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Abstract

Availability attacks provide a tool to prevent the unauthorized use of private data
and commercial datasets by generating imperceptible noise and crafting unlearnable
examples before release. Ideally, the obtained unlearnability can prevent algorithms
from training usable models. When supervised learning (SL) algorithms have failed,
a malicious data collector possibly resorts to contrastive learning (CL) algorithms
to bypass the protection. Through evaluation, we have found that most existing
methods are unable to achieve both supervised and contrastive unlearnability, which
poses risks to data protection by availability attacks. Different from recent methods
based on contrastive learning, we employ contrastive-like data augmentations in
supervised learning frameworks to obtain attacks effective for both SL and CL. Our
proposed AUE and AAP attacks achieve state-of-the-art worst-case unlearnability
across SL and CL algorithms with less computation consumption, showcasing
prospects in real-world applications. The code is available at https://github.
com/EhanW/AUE-AAP.

1 Introduction

Availability attacks [2] add imperceptible perturbations to training data, making the subsequently
trained model unavailable. The motivations behind this kind of data poisoning attack involve
protecting private data and commercial datasets from unauthorized use [22]. For example, according
to a report [19], a tech company illegally obtained over 3B facial images as the training set to develop
a commercial facial recognition model. In this type of scenario, availability attacks provide tools
to process user images before release, preserving legibility but impeding subsequent training. In
particular, Huang et al. [22] reduces the accuracy of face recognition of 50 identities in WebFace
[54] from 86% to 16%. In recent years, various availability attacks against supervised learning (SL)
[11–13, 41, 56, 28] have been proposed.
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Figure 1: Attacks against SL
and CL on CIFAR-10.

Meanwhile, contrastive learning (CL) allows people to extract mean-
ingful features from unlabeled data in a self-supervised way. Af-
ter subsequent linear probing or fine-tuning, CL algorithms have
achieved comparable accuracy or even surpassed the performance
of SL [5, 7, 15, 6]. However, most attacks designed for poisoning
SL are ineffective against CL, as shown in Figure 1. It sheds light
on a potential issue of using availability attacks to protect data: a
malicious data collector can traverse both supervised and contrastive
algorithms to effectively leverage collected data. Hence, we intro-
duce worst-case unlearnability (see Section 3.1) as the evaluation
metric for availability attacks to emphasize the demand to deal with a trickier unauthorized data
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Figure 2: Illustration of our proposed method. Separated by a vertical dashed line, the left side shows
the process of generating the poisoning attack, while the right side depicts the training process on the
poisoned dataset. On the generation side, above the horizontal dashed line are the existing methods
based on contrastive error minimization, while below the dashed line are our proposed methods based
on supervised error minimization/maximization (the blue flow). Our attack leverages the stronger
contrastive augmentations to obtain effectiveness against both supervised learning and contrastive
learning algorithms. Label information is involved in both our method and CL-based methods.

collector. In recent years, contrastive error minimization attack is proposed to poison contrastive
learning [16], and then label-dependent components are incorporated into it to simultaneously achieve
supervised unlearnability besides contrastive unlearnability [36, 29]. However, compared to SL-based
ones, these CL-based attacks lack efficiency in poisoning generation, potentially hindering availability
attacks from protecting extensive data in the real world (see Section 5.3). Therefore, an effective as
well as efficient availability attack against both SL and CL is imminent. Specifically, our motivation
for this paper comes from two aspects: 1) A fully functional availability attack needs to be effective
against subsequent supervised and contrastive learning algorithms simultaneously. 2) Attacks based
on supervised learning can be superior in efficiency compared to those based on contrastive learning.
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Figure 3: Attack performance of
our methods on ImageNet-100.

To design a non-CL-based attack that possesses both supervised
and contrastive unlearnability, we start from an interesting obser-
vation that supervised training with contrastive data augmentations
mimics contrastive training to some extent (see Section 4.1). As
shown in Figure 2, this technique of enhancing data augmen-
tations can be easily embodied in two basic supervised attack
frameworks, i.e., error-minimization, and error-maximization, re-
sulting in our proposed AUE and AAP attacks (see Sections 4.2
and 4.3). Enhanced augmentations allow us to craft perturbations
for a contrastive-like reference model. These perturbations im-
plicitly adapt to the contrastive training process and then learn
deceptive patterns that fool contrastive learning. The supervised unlearnability is still preserved since
the generation process is based on supervised optimization.

On experimental side, we evaluate the standard supervised learning algorithm and four representative
contrastive learning algorithms, SimCLR [5], MoCo [7], BYOL [15] and SimSiam [6]. Our pro-
posed AUE and AAP attacks achieve the state-of-the-art worst-case unlearnability on CIFAR-10/100
and Tiny/Mini-ImageNet datasets (see Section 5.2). Specifically, our method exhibits excellent
performance on the ImageNet-100 as presented in Figure 3, showcasing its prospects in real-world
applications. Meanwhile, unlike methods that add additional components to the contrastive error-
minimization framework, we modify the data augmentation in the simpler supervised attack frame-
works, following a minimalist approach to algorithm design. Benefiting from this, our methods are
more efficient, while delivering better performance. We summarize our contributions as follows:

• We evaluate existing availability attacks and point out the potential security risks of using
them to protect data when facing data abusers who will traverse both supervised and
contrastive learning algorithms.

• We start from supervised poisoning approaches and enhance data augmentations to attain
attacks against both supervised and contrastive learning.
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• Our attacks achieve state-of-the-art worst-case unlearnability with less computation con-
sumption and are more adept at handling high-resolution datasets.

2 Background

We will introduce some notions of contrastive learning and availability attacks. Besides, we provide
more preliminaries on contrastive learning in Appendix B.

2.1 Contrastive Learning

Contrastive learning trains feature encoders in a self-supervised way. It first transforms an image into
two views, i.e., a positive pair, using augmentations sampled from a strong augmentation distribution
µ. Two views augmented from different images constitute a negative pair. Extracted features are
trained to be aligned between positive pairs but distinct between negative pairs. It does not require
label information until downstream tasks such as linear probing or fine-tuning. Wang and Isola
[50] introduced two key properties for contrastive learning, alignment and uniformity. The former
measures the similarity of features from positive pairs and the latter reflects the uniformity of feature
distribution on the hypersphere. Let g be a normalized encoder. The alignment loss and uniformity
loss on a dataset Dc are defined as the following:

A(Dc) = E
x∼Dc
π,τ∼µ

[
||g(π(x))− g(τ(x))||22

]
; U(Dc) = log E

x,z∼Dc
π,τ∼µ

[
e−2||g(π(x))−g(τ(z))||22

]
.

Let D′
c be a poisoned version of a clean dataset Dc. The alignment gap and uniformity gap between

clean and poisoned datasets are defined as follows:
AG = A(Dc)−A(D′

c), UG = U(Dc)− U(D′
c). (1)

Intuitively, these gaps characterize the difference between clean features and poisoned features. We
will check the relationship between these gaps and contrastive unlearnability in Section 3.2.

2.2 Basic Availability Attacks

The essence of availability attacks is to prevent a trained model from well generalizing to clean data.
We will revisit two representative approaches to poisoning supervised learning.

Error minimization. Unlearnable example attack (UE) generates poisoning by alternately optimizing
the reference model and perturbations [22]:

min
δ

min
f

E
Dc

[
LSL(x+ δ(x, y), y; f)

]
, (2)

where f is a classifier, LSL(·, ·; ·) is the supervised loss, Dc is a dataset to be processed and δ is a
poisoning map.

Error maximization. Adversarial poisoning (AP) optimizes perturbations through a pre-trained
classifier to equip them with non-robust but useful features from a different label [13]:

min
δ

E
Dc

[
LSL(x+ δ(x, y), y +K; f∗)

]
, (3)

s.t. f∗ ∈ argmin
f

E
Dc

[
LSL(x, y; f)]

]
,

where K is the label shift. Self-ensemble protection (SEP) generates adversarial poisons using several
checkpoints to improve attack performance [4].

Contrastive error minimization. Contrastive poisoning (CP) extends the error minimization
framework to contrastive error minimization to poison contrastive learning [16]:

min
δ

min
g

E
Dc

[
LCL(x+ δ(x, y); g)], (4)

where g is an encoder and LCL(·; ·) denotes the contrastive loss for simplicity. Later, the transferable
unlearnable example attack (TUE) introduces a regularization term called class-wise separability
discriminant to equip CP noises with supervised unlearnability [36]. Then, transferable poisoning
(TP) combines contrastive error minimization with supervised adversarial poisoning to obtain both
supervised and contrastive unlearnability [29]. It is worth mentioning that both TUE and TP leverage
label information in their proposed schemes, while CP requires no label information but lacks stable
effect on supervised learning.
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3 Threat Model

In our threat model, an unauthorized data collector assembles labeled data into a dataset. The access to
label information is reasonable since the collector can crawl individual images from certain accounts
or steal (and annotate) a commercial dataset. A data publisher is supposed to process data before
release using an availability attack such that processed data is resilient to subsequent supervised
learning algorithms as well as contrastive learning algorithms adopted by the data collector. We will
define worst-case unlearnability and discuss the contrastive unlearnability of existing attacks.

3.1 Worst-Case Unlearnability

Suppose an unprocessed dataset Dc is i.i.d sampled from a data distribution D. An availability attack
δ maps a data-label pair (x, y) ∈ Dc to a noise δ(x, y) within an Lp-norm ball Bp(ϵ). In this paper,
we set p = ∞ and ϵ = 8/255. It results in a protected dataset D′

c = {(x+ δ(x, y), y)|(x, y) ∈ Dc}
to which a data collector has only access. For potential algorithms, we refer f to a supervised learning
classifier and g to a contrastive learning encoder beyond which is a linear probing head h. The
goal of the data publisher is to find a poisoning map δ that significantly degrades the generalization
performance of both fδ and hδ ◦ gδ which are trained on D′

c. We define the worst-case unlearnability
across supervised and contrastive learning algorithms of the following form:

min
δ

max(E
D

[
1(fδ(x) = y)

]
,E
D

[
1(hδ ◦ gδ(x) = y)

]
) (5)

s.t. fδ ∈ argmin
f

E
Dc

[
LSL(x+ δ(x, y), y; f)

]
,

gδ ∈ argmin
g

E
Dc

[
LCL(x+ δ(x, y); g)

]
,

hδ ∈ argmin
h

E
Dc

[
LSL(x+ δ(x, y), y;h ◦ gδ)

]
.

It is a fair metric that accurately depicts scenarios facing more cunning data abusers in the real world.
In contrast, other metrics, such as average-case unlearnability, can be heavily influenced by the
attack’s strong preference for a certain algorithm. Our threat model differs from the setting adopted
by He et al. [16] in which the linear probing stage relies on the unprocessed clean data as downstream
tasks; see more discussion in Appendix D.10.

3.2 Existing Attacks against Contrastive Learning

Table 1: Alignment gap, uniformity gap, and
test accuracy(%) of poisoned SimCLR [5]
models. Attacks are grouped according to
whether they are based on contrastive error
minimization. Bold fonts emphasize promi-
nent contrastive unlearnability values.

Attacks AG UG Test Acc.
DC [11] 0.12 0.07 86.1
UE [22] 0.05 0.03 89.0
AR [41] 0.07 0.09 88.8
NTGA [58] 0.12 0.12 86.9
SN [56] 0.08 0.00 90.6
OPS [52] 0.04 0.01 86.7
GUE [28] 0.07 0.03 88.8
REM [14] 0.12 0.04 88.6
EntF [51] 0.01 -0.04 87.5
HYPO [47] 0.11 0.13 86.9
AP [13] 0.18 0.44 48.4
SEP [4] 0.24 0.25 37.3
CP [16] 0.55 0.87 38.7
TUE [36] 0.30 0.76 48.1
TP [29] 0.52 0.82 31.4

In Table 1, we evaluate the attack performance of
existing poisoning approaches against the SimCLR
algorithm on CIFAR-10 and ResNet-18. To better
understand contrastive unlearnability, we also check
alignment and uniformity gaps between clean and
poisoned data defined in Equation (1). In non-CL-
based poisoning attacks, except for AP and SEP, all
other methods fail to deceive the contrastive learning
algorithm. The alignment and uniformity gaps of AP
and SEP attacks are prominently larger than those of
others. CL-based attacks including CP, TUE, and TP
are effective against contrastive learning and possess
huge alignment and uniformity gaps.

The Pearson correlation coefficient (PCC) between
the alignment gap and SimCLR accuracy is −0.82,
and the PCC between the uniformity gap and Sim-
CLR accuracy is −0.88. It reveals that contrastive
unlearnability is highly related to huge alignment and
uniformity gaps. When the encoder is fixed after
poisoned contrastive training, a linear layer learns
to classify poisoned features, i.e., features of poi-
soned (training) data. Note that evaluation is to clas-
sify clean features, i.e., features of clean (test) data.
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Prominent gaps indicate a significant difference between clean and poisoned feature distributions.
Thus, no matter how well the classifier performs on poisoned features, it hardly generalizes to clean
features and the attack is successful. In contrast, small gaps likely imply that clean features are
similar to poisoned features. When gaps are small, the test accuracy is high and the attack fails.

4 Method

Since contrastive loss is related to alignment and uniformity [50], the contrastive error minimization
(CP) attack optimizes the loss directly and obtains contrastive unlearnability. Beyond this, TUE and
TP incorporate additional label-dependent components to obtain supervised unlearnability. However,
optimizing contrastive loss is very time and memory-consuming, impeding their applications in real-
world scenarios. Different from them, we start from more efficient supervised poisoning frameworks
instead to achieve both supervised unlearnability and contrastive unlearnability simultaneously.
The key point to get there is data augmentation. In the rest of this section, we first illustrate how
contrastive learning data augmentations help mimic contrastive learning with supervised models
through empirical observations and intuition from a toy example. In other words, enhancing data
augmentation helps supervised learning implicitly optimize the contrastive loss. Then we combine
this very effective technique with supervised error minimization and maximization frameworks and
propose augmented unlearnable examples (AUE) attacks and augmented adversarial poisoning (AAP)
attacks.

4.1 Mimic Contrastive Learning with Supervised Models

Figure 4: InfoNCE loss de-
creases with CE loss.

Contrastive learning employs strong data augmentations including
resized crop, color jitter, horizontal flip, and grayscale [53, 18],
while supervised learning adopts mild data augmentations such as
horizontal flip and crop. In Appendix C.2, Code 1 shows detailed im-
plementations for these two different settings. Naturally, contrastive
error minimization uses stronger data augmentation compared to
supervised error minimization. However, what if we use strong
contrastive augmentations when optimizing supervised losses? On
CIFAR-10, we train a supervised ResNet-18 classifier using con-
trastive augmentations. At each checkpoint, we log the supervised
cross-entropy (CE) loss and the contrastive InfoNCE loss [33] on the training set. In Figure 4, when
the optimization object CE loss goes down, the InfoNCE loss decreases as well. It indicates that
training a supervised model with contrastive augmentations implicitly optimizes the contrastive loss.
In other words, supervised error minimization mimics contrastive error minimization to some extent.
Therefore, incorporating stronger data augmentation potentially enables availability attacks based on
supervised error minimization or maximization to deceive contrastive learning.

To provide more intuition about this idea, we give a toy example and have a closer look at the
relationship between supervised loss and contrastive loss. For a supervised model f = h ◦ g, assume
g is a normalized feature extractor, h is a square full-rank linear classifier, D is a balanced distribution,
LSL is MSE loss, training error ESL = E

[
LSL

]
, and LCL contains only one negative example. In this

toy example, if LCL and LSL employ the same data augmentation and f is well-trained, it holds with
high probability that LCL < l(ESL), where l(·) is an increasing function. In other words, the upper
bound of contrastive loss decreases as the supervised loss decreases. We have a more detailed and
formal discussion on this toy example in Appendix E.

Based on these interesting observations, instead of adding components to contrastive error minimiza-
tion to achieve supervised unlearnability, we opt for deriving stronger contrastive unlearnability from
supervised error minimization and maximization.

4.2 Augmented Unlearnable Examples (AUE)

Recall unlearnable examples (UE) are generated by supervised error minimization which alternately
updates a reference model and noises in Equation (2). Now we employ contrastive-like strong data aug-
mentation distribution µ and add perturbations in a differentiable way, i.e., π(x+δ(x, y)), π ∼ µ. As
discussed in the previous section, minimizing the augmented supervised loss LSL(π(x+δ(x, y), y; f)
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implicitly minimizes the contrastive loss LCL(x + δ(x, y); g) which appears in contrastive error
minimization, i.e., Equation (4). In other words, supervised error-minimizing noises with enhanced
data augmentation can partially replace the functionality of contrastive error-minimizing noises to
deceive contrastive learning.

(a) (b)
Figure 5: (a) Contrastive losses during SimCLR
training under UE and AUE attacks. (b) Alignment
and uniformity gaps during the SimCLR training
on CIFAR-10 poisoned by our AUE attack.

We can control the intensity of contrastive aug-
mentations in Code 1 via a strength parame-
ter s ∈ [0, 1]. We increase the augmentation
strength and generate the poisoning attack us-
ing Algorithm 1. Implementation details are
shown in Appendix C.3. In Table 2, while UE
attacks do not work for SimCLR on CIFAR-
10 and CIFAR-100, our AUE attacks success-
fully reduce the SimCLR accuracy by 38.9%
and 50.3%. Enhanced data augmentation in-
deed makes supervised error-minimizing noises
effective for contrastive learning. In Figure 5a,
AUE noises largely reduce the contrastive loss
during SimCLR training compared to UE noises. In Figure 5b, we investigate the alignment and
uniformity gaps and discuss more about the poisoned training process in Appendix D.2. The final
gaps of AUE are AG = 0.27,UG = 0.34 while those of UE are AG = 0.05,UG = 0.03.

Algorithm 1 Augmented Unlearnable Examples (AUE)
Require: Augmentation strength s and a corresponding augmentation distribution µs. A labeled training set
Dc = {(xi, yi)}ri=1. An initialized classifier fθ . Total epochs T , model update iterations Tθ , poisons update
iterations Tδ , and perturbation steps Tp. Learning rate αθ, αδ .

Ensure: Perturbations {δi}ri=1

δi ← 0, i = 1, 2, · · · , r ▷ Initialize perturbations
for t = 1, · · · , T do

for tθ = 1, · · · , Tθ do ▷ Update the reference model
Sample a data batch {(xlj , ylj )}

m
j=1 and an augmentation batch {πlj ∼ µs}mj=1

θ ← θ − αθ
m
·
∑m

j=1∇θLSL(πlj (xlj + δlj ), ylj ; fθ)

for tδ = 1, · · · , Tδ do ▷ Update perturbations
Sample a data batch {(xlj , ylj )}

m
j=1

for tp = 1, · · · , Tp do
Sample an augmentation batch {πlj ∼ µs}mj=1

δlj ← Clipϵ

(
δlj − αδ · sign(∇δlj

LSL(πlj (xlj + δlj ), ylj ; fθ))
)
, j = 1, 2, · · · ,m

4.3 Augmented Adversarial Poisoning (AAP)

Table 2: Accuracy drop(%) of SimCLR caused by
basic attacks and our methods.

Datasets Clean UE AUE AP AAP
CIFAR-10 91.3 -2.3 -38.9 -42.9 -52.2
CIFAR-100 63.9 -3.9 -50.3 -38.3 -43.8

Adversarial poisoning (AP) attacks in Equa-
tion (3) first train a supervised reference model,
then generate its adversarial examples. When
replacing mild supervised augmentations with
stronger contrastive ones, the training pro-
cess of the reference model, i.e., minimizing
LSL(π(x), y; f), π ∼ µ concerning f mimics
updating its encoder with contrastive learning. The final reference model f∗ has a contrastive-like
encoder. Then, generating perturbations via minimizing LSL(π(x+ δ(x, y)), y+K; f∗) with respect
to δ is to deceive the contrastive-like model. Consequently, the resulting poisoning attack learns more
about confounding contrastive learning algorithms.

According to Algorithm 2, we increase the augmentation strength s in both reference model pre-
training and noise update where the label translation K = 1. Implementation details are shown in
Appendix C.3. In Table 2, the AAP attack further enlarges the SimCLR accuracy drop of AP by
9.3% on CIFAR-10 and 5.5% on CIFAR-100. Enhanced data augmentations indeed improve the
contrastive unlearnability of supervised error-maximizing noises.
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Algorithm 2 Augmented Adversarial Poisoning (AAP)
Require: Similar to the setting in Algorithm 1.
Ensure: Perturbations {δi}ri=1

δi ← 0, i = 1, 2, · · · , r ▷ Initialize perturbations
for t = 1, · · · , T do ▷ Update the reference model

for tθ = 1, · · · , Tθ do
Sample a data batch {(xlj , ylj )}

m
j=1 and an augmentation batch {πlj ∼ µs}mj=1

θ ← θ − αθ
m
·
∑m

j=1∇θLSL(πlj (xlj ), ylj ; fθ)

for i = 1, · · · , r do ▷ Update adversarial examples
for tp = 1, · · · , Tp do

Sample πi ∼ µs

δi ← Clipϵ

(
δi − αδ · sign(∇δiLSL(πi(xi + δi), yi + 1; fθ))

)

5 Experiments

We will evaluate the worst-case unlearnability of our proposed AUE and AAP attacks on multiple
datasets and compare the poisoning generation efficiency with other methods. Besides, we will check
the efficacy of our method against more evaluation algorithms and the transferability across network
architectures. Then we will perform an ablation study of decoupling argumentation components in
our method.

5.1 Setup

We conduct experiments on CIFAR-10/100 [26], Tiny-ImageNet [27], modified Mini-ImageNet [49],
and ImageNet-100 [38]. ResNet-18 [17] is used for poison generation and evaluation if not otherwise
stated. Our threat model considers the worst-case unlearnability across supervised and contrastive
(self-supervised) algorithms including standard SL, SimCLR, MoCo, BYOL, and SimSiam. We
implement linear probing on the encoder to evaluate contrastive unlearnability.

We adopt AP, SEP-FA-VR, CP, TUE, and TP as baseline methods for the worst-case unlearnability.
Since the generation of untargeted adversarial poisoning is unstable [13], AP and AAP attacks are
targeted if not otherwise stated (see more discussion in Appendix D.5). In particular, only CIFAR-10
results in Table 3 report untargeted AP and AAP. For CP and TUE attacks, we report the best results
across the CL algorithms they depend on (see additional results in Appendix D.6). Detailed settings
for attack implementation and evaluation are shown in Appendix C.

Table 3: Attack Performance (%) on CIFAR-10 and CIFAR-100. The lower the value, the better the
unlearnability.

Attacks CIFAR-10 CIFAR-100
SL SimCLR MoCo BYOL SimSiam Worst SL SimCLR MoCo BYOL SimSiam Worst

None 95.5 91.3 91.5 92.3 90.7 95.5 77.4 63.9 67.9 63.7 64.4 77.4
AP 9.6 41.5 31.5 44.0 42.8 44.0 3.2 25.6 26.6 26.1 28.8 28.8
SEP 2.3 37.3 35.8 42.8 36.7 42.8 2.4 25.2 25.9 26.6 28.4 28.4
CP 11.0 39.3 32.7 41.8 37.9 41.8 74.4 15.2 13.4 16.4 14.1 74.4

TUE 10.1 57.2 51.6 60.1 58.5 60.1 1.0 19.9 19.6 22.3 18.6 22.3
TP 14.8 31.4 54.1 61.8 30.7 61.8 7.5 6.7 21.9 27.0 4.1 27.0

AAP 29.7 32.3 23.2 35.5 34.1 35.5 7.3 20.1 18.6 21.1 21.3 21.3
AUE 18.9 52.4 57.0 58.2 34.5 58.6 6.9 13.6 19.0 19.2 11.9 19.2

5.2 Attack Performance

Worst-case unlearnability. In Table 3, our AAP attack achieves the best worst-case unlearnability
on CIFAR-10 and both AAP and AUE attacks outperform other methods on CIFAR-100. Particularly,
AAP improves the performance by 8.5%/7.5% on CIFAR-10/100 and AUE becomes better than
AAP on CIFAR-100. In other methods, CP loses supervised unlearnability on CIFAR-100 and TUE
is better than TP on both datasets. Furthermore, we evaluate attacks on higher-resolution datasets
including Tiny-ImageNet (64x64) and Mini-ImageNet (84x84) in Table 4. On both datasets, AUE
outperforms other methods in terms of the worst-case unlearnability. Besides, AUE also achieves the
best supervised unlearnability. For AAP, its worst-case unlearnability is better than AP but not as
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good as TUE. Moreover, compared to AP, AAP suffers a trade-off between supervised unlearnability
and contrastive unlearnability.

Comparison between AUE and AAP. On simpler datasets (low resolution, few classes), AAP has
an advantage over AUE. However, on more complex datasets (high resolution, many classes), AUE
outperforms AAP. One possible reason for this could be that optimizing AAP is more challenging.
Firstly, generating adversarial poisoning inherently depends on a well-performing reference classifier.
For instance, Fowl et al. 13 uses a pre-trained ImageNet model, whereas in this paper we train
classifiers from scratch. Additionally, stronger data augmentation used in the reference model training
can affect its accuracy, which in turn impacts the quality of the generated adversarial perturbations.
Enhancing the performance of AAP is an interesting direction for future work.

Algorithm transferability. CL-based methods face the issue of transferability from the generation
CL algorithm and the evaluation CL algorithm. For example, TP is generated using the SimCLR,
which performs well against SimCLR evaluation, but its performance sharply declines when tested
with BYOL. The same phenomenon also occurs with TUE and CP and their worst-case unlearnability
is highly dependent on the appropriate generation algorithm, which you can check in Appendix D.6.
In contrast, our SL-based attacks get rid of this issue because their poisoning generation involves no
CL algorithms.

Table 4: Attack Performance (%) on Mini-ImageNet and Tiny-ImageNet. The lower the value, the
better the unlearnability.

Attacks MINI-IMAGENET TINY-IMAGENET
SL SimCLR MoCo BYOL SimSiam Worst SL SimCLR MoCo BYOL SimSiam Worst

None 66.2 55.3 57.6 48.7 54.5 66.2 53.5 39.6 43.3 33.9 42.4 53.5
AP 11.5 48.9 50.1 44.0 48.5 50.1 11.3 32.8 34.7 27.2 34.5 34.7

TUE 20.7 20.6 21.1 20.8 21.2 21.2 8.5 13.3 15.9 13.4 14.1 15.9
AUE 8.7 15.0 20.4 14.5 18.2 20.4 7.1 10.8 11.7 9.6 11.6 11.7
AAP 24.0 43.8 41.9 40.2 41.8 43.8 18.7 28.4 27.6 25.2 28.2 28.4

5.3 Efficiency of Poisoning Generation

CP TP TUE AUE AAP
0

12

24

36

48

H
ou
rs

Figure 6: Time consumption
of poisoning generation.

In real-world scenarios, availability attacks need to generate pertur-
bations for accumulating data as quickly as possible. For expanding
datasets, like continually updated social media user data, the poison-
ing used for data protection also needs to be updated periodically.
Since contrastive learning involves larger batches (e.g., 512) and a
longer training process (e.g., 1000 epochs), these contrastive error
minimization-based attacks require more time and memory con-
sumption to generate perturbations.

In Figure 6, we report the time cost of poisoning CIFAR-10/100
using the same device. Baseline methods adopt their default con-
figurations. Our supervised learning-based approaches are 3x, 6x,
and 17x faster than TUE, CP, and TP. Additionally, our methods admit smaller batches and simpler
cross-entropy loss which require less memory, allowing for the generation of availability attacks on
larger datasets with fewer devices. Refer to Appendix D.1 for more results about the efficiency of
our methods. Overall, our method is more promising than CL-based methods due to the time and
memory efficiency in real-world applications.

Table 5: Attack performance (%) against SimCLR
k-NN, SupCL and FixMatch.

Attacks CIFAR-10 CIFAR-100
k-NN SupCL FixMatch k-NN SupCL FixMatch

Clean 88.9 94.6 95.7 55.2 72.5 77.0
AUE 54.4 31.5 30.0 13.3 15.6 12.0
AAP 42.6 24.7 18.7 21.7 17.9 25.5

Table 6: Architecture transferability on CIFAR-
10. Evaluation includes SL and SimCLR.

Alg. Attacks ResNet-50 VGG DenseNet MobileNet ViT

SL AUE 16.4 23.2 19.5 17.2 33.4
AAP 8.9 10.7 10.4 12.1 33.0

CL AUE 53.4 48.2 50.5 41.4 45.1
AAP 41.5 41.7 35.3 29.8 40.2

5.4 More Evaluation Algorithms

Besides linear probing, we also apply the k-nearest neighbors (k-NN) algorithm to the feature space
to evaluate the contrastive unlearnability. In Table 5, both AUE and AAP prominently reduce the
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k-NN accuracy. It indicates that the features of poisoned training inputs largely differ from those
of clean test inputs. Non-robust features in imperceptible perturbations heavily affect the encoder’s
behavior and hinder its generalization ability.

In addition to supervised learning and contrastive learning algorithms, we consider two more CL-like
algorithms including supervised contrastive learning, i.e., SupCL [24] and a semi-supervised learning
algorithm FixMatch [45]. FixMatch uses WideResNet [59] and detailed settings are in Appendix C.5.
Table 5 demonstrates that our attacks are still effective against SupCL and FixMatch. It indicates
that our methods can handle more variants derived from supervised learning and contrastive learning
algorithms.

5.5 Transferability across Networks

Since the data protector is unaware of networks used in future training, availability attacks should be
effective for different architectures. We generate AUE and AAP using ResNet-18 and test them on
ResNet-50, VGG-19 [44], DenseNet-121 [21], MobileNet v2 [20, 40], and ViT [10]. In Table 6, both
supervised and contrastive unlearnability of AUE and AAP can transfer across these architectures.

5.6 Ablation Study of Decoupling Augmentations

In settings of AUE and AAP, we control the strength of ResizedCrop, ColorJitter, and Grayscale
through a single strength hyperparameter s for the poison generation, as shown in Code 1. In
Table 7, we decouple the strength hyperparameters for these three random transforms and evaluate
the resulting attacks against SimCLR. Different factors show different influences on the contrastive
unlearnability for AUE and AAP. For example, enhancing ResizedCrop strength alone is less effective
than enhancing Grayscale alone in AUE generation. However, adjusting three factors together
generally outperforms other options in conclusion.

Table 7: SimCLR accuracy(%) of attacks generated with decoupled strength parameters on CIFAR-10.
For example, 0-0-s means that ResizedCrop strength is 0, ColorJitter strength is 0, and Grayscale
strength is s.

Attacks 0-0-0 0-0-s 0-s-0 s-0-0 0-s-s s-0-s s-s-0 s-s-s

AUE 83.5 58.7 79.4 88.7 60.8 56.2 87.7 52.4
AAP 52.3 52.0 52.9 44.9 51.4 42.2 44.8 39.1

6 Related Works

When generating availability attacks, the gradient of perturbations is often computed through data
augmentations. In literature, SL-based attacks generally use mild supervised data augmentation, i.e.,
RandomCrop and RandomHorizontalFlip [13]. The expectation over transformation (EOT) technique
[1] adopted by Fu et al. [14] first samples several such mild augmentations and then computes the
average gradient over them. Note that our proposed method is not a variant of EOT. CL-based attacks
use contrastive augmentations [16, 36, 29]. To our knowledge, we are the first to use contrastive-like
strong data augmentations in SL-based poisoning frameworks. Besides, we provide additional related
works on availability attacks in Appendix A.

7 Conclusion

Since contrastive learning algorithms bring new challenges to protect data using availability attacks,
we explore effective attacks against both supervised and contrastive learning. We introduce a very
effective modification of data augmentation in supervised poisoning frameworks and propose attacks
achieving superior performance and efficiency compared to existing methods, offering more potential
in real-world applications. Considering availability attacks still face obstacles such as adversarial
training mitigation and poisoning ratio sensitivity, addressing these challenges while maintaining
both supervised and contrastive unlearnability will be an important direction for our future research.
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A Additional Related Works

Availability attacks for supervised learning include error-minimizing noises [22], adversarial example
poisoning [13, 4], neural tangent generalization attack [58], generative poisoning attack [11], au-
toregression perturbation [41], one-pixel perturbation [52], convolution-based attack [39], synthetic
perturbation [56], and game-theoretic unlearnable examples [28]. Yu et al. [56] illustrated linearly
separable perturbations work as shortcuts for supervised learning. Robust error-minimizing noises
[14], entangled features strategy [51], and hypocritical perturbation [47] were designed to deceive
adversarial training. Contrastive poisoning [16] aimed at poisoning contrastive learning. Transferable
unlearnable examples [36] and transferable poisoning [29] improved the supervised unlearnability of
contrastive poisoning. Zhang et al. [60] proposed to generate label-agnostic noises with cluster-wise
perturbations. Chen et al. [3] introduced CLIP-guided unlearnable perturbation generators that can
transfer across different datasets.

On the defense side, adversarial training can largely mitigate the unlearnability [46]. Liu et al.
[30], Qin et al. [35], Zhu et al. [61] leverages crafted data augmentations as defense. Sandoval-Segura
et al. [42] suggests that the orthogonal projection technique is effective against class-wise attacks.
Diffusion models have been proposed to purify unlearnable perturbations [23, 9]. Yu et al. [57]
proposed a VAE-based purification method that requires no additional clean data. Qin et al. [34]
introduced a benchmark for availability attacks.

B Contrastive Learning

Here we introduce Info-NCE-based contrastive learning. As shown in Code 1, strong augmentation
is a key component in contrastive learning. Different augmented views of an image focus on various
details. If x,xpos are two augmented views of the same image, we say (x,xpos) is a positive pair.
Conversely, a negative pair (x,xneg) contains two augmented views of two different images. Given
an encoder g, we denote z = g(x) for simplicity and the InfoNCE loss is defined as:

LInfoNCE =
1

N

∑
i

s(zi, z
′
i)

1
N

∑
j s(zi, z′

j)
,

where {(zi, z
′
i)}Ni=1 is a set of features of positive pairs and {(zi, z

′
j)}Nj=1 is a set of features of

negative pairs for each xi; the function s(z, z′) = exp( z·z′⊤

T ||z||||z′|| ) with a temperature parameter T .
This object function aims to maximize the cosine similarity of positive pairs while minimizing the
cosine similarity of negative pairs.

C Experiment Details

C.1 Datasets and Networks

CIFAR. CIFAR-10/CIFAR-100 [26] consists of 50000 training images and 10000 test images in
10/100 classes. All images are 32× 32 colored ones.

Tiny-ImageNet. Tiny-ImageNet classification challenge [27] is similar to the classification challenge
in the full ImageNet ILSVRC [38]. It contains 200 classes. The training has 500 images for each
class and the test set has 100 images for each class. All images are 64× 64 colored ones.

Mini-ImageNet. Mini-ImageNet dataset was originally designed for few-shot learning [49]. We
modify it for a classification task. The modified dataset contains 100 classes. The training set has 500
images for each class. The test set has 100 images for each class. All images are 84× 84 colored
ones.

ImageNet-100. ImageNet-100 is a subset of ImageNet-1k Dataset from ImageNet Large Scale Visual
Recognition Challenge 2012 [38]. It contains 100 random classes. The training set has 130,000
images. The test set has 5,000 images. Images are processed to 224x224 colored ones as input data
to models.

ResNet. On CIFAR-10/CIFAR-100, we set the kernel size of the first convolutional layer to 3 and
removed the following max-pooling layer. On other datasets, we do not modify the models.
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C.2 Data Augmentation

In Code 1, we show the different implementations of data augmentation between supervised learning
and contrastive learning. For supervised learning, we consider the typical augmentations including
Crop and HorizontalFlip. For contrastive learning, we consider the typical augmentations including
ResizedCrop, HorizontalFlip, ColorJitter, and Grayscale, and its default strength s = 1. In the
generation process of our AUE and AAP attacks, we replace the supervised augmentations with
contrastive-like augmentations of a strength parameter s.

Code Listing 1: Different data augmentations used in supervised learning and contrastive learning on
CIFAR-10/100 datasets. The intensity of contrastive augmentations can be adjusted via strength s.
# Supervised augmentations
Compose([RandomCrop(size=32, padding=4), RandomHorizontalFlip(p=0.5),

ToTensor ()])
# Contrastive augmentations
s = 1.0 # Strength is 1.0 by default for contrastive learning.
Compose([RandomResizedCrop(size=32, scale=(1-0.9*s, 1.0)),

RandomHorizontalFlip(p=0.5),
RandomApply([ColorJitter(brightness=0.4*s, contrast=0.4*s,

saturation=0.4*s, hue=0.1*s)], p=0.8*s),
RandomGrayscale(p=0.2*s), ToTensor ()])

C.3 Details of AUE and AAP

We leverage differentiable augmentation modules in Konia2 [37] which is a differentiable computer
vision library for PyTorch. The contrastive augmentations for Tiny/Mini-ImageNet and ImageNet-100
are similar to those for CIFAR-10/100 in Code 1 but only adapt the image size.

AUE. We train the reference model for T = 60 epochs with SGD optimizer and cosine annealing
learning rate scheduler. The batch size of training data is 128. The initial learning rate αθ is 0.1,
weight decay is 10−4 and momentum is 0.9. In each epoch, we update the model for Tθ = 391
iterations and update poisons for Tδ = 391 iterations. For ImageNet-100, we set Tθ = Tδ = 1016.
The PGD process for noise generation takes Tp = 5 steps with step size αδ = 0.8/255. The
augmentation strength s = 0.6 for CIFAR-10 and s = 1.0 for CIFAR-100, Tiny-ImageNet, Mini-
ImageNet, and ImageNet-100. Additional experiments of the selection of strength parameters are
shown in Appendix D.4.

AAP. We train the reference model for T = 40 epochs, and the initial learning rate αθ is 0.5.
The PGD process for noise generation takes Tp = 250 steps with step size αδ = 0.08/255. Other
settings are the same as AUE. The label translation is K = 1. The augmentation strength s = 0.4 for
CIFAR-10 and s = 0.8 for CIFAR-100, Tiny-ImageNet, Mini-ImageNet, and ImageNet-100.

Besides targeted AP and AAP attacks described in Equation (3) and Algorithm 2, untargeted attacks
refer to maximizing the loss between the image and its true label, rather than minimizing the loss
between the image and a shifted label. We only report untargeted attack results in Table 3 for
CIFAR-10 and discuss them more in Appendix D.5.

Sample-wise Attack. When a poisoning map δ(x, y) only depends on label y, the resulting attack is
called a class-wise attack; otherwise, it is a sample-wise attack. In this paper, we generate sample-wise
attacks.

C.4 Baseline attacks.

A CP attack implements contrastive error minimization on a specific contrastive learning algorithm.
There are three specified attacks including CP-SimCLR, CP-MoCo, and CP-BYOL. Similarly, TUE
has three specified attacks including TUE-SimCLR, TUE-MoCo, and TUE-SimSiam. We report the
best results of CP attacks and TUE attacks according to the worst-case unlearnability. Besides, we
provide detailed results in Appendix D.6 for more discussion.

2https://github.com/kornia/kornia
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C.5 Evaluation Algorithms

Contrastive learning. The setup for SimCLR, MoCo, BYOL, and SimSiam are shown in Table 8.
The 100-epoch linear probing stage uses an SGD optimizer and a scheduler that decays 0.2 at 60, 75,
and 90 epochs. The probing learning rate is 1.0 for SimCLR, MoCo, BYOL, and 5.0 for SimSiam
on CIFAR-10/100, Tiny/Mini-ImageNet. On ImageNet-100, the unsupervised contrastive learning
optimizes 200 epochs and the linear probing uses a learning rate of 10.0. Other settings are the same
as other datasets. After generating our attacks on CIFAR-10/100, we report average test accuracy
after 3 evaluations with random seeds.

Supervised learning. We augment the training data by RandomHorizontalFlip and RandomCrop with
padding size l/8 on CIFAR-10/100 and Tiny/Mini-ImageNet. l is the image size. On ImageNet-100,
we augment using RandomResizedCrop and RandomHorizontalFlip.

SupCL and FixMatch. We use ResNet-18 for SupCL evaluation on CIFAR-10 and CIFAR-100.
For FixMatch evaluation, we use WideResNet-28-2 and 4000 labeled data on CIFAR-10; we use
WideResNet-28-8 and 10000 labeled data on CIFAR-100.

Table 8: Details of supervised and contrastive evaluations.
SL SimCLR MoCo BYOL SimSiam

Batch size 512 512 512 512 512
Epochs 200 1000 1000 1000 1000
Loss function CE InfoNCE InfoNCE MSE Similarity
Optimizer SGD SGD SGD SGD SGD
Learning rate 0.5 0.5 0.3 1.0 0.1
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Momentum 0.9 0.9 0.9 0.9 0.9
Scheduler Cosine Cosine Cosine Cosine Cosine
Warmup 10 10 10 10 10
Temperature - 0.5 0.2 - -
Encoder momentum - - 0.99 0.999 -

D Additional Experiments

D.1 Computation Consumption

We report the time consumption of generating AUE and AAP attacks. For CIFAR-10/100, Tiny/Mini-
ImageNet, experiments are conducted using a single NVIDIA GeForce RTX 3090 GPU. For
ImageNet-100, experiments are conducted using a single NVIDIA A800 GPU. On CIFAR-10/100,
AUE/AAP costs around 2.7/2.2 hours. On Mini-ImageNet, AUE/AAP costs around 2.5/2 hours. On
Tiny-ImageNet, AUE/AAP costs around 2.5/3.8 hours. On ImageNet-100, AUE/AAP costs around
12/10 hours. In comparison, on CIFAR-10/100 and using the same device, CP-SimCLR costs around
48 hours, TUE-MoCo costs around 8.5 hours, and TP costs around 16 hours to generate poisons. Our
supervised poisoning attacks are much more efficient than contrastive poisoning attacks.

D.2 Training Process on Poisoned Data

Figure 7: Training process on poisoned CIFAR-10.
Left: Supervised learning. Right: SimCLR.

In Figure 7, we evaluate the training and test
accuracy during SL and SimCLR training on
poisoned data. In very early epochs where the
training underfits the poisoned data, checkpoints
from both SL and SimCLR possibly process
weak usability. After a few epochs, the test
accuracy rapidly goes down to an unusable level.
For SimCLR, the accuracy slowly increases in
the middle and later stages of training. It aligns
with the overall trend of gradually decreasing
uniformity gap and relatively stable alignment gap as shown in Figure 5b for AUE.
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D.3 Visualization

We scale imperceptible perturbations from [-8/255, 8/255] to [0,1] and show their images in Figure
8. Enhanced data augmentations endow AUE with more complicated patterns than UE. In terms of
frequency, they are more high-frequency than UE. Since contrastive augmentations include grayscale
that squeezes low-frequency shortcuts [30], attacks against CL first need to come through them and
thus prefer high-frequency patterns. Moreover, we check the class-wise separability of perturbations
using t-SNE visualization [48] in Figure 8. Perturbations from AUE and T-AAP are less separable
than those from UE and T-AP and coincide with the characteristics of perturbations from contrastive
error minimization [16].

(a) (b)

Figure 8: (a) Perturbation images of availability attacks on CIFAR-10. (b) T-SNE visualization of
perturbations. In each figure, the top row includes attacks that are not effective against contrastive
learning, and the bottom row includes attacks that have contrastive unlearnability.

D.4 Strength Selection

(a) (b)
Figure 9: (a) Influence of augmentations in AUE.
(b) Influence of augmentations in AAP.

AUE. We gradually increase the data augmen-
tation strength s in the supervised error min-
imization according to Algorithm 1. In Fig-
ure 9a, the SimCLR accuracy prominently de-
creases as the strength grows, while the super-
vised learning accuracy slightly increases. Com-
pared to UE, our AUE attacks largely improve
contrastive unlearnability while keeping simi-
lar supervised unlearnability. On CIFAR-10,
too strong strengths might compromise the un-
learnability. Thus, we generate our augmented
unlearnable example (AUE) attacks taking s = 0.6 for CIFAR-10, and s = 1.0 for CIFAR-100.

Table 9: Alignment and uniformity
gaps of AUE with different strengths.

Strength AG UG Accuracy

s = 0.0 0.14 0.07 83.5
s = 0.2 0.21 0.24 64.1
s = 0.4 0.25 0.28 56.7
s = 0.6 0.27 0.34 52.4

AAP. We gradually increase the data augmentation
strength s in the supervised error maximization according to
Algorithm 2. In Figure 9b, the SimCLR accuracy decreases
with the strength, while the supervised learning accuracy
slightly increases. Proper augmentation strengths improve
the contrastive unlearnability but too large s might introduce
difficulty in poison generation and harm the supervised un-
learnability. We select s = 0.4 for CIFAR-10 and s = 0.8
for CIFAR-100.

Strength and Gaps On CIFAR-10, we gradually increase the augmentation strength from 0 to
the default setting, i.e. s = 0.6 in the generation of AUE attacks and evaluate the alignment gaps,
uniformity gaps, and the SimCLR Accuracy in Table 9. In this case, the larger the gaps, the lower the
accuracy of SimCLR.

D.5 Targeted and Untargeted AAP

Instead of Equation (3), the untargeted attack refers to the following optimization:

max
δ

E
Dc

[
LSL(x+ δ(x, y), y; f∗)

]
.
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In a targeted attack, the perturbations for a class of data are optimized to fit another label, so they
finally contain the non-robust feature of the target class. However, there is no consistent target
label for a class of data in an untargeted attack. Since availability attacks create shortcuts for the
classification task [56], the untargeted attack becomes more difficult than the targeted one when the
number of classes increases. [13] also reports that the generation of untargeted attacks is unstable
and they focus on targeted attacks on more complex datasets. Thus, we only perform untargeted AAP
attacks on the simple dataset CIFAR-10 and report the results in Table 3. As a complement to it, we
present the performance of targeted attacks on CIFAR-10 in Table 10, where the untargeted attacks
are better than targeted ones in the worst-case unlearnability.

Table 10: Targeted and untargeted AP and AAP attacks on CIFAR-10.
Attacks SL SimCLR MoCo BYOL SimSiam Worst

AP Untargeted 9.6 41.5 31.5 44.0 42.8 44.0
Targeted 9.5 48.4 53.8 53.0 51.1 53.8

AAP Untargeted 29.7 32.3 23.2 35.5 34.1 35.5
Targeted 9.2 39.1 40.4 43.3 42.1 43.3

D.6 Additional results for CL-based attacks

CP and TUE attacks are based on contrastive error minimization. The poisoning generation depends
on a specific contrastive learning algorithm. For example, CP-SimCLR is generated by minimizing
the contrastive error of SimCLR. To check the effect of generation algorithm selection on the worst-
case unlearnability, we present detailed attack performance of specified CP and TUE attacks on
CIFAR-10/100 in Table 11. For CP attacks, only CP-BYOL is effective against supervised learning
on CIFAR-10 and no variants work for SL on CIFAR-100. For TUE attacks, the TUE-MoCo is
significantly better than other variants on both CIFAR-10 and CIFAR-100.

Table 11: Detailed attack performance of CP and TUE attacks by specifying the underlying algorithm
for poisoning generation.

Attacks CIFAR-10 CIFAR-100
SL SimCLR MoCo BYOL SimSiam Worst SL SimCLR MoCo BYOL SimSiam Worst

CP-SimCLR 94.5 38.7 69.3 79.5 29.2 94.5 74.7 10.5 30.7 22.6 7.7 74.7
CP-MoCo 94.5 53.7 47.9 56.8 47.1 94.5 74.4 15.2 13.4 16.4 14.1 74.4
CP-BYOL 11.0 39.3 32.7 41.8 37.9 41.8 74.7 29.7 35.5 35.7 29.5 74.7

TUE-SimCLR 10.6 48.1 71.2 79.5 39.0 79.5 1.0 16.9 36.7 40.6 7.8 40.6
TUE-MoCo 10.1 57.2 51.6 60.1 58.5 60.1 1.0 19.9 19.6 22.3 18.6 22.3

TUE-SimSiam 9.9 82.5 80.7 84.3 81.8 84.3 1.1 33.9 31.0 40.9 10.3 40.9

D.7 Poisoning Budget

In the main body, we consider the poisoning attacks constrained in a L∞-norm ball with radius
8/255. The constraint is to ensure perturbations are imperceptible to human eyes. We investigate
the influence of different poisoning budgets. AUE and AAP attacks are generated with poisoning
budgets of 2/255, 4/255, 6/255 and are evaluated by SL and SimCLR. In Table 12, the larger the
poisoning budgets, the better the attack performance.

Table 12: Performance(%) of attacks generated
with different poisoning budgets on CIFAR-10.

Budget AUE AAP

SL
2/255 34.5 50.7
4/255 28.5 19.7
6/255 26.8 12.3

SimCLR
2/255 84.8 87.0
4/255 70.1 66.6
6/255 59.4 51.1

Table 13: Performance(%) of attacks with differ-
ent poisoning ratios on CIFAR-10.

Ratio AUE AAP

SL
95% 75.6 82.1
90% 82.2 86.6
80% 87.6 89.8

SimCLR
95% 69.7 76.8
90% 74.5 82.1
80% 79.7 85.5
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D.8 Poisoning Ratio

Availability attacks are sensitive to the proportion of poisoned data in the dataset and usually need to
poison the whole dataset [22, 13]. In the main body, we report results when the poisoning ratio is
100%. Here, we investigate the influence of the poisoning ratio on the attack performance of AUE
and AAP. Table 13 illustrates that our augmented methods inherit the vulnerability to poisoning ratio
from basic approaches, i.e. UE and AP, though AUE is more robust than AAP. This characteristic
also necessitates the prompt processing of newly acquired clean data, imposing higher efficiency
demands on the generation of attacks.

D.9 Defense

On the defense side against availability attacks, AT [31] and AdvCL [25]) applied adversarial
training in supervised learning and contrastive learning respectively; ISS [30] and UEraser [35]
leveraged designed data augmentations to eliminate supervised unlearnability; AVATAR [9] employed
a diffusion model to purify poisoned data. In Table 14, we evaluate our attacks through these defense
methods as well as SimCLR with Cutout [8], Random noise, and Gaussian Blur. The defensive
budget for AT and AdvCL is 8/255; the length parameter for Couout is 8; the kernel size for Gaussian
Blur is 3; the variance for Random noise is 8/255.

The defense performance of a method differs when facing different attacks. For example, UEraser
can recover the accuracy of TUE-SimCLR from 10.6% to above 92.7%, while its effect on our AUE
attack is much weaker. At the cost of a significant amount of extra training time, adversarial training,
i.e. AT and AdvCL, can increase accuracy to around 80%. ISS mitigates the supervised unlearnability
of evaluated attacks back to levels close to 85%, but its Grayscale component may even have negative
effects. Gaussian Blur is more effective than Cutout and Random noise for contrastive learning.

Recently, diffusion models have provided a powerful tool to purify image perturbations [55, 32, 43].
Here we evaluate AVATAR which employs a diffusion model trained on the CIFAR-10 training
dataset. From the table, AVATAR generally achieves the best defense against our proposed attacks,
but the final accuracy still exhibits a gap compared to training with clean data. We believe it’s an
interesting and worthy future direction to improve attacks’ resilience to potential defenses while
maintaining algorithm transferability

Table 14: Performance(%) under defenses on
CIFAR-10. Here TUE is based on SimCLR.

Defense AUE AAP AP TUE

SL

No Defense 18.9 9.2 9.5 10.6
UEraser 63.2 64.7 68.0 92.7

-Lite 60.6 66.8 70.7 92.2
-Max 72.8 79.5 80.2 93.2

ISS 82.6 82.3 81.7 82.7
-Grayscale 18.2 9.1 11.4 28.0
-JPEG 84.9 84.3 84.6 82.1

AVATAR 85.0 88.0 87.7 83.2
AT 83.8 81.6 81.0 81.7

SimCLR

No Defense 52.4 39.1 48.4 48.1
Cutout 51.8 37.9 49.2 49.6
Random Noise 60.5 62.4 66.4 70.0
Gaussian Blur 69.1 76.7 75.5 79.3
AVATAR 83.1 80.8 81.1 83.0
AdvCL 80.9 78.4 77.5 80.1

Figure 10: Clean and poisoned linear probing
on CIFAR-10.

D.10 Discussion of Clean Linear Probing

While our threat model linear probes on poisoned data, He et al. [16] use clean data for linear
probing instead. In Figure 10, we compare the final classification performance of SimCLR models
in these two settings. Feature extractors are trained on poisoned data and are fixed. We focus on
the classification performance after linear probing on clean or poisoned data. While CP and TUE
obtain similar attack performance in both cases, clean linear probing can mitigate SL-based attacks
including AP, SEP-FA-VR, AAP, and AUE. On one hand, for SL-based poisoning, the dissimilarities
between clean features and poisoned features hinder a classifier head obtained by poisoned linear
probing in generalizing to clean features, as discussed in Section 3.2. However, clean features still
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contain useful information and can derive another classifier head to perform classification. On the
other hand, contrastive error-minimizing noises confuse the feature extractor directly such that even
clean data fail to activate useful features for classification. But in general, given a responsible data
publisher who protects data using availability attacks before release, an unauthorized data collector
has no access to unprocessed data for clean linear probing. Thus, it is sufficient to achieve contrastive
unlearnability with poisoned linear probing in real scenarios.

E Toy Example

We study a model f = h ◦ g : Rd → Rn with a normalized feature extractor g : Rd → Rn such
that ||g(x)|| ≡ 1 and a full rank linear classifier h : Rn → Rn in the sense that h(z) = Wz + b
with a full rank square matrix W ∈ Rn×n. By singular values decomposition (SVD), W = UΣV
with orthogonal matrices U, V ∈ Rn×n and Σ = diag(σ1, · · · , σn), σ1 ≥ · · · ≥ σn > 0. Let D be a
balanced data distribution, i.e. each class would be sampled with the same probability, Dx be the
margin distribution, and µ be an augmentation distribution. Assume the supervised loss LSL is the
mean squared error, and the contrastive loss LCL contains only one negative example:

LSL(x, y, π) =
1

n
||h ◦ g(π(x))− ey||2

LCL(x,x
−, π, τ, ρ) = log(1 +

eg(π(x))
⊤g(ρ(x))

eg(π(x))⊤g(τ(x−))
).

Proposition E.1. Let ESL = ED,µ

[
LSL(x, y, π)

]
. With probability at least 1− 4

√
ESL, it holds

LCL(x,x
−, π, τ, ρ) <

1

n
log(1 +

σn

σn − 2n
√
ESL

)

+
n− 1

n
log(1 +

σ2
1σn − σn(1−

√
2n
√
ESL)

2

σ2
1σn − 2nσ2

1

√
ESL

).

Remark E.2. 1) Assumptions of a square matrix and positive singular values are necessary. Oth-
erwise, the dimensional reduction of feature space impairs the relation between supervised and
contrastive losses. 2) Since supervised losses contain limited information about negative pairs, this
inequality is naturally loose. However, in the case that supervised learning fits very well, it at least
implies that positive features g(τ(x)) are closer to g(π(x)) than negative features g(ρ(x−)).

E.1 Lemmas

Lemma E.3. For any z ∈ Rn,

σn||z|| ≤ ||Wz|| ≤ σ1||z||.

Proof. Denote z̃ = (z̃1, · · · , z̃n)⊤ = V z. Since orthogonal matrices preserve the norm,

||Wz|| = ||UΣV z|| = ||Σz̃|| =

√√√√ n∑
i=1

σ2
i z̃i

2,

σn||z|| = σn||z̃|| ≤

√√√√ n∑
i=1

σ2
i z̃i

2 ≤ σ1||z̃|| = σ1||z||.

Lemma E.4. If ESL ≤ ϵ, then with probability at least 1−
√
ϵ

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ,

where (x, y) ∼ D, π ∼ µ.
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Proof. As

ESL = E
(x,y)∼D

π∼µ

[ 1
n
||h ◦ g(π(x))− ey||2

]
,

by Markov’s inequality, it has

Pr(
1

n
||h ◦ g(π(x))− ey||2 ≥

√
ϵ) ≤

√
ϵ.

Lemma E.5. If ESL ≤ ϵ, then with probability at least 1− 2
√
ϵ

g(π(x))⊤g(τ(x)) > 1− 2n
√
ϵ

σn
,

where x ∼ Dx, π, τ ∼ µ.

Proof. By Lemma E.4, with probability at least 1− 2
√
ϵ,

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ and ||h ◦ g(τ(x))− ey|| <

√
n
√
ϵ.

By the triangle inequality,

||h ◦ g(π(x))− h ◦ g(τ(x))|| < 2

√
n
√
ϵ

Since g is normalized, by Lemma E.3 we have

g(π(x))⊤g(τ(x)) = 1− 1

2
||g(π(x))− g(τ(x))||2

≥ 1− 1

2σ2
n

||h ◦ g(π(x))− h ◦ g(τ(x)||2

> 1− 2n
√
ϵ

σn
.

Lemma E.6. Assume D is a balanced dataset. If ESL ≤ ϵ, then with probability at least 1 − 2
√
ϵ,

one of the following two conditions holds

1. with probability n−1
n ,

g(π(x))⊤g(τ(x−)) < 1− (1−
√
2n

√
ϵ)2

σ2
1

;

2. with probability 1
n ,

g(π(x))⊤g(τ(x−)) ≤ 1.

Proof. 1. With probability n−1
n , for (x, y), (x−, y−) ∼ D, y ̸= y−. By Lemma E.4, with

probability at least 1− 2
√
ϵ,

||h ◦ g(π(x))− ey|| <
√
n
√
ϵ and ||h ◦ g(τ(x−))− ey− || <

√
n
√
ϵ.

By the triangle inequality,

||g(π(x))− g(τ(x−))|| ≥ 1

σ1
||h ◦ g(π(x))− h ◦ g(τ(x−))||

≥ 1

σ1
(||ey − ey− || − ||h ◦ g(π(x))− ey|| − ||h ◦ g(τ(x−))− ey− ||)

>

√
2− 2

√
n
√
ϵ

σ1
.
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Since g is normalized,

g(π(x))⊤g(τ(x−)) = 1− 1

2
||g(π(x))− g(τ(x−))||2

< 1− (1−
√
2n

√
ϵ)2

σ2
1

.

2. As we assume D is a balanced dataset, with probability 1
n , for (x, y), (x−, y−) ∼ D,

y = y−. Since g is normalized,

g(π(x))⊤g(τ(x−)) = 1− 1

2
||g(π(x))− g(τ(x−))||2

≤ 1− 1

2σ2
1

||h ◦ g(π(x))− h ◦ g(τ(x−))||2

≤ 1.

E.2 Proof of Proposition E.1

Proof. Let ESL = ϵ. Combining Lemma E.5 and Lemma E.6, for a sample x and its negative sample
x− i.i.d from Dx, and data augmentation method π, τ , ρ i.i.d from µ, with probability at least
1− 4

√
ESL, it holds that

LCL(x, x
−, π, τ, ρ) =− log

eg(π(x))
⊤g(τ(x))

eg(π(x))⊤g(τ(x)) + eg(π(x))⊤g(ρ(x−))

= log(1 +
eg(π(x))

⊤g(ρ(x−))

eg(π(x))⊤g(τ(x))
)

<
n− 1

n
log(1 +

1−
(1−

√
2n
√

ESL)
2

σ2
1

1− 2n
√

ESL
σn

) +
1

n
log(1 +

1

1− 2n
√

ESL
σn

)

=
1

n
log(1 +

σn

σn − 2n
√
ESL

) +
n− 1

n
log(1 +

σ2
1σn − σn(1−

√
2n

√
ESL)

2

σ2
1σn − 2nσ2

1

√
ESL

).
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize our work in the abstract and list our contribution at the end of
the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5.2, we discuss limitations of the AAP attack. In Appendix D, we
discuss challenges inherited from basic availability attacks such as defensive methods and
poisoning ratio sensitivity.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide theoretic analysis for a toy model to illustrate the intuition of our
proposed method. The formal statement and proof are shown in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details to reproduce our experiments in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public datasets in experiments and provide code in the supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These setting and details are described in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In Tables 3 and 4, we report accuracy after 3 evaluations with random seeds for
fair comparison. Due to space constraints, we did not report error bars in the table, which is
common in papers within this field.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report computation consumption of our method in Appendix D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the code of ethics and obey it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in the paper that the availability attacks provide a tool to protect
private and commercial data.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
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11. Safeguards
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Answer: [NA]
Justification: Our paper poses no such risks.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use public GitHub repositories and public packages. We cite them in our
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new assets are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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