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ABSTRACT

Hamiltonian Monte Carlo (HMC) is a popular method in sampling. While there
are quite a few works of studying this method on various aspects, an interesting
question is how to choose its integration time to achieve acceleration. In this
work, we consider accelerating the process of sampling from a distribution π(x) ∝
exp(−f(x)) via HMC via time-varying integration time. When the potential f is
L-smooth and m-strongly convex, i.e. for sampling from a log-smooth and strongly
log-concave target distribution π, it is known that under a constant integration
time, the number of iterations that ideal HMC takes to get an ε Wasserstein-2
distance to the target π is O(κ log 1

ε ), where κ := L
m is the condition number. We

propose a scheme of time-varying integration time based on the roots of Chebyshev
polynomials. We show that in the case of quadratic potential f , i.e. when the target
π is a Gaussian distribution, ideal HMC with this choice of integration time only
takes O(

√
κ log 1

ε ) number of iterations to reach Wasserstein-2 distance less than ε;
this improvement on the dependence on condition number is akin to acceleration in
optimization. The design and analysis of HMC with the proposed integration time
is built on the tools of Chebyshev polynomials. Experiments find the advantage
of adopting our scheme of time-varying integration time even for sampling from
distributions with smooth strongly convex potentials that are not quadratic.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) algorithms are fundamental techniques for sampling from
probability distributions, which is a task that naturally arises in statistics (Duane et al., 1987; Girolami
& Calderhead, 2011), optimization (Flaxman et al., 2005; Duchi et al., 2012; Jin et al., 2017), machine
learning and others (Wenzel et al., 2020; Salakhutdinov & Mnih, 2008; Koller & Friedman, 2009;
Welling & Teh, 2011). Among all the MCMC algorithms, the most popular ones perhaps are Langevin
methods (Li et al., 2022; Dalalyan, 2017; Durmus et al., 2019; Vempala & Wibisono, 2019; Lee
et al., 2021b; Chewi et al., 2020) and Hamiltonian Monte Carlo (HMC) (Neal, 2012; Betancourt,
2017; Hoffman & Gelman, 2014; Levy et al., 2018). For the former, recently there have been a
sequence of works leveraging some techniques in optimization to design Langevin methods, which
include borrowing the idea of momentum methods like Nesterov acceleration (Nesterov, 2013) to
design fast methods, e.g., (Ma et al., 2021; Dalalyan & Riou-Durand, 2020). Specifically, Ma et al.
(2021) show that for sampling from distributions satisfying the log-Sobolev inequality, under-damped

Langevin improves the iteration complexity of over-damped Langevin from O(dε ) to O(
√

d
ε ), where

d is the dimension and ε is the error in KL divergence, though whether their result has an optimal
dependency on the condition number is not clear. On the other hand, compared to Langevin methods,
the connection between HMCs and techniques in optimization seems rather loose. Moreover, to our
knowledge, little is known about how to accelerate HMCs with a provable acceleration guarantee for
converging to a target distribution. Specifically, Chen & Vempala (2019) show that for sampling from
strongly log-concave distributions, the iteration complexity of ideal HMC is O(κ log 1

ε ), and Vishnoi
(2021) shows the same rate of ideal HMC when the potential is strongly convex quadratic in a nice
tutorial. In contrast, there are a few methods that exhibit acceleration when minimizing strongly
convex quadratic functions in optimization. For example, while Heavy Ball (Polyak, 1964) does not
have an accelerated linear rate globally for minimizing general smooth strongly convex functions, it
does show acceleration when minimizing strongly convex quadratic functions (Wang et al., 2020;

1



Published as a conference paper at ICLR 2023

Algorithm 1: IDEAL HMC

1: Require: an initial point x0 ∈ Rd, number of iterations K, and a scheme of integration time {η(K)
k }.

2: for k = 1 to K do
3: Sample velocity ξ ∼ N(0, Id).
4: Set (xk, vk) = HMC

η
(K)
k

(xk−1, ξ).

5: end for

2021; 2022). This observation makes us wonder whether one can get an accelerated linear rate of
ideal HMC for sampling, i.e., O(

√
κ log 1

ε ), akin to acceleration in optimization.

We answer this question affirmatively, at least in the Gaussian case. We propose a time-varying
integration time for HMC, and we show that ideal HMC with this time-varying integration time
exhibits acceleration when the potential is a strongly convex quadratic (i.e. the target π is a Gaussian),
compared to what is established in Chen & Vempala (2019) and Vishnoi (2021) for using a constant
integration time. Our proposed time-varying integration time at each iteration of HMC depends on
the total number of iterations K, the current iteration index k, the strong convexity constant m, and
the smoothness constant L of the potential; therefore, the integration time at each iteration is simple
to compute and is set before executing HMC. Our proposed integration time is based on the roots
of Chebysev polynomials, which we will describe in details in the next section. In optimization,
Chebyshev polynomials have been used to help design accelerated algorithms for minimizing strongly
convex quadratic functions, i.e., Chebyshev iteration (see e.g., Section 2.3 in d’Aspremont et al.
(2021)). Our result of accelerating HMC via using the proposed Chebyshev integration time can be
viewed as the sampling counterpart of acceleration from optimization. Interestingly, for minimizing
strongly convex quadratic functions, acceleration of vanilla gradient descent can be achieved via a
scheme of step sizes that is based on a Chebyshev polynomial, see e.g., Agarwal et al. (2021), and
our work is inspired by a nice blog article by Pedregosa (2021). Hence, our acceleration result of
HMC can also be viewed as a counterpart in this sense. In addition to our theoretical findings, we
conduct experiments of sampling from a Gaussian as well as sampling from distributions whose
potentials are not quadratics, which include sampling from a mixture of two Gaussians, Bayesian
logistic regression, and sampling from a hard distribution that was proposed in Lee et al. (2021a)
for establishing some lower-bound results of certain Metropolized sampling methods. Experimental
results show that our proposed time-varying integration time also leads to a better performance
compared to using the constant integration time of Chen & Vempala (2019) and Vishnoi (2021) for
sampling from the distributions whose potential functions are not quadratic. We conjecture that our
proposed time-varying integration time also helps accelerate HMC for sampling from log-smooth
and strongly log-concave distributions, and we leave the analysis of such cases for future work.

2 PRELIMINARIES

2.1 HAMILTONIAN MONTE CARLO (HMC)

Suppose we want to sample from a target probability distribution ν(x) ∝ exp(−f(x)) on Rd, where
f : Rd → R is a continuous function which we refer to as the potential.

Denote x ∈ Rd the position and v ∈ Rd the velocity of a particle. In this paper, we consider the
standard Hamiltonian of the particle (Chen & Vempala, 2019; Neal, 2012), which is defined as

H(x, v) := f(x) + 1
2‖v‖

2, (1)

while we refer the readers to Girolami & Calderhead (2011); Hirt et al. (2021); Brofos & Lederman
(2021) and the references therein for other notions of the Hamiltonian. The Hamiltonian flow
generated by H is the flow of the particle which evolves according to the following differential
equations:

dx

dt
=
∂H

∂v
and

dv

dt
= −∂H

∂x
.

For the standard Hamiltonian defined in (1), the Hamiltonian flow becomes
dx

dt
= v and

dv

dt
= −∇f(x). (2)
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We will write (xt, vt) = HMCt(x0, v0) as the position x and the velocity v of the Hamiltonian flow
after integration time t starting from (x0, v0). There are many important properties of the Hamiltonian
flow including that the Hamiltonian is conserved along the flow, the vector field associated with the
flow is divergence free, and the Hamiltonian dynamic is time reversible, see e.g., Section 3 in Vishnoi
(2021).

The Ideal HMC algorithm (see Algorithm 1) proceeds as follows: in each iteration k, sample an
initial velocity from the normal distribution, and then flow following the Hamiltonian flow with
a pre-specified integration time ηk. It is well-known that ideal HMC preserves the target density
π(x) ∝ exp(−f(x)); see e.g., Theorem 5.1 in Vishnoi (2021). Furthermore, in each iteration, HMC
brings the density of the iterates xk ∼ ρk closer to the target π. However, the Hamiltonian flow
HMCt(x0, v0) is in general difficult to simulate exactly, except for some special potentials. In
practice, the Verlet integrator is commonly used to approximate the flow and a Metropolis-Hastings
filter is applied to correct the induced bias arises from the use of the integrator (Tripuraneni et al.,
2017; Brofos & Lederman, 2021; Hoffman et al., 2021; Lee et al., 2021a; Chen et al., 2020). In recent
years, there have been some progress on showing some rigorous theoretical guarantees of HMCs
for converging to a target distribution, e.g., Chen et al. (2020); Durmus et al. (2017); Bou-Rabee
& Eberle (2021); Mangoubi & Smith (2019; 2021); Mangoubi & Vishnoi (2018). There are also
other variants of HMCs proposed in the literature, e.g., Riou-Durand & Vogrinc (2022); Bou-Rabee
& Sanz-Serna (2017); Zou & Gu (2021); Steeg & Galstyan (2021); Hoffman & Gelman (2014);
Tripuraneni et al. (2017); Chen et al. (2014), to name just a few.

Recall that the 2-Wasserstein distance between probability distributions ν1 and ν2 is

W2(ν1, ν2) := inf
x,y∈Γ(ν1,ν2)

E
[
‖x− y‖2

]1/2
where Γ(ν1, ν2) represents the set of all couplings of ν1 and ν2.

2.2 ANALYSIS OF HMC IN QUADRATIC CASE WITH CONSTANT INTEGRATION TIME

In the following, we replicate the analysis of ideal HMC with a constant integration time for quadratic
potentials (Vishnoi, 2021), which provides the necessary ingredients for introducing our method in
the next section. Specifically, we consider the following quadratic potential:

f(x) :=
∑d
j=1 λjx

2
j , where 0 < m ≤ λj ≤ L, (3)

which means the target density is the Gaussian distribution π = N (0,Λ−1), where Λ the diagonal
matrix whose jth diagonal entry is λj . We note for a general Gaussian target N (µ,Σ) for some
µ ∈ Rd and Σ � 0, we can shift and rotate the coordinates to make µ = 0 and Σ a diagonal matrix,
and our analysis below applies. So without loss of generality, we may assume the quadratic potential
is separable, as in (3).

In this quadratic case, the Hamiltonian flow (2) becomes a linear system of differential equations, and
we have an exact solution given by sinusoidal functions, which are

xt[j] = cos
(√

2λjt
)
x0[j] +

1√
2λj

sin
(√

2λjt
)
v0[j],

vt[j] = −
√

2λj sin
(√

2λjt
)
x0[j] + cos

(√
2λjt

)
v0[j].

(4)

In particular, we recall the following result on the deviation between two co-evolving particles with
the same initial velocity.

Lemma 1. (Vishnoi, 2021) Let x0, y0 ∈ Rd. Consider the following coupling: (xt, vt) =
HMCt(x0, ξ) and (yt, ut) = HMCt(y0, ξ) for some ξ ∈ Rd. Then for all t ≥ 0 and for all
j ∈ [d], it holds that

xt[j]− yt[j] = cos
(√

2λjt
)
× (x0[j]− y0[j]).

Using Lemma 1, we can derive the convergence rate of ideal HMC for the quadratic potential as
follows.
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Lemma 2. (Vishnoi, 2021) Let π ∝ exp(−f) = N (0,Λ−1) be the target distribution, where f(x) is
defined on (3). Let ρK be the distribution of xK generated by Algorithm 1 at the final iteration K.
Then for any ρ0 and any K ≥ 1, we have

W2(ρK , π) ≤ maxj∈[d]

∣∣∣ΠK
k=1cos

(√
2λjη

(K)
k

)∣∣∣W2(ρ0, π).

We replicate the proof of Lemma 1 and Lemma 2 in Appendix B for the reader’s convenience.

Vishnoi (2021) shows that by choosing

(Constant integration time) η
(K)
k =

π

2

1√
2L
, (5)

one has that cos
(√

2λjη
(K)
k

)
≤ 1−Θ

(
m
L

)
for all the iterations k ∈ [K] and dimensions j ∈ [d].

Hence, by Lemma 2, the distance satisfies

W2(ρK , π) = O

((
1−Θ

(m
L

))K)
W2(ρ0, π)

after K iterations of ideal HMC with the constant integration time. On the other hand, for general
smooth strongly convex potentials f(·), Chen & Vempala (2019) show the same convergence rate
1 − Θ

(
m
L

)
of HMC using a constant integration time η(K)

k = c√
L

, where c > 0 is a universal
constant. Therefore, under the constant integration time, HMC needs O(κ log 1

ε ) iterations to reach
error W2(ρK , π) ≤ ε, where κ = L

m is condition number. Furthermore, they also show that the
relaxation time of ideal HMC with a constant integration time is Ω(κ) for the Gaussian case.

2.3 CHEBYSHEV POLYNOMIALS

We denote ΦK(·) the degree-K Chebyshev polynomial of the first kind, which is defined by:

ΦK(x) =


cos(K arccos(x)) if x ∈ [−1, 1],

cosh(K arccosh(x)) if x > 1,

(−1)Kcosh(K arccosh(x)) if x < 1.

(6)

Our proposed integration time is built on a scaled-and-shifted Chebyshev polynomial, defined as:

Φ̄K(λ) :=
ΦK(h(λ))

ΦK(h(0))
, (7)

where h(·) is the mapping h(λ) := L+m−2λ
L−m . Observe that the mapping h(·) maps all λ ∈ [m,L]

into the interval [−1, 1]. The roots of the degree-K scaled-and-shifted Chebyshev polynomial Φ̄K(λ)
are

(Chebyshev roots) r
(K)
k :=

L+m

2
− L−m

2
cos
(

(k − 1
2 )π

K

)
, (8)

where k = 1, 2, . . . ,K, i.e., Φ̄K(r
(K)
k ) = 0. We now recall the following key result regarding the

scaled-and-shifted Chebyshev polynomial Φ̄K .
Lemma 3. (e.g., Section 2.3 in d’Aspremont et al. (2021)) For any positive integer K, we have

maxλ∈[m,L]

∣∣Φ̄K(λ)
∣∣ ≤ 2

(
1− 2

√
m√

L+
√
m

)K
= O

((
1−Θ

(√
m
L

))K)
. (9)

The proof of Lemma 3 is in Appendix B.

3 CHEBYSHEV INTEGRATION TIME

We are now ready to introduce our scheme of time-varying integration time. LetK be the pre-specified
total number of iterations of HMC. Our proposed method will first permute the array [1, 2, . . . ,K]
before executing HMC for K iterations. Denote σ(k) the kth element of the array [1, 2, . . . ,K] after
an arbitrary permutation σ. Then, we propose to set the integration time of HMC at iteration k, i.e.,
set η(K)

k , as follows:
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Figure 1: Left: Set K = 400, m = 1 and L = 100. The green solid line (Cheby-
shev integration time (10)) on the subfigure represents maxλ∈{m,m+0.1,...,L}

∣∣∣Πk
s=1cos

(√
2λη

(K)
s

)∣∣∣ =∣∣∣∣∣Πk
s=1cos

(
π
2

√
λ

r
(K)
σ(s)

)∣∣∣∣∣ v.s. k, while the blue dash line (Constant integration time (5)) represents

maxλ∈{m,m+0.1,...,L}

∣∣∣Πk
s=1cos

(√
2λη

(K)
s

)∣∣∣ =

∣∣∣∣Πk
s=1cos

(
π
2

√
λ
L

)∣∣∣∣ v.s. k. Since the cosine product con-

trols the convergence rate of the W2 distance by Lemma 2, this confirms the acceleration via using the proposed
scheme of Chebyshev integration over the constant integration time (Chen & Vempala, 2019; Vishnoi, 2021).

Right: ψ(x) =
cos(π2

√
x)

1−x v.s. x.

(Chebyshev integration time) η
(K)
k =

π

2

1√
2r

(K)
σ(k)

. (10)

We note the usage of the permutation σ is not needed in our analysis below; however, it seems to help
improve performance in practice. Specifically, though the guarantees of HMC at the final iteration K
provided in Theorem 1 and Lemma 4 below is the same regardless of the permutation, the progress
of HMC varies under different permutations of the integration time, which is why we recommend an
arbitrary permutation of the integration time in practice.

Our main result is the following improved convergence rate of HMC under the Chebyshev integration
time, for quadratic potentials.
Theorem 1. Denote the target distribution π ∝ exp(−f(x)) = N (0,Λ−1), where f(x) is defined
on (3), and denote the condition number κ := L

m . Let ρK be the distribution of xK generated by
Algorithm 1 at the final iteration K. Then, we have

W2(ρK , π) ≤ 2

(
1− 2

√
m√

L+
√
m

)K
W2(ρ0, π) = O

((
1−Θ

(
1√
κ

))K)
W2(ρ0, π).

Consequently, the total number of iterations K such that the Wasserstein-2 distance satisfies
W2(ρK , π) ≤ ε is O

(√
κ log 1

ε

)
.

Theorem 1 shows an accelerated linear rate 1 − Θ
(

1√
κ

)
using Chebyshev integration time, and

hence improves the previous result of 1−Θ
(

1
κ

)
as discussed above. The proof of Theorem 1 relies

on the following lemma, which upper-bounds the cosine products that appear in the bound of the W2

distance in Lemma 2 by the scaled-and-shifted Chebyshev polynomial Φ̄K(λ) on (7).

Lemma 4. Denote |PCos
K (λ)| :=

∣∣∣∣∣ΠK
k=1cos

(
π
2

√
λ

r
(K)

σ(k)

)∣∣∣∣∣. Suppose λ ∈ [m,L]. Then, we have for

any positive integer K,
|PCos
K (λ)| ≤

∣∣Φ̄K(λ)
∣∣ . (11)

The proof of Lemma 4 is available in Appendix C. Figure 1 compares the cosine product
maxλ∈[m,L]

∣∣∣Πk
s=1cos

(√
2λη

(K)
s

)∣∣∣ in Lemma 2 of using the proposed integration time and that
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Algorithm 2: HMC WITH CHEBYSHEV INTEGRATION TIME

1: Given: a potential f(·), where π(x) ∝ exp(−f(x)) and f(·) is L-smooth and m-strongly convex.
2: Require: number of iterations K and the step size of the leapfrog steps θ.

3: Define r(K)
k := L+m

2
− L−m

2
cos
(

(k− 1
2

)π

K

)
, for k = 1, . . . ,K.

4: Arbitrarily permute the array [1, 2, . . . ,K]. Denote σ(k) the kth element of the array after permutation.
5: for k = 1, 2, . . . ,K do
6: Sample velocity ξk ∼ N(0, Id).
7: Set integration time η(K)

k ← π
2

1√
2r

(K)
σ(k)

.

8: Set the number of leapfrog steps Sk ← b
η
(K)
k
θ
c.

9: (x̄0, v̄0)← (xk−1, ξk)
% Leapfrog steps

10: for s = 0, 2, . . . , Sk − 1 do
11: v̄s+ 1

2
= v̄s − θ

2
∇f(x̄s); x̄s+1 = x̄s + θv̄s+ 1

2
; v̄s+1 = v̄s+ 1

2
− θ

2
∇f(x̄s+1);

12: end for
% Metropolis filter

13: Compute the acceptance ratio αk = min
(

1,
exp(−H(x̄Sk

,v̄Sk
))

exp(−H(x̄0,v̄0))

)
.

14: Draw ζ ∼ Uniform[0, 1].
15: If ζ < αk then
16: xk ← x̄Sk
17: Else
18: xk ← xk−1.
19: end for

of using the constant integration time, which illustrates acceleration via the proposed Chebyshev
integration time.

We now provide the proof of Theorem 1.

Proof. (of Theorem 1) From Lemma 2, we have

W2(ρK , π) ≤ maxj∈[d]

∣∣∣ΠK
k=1cos

(√
2λjη

(K)
k

)∣∣∣ ·W2(ρ0, π). (12)

We can upper-bound the cosine product of any j ∈ [d] as,∣∣∣ΠK
k=1cos

(√
2λjη

(K)
k

)∣∣∣ (a)
=

∣∣∣∣∣ΠK
k=1cos

(
π
2

√
λj

r
(K)

σ(k)

)∣∣∣∣∣ (b)

≤
∣∣Φ̄K(λj)

∣∣ (c)

≤ 2
(

1− 2
√
m√

L+
√
m

)K
,

(13)
where (a) is due to the use of Chebyshev integration time (10), (b) is by Lemma 4, and (c) is by
Lemma 3. Combining (12) and (13) leads to the result.

HMC with Chebyshev Integration Time for General Distributions To sample from general
strongly log-concave distributions, we propose Algorithm 2, which adopts the Verlet integrator
(a.k.a. the leapfrog integrator) to simulate the Hamiltonian flow HMCη(·, ξ) and uses Metropolis
filter to correct the bias. It is noted that the number of leapfrog steps Sk in each iteration k is equal to
the integration time η(K)

k divided by the step size θ used in the leapfrog steps. More precisely, we

have Sk = bη
(K)
k

θ c in iteration k of HMC.

4 EXPERIMENTS

We now evaluate HMC with the proposed Chebyshev integration time (Algorithm 2) and HMC with
the constant integration time (Algorithm 2 with line 7 replaced by the constant integration time (5))
in several tasks. For all the tasks in the experiments, the total number of iterations of HMCs is set
to be K = 10, 000, and hence we collect K = 10, 000 samples along the trajectory. For the step
size θ in the leapfrog steps, we let θ ∈ {0.001, 0.005, 0.01, 0.05}. To evaluate the methods, we
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Table 1: Ideal HMC with K = 10, 000 iterations for sampling from a GaussianN (µ,Σ), where µ =

[
0
0

]
and

Σ =

[
1 0
0 100

]
. Here, Cheby. (W/) is ideal HMC with a arbitrary permutation of the Chebyshev integration

time, while Cheby. (W/O) is ideal HMC without a permutation; and Const. refers to using the constant integration
time (5).

Method Mean ESS Min ESS
Cheby. (W/) 10399.00811± 347.25021 7172.50338± 257.21244
Cheby. (W/O) 10197.09964± 276.94894 7043.55293± 284.78037
Const. 7692.00382± 207.19628 5533.26519± 213.31943

compute effective sample size (ESS), which is a common performance metric of HMCs (Girolami
& Calderhead, 2011; Brofos & Lederman, 2021; Hirt et al., 2021; Riou-Durand & Vogrinc, 2022;
Hoffman et al., 2021; Hoffman & Gelman, 2014; Steeg & Galstyan, 2021), by using the toolkit ArViz
(Kumar et al., 2019). The ESS of a sequence of N dependent samples is computed based on the
autocorrelations within the sequence at different lags: ESS := N/(1 + 2

∑
k γ(k)), where γ(k) is an

estimate of the autocorrelation at lag k. We consider 4 metrics, which are (1) Mean ESS: the average
of ESS of all variables. That is, ESS is computed for each variable/dimension, and Mean ESS is
the average of them. (2) Min ESS: the lowest value of ESS among the ESSs of all variables; (3)
Mean ESS/Sec.: Mean ESS normalized by the CPU time in seconds; (4) Min ESS/Sec.: Minimum
ESS normalized by the CPU time in seconds. In the following tables, we denote “Cheby.” as our
proposed method, and “Const.” as HMC with the the constant integration time (Vishnoi, 2021; Chen
& Vempala, 2019). Each of the configurations is repeated 10 times, and we report the average and
the standard deviation of the results. We also report the acceptance rate of the Metropolis filter
(Acc. Prob) on the tables. Our implementation of the experiments is done by modifying a publicly
available code of HMCs by Brofos & Lederman (2021). Code for our experiments can be found in
the supplementary.

4.1 IDEAL HMC FLOW FOR SAMPLING FROM A GUSSIAN WITH A DIAGONAL COVARIANCE

Before evaluating the empirical performance of Algorithm 2 in the following subsections, here we
discuss and compare the use of a arbitrary permutation of the Chebyshev integration time and that
without permutation (as well as that of using a constant integration time). We simulate ideal HMC

for sampling from a Gaussian N (µ,Σ), where µ =

[
0
0

]
and Σ =

[
1 0
0 100

]
. It is noted that ideal

HMC flow for this case has a closed-form solution as (4) shows. The result are reported on Table 1.

From the table, the use of a Chebyshev integration time allows to obtain a larger ESS than that
from using a constant integration time, and a arbitrary permutation helps get a better result. An
explanation is that the ESS is a quantity that is computed along the trajectory of a chain, and therefore
a permutation of the integration time could make a difference. We remark that the observation here
(a arbitrary permutation of time generates a larger ESS) does not contradict to Theorem 1, since
Theorem 1 is about the guarantee in W2 distance at the last iteration K.

4.2 SAMPLING FROM A GAUSSIAN

We sampleN (µ,Σ), where µ =

[
0
1

]
and Σ =

[
1 0.5

0.5 100

]
. Therefore, the strong convexity constant

m is approximately 0.01 and the smoothness constant L is approximately 1. Table 2 shows the results.
HMC with Chebyshev integration time consistently outperforms that of using the constant integration
time in terms of all the metrics: Mean ESS, Min ESS, Mean ESS/Sec, and Min ESS/Sec.

We also plot two quantities throughout the iterations of HMCs on Figure 2. Specifically, Sub-figure
(a) on Figure 2 plots the size of the difference between the targeted covariance Σ and an estimated
covariance Σ̂k at each iteration k of HMC, where Σ̂k is the sample covariance of 10, 000 samples
collected from a number of 10, 000 HMC chains at their kth iteration. Sub-figure (b) plots a discrete
TV distance that is computed as follows. We use a built-in function of Numpy to sample 10, 000
samples from the target distribution, while we also have 10, 000 samples collected from a number
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Table 2: Sampling from a Gaussian distribution. We report 4 metrics regarding ESS (the higher the better),
please see the main text for their definitions.

Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob
0.001 Cheby. 5187.28± 261.13 307.09± 21.92 20.28± 1.74 1.20± 0.11 1.00± 0.00
0.001 Const. 1912.76± 72.10 39.87± 13.77 15.87± 0.89 0.33± 0.11 1.00± 0.00
0.005 Cheby. 5146.71± 257.65 304.126± 19.09 97.84± 9.23 5.79± 0.68 1.00± 0.00
0.005 Const. 1926.71± 136.53 32.83± 9.57 80.31± 4.39 1.37± 0.39 1.00± 0.00
0.01 Cheby. 5127.90± 211.46 279.59± 38.09 184.26± 20.99 10.01± 1.52 1.00± 0.00
0.01 Const. 1832.87± 77.47 35.71± 11.74 147.53± 12.59 2.85± 0.95 1.00± 0.00
0.05 Cheby. 5133.67± 195.07 316.87± 36.27 871.72± 88.73 53.54± 6.22 0.99± 0.00
0.05 Const. 1849.15± 92.75 34.98± 14.70 615.73± 30.16 11.70± 5.07 0.99± 0.00
0.1 Cheby. 4948.46± 144.03 281.66± 44.79 1492.96± 166.21 84.39± 13.04 0.99± 0.00
0.1 Const. 1852.79± 132.95 38.17± 16.35 1035.54± 82.34 21.44± 9.51 0.99± 0.00

(a) ‖Σ− Σ̂k‖F v.s. iteration k (b) discrete TV(π̂, ρ̂k) v.s. iteration k

Figure 2: Sampling from a Gaussian distribution. Both lines correspond to HMCs with the same step size
h = 0.05 used in the leapfrog steps (but with different schemes of the integration time). Please see the main text
for the precise definitions of the quantities and the details of how we compute them.

of 10, 000 HMC chains at each iteration k. Using these two sets of samples, we construct two
histograms with 30 number of bins for each dimension, we denote them as π̂ and ρ̂k. The discrete
TV(π̂, ρ̂k) at iteration k is 0.5 times the sum of the absolute value of the difference between the
number of counts of all the pairs of the bins divided by 10, 000, which serves as a surrogate of the
Wasserstein-2 distance between the true target π and ρk from HMC, since computing or estimating
the true Wasserstein distance is challenging.

4.3 SAMPLING FROM A MIXTURE OF TWO GAUSSIANS

For a vector a ∈ Rd and a positive definite matrix Σ ∈ Rd×d, we consider sampling from a
mixture of two Gaussians N (a,Σ) and N (−a,Σ) with equal weights. Denote b := Σ−1a and
Λ := Σ−1. The potential is f(x) = 1

2‖x − a‖2Λ − log(1 + exp(−2x>b)), and its gradient is
∇f(x) = Λx − b + 2b(1 + exp(−2x>b))−1. For each dimension i ∈ [d], we set a[i] =

√
i

2d and
set the covariance Σ = diag1≤i≤d(

i
d ). The potential is strongly convex if a>Σ−1a < 1, see e.g.,

Riou-Durand & Vogrinc (2022). We set d = 10 in the experiment, and simply use the smallest and the
largest eigenvalue of Λ to approximate the strong convexity constant m and the smoothness constant
L of the potential, which are m̂ = 1 and L̂ = 10 in this case. Table 3 shows that the proposed method
generates a larger effective sample size than the baseline.

4.4 BAYESIAN LOGISTIC REGRESSION

We also consider Bayesian logistic regression to evaluate the methods. Given an observation (zi, yi),
where zi ∈ Rd and yi ∈ {0, 1}, the likelihood function is modeled as p(yi|zi, w) = 1

1+exp(−yiz>i w)
.

Moreover, the prior on the model parameter w is assumed to follow a Gaussian distribution, p(w) =
N(0, α−1Id), where α > 0 is a parameter. The goal is to sample w ∈ Rd from the posterior,
p(w|{zi, yi}ni=1) = p(w)Πn

i=1p(yi|zi, w), where n is the number of data points in a dataset. The
potential function f(w) can be written as

f(w) =
∑n
i=1 fi(w), where fi(w) = log

(
1 + exp(−yiw>zi)

)
+ α ‖w‖

2

2n . (14)
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Table 3: Sampling from a mixture of two Gaussians

Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob
0.001 Cheby. 2439.86± 71.83 815.20± 83.82 22.68± 0.93 7.57± 0.81 0.89± 0.00
0.001 Const. 845.44± 31.42 261.14± 34.34 12.90± 0.52 3.98± 0.53 0.91± 0.00
0.005 Cheby. 2399.50± 100.12 784.06± 82.07 105.97± 8.78 34.58± 4.12 0.89± 0.00
0.005 Const. 876.61± 25.62 277.72± 30.62 63.80± 4.67 20.22± 2.62 0.91± 0.00
0.01 Cheby. 2341.35± 89.99 794.27± 48.75 194.81± 23.51 66.30± 9.89 0.88± 0.00
0.01 Const. 860.61± 20.39 235.33± 33.73 110.62± 14.09 30.40± 6.34 0.91± 0.00
0.05 Cheby. 2214.19± 87.27 748.66± 46.18 761.59± 68.88 256.51± 13.76 0.89± 0.00
0.05 Const. 853.40± 41.05 265.70± 37.41 376.54± 67.83 116.45± 22.23 0.91± 0.00
0.1 Cheby. 2064.42± 67.44 657.45± 60.44 1162.67± 84.19 370.07± 41.11 0.90± 0.00
0.1 Const. 632.70± 22.78 182.88± 37.10 450.53± 93.60 132.58± 43.91 0.92± 0.00

We set α = 1 in the experiments. We consider three datasets: Heart, Breast Cancer, and Diabetes
binary classification datasets, which are all publicly available online. To approximate the strong
convexity constant m and the smoothness constant L of the potential f(w), we compute the smallest
eigenvalue and the largest eigenvalue of the Hessian ∇2f(w) at the maximizer of the posterior, and
we use them as estimates of m and L respectively. We apply Newton’s method to approximately find
the maximizer of the posterior. The experimental results are reported on Table 4 in Appendix E.1 due
to the space limit, which show that our method consistently outperforms the baseline.

4.5 SAMPLING FROM A hard DISTRIBUTION

We also consider sampling from a step-size-dependent distribution π(x) ∝ exp(−fh(x)), where
the potential fh(·) is κ-smooth and 1-strongly convex. The distribution is considered in Lee et al.
(2021a) for showing a lower bound regarding certain Metropolized sampling methods using a constant
integration time and a constant step size h of the leapfrog integrator. More concretely, the potential is

fh(x) :=
∑d
i=1 f

(h)
i (xi), where f (h)

i (xi) =

{
1
2x

2
i , i = 1

κ
3x

2
i − κh

3 cos
(
xi√
h

)
, 2 ≤ i ≤ d. (15)

In the experiment, we set κ = 50 and d = 10. The results are reported on Table 5 in Appendix E.2.
The scheme of the Chebyshev integration time is still better than the constant integration time for this
task.

5 DISCUSSION AND OUTLOOK

The Chebyshev integration time shows promising empirical results for sampling from a various
of strongly log-concave distributions. On the other hand, the theoretical guarantee of acceleration
that we provide in this work is only for strongly convex quadratic potentials. Therefore, a direction
left open by our work is establishing some provable acceleration guarantees for general strongly
log-concave distributions. However, unlike quadratic potentials, the output (position, velocity) of a
HMC flow does not have a closed-form solution in general, which makes the analysis much more
challenging. A starting point might be improving the analysis of Chen & Vempala (2019), where a
contraction bound of two HMC chains under a small integration time η = O( 1√

L
) is shown. Since

the scheme of the Chebyshev integration time requires a large integration time η = Θ
(

1√
m

)
at some

iterations of HMC, a natural question is whether a variant of the result of Chen & Vempala (2019)
can be extended to a large integration time η = Θ

(
1√
m

)
. We state as an open question: can ideal

HMC with a scheme of time-varying integration time achieve an accelerated rate O(
√
κ log 1

ε ) for
general smooth strongly log-concave distributions?

The topic of accelerating HMC with provable guarantees is underexplored, and we hope our work
can facilitate the progress in this field. After the preprint of this work was available on arXiv, Jiang
(2022) proposes a randomized integration time with partial velocity refreshment and provably shows
that ideal HMC with the proposed machinery has the accelerated rate for sampling from a Gaussian
distribution. Exploring any connections between the scheme of Jiang (2022) and ours can be an
interesting direction.
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A A CONNECTION BETWEEN OPTIMIZATION AND SAMPLING

To provide an intuition of why the technique of Chebyshev polynomials can help accelerate HMC for
the case of the strongly convex quadratic potentials, we would like to describe the work of gradient
descent with the Chebyshev step sizes Agarwal et al. (2021) in more detail, because we are going to
draw a connection between optimization and sampling to showcase the intuition. Agarwal et al. (2021)
provably show that gradient descent with a scheme of step sizes based on the Chebyshev Polynomials
has an accelerated rate for minimizing strongly convex quadratic functions compared to GD with
a constant step size, and their experiments show some promising results for minimizing smooth
strongly convex functions beyond quadratics via the proposed scheme of step sizes. More precisely,
define f(w) = 1

2w
>Aw, where A ∈ Rd×d is a positive definite matrix which has eigenvalues

L := λ1 ≥ λ2 ≥ · · · ≥ λd =: m. Agarwal et al. (2021) consider applying gradient descent

wk+1 = wk − ηk∇f(wk)

to minimize f(·), where ηk is the step size of gradient descent at iteration k. Let w be the unique
global minimizer of f(·). It is easy to show that the dynamic of the distance evolves as

wk+1 − w∗ = (Id − ηkA)(Id − ηk−1A) · · · (Id − η1A)(w1 − w∗).

Hence, the size of the distance to w∗ at iteration K + 1 is bounded by

‖wK+1 − w∗‖ ≤ max
j∈[d]
|
K∏
k=1

(1− ηkλj)|‖w1 − w∗‖.

This shows that the convergence rate of GD is governed by maxj∈[d] |
∏K
k=1(1 − ηkλj)|. By

setting ηk as the inverse of the Chebyshev root r(K)
k or any permuted root r(K)

σ(k) (see (8) for the

definition), the polynomial
∏K
k=1(1− ηkλ) is actually the K-degree scale-and-shifted polynomial,

i.e.,
∏K
k=1(1 − ηkλ) =

∏K
k=1

(
1− λ

r
(K)

σ(k)

)
= Φ̄k(λ) (see (7) for the definition). It is well-known

in the literature of optimization and numerical linear algebra that the K-degree scale-and-shifted
polynomial satisfies

max
λ∈[m,L]

∣∣Φ̄K(λ)
∣∣ ≤ 2

(
1− 2

√
m√

L+
√
m

)K
= O

((
1−Θ

(√
m

L

))K)
,
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which is restated in Lemma 3 and its proof is replicated in Appendix B of our paper for the reader’s
convenience. Applying this result, one gets a simple proof of the accelerated linear rate of GD
with the proposed scheme of step sizes for minimizing quadratic functions. A nice blog article by
Pedregosa (2021) explains this in detail.

Now we are ready to highlight its connection with HMC. In Lemma 1 of the paper, we restate
a known result in HMC literature, where its proof is also replicated in Appendix B for the
reader’s convenience. The lemma indicates that the convergence rate of HMC is governed by
maxj∈[d] |

∏K
k=1 cos(

√
2λjη

(K)
k )|. By way of comparison to that of GD for minimizing quadratic

functions, i.e., maxj∈[d] |
∏K
k=1(1− ηkλj)|, it appears that they share some similarity, which made

us wonder if we could bound the former by the latter. We show in Lemma 4 that cos(π2
√
x) ≤ 1− x,

which holds for all x ≥ 0, and consequently,

|PCos
K (λ)| :=

∣∣∣∣∣∣
K∏
k=1

cos

π
2

√√√√ λ

r
(K)
σ(k)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
K∏
k=1

1− λ

r
(K)
σ(k)

∣∣∣∣∣∣ =
∣∣Φ̄K(λ)

∣∣ ,
The key lemma above implies that if we set the integration time as η(K)

k = π
2

1√
2r

(K)

σ(k)

, then we get

acceleration of HMC.

B PROOFS OF LEMMAS IN SECTION 2

We restate the lemmas for the reader’s convenience.

Lemma 1. (Vishnoi, 2021) Let x0, y0 ∈ Rd. Consider the following coupling: (xt, vt) =
HMCt(x0, ξ) and (yt, ut) = HMCt(y0, ξ) for some ξ ∈ Rd. Then for all t ≥ 0 and for all
j ∈ [d], it holds that

xt[j]− yt[j] = cos
(√

2λjt
)
× (x0[j]− y0[j]).

Proof. Given (xt, vt) := HMCt(x0, ξ) and (yt, ut) := HMCt(y0, ξ), we have dvt
dt −

dut
dt =

−∇f(xt) + ∇f(yt) = 2Λ(yt − xt). Therefore, we have d2(xt[j]−yt[j])
dt2 = −2λj(xt[j] − yt[j]),

for all j ∈ [d]. Because of the initial condition dx0[j]
dt = dy0[j]

dt = ξ[j], the differential equation
implies that xt[j]− yt[j] = cos

(√
2λjt

)
× (x0[j]− y0[j]).

It is noted that the result also follows directly from the explicit solution (4).

Lemma 2. (Vishnoi, 2021) Let π ∝ exp(−f) = N (0,Λ−1) be the target distribution, where f(x)
is defined on (3). Let ρK be the distribution of xK generated by Algorithm 1 at the final iteration K.
Then for any ρ0 and any K ≥ 1, we have

W2(ρK , π) ≤ maxj∈[d]

∣∣∣ΠK
k=1cos

(√
2λjη

(K)
k

)∣∣∣W2(ρ0, π).

Proof. Starting from x0 ∼ ρ0, draw an initial point y0 ∼ π such that (x0, y0) has the optimal
W2-coupling between ρ0 and π. Consider the following coupling at each iteration k: (xk, vk) =
HMC

η
(K)
k

(xk−1, ξk) and (yk, uk) = HMC
η
(K)
k

(yk−1, ξk) where ξk ∼ N (0, I) is an independent

Gaussian. We collect {xk}Kk=1 and {yk}Kk=1 from Algorithm 1. We know each yk ∼ π, since π is a
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stationary distribution of the HMC Markov chain. Then by Lemma 1 we have

W 2
2 (ρK , π) ≤ E[‖xK − yK‖2]

= E[
∑
j∈[d](xK [j]− yK [j])2]

= E[
∑
j∈[d]

(
ΠK
k=1cos

(√
2λjη

(K)
k

)
× (x0[j]− y0[j])

)2

]

≤
(

maxj∈[d]

(
ΠK
k=1cos

(√
2λjη

(K)
k

))2
)
E[
∑
j∈[d](x0[j]− y0[j])2]

=

(
maxj∈[d]

(
ΠK
k=1cos

(√
2λjη

(K)
k

))2
)
W 2

2 (ρ0, π),

(16)

Taking the square root on both sides leads to the result.

Lemma 3. (e.g., Section 2.3 in d’Aspremont et al. (2021)) For any positive integer K, we have

maxλ∈[m,L]

∣∣Φ̄K(λ)
∣∣ ≤ 2

(
1− 2

√
m√

L+
√
m

)K
= O

((
1−Θ

(√
m
L

))K)
. (17)

Proof. Observe that the numerator of Φ̄K(λ) = ΦK(h(λ))
ΦK(h(0)) satisfies |ΦK(h(λ))| ≤ 1, since

h(λ) ∈ [−1, 1] for λ ∈ [m,L] and that the Chebyshev polynomial satisfies |ΦK(·)| ≤ 1 when
its argument is in [−1, 1] by the definition. It remains to bound the denominator, which is
ΦK(h(0)) = cosh

(
K arccosh

(
L+m
L−m

))
. Since

arccosh
(
L+m
L−m

)
= log

(
L+m
L−m +

√(
L+m
L−m

)2

− 1

)
= log(θ), where θ :=

√
L+
√
m√

L−
√
m
,

we have

ΦK(h(0)) = cosh
(
K arccosh

(
L+m
L−m

))
= exp(K log(θ))+exp(−K log(θ))

2 = θK+θ−K

2 ≥ θK

2 .

Combing the above inequalities, we obtain the desired result:

max
λ∈[m,L]

∣∣Φ̄K(λ)
∣∣ = max

λ∈[m,L]

∣∣∣∣ΦK(h(λ))

ΦK(h(0))

∣∣∣∣ ≤ 2

θK
= 2

(
1− 2

√
m√

L+
√
m

)K
= O

((
1−Θ

(√
m

L

))K)
.

C PROOF OF LEMMA 4

Lemma 4. Denote |PCos
K (λ)| :=

∣∣∣∣∣ΠK
k=1cos

(
π
2

√
λ

r
(K)

σ(k)

)∣∣∣∣∣. Suppose λ ∈ [m,L]. Then, we have for

any positive integer K,
|PCos
K (λ)| ≤

∣∣Φ̄K(λ)
∣∣ . (18)

Proof. We use the fact that the K-degree scaled-and-shifted Chebyshev Polynomial can be written
as,

Φ̄K(λ) = ΠK
k=1

(
1− λ

r
(K)

σ(k)

)
, (19)
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for any permutation σ(·), since {r(K)
σ(k)} are its roots and Φ̄K(0) = 1. So inequality (18) is equivalent

to ∣∣∣∣∣ΠK
k=1cos

(
π
2

√
λ

r
(K)

σ(k)

)∣∣∣∣∣ ≤
∣∣∣∣ΠK

k=1

(
1− λ

r
(K)

σ(k)

)∣∣∣∣ . (20)

To show (20), let us analyze the mapping ψ(x) :=
cos(π2

√
x)

1−x for x ≥ 0, x 6= 1, with ψ(1) = π
4 by

continuity, and show that maxx:x≥0 |ψ(x)| ≤ 1, as (20) would be immediate. We have ψ′(x) =
− π

4
√
x

1
1−x sin(π2

√
x) + cos(π2

√
x) 1

(1−x)2 . Hence, ψ′(x) = 0 when

tan(π2
√
x) = 4

√
x

π(1−x) . (21)

Denote an extreme point of ψ(x) as x̂, which satisfies (21). Then, using (21), we have |ψ(x̂)| =∣∣∣∣ cos(π2
√
x̂)

1−x̂

∣∣∣∣ =

∣∣∣∣ π√
16x̂+π2(1−x̂)2

∣∣∣∣, where we used cos(π2
√
x̂) = π(1−x̂)√

16x̂+π2(1−x̂)2
or

−π(1−x̂)√
16x̂+π2(1−x̂)2

. The denominator
√

16x̂+ π2(1− x̂)2 has the smallest value at x̂ = 0, which

means that the largest value of |ψ(x)| happens at x = 0, which is 1. The proof is now completed.

D A COMPARISON OF THE TOTAL INTEGRATION TIME (JIANG, 2022)

Since the Chebyshev integration time are set to be some large values at some steps of HMC, it
is natural to ask if the number of steps to get an ε 2-Wasserstein distance is a fair metric. In this
section, we consider the total integration time

∑K
k=1 η

(K)
k to get an ε distance as another metric for

the convergence. It is noted that the comparison between HMC with our integration time and HMC
with the best constant integration time has been conducted by Jiang (2022), and our previous version
did not have such a comparison. Below, we reproduce the comparision of Jiang (2022).

Recall the number of iterations to get an ε 2-Wasserstein distance to the target distribution is
K = O

(√
κ log

(
1
ε

))
of HMC with the Chebyshev integration time (Theorem 1 in the paper). The

average of the integration time is

1

K

K∑
k=1

η
(K)
k =

1

K

K∑
k=1

π

2
√

2

1√
r

(K)
σ(k)

=
1

K

K∑
k=1

π

2
√

2

1√
r

(K)
k

,

where we recall that a permutation σ(·) does not affect the average.

Then, if K is even, we can rewrite the averaged integration time as

1

K

K∑
k=1

η
(K)
k =

1

K

π

2
√

2

K/2∑
k=1

 1√
r

(K)
k

+
1√

r
(K)
K+1−k

 .

Otherwise, K is odd, and we can rewrite the averaged integration time as

1

K

K∑
k=1

η
(K)
k =

1

K

π

2
√

2

 1√
r

(K)
(K+1)/2

+

(K−1)/2∑
k=1

 1√
r

(K)
k

+
1√

r
(K)
K+1−k

 .

We will show
1√
r

(K)
k

+
1√

r
(K)
K+1−k

≤ 1√
r

(K)
bK/2c

+
1√

r
(K)
K−bK/2c+1

,

for any k = {1, 2, . . . , bK2 c} soon. Given this, we can further upper-bound the averaged integration
time as

1

K

K∑
k=1

η
(K)
k ≤ π

4
√

2

 1√
r

(K)
bK/2c

+
1√

r
(K)
K−bK/2c+1

 ,
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when K is even; when K is odd, we can upper-bound the averaged integration time as

1

K

K∑
k=1

η
(K)
k ≤ 1

K

π

2
√

2

 1√
r

(K)
(K+1)/2

+
K − 1

2

 1√
r

(K)
bK/2c

+
1√

r
(K)
K−bK/2c+1

 .

Using the definition of the Chebyshev root, we have

r
(K)
bK/2c =

L+m

2
− L−m

2
cos

((
bK2 c −

1
2

)
π

K

)
≈ L+m

2
,

where the approximation is because (bK2 c−
1
2 )π

K ≈ π
2 whenK is large, and hence cos

(
(bK2 c−

1
2 )π

K

)
≈

0. Similarly, we can approximate

r
(K)
K−bK/2c+1 =

L+m

2
− L−m

2
cos

((
K − bK/2c+ 1− 1

2

)
π

K

)
≈ L+m

2

as (K−bK/2c+1− 1
2 )π

K ≈ π
2 when K is large. Also, we can approximate r(K)

(K+1)/2 ≈
L+m

2 when K is
odd and large for the same reason.

Combining the above, the total integration time of HMC with the Chebyshev scheme can be approxi-
mated as

number of iterations× average integration time

=
√
κ log

(
1

ε

)
× 1

K

K∑
k=1

η
(K)
k ≈

√
κ log

(
1

ε

)
× π

2

1√
L+m

.

When κ := L
m is large, the total integration time becomes

√
κ log

(
1

ε

)
× π

2

1√
L+m

= Θ

(
1√
m

log

(
1

ε

))
. (22)

Now let us switch to analyzing HMC with the best constant integration time η = Θ
(

1√
L

)
(see e.g.,

(5), Vishnoi (2021)), which has the non-accelerated rate. Specifically, it needs K = O
(
κ log

(
1
ε

))
iterations to converge to the target distribution. Hence, the total integration time of HMC with the
best constant integration time is

number of iterations×average integration time = κ log

(
1

ε

)
×Θ

(
1√
L

)
= Θ

(√
L

m
log

(
1

ε

))
.

(23)
By way of comparison ((22) vs. (23)), we see that the total integration time of HMC with the proposed
scheme of Chebyshev integration time reduces by a factor

√
κ, compared with HMC with the best

constant integration time.

The remaining thing to show is the inequality

1√
r

(K)
k

+
1√

r
(K)
K+1−k

≤ 1√
r

(K)
bK/2c

+
1√

r
(K)
K+1−bK/2c

, (24)

for any k = {1, 2, . . . , bK2 c}.
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We have
1√
r

(K)
k

+
1√

r
(K)
K+1−k

=
√

2×

 1√
L+m− (L−m)cos

(
(k− 1

2 )π
K

) +
1√

L+m− (L−m)cos

(
(K−k+ 1

2 )π
K

)


=
√

2×

 1√
L+m− (L−m)cos

(
(k− 1

2 )π
K

) +
1√

L+m+ (L−m)cos

(
(k− 1

2 )π
K

)
 .

(25)

Now let us define H(k) :=

 1√√√√L+m−(L−m)cos

(
(k− 1

2 )π
K

) + 1√√√√L+m+(L−m)cos

(
(k− 1

2 )π
K

)
 and

treat k as a continuous variable.

The derivative of H(k) is

H ′(k) =
π

2K
(L−m)sin

((
k − 1

2

)
π

K

)
× 1(

L+m− (L−m)cos

(
(k− 1

2 )π
K

))3/2
− 1(

L+m+ (L−m)cos

(
(k− 1

2 )π
K

))3/2


> 0. (26)

That is, H ′(k) is an increasing function of k when 1 ≤ k ≤ bK2 c, which implies that the inequality
(24). Now we have completed the analysis.
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E EXPERIMENTS

E.1 BAYESIAN LOGISTIC REGRESSION

Table 4: Bayesian logistic regression

HEART dataset (m̂ = 2.59, L̂ = 92.43)
Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob

0.001 Cheby. 1693.71± 63.53 520.43± 62.24 18.54± 2.88 5.69± 1.12 1.00± 0.00
0.001 Const. 312.18± 12.65 80.97± 15.97 6.57± 0.42 1.69± 0.28 1.00± 0.00
0.005 Cheby. 1664.87± 43.72 481.76± 49.00 82.90± 16.51 24.08± 5.72 0.99± 0.00
0.005 Const. 329.48± 13.15 75.78± 17.30 31.87± 2.73 7.40± 2.06 0.99± 0.00
0.01 Cheby. 1648.25± 47.50 508.69± 49.81 157.09± 26.70 48.45± 9.64 0.99± 0.00
0.01 Const. 307.52± 8.77 82.85± 13.88 53.89± 6.37 14.62± 3.28 0.99± 0.00
0.05 Cheby. 1424.21± 54.03 439.88± 56.25 458.56± 51.33 140.51± 16.58 0.98± 0.00
0.05 Const. 242.44± 14.61 56.42± 17.68 103.36± 12.64 23.90± 7.40 0.98± 0.00

BREAST CANCER dataset (m̂ = 1.81, L̂ = 69.28)
Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob

0.001 Cheby. 1037.98± 34.46 575.72± 41.14 9.40± 0.31 5.21± 0.31 1.00± 0.00
0.001 Const. 174.73± 13.91 78.24± 23.28 2.59± 0.29 2.59± 0.29 1.00± 0.00
0.005 Cheby. 1010.49± 24.15 571.03± 36.64 43.09± 1.14 24.35± 1.70 0.99± 0.00
0.005 Const. 173.17± 11.40 79.76± 13.49 11.88± 1.39 11.88± 1.39 0.99± 0.00
0.01 Cheby. 1038.10± 31.48 565.54± 50.51 82.82± 3.51 45.14± 4.44 0.99± 0.00
0.01 Const. 162.64± 9.43 58.79± 16.02 18.92± 2.59 18.92± 2.59 0.99± 0.00
0.05 Cheby. 886.24± 38.92 499.54± 43.99 240.08± 12.55 135.28± 12.04 0.98± 0.00
0.05 Const. 99.48± 10.10 44.70± 13.23 33.25± 6.50 33.25± 6.50 0.98± 0.00

DIABETES dataset (m̂ = 4.96, L̂ = 270.20)
Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob

0.001 Cheby. 726.08± 33.92 424.59± 58.77 11.64± 0.85 6.83± 1.16 0.99± 0.00
0.001 Const. 100.50± 9.32 41.84± 19.33 3.6± 0.31 1.50± 0.68 0.99± 0.00
0.005 Cheby. 731.46± 33.04 395.82± 47.98 54.92± 5.26 29.61± 3.75 0.99± 0.00
0.005 Const. 100.16± 11.83 44.62± 20.81 14.71± 2.52 6.67± 3.37 0.99± 0.00
0.01 Cheby. 687.74± 29.31 399.44± 45.01 93.10± 6.78 53.90± 5.38 0.98± 0.00
0.01 Const. 83.04± 9.36 36.39± 12.43 20.87± 3.31 9.09± 3.25 0.98± 0.00
0.05 Cheby. 546.80± 37.40 330.09± 34.31 206.07± 17.76 125.07± 18.87 0.96± 0.00
0.05 Const. 57.11± 9.52 23.44± 9.57 27.23± 5.18 11.02± 4.34 0.96± 0.00

E.2 SAMPLING FROM A hard DISTRIBUTION

Table 5: Sampling from a distribution π(x) ∝ exp(−fh(x)) whose potential fh(·) is defined on (15).

Step Size Method Mean ESS Min ESS Mean ESS/Sec. Min. ESS/Sec. Acc. Prob
sampling from π(x) ∝ exp(−f0.001(x))

0.001 Cheby. 6222.21± 88.90 453.03± 30.35 114.74± 7.59 8.36± 0.83 1.00± 0.00
0.001 Const. 2098.18± 46.56 63.53± 15.00 82.31± 5.29 2.50± 0.63 1.00± 0.00

sampling from π(x) ∝ exp(−f0.005(x))
0.005 Cheby. 6271.43± 117.71 429.42± 34.52 545.76± 26.10 37.28± 2.29 0.99± 0.00
0.005 Const. 2125.36± 21.87 67.42± 16.51 361.14± 5.65 11.44± 2.76 0.99± 0.00

sampling from π(x) ∝ exp(−f0.01(x))
0.01 Cheby. 6523.21± 95.65 459.48± 38.83 1070.77± 68.78 75.61± 9.79 0.99± 0.00
0.01 Const. 2125.04± 31.83 69.66± 20.75 528.35± 80.17 17.19± 6.34 0.99± 0.00

sampling from π(x) ∝ exp(−f0.05(x))
0.05 Cheby. 6457.21± 110.05 375.97± 30.64 3319.51± 134.92 193.06± 14.49 0.97± 0.00
0.05 Const. 2796.41± 56.89 62.33± 13.26 1893.99± 57.23 42.22± 9.05 0.97± 0.00
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