2 in the medium-scale setting and 1e-4 in the large-scale setting.
For FastCLIP-v3, the tuned learning rate of τ is 2e-4 in the medium-scale setting and 1e-4 in the
large-scale setting. For FastCLIP-v3, its learning rate of τ decays to 1/3 of its original value when τ
becomes smaller than 0.03.

Table 9: Value of ρ for FastCLIP-v2 and -v3 in different settings.

Algorithm Medium Large xLarge

FastCLIP-v2 7.0 8.5 -
FastCLIP-v3 6.5 8.5 16.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Experiments benchmarking the optimizer: We use FastCLIP-v3 as the base algorithm. For SGD
with momentum, we tune its learning rate of model parameters in [4e-5, 4e0] and weight decay
in [1e-6, 0.2]. For all other optimizers, we tune their learning rate of model parameters in [4e-5,
4e-3] and weight decay in [0.01, 0.2]. Other hyperparameters are kept the same as in Temperature
Parameter Updates. The tuned learning rate of model parameters and weight decay are reported in
Table 10. Following OpenCLIP (Cherti et al., 2023), we set the weight decay of the temperature
parameter to 0. And following EVA-CLIP (Sun et al., 2023) in the implementation of LAMB, we set
α at Line 9 in Proc. 4 to 1.0 when updating the temperature parameter, leading to the same update as
AdamW.

Table 10: Values of learning rate of model parameters and weight decay for different optimizers.
SGDM denotes SGD with momentum.

Medium LargeHyperparameters SGDM LAMB Lion AdamW SGDM LAMB Lion AdamW

Learning rate 1.0 2e-3 2e-4 1e-3 2.0 2e-3 1e-4 4e-4
Weight decay 3e-6 0.1 0.3 0.1 3e-6 0.1 0.3 0.1

Experiments demonstrating the scaling performance: We tune the learning rate of model pa-
rameters of OpenCLIP on 2 nodes in the medium-scale and large-scale setting in [4e− 5, 4e− 3],
and on 4 nodes in the xlarge-scale setting in [4e − 5, 4e − 4]. The tuned learning rate of model
parameters of OpenCLIP is 1e-3, 4e-4 and 2e-4 in the medium-scale, large-scale and xlarge-scale
setting, respectively. Other hyperparameters are set according to Table 7 to 9. In the xlarge-scale
setting, we set the learning rate of model parameters of FastCLIP-v3 to the same value as OpenCLIP.
For different number of nodes in the medium-scale and large-scale setting, we scale the learning rate
of model parameters and temperature parameter linearly in proportion to global batch size and keep
other hyperparameters unchanged. For FastCLIP-v3 in the xlarge-scale setting, we set ρ to 16.0 and
the learning rate of temperature parameter to 5e-5. We leverage a cosine γ schedule with γmin = 0.8
and decay epochs E = 10.

Choice of γmin in the xlarge-scale setting: Note that in the xlarge-scale setting we use a larger γmin

value than in the medium-scale and large-scale settings. We find that the batch size impacts how we
should set the γmin value. To illustrate this, we conduct two sets of experiments in the large-scale
setting on 2 nodes and 8 nodes, respectively. Each set is FastCLIP-v3 with different γmin value.
The results are plotted in Figure 5. Comparing a larger γmin (0.8) with a smaller one (0.2) in the
same setting, we find that the training can be split into three stages. In the first stage, the two runs
have similar performance. In the second stage, larger γmin outperforms the smaller one, while the
smaller one catches up with the larger one and outperforms it in the last stage. From Figure 5 we
can also observe that with a larger global batch size, the second stage becomes longer. Note that in
the medium-scale and large-scale settings we use a global batch size of 1024 and 2048 respectively,
while we set it to 5120 in the xlarge-scale setting. We also conjecture that the second stage becomes
longer as the data scales up, though we did not validate this due to resource limits. The large batch
size and large data scale in the xlarge-scale setting motivate our use of a larger γmin value than in the
medium-scale and large-scale settings.

C THE IMPACT OF BATCH SIZE AND DATASET SIZE ON OPENCLIP

The ImageNet-1k top 1 accuracy of OpenCLIP in the xlarge-scale setting (LAION315M for 13B
samples, batch size 5120) is 62.90%, while the result of OpenCLIP reported in Cherti et al. (2023)
(LAION400M for 13B samples, batch size 33792) is 67.00%. We attribute the gap to smaller batch
size and smaller dataset size. We first summarize some existing results that demonstrate the impact of
these two factors:

• Batch size: We use a smaller batch size of 5120 for the xlarge scale training due to limited compute
resources, which is 6 times smaller than the batch size used in Cherti et al. (2023) (33792, with
67% performance of ViT-B/16) and 12.8 times smaller than that in Chen et al. (2023b) (65536,
with 64.3% performance of ViT-B/32). As reported in existing works, e.g., Chen et al. (2023b),
batch size has an important impact on OpenCLIP. The results in the table above clearly demonstrate

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Samples Seen (million)

15.0

17.5

20.0

22.5

25.0

27.5

30.0

min = 0.8
min = 0.2

(a) 2 Nodes, Batch size 2048

0 50 100 150 200 250 300
Samples Seen (million)

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

min = 0.8
min = 0.2

(b) 8 Nodes, Batch size 8192

Figure 5: Datacomp average performance of FastCLIP-v3 with γ decay epochs 16 (145 million
samples seen) and different γmin in the large-scale setting. Batch size denotes global batch size. The
vertical dashed lines divided the plot into three parts (c.f. Choice of γmin in the xlarge-scale Setting
in Appendix B).

Table 11: Summary of existing results of training using OpenCLIP.

Work Architecture Data Size (M) Batch Size Samples (B) Performance (%)

Cherti et al. (2023) ViT-B/16 80 90112 13 60.24
Cherti et al. (2023) ViT-B/16 400 33792 13 67.00
Cherti et al. (2023) ViT-B/16 2000 90112 13 68.13

Chen et al. (2023b) ViT-B/32 100 8192 1.6 48.76
Chen et al. (2023b) ViT-B/32 100 16384 1.6 50.95
Chen et al. (2023b) ViT-B/32 100 32768 1.6 51.64
Chen et al. (2023b) ViT-B/32 100 65536 1.6 51.91
Chen et al. (2023b) ViT-B/32 400 65536 13 64.3

OpenCLIP (our impl.) ViT-B/16 315 5120 13 62.90

this. If we fit the performance in Chen et al. (2023b) for different batch sizes (rows 4-7 in the table
above) with a reciprocal function p = −a/x+b, where x is the batch size and p is the ImageNet-1k
top 1 accuracy, the results (plotted in Figure 6 (a)) showed that the predicted performance with
batch size 5120 has a 5% drop compared with batch size 32768. This is somewhat consistent with
that our result using 5120 batch size has a 4.1% drop in performance for OpenCLIP than using
33792 batch size as in Cherti et al. (2023).

• Dataset size: Although we intended to use LIAON400M, due to broken URLs we could only
download a subset of the LAION400M dataset, which consists of 315M image-text pairs. This is
also a factor contributing to the worse performance of OpenCLIP as Cherti et al. (2023) reported
that using 80M data leads to a performance drop by 7% compared with 400M data (rows 1-2 in
the table above). If we fit the results in Cherti et al. (2023) for different data sizes with a power
function p = αxβ + p0, where x is the dataset size and p is the ImageNet-1k top 1 accuracy. The
results (plotted in Figure 6 (b)) showed that the predicted performance of OpenCLIP training
ViT-B/16 on a 315M dataset with 13B samples seen and at least 33K batch size is 64.5%. Our
OpenCLIP using a smaller batch size of 5120 (last row of the table) achieves 62.90%, which is
expected considering the small batch size.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

2
13

2
14

2
15

2
16

Batch Size

46

47

48

49

50

51

52

bsz = 5K
acc = 46.7

bsz = 32K
acc = 51.6

DisCo-CLIP Batch Size 5K Predicted Fitted

(a) Results of Chen et al. (2023b). Blue dots: results
from Chen et al. (2023b). Red line: fitted using blue
dots. Orange dot: predicted result.

10
2

10
3

Data Size (million)

60

62

64

66

68

bsz = 33K
acc = 64.5

bsz = 5K
acc = 62.9

OpenCLIP
Data Size 315M Predicted

Data Size 315M Ours
Fitted

(b) Results of Cherti et al. (2023). Blue dots: re-
sults from Cherti et al. (2023). Red line: fitted us-
ing blue dots. Orange dot: predicted result. Green
dot: our result.

Figure 6: ImageNet-1k top 1 accuracy plots. ‘bsz’ denotes batch size and ‘acc’ denotes accuracy.

D THE EFFECT OF ε IN (RGCL-g)

We found that in the xlarge-scale setting, the constant ε plays an important role in the performance of
FastCLIP-v3. In particular, the gradient estimators Gt

w,a,k and Gt
w,b,k of (RGCL-g) in Equation (2)

and (3) are scaled by two factors: 1/(ε + ut+1
1,i) and 1/(ε + ut+1

2,i). Recall that u1,i and u2,i are
approximations of g1(wt, τ t, i,Si−) and g2(w

t, τ t, i,Si−), respectively. Thus, in the later stage of
training many examples (those that are well-learned) will have very small ut+1

1,i and ut+1
2,i . Then with

a very small ε the scaling factors in the estimated gradient for these samples will be very large, which
may suffer from over-optimization for those examples and harm generalization. In the following
figure, we plot the performance of FastCLIP-v3 with two schemes of ε along with the performance of
OpenCLIP (in blue): i) ε= 1e-14 (in orange) and ii) ε= 1e-6 (in green). The value 1e-6 is not tuned
due to limited compute resources and the three experiments were run for only 30 epochs (9.45B
samples seen). From Figure 7 we can see that with larger ε, both the ImageNet-1k top 1 accuracy and
Datacomp Average performance improve by a large margin.

0 2 4 6 8
Samples Seen (billion)

36

38

40

42

44

46

48

OpenCLIP FastCLIP-v3 (= 1e-14) FastCLIP-v3 (= 1e-6)

0 2 4 6 8
Samples Seen (billion)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

(a) ImageNet-1K Top1, xLarge

0 2 4 6 8
Samples Seen (billion)

36

38

40

42

44

46

48

(b) Datacomp, xLarge

Figure 7: ImageNet-1k Top 1 accuracy (left) and Datacomp Average performance (right) of FastCLIP-
v3 with different ε in the xlarge-scale setting.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E MORE EXPERIMENT RESULTS

E.1 OPTIMIZATION COMPONENTS

We plot the Datacomp average performance curves of different algorithms with constant γ schedule
and cosine γ schedule in Figure 8, which corresponds to Table 3 in Section 5. We plot the Datacomp
average performance curves of algorithms with different temperature updates in Figure 9 (a) and
(b), which corresponds to Table 4 in Section 5. We plot the Datacomp average performance curves
of FastCLIP-v3 with AdamW and LAMB optimizer in Figure 9 (c) and (d), which corresponds to
Table 5 in Section 5.

0 20 40 60 80 100
Samples Seen (million)

14

16

18

20

22

24

SogCLR
FastCLIP-v1

(a) Medium, FastCLIP-v1

0 20 40 60 80 100
Samples Seen (million)

14

16

18

20

22

24

iSogCLR
FastCLIP-v2

(b) Medium, FastCLIP-v2

0 20 40 60 80 100
Samples Seen (million)

14

16

18

20

22

24

v3 (Const.)
FastCLIP-v3

(c) Medium, FastCLIP-v3

0 100 200 300
Samples Seen (million)

15

20

25

30

SogCLR
FastCLIP-v1

(d) Large, FastCLIP-v1

0 100 200 300
Samples Seen (million)

15

20

25

30

iSogCLR
FastCLIP-v2

(e) Large, FastCLIP-v2

0 100 200 300
Samples Seen (million)

15

20

25

30

v3 (Const.)
FastCLIP-v3

(f) Large, FastCLIP-v3

Figure 8: Datacomp performance of algorithms with constant γ schedule and cosine γ schedule. v3
(Const. γ) denotes FastCLIP-v3 with constant γ schedule.

0 25 50 75 100
Samples Seen (million)

15

20

25

FastCLIP-v0
FastCLIP-v1
FastCLIP-v2
FastCLIP-v3

(a) Temperature, Medium

0 100 200 300
Samples Seen (million)

15

20

25

30

FastCLIP-v0
FastCLIP-v1
FastCLIP-v2
FastCLIP-v3

(b) Temperature, Large

0 25 50 75 100
Samples Seen (million)

15

20

25

LAMB
AdamW

(c) Optimizer, Medium

0 100 200 300
Samples Seen (million)

15

20

25

30

LAMB
AdamW

(d) Optimizer, Large

Figure 9: Subfigures (a), (b) present the Datacomp performance of algorithms with different tempera-
ture parameter updates in the medium-scale and large-scale setting, respectively. Subfigures (c), (d)
present the Datacomp performance of FastCLIP-v3 with different optimizers in the medium-scale
and large-scale setting, respectively.

E.2 SCALING PERFORMANCE

In this subsection we provide more results to complement the figures in Section 6.

Performance of OpenCLIP and FastCLIP-v3: The data to plot Figure 2 is presented in Table 13
and Table 14. We also provide the Datacomp performance in Table 12. The Datacomp performance
of OpenCLIP and FastCLIP-v3 in the xlarge-scale setting is plotted in Figure 10. In the xlarge-scale

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

setting, we also conduct experiments of FastCLIP-v3 on a 1.4B subset of the DFN-2B dataset (Fang
et al., 2023) that originally includes 1.9B image-text pairs. The ImageNet-1K top 1 accuracy and
Datacomp Average performance of FastCLIP-v3 on different datasets are shown in Figure 11. We
can see that our approach is still effective on extremely large-scale data.

Table 12: Datacomp Average performance of OpenCLIP and FastCLIP-v3 trained on different number
of nodes. Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes

OpenCLIP 21.82 (0.59) 21.84 (0.23) 21.65 (0.13) 22.22 (0.37)
FastCLIP-v3 24.54 (0.25) 24.76 (0.26) 24.43 (0.20) 25.23 (0.28)Medium
Improvement 2.72 2.92 2.78 3.01

OpenCLIP 27.55 (0.46) 27.91 (0.73) 28.93 (0.29) 28.75 (0.59)
FastCLIP-v3 30.81 (0.38) 31.60 (0.46) 31.65 (0.13) 31.45 (0.32)Large
Improvement 3.26 3.69 2.72 2.70

Table 13: Retrieval performance of OpenCLIP and FastCLIP-v3 trained on different number of nodes.
Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes

OpenCLIP 24.07 (0.16) 25.20 (0.22) 25.07 (0.26) 26.20 (0.10)
FastCLIP-v3 30.02 (0.57) 30.36 (0.18) 30.42 (0.24) 30.42 (0.24)Medium
Improvement 5.95 5.16 5.35 4.22

OpenCLIP 29.17 (0.17) 29.58 (0.62) 30.25 (0.31) 30.87 (0.11)
FastCLIP-v3 33.90 (0.28) 34.88 (0.28) 34.91 (0.16) 34.74 (0.31)Large
Improvement 4.73 5.30 4.66 3.87

Table 14: ImageNet & Variants accuracy of OpenCLIP and FastCLIP-v3 trained on different number
of nodes. Improvement denotes the absolute difference between FastCLIP-v3 and OpenCLIP.

Setting Algorithm 1 Node 2 Nodes 4 Nodes 8 Nodes

OpenCLIP 14.16 (0.11) 14.73 (0.22) 15.24 (0.26) 16.03 (0.23)
FastCLIP-v3 18.37 (0.26) 19.08 (0.16) 19.21 (0.18) 19.20 (0.16)Medium
Improvement 4.21 4.35 3.97 3.17

OpenCLIP 20.51 (0.14) 21.08 (0.09) 22.32 (0.23) 22.77 (0.14)
FastCLIP-v3 23.76 (0.38) 24.78 (0.28) 24.79 (0.20) 24.93 (0.16)Large
Improvement 3.25 3.70 2.47 2.16

Training Time Comparison between OpenCLIP and FastCLIP-v3: We present the training time
breakdown of OpenCLIP and FastCLIP-v3 in Table 15 and 16 for the medium-scale and large-scale
settings, respectively. We can see that as the number of nodes scales up, the computation time of
OpenCLIP and FastCLIP-v3 is always close to each other, while the gap in communication time
becomes much larger, which is also depicted in subfigures (c) and (d). Even if we exclude the part of
communication that overlaps with computation, the gap in pure communication still becomes larger
with increasing number of nodes, and thus FastCLIP-v3 has a shorter running time on 4 and 8 nodes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350
Samples Seen (million)

5

10

15

20

25

1.49x Speedup

+3.70

OpenCLIP FastCLIP-v3

(a) Datacomp, Medium (b) Datacomp, Large

0 50 100 150 200 250 300 350
Samples Seen (million)

5

10

15

20

25

1.49x Speedup

+3.70

OpenCLIP FastCLIP-v3

0.0 2.5 5.0 7.5 10.0 12.5
Samples Seen (billion)

40

45

50

(c) Datacomp, xLarge

Figure 10: Datacomp Avearge performance of OpenCLIP and FastCLIP-v3 in different settings.
Subfigures (a), (b) present the results in the medium-scale and large-scale setting, with numbers
denoting the improvement of FastCLIP-v3 over OpenCLIP. Subfigure (c) present the results in the
xlarge-scale setting.

0 2 4 6 8 10 12
Samples Seen (million)

40

45

50

55

LAION-315M DFN-2B

0 2 4 6 8 10 12
Samples Seen (million)

40

45

50

55

60

65

70

(a) ImageNet-1K Top1, xLarge

0 2 4 6 8 10 12
Samples Seen (million)

40

45

50

55

(b) Datacomp, xLarge

Figure 11: ImageNet-1k Top 1 accuracy (left) and Datacomp Average performance (right) of
FastCLIP-v3 on different datasets in the xlarge-scale setting.

Table 15: Comparison between OpenCLIP and FastCLIP-v3 in terms of training time in the medium-
scale setting. The shaded results are from FastCLIP-v3, and the others are from OpenCLIP. Com-
putation denotes the whole computation time. Communication denotes the whole communication
time. Pure Comm. denotes the communication time that is not overlapped with computation. Overlap
denotes the overlapped time between computation and communication.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

867.85 (11.04) 880.19 (53.45) 925.47 (27.77) 1049.90 (32.44)Total 866.36 (5.89) 879.91 (52.17) 917.54 (25.46) 1028.06 (32.26)
770.57 (6.10) 738.87 (21.58) 726.07 (1.53) 742.93 (15.91)Computation 771.80 (5.53) 737.93 (21.73) 725.40 (2.01) 742.90 (15.90)
222.01 (4.43) 403.40 (130.80) 548.07 (60.97) 698.87 (26.24)Communication 223.34 (5.51) 400.76 (125.78) 536.15 (59.29) 675.43 (25.97)
27.18 (1.61) 68.74 (25.45) 127.39 (30.29) 224.71 (16.05)Pure Comm. 25.50 (2.24) 64.32 (22.47) 116.21 (28.48) 200.97 (15.58)
194.84 (2.88) 334.66 (105.36) 420.68 (30.80) 474.16 (10.23)Overlap 197.84 (3.65) 336.44 (103.35) 419.94 (30.83) 474.46 (10.41)
70.09 (8.17) 72.58 (6.59) 72.01 (2.73) 82.26 (0.93)Others 69.06 (1.67) 77.66 (8.14) 75.93 (2.83) 84.19 (0.86)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 16: Comparison between OpenCLIP and FastCLIP-v3 in terms of training time in the large-
scale setting. The shaded results are from FastCLIP-v3, and the others are from OpenCLIP. The
meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

1125.29 (14.14) 1234.06 (151.37) 1396.76 (47.86) 1564.46 (47.92)Total 1128.75 (9.75) 1234.82 (153.86) 1394.91 (48.35) 1542.32 (47.87)
960.14 (12.00) 910.77 (10.48) 891.71 (6.09) 896.54 (8.02)Computation 964.16 (9.10) 910.94 (11.55) 892.72 (4.72) 897.59 (9.09)
360.34 (15.55) 655.30 (175.45) 876.13 (71.52) 1061.52 (55.08)Communication 363.38 (16.66) 652.78 (173.41) 870.01 (69.56) 1035.03 (56.84)
56.73 (4.09) 192.89 (129.45) 379.10 (58.13) 525.78 (57.22)Pure Comm. 55.44 (2.23) 190.56 (127.48) 371.30 (55.62) 498.95 (59.72)

303.62 (14.70) 462.41 (46.02) 497.02 (13.45) 535.74 (2.33)Overlap 307.94 (18.14) 462.22 (45.93) 498.71 (13.97) 536.08 (2.99)
108.42 (5.54) 130.40 (12.26) 125.95 (5.57) 142.14 (2.08)Others 109.14 (2.67) 133.33 (15.30) 130.89 (4.34) 145.78 (3.13)

Training Time of OpenCLIP and FastCLIP in Different Network Environments: The results
above (and in Section 6) are obtained from a cluster with InfiniBand interconnect. We conduct
additional experiments on two different clusters with Slingshot interconnect. The results are presented
below. It can be seen that our gradient reduction strategy has consistent improvement over the strategy
used in OpenCLIP in different network environments.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1 2 4 8
Number of Nodes

0

200

400

600

800

1000

1200

1400

1600

OpenCLIP FastCLIP-v1 FastCLIP-v2 FastCLIP-v3

1 2 4 8
Number of Nodes

0

100

200

300

400

(a) Total, Medium

1 2 4 8
Number of Nodes

0

200

400

600

(b) Total, Large

1 2 4 8
Number of Nodes

0

200

400

600

(c) Total, xLarge

1 2 4 8
Number of Nodes

0

100

200

300

(d) Comm., Medium

1 2 4 8
Number of Nodes

0

200

400

(e) Comm., Large

1 2 4 8
Number of Nodes

0

200

400

(f) Comm., xLarge

1 2 4 8
Number of Nodes

0

100

200

(g) Total, Medium

1 2 4 8
Number of Nodes

0

100

200

300

400

(h) Total, Large

1 2 4 8
Number of Nodes

0

200

400

600

(i) Total, xLarge

1 2 4 8
Number of Nodes

0

50

100

150

(j) Comm., Medium

1 2 4 8
Number of Nodes

0

100

200

(k) Comm., Large

1 2 4 8
Number of Nodes

0

100

200

300

(l) Comm., xLarge

Figure 12: Plots of training time of different methods on two clusters with Slingshot interconnect.
Subfigures (a) to (f) are results on one cluster, while Subfigures (g) to (l) are results on the other
cluster. The meaning of each bar is the same as Figure 3.

The following tables present results used to plot the above figure.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 17: OpenCLIP vs. FastCLIP-v3 (shaded) in the medium-scale setting on Cluster 1 with
Slingshot interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

218.42 (14.87) 352.99 (2.91) 410.14 (0.94) 462.18 (8.12)Total 221.46 (7.96) 359.04 (12.21) 412.67 (1.08) 447.42 (4.18)
157.03 (0.26) 160.53 (0.09) 160.11 (0.04) 160.02 (0.09)Computation 158.99 (1.75) 160.88 (0.23) 160.34 (0.06) 160.35 (0.08)
23.58 (13.49) 250.21 (2.74) 313.26 (2.33) 354.59 (2.33)Communication 29.88 (14.20) 251.58 (12.11) 312.32 (1.28) 349.45 (4.46)
14.28 (11.86) 149.42 (2.71) 210.57 (1.51) 251.45 (2.11)Pure Comm. 12.13 (5.20) 150.19 (12.06) 208.20 (1.29) 245.39 (4.49)

9.31 (1.63) 100.79 (0.03) 102.69 (0.87) 103.14 (0.25)Overlap 17.75 (9.04) 101.39 (0.04) 104.11 (0.09) 104.06 (0.03)
47.12 (2.77) 43.04 (0.27) 39.45 (0.69) 50.72 (9.91)Others 50.35 (1.03) 47.97 (0.52) 44.13 (0.38) 41.69 (0.40)

Table 18: OpenCLIP vs. FastCLIP-v3 (shaded) in the large-scale setting on Cluster 1 with Slingshot
interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

301.54 (22.83) 510.42 (6.59) 587.59 (7.53) 660.99 (23.63)Total 329.86 (40.84) 511.80 (6.53) 586.17 (8.97) 637.16 (13.73)
153.12 (2.47) 155.06 (0.05) 154.63 (0.08) 154.45 (0.05)Computation 154.22 (3.44) 155.53 (0.14) 155.10 (0.05) 155.19 (0.11)
84.86 (23.74) 389.90 (6.59) 472.84 (6.84) 545.75 (18.81)Communication 110.76 (36.62) 389.36 (6.43) 467.79 (9.38) 520.98 (15.02)
58.00 (22.62) 291.70 (6.63) 371.31 (7.25) 443.20 (18.99)Pure Comm. 79.80 (35.59) 288.68 (5.59) 363.71 (8.58) 416.43 (15.11)
26.86 (12.35) 98.20 (0.07) 101.53 (0.57) 102.55 (0.87)Overlap 30.96 (17.49) 100.68 (1.06) 104.08 (0.88) 104.55 (0.10)
90.42 (4.26) 63.66 (1.09) 61.66 (0.91) 63.34 (4.74)Others 95.84 (7.48) 67.59 (1.28) 67.36 (0.49) 65.54 (1.62)

Table 19: OpenCLIP vs. FastCLIP-v3 (shaded) in the xlarge-scale setting on Cluster 1 with Slingshot
interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

511.28 (8.46) 597.15 (3.50) 643.54 (4.69) 725.58 (35.32)Total 520.66 (6.96) 597.52 (8.42) 648.67 (6.48) 717.43 (24.75)
418.29 (0.59) 442.58 (0.41) 442.63 (0.19) 441.86 (0.09)Computation 419.27 (1.48) 442.86 (0.10) 442.99 (0.28) 442.86 (0.17)
24.52 (9.71) 380.79 (2.92) 432.24 (4.58) 514.46 (32.87)Communication 33.34 (12.27) 378.48 (7.59) 436.70 (6.90) 492.55 (15.62)
12.29 (7.00) 79.79 (3.19) 127.27 (4.15) 207.18 (32.94)Pure Comm. 16.68 (4.62) 75.38 (6.89) 127.03 (6.40) 182.89 (15.91)
12.23 (2.73) 301.00 (0.32) 304.98 (0.65) 307.28 (0.52)Overlap 16.66 (8.19) 303.11 (0.94) 309.67 (0.80) 309.65 (0.69)
80.70 (1.53) 74.78 (0.87) 73.65 (0.59) 76.54 (2.76)Others 84.71 (1.27) 79.29 (1.84) 78.65 (0.52) 91.68 (13.55)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 20: OpenCLIP vs. FastCLIP-v3 (shaded) in the medium-scale setting on Cluster 2 with
Slingshot interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

218.62 (1.49) 239.22 (0.18) 273.94 (1.10) 278.21 (2.74)Total 219.67 (4.87) 239.04 (2.73) 271.29 (1.17) 274.94 (4.29)
157.47 (1.03) 160.47 (0.14) 167.51 (0.89) 164.75 (0.05)Computation 157.94 (1.08) 160.85 (0.15) 167.94 (1.33) 164.89 (0.37)
31.41 (6.16) 105.83 (2.74) 155.37 (1.14) 165.85 (4.20)Communication 31.12 (7.51) 98.51 (2.14) 150.03 (1.52) 160.95 (3.00)
10.63 (2.02) 33.37 (1.17) 62.29 (1.24) 69.99 (2.41)Pure Comm. 10.02 (2.23) 30.41 (2.10) 55.13 (2.08) 62.52 (4.06)
20.78 (5.31) 72.46 (1.63) 93.08 (0.12) 95.86 (1.96)Overlap 21.10 (5.28) 68.10 (0.22) 94.91 (0.91) 98.43 (1.17)
50.52 (1.01) 45.37 (0.88) 44.14 (0.42) 43.47 (0.88)Others 51.72 (2.28) 47.78 (1.46) 48.22 (0.60) 47.53 (0.39)

Table 21: OpenCLIP vs. FastCLIP-v3 (shaded) in the large-scale setting on Cluster 2 with Slingshot
interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

261.73 (5.81) 293.85 (7.66) 341.99 (6.88) 387.59 (29.84)Total 260.15 (2.71) 295.25 (5.15) 350.30 (12.59) 365.01 (31.42)
158.96 (0.59) 165.37 (1.34) 174.27 (1.08) 169.39 (0.47)Computation 158.86 (0.71) 166.24 (0.48) 173.65 (2.33) 168.31 (0.63)
42.37 (6.16) 149.25 (8.76) 205.88 (3.59) 250.92 (31.40)Communication 38.83 (2.64) 148.16 (3.75) 208.68 (9.40) 227.15 (31.55)
17.33 (3.89) 58.19 (5.73) 98.24 (5.08) 146.62 (32.25)Pure Comm. 16.45 (0.70) 54.01 (3.58) 98.83 (11.70) 120.91 (30.43)
25.04 (3.56) 91.05 (3.12) 107.63 (1.83) 104.30 (1.00)Overlap 22.39 (2.91) 94.14 (0.28) 109.84 (2.31) 106.24 (1.56)
85.44 (2.76) 70.29 (0.78) 69.48 (2.97) 71.58 (3.20)Others 84.84 (2.27) 74.99 (2.13) 77.82 (3.60) 75.79 (0.83)

Table 22: OpenCLIP vs. FastCLIP-v3 (shaded) in the xlarge-scale setting on Cluster 2 with Slingshot
interconnect. The meaning of each category is the same as Table 15.

Category 1 Node 2 Nodes 4 Nodes 8 Nodes

496.14 (0.84) 516.82 (5.65) 581.00 (3.16) 636.00 (16.93)Total 502.32 (5.29) 515.99 (0.56) 582.50 (2.89) 626.40 (7.16)
415.30 (0.10) 422.40 (0.25) 433.71 (1.03) 433.66 (0.41)Computation 415.34 (0.13) 422.89 (0.21) 432.92 (0.22) 434.92 (0.48)
26.49 (0.97) 145.77 (7.14) 287.66 (7.36) 369.86 (12.53)Communication 25.13 (2.47) 144.39 (2.93) 277.56 (1.98) 362.24 (11.25)
9.31 (0.46) 23.58 (4.66) 70.29 (1.96) 123.79 (15.56)Pure Comm. 8.65 (1.86) 17.89 (0.62) 67.45 (3.26) 111.46 (6.13)

17.18 (0.61) 122.19 (2.57) 217.36 (8.75) 246.07 (3.60)Overlap 16.48 (0.80) 126.50 (2.31) 210.11 (3.54) 250.77 (5.46)
71.53 (0.55) 70.84 (0.88) 76.99 (2.15) 78.56 (1.92)Others 78.33 (3.30) 75.20 (0.55) 82.14 (2.26) 80.01 (0.87)

30

	Introduction
	Related Works
	Preliminaries
	FastCLIP: A Distributed Training Framework of CLIP Models
	Improvement of Optimization Components
	Results

	Scaling Performance of FastCLIP
	Conclusion
	Limitations and Future Work
	Details of the FastCLIP Framework
	Experiment Hyperparameters
	The impact of batch size and dataset size on OpenCLIP
	The effect of in (RGCL-g)
	More Experiment Results
	Optimization Components
	Scaling Performance

