Under review as a conference paper at ICLR 2025

SGM: A STATISTICAL GODEL MACHINE FOR RISK-
CONTROLLED RECURSIVE SELF-MODIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recursive self-modification is increasingly central in AutoML, neural architecture
search, and adaptive optimization, yet no existing framework ensures that such
changes are made safely. Godel machines offer a principled safeguard by requir-
ing formal proofs of improvement before rewriting code; however, such proofs are
unattainable in stochastic, high-dimensional settings. We introduce the Statistical
Godel Machine (SGM), the first statistical safety layer for recursive edits. SGM
replaces proof-based requirements with statistical confidence tests (e-values, Ho-
effding bounds), admitting a modification only when superiority is certified at a
chosen confidence level, while allocating a global error budget to bound cumu-
lative risk across rounds. We also propose Confirm-Triggered Harmonic Spend-
ing (CTHS), which indexes spending by confirmation events rather than rounds,
concentrating the error budget on promising edits while preserving familywise
validity. Experiments across supervised learning, reinforcement learning, and
black-box optimization validate this role: SGM certifies genuine gains on CIFAR-
100, rejects spurious improvement on ImageNet-100, and demonstrates robustness
on RL and optimization benchmarks. Together, these results position SGM as
foundational infrastructure for continual, risk-aware self-modification in learning
systems. Code is available at: https://github.com/gravitywavelet/
sgm=anon.

1 INTRODUCTION

Recursive self-modification has often been discussed as a cornerstone for building continually im-
proving ML systems (Yampolskiy} 2015). Modern ML already hints at this trend: reinforcement
learning agents tune hyperparameters online, AutoML loops search over training recipes, and op-
timization pipelines reconfigure code and settings during runs. Yet these procedures often adopt
changes on the basis of noisy gains, creating the risk of harmful edits — modifications that seems
beneficial in finite trials but ultimately degrade true performance. Such risks are especially concern-
ing in high-stakes scientific domains such as drug design, protein engineering, or climate modeling,
where spurious gains can misdirect costly pipelines.

Godel machines (Schmidhuber, 2007) offer a conceptually clean answer: an agent rewrites its code
only when it can prove the rewrite increases expected utility. But in stochastic, high-dimensional
ML, such formal proofs are unattainable. At the other extreme, practical AutoML and RL sys-
tems adopt edits using heuristics such as rolling averages, best-of-seeds, or bandit rules, which lack
guarantees and may silently accumulate regressions. This gap motivates our question:

Can we provide a principled safety layer for recursive edits, ensuring that self-modification proceeds
only when supported by rigorous statistical evidence?

We introduce the Statistical Godel Machine (SGM), which establishes the first statistical safety
layer for recursive self-modification. Instead of demanding logical proofs, SGM admits a modifi-
cation only when statistical certificates certify superiority at a chosen confidence level. To remain
safe across many rounds, SGM allocates a global error budget using union-bound splits or anytime
spending rules (e.g., e-values), bounding the probability of ever adopting a harmful change. Impor-
tantly, SGM is not designed to generate stronger proposals, but to serve as a risk-control framework
that can wrap around arbitrary proposers, consistently filtering noise while preserving genuine
progress.

https://github.com/gravitywavelet/sgm-anon
https://github.com/gravitywavelet/sgm-anon

Under review as a conference paper at ICLR 2025

4 D
reT=T=o -
Run 6; SGM Gate () —— » Ifaccepted, update 0y
N
Decide & log -
(G J I
~=1d L="”r
~ 7
~ - 7’
) i 4
6, (TTTTTTTT A
Proposer () — “— Incumbent (6;)
________ 7
Generate candidate 6]) Qla/hfa/h baseline 0,

Provide incumbent 0

Figure 1: SGM architecture: At each round ¢, the Proposer (II) generates a candidate 6}, which is
compared to the current Incumbent (6;) by the Evaluation Harness (). The SGM Gate (G) then
applies statistical tests to certify or reject the edit, ensuring risk-controlled acceptance with bounded
error probability. If certified, the incumbent is updated; otherwise, the system remains unchanged.

Unlike standard sequential testing or online false discovery rate (FDR) methods, SGM governs
irreversible commits: each accepted edit rewrites the incumbent and persists into future rounds,
requiring error control across an open-ended sequence.

We evaluate SGM across reinforcement learning, black-box optimization, and supervised learn-
ing. On CIFAR-100, SGM certified a genuine +5.5pp gain under a 30-seed stress test, while on
ImageNet-100 it correctly rejected a seemingly promising edit that failed confirmation. These re-
sults highlight SGM’s role as a reusable risk-control layer for self-improving ML pipelines.

CONTRIBUTIONS
This paper makes three contributions:

* Statistical safety for recursive edits. We introduce SGM, the first framework to re-
place Godel’s proof-based requirement with PAC-style statistical tests, enabling safe self-
modification in noisy, high-dimensional ML.

* Event-triggered cumulative risk control. We propose confirmation-triggered harmonic
spending (CTHS), which concentrates the error budget on rounds that escalate to confirma-
tion, improving power on promising edits while preserving familywise validity.

* Cross-domain validation. We demonstrate SGM across supervised learning (CIFAR-100,
ImageNet-100), reinforcement learning, and black-box optimization, showing both certi-
fied gains and principled rejections.

2 RELATED WORK

Godel machines and self-referential improvement. Godel machines formalize fully self-
referential agents that rewrite their own code once a proof guarantees higher expected utility
(Schmidhuber, 2007)). While conceptually elegant, such proofs are unattainable in stochastic, high-
dimensional ML. SGM retains the same outer-loop self-edit structure but relaxes proof obligations
into PAC-style statistical guarantees with cumulative error control, yielding a tractable analogue for
modern pipelines.

Statistical testing and adaptive error control. SGM builds on concentration inequalities such
as Hoeffding bounds (Hoeffding| [1963) and variance-adaptive alternatives like empirical Bernstein
bounds (Maurer & Pontill 2009). To ensure long-run safety, it leverages either conservative union-
bound schedules or adaptive anytime spending rules such as a-investing and e-values (Foster &

Under review as a conference paper at ICLR 2025

Stinel 2008}; Howard et al.,[2020;[Waudby-Smith & Ramdas| 2024])). Prior work in sequential analysis
and adaptive testing (e.g., LIL bounds, mixture SPRTs) regulates error rates under adaptivity, but has
not been applied to recursive self-modification where accepted edits persist.

Safe RL, AutoML, and adaptive selection. Safe RL methods constrain expected cost or risk
through CMDPs (Altman| 2021)), trust-region or Lagrangian techniques, or shielded policies
(Achiam et al.| 2017; Tessler et al. 2018}, |Garcia & Fernandez, 2015). These safeguard policy
execution during learning, whereas SGM safeguards system-level commits that permanently alter
the learner. Similarly, Bayesian optimization (BO) and AutoML frameworks (Shahriari et al., 2015
Li et al.,2018; [Falkner et al.,[2018}; Jaderberg et al.,2017) improve models by balancing exploration
and exploitation, but typically adopt candidates heuristically based on noisy validation estimates.
Recent work on risk-aware BO introduces conservative acquisition rules, yet still governs trial al-
location rather than irreversible adoption. By contrast, SGM is complementary to AutoML.: it does
not propose candidates more efficiently, but acts as a drop-in gate that certifies any proposed edit
with explicit statistical guarantees before it is committed.

Adaptivity, online FDR, and A/B testing. Repeated adaptivity can invalidate p-values and confi-
dence intervals (Armitage et al.,|[1969). Methods such as selective inference, knockoffs, and online
FDR (Fithian et al.| 2014; [Barber & Candes| 2015 Ramdas et al., [2018)) address this in external
evaluations, while adaptive A/B testing frameworks (Johari et al.|[2022)) mitigate bias under repeated
peeking. These approaches regulate temporary error rates, whereas SGM governs irreversible com-
mits inside a self-modifying system. This persistence motivates familywise error control (FWER)
rather than FDR, since a single harmful commit can permanently degrade performance.

Program synthesis and self-modifying ML systems. Meta-learning, NAS, and program synthe-
sis (Zoph & Lel [2016;|Real et al.,|2019; |Gaunt et al.,[2016)) demonstrate empirical self-improvement
but rely on heuristic adoption rules. Proof-carrying code and certified optimization passes in
PL/verification (Necula, [1997} [Leroy} 2009) demand logical certificates. SGM occupies a middle
ground: edits need not be logically proven, but must satisfy statistically certified advantages with
controlled cumulative error—bridging principled safety with data-driven ML.

3 METHODS

3.1 SGM GATE (INTERFACE)

Definition 1 (SGM Gate). At outer round t, a proposer I1 maps the transcript T;_1 (past proposals,
outcomes, and decisions) to a candidate 0}, while a harness H produces paired outcomes comparing
incumbent 0; and proposal. The SGM Gate G outputs a decision D; € {ACCEPT, REJECT} and a
statistical certificate Cy(0;), while managing a global error budget §.

The gate enforces two guarantees:

* Per-edit safety. For each round t,
Pr(harmful accept att) < 0.

 Cumulative safety. For any horizon T",
Pr(EIt < T : harmful accept) < 4,

using either fixed allocation (6, = 6/T) or an anytime spending rule (e.g. e-values, -
investing).

3.2 STATISTICAL GUARANTEES

The SGM gate provides rigorous, distribution-free guarantees for deciding whether to accept a pro-
posed configuration. All tests operate on bounded paired differences A; € [a,b], oriented so that
A; > 0 denotes improvement (accuracy or reward gains, or negated loss/error). We normalize by
R = max{|al, |b|} and define the mean normalized improvement

-1l A
A== =2 el-1,1].
PR

Under review as a conference paper at ICLR 2025

Error allocation. To control familywise error across B proposal rounds, we allocate the global
tolerance J using a harmonic schedule:

b B
Oy = —— Hp = —.
t tHB’ B Zzzll

This ensures Zle d: = 6, bounding the probability of any false acceptance across all rounds by 4.

3.2.1 FIXED-§ ACCEPTANCE VIA HOEFFDING

Hoeffding acceptance rule. Given paired improvements X; € [a,b], the empirical mean i =
L%, X, admits a one-sided lower confidence bound

LCBi_s=i—(b—a) ﬁln%.
We accept a proposal only if LCB;_5 > 0.

This follows from Hoeffding’s inequality, which guarantees that
Pr(,u < LCBl,(;) < 4.

Theorem 1 (Union-Bound Guarantee). If each round is tested with 6; = 6 /T, then with probability
at least 1 — 6 no harmful modification is accepted across T rounds:

Pr(ﬂt <T:p <0A accepted) < 4.
This rule follows directly from Hoeffding’s inequality (Appendix [A.T).

3.2.2 VARIANCE-ADAPTIVE ACCEPTANCE (EMPIRICAL BERNSTEIN)

Hoeffding’s bound ignores variance, leading to loose thresholds. The empirical Bernstein inequality
(Maurer & Pontil, [2009) adapts to observed variance:

Pr<u <ji— 252 1n(3/5) 3(ba)rin(3/5)> <5)

n

where 62 is the empirical variance. This yields tighter confidence intervals in low-variance regimes
(e.g., deterministic optimization), while retaining PAC guarantees.

3.2.3 ANYTIME ACCEPTANCE VIA E-VALUES

Unlike the fixed-n tests above, e-values provide an anytime-valid guarantee (Howard et al., |2020),
enabling sequential testing over an unbounded horizon. At round ¢, we compare the incumbent
6, with the proposal 6] using paired differences A;; € [a,b]. Define the normalized variables
X =Ayi/R € [-1,1], where R = max{]al, |b|}.

Let A¢; € [0, 1] be a predictable choice (based only on past data, not the current sample) that deter-
mines the betting fraction: small A yields conservative updates, while large) increases sensitivity
but also variance. In our implementation, we fix A¢ ; = 1, corresponding to staking the full fraction
on each observation. Given this choice, we define the per-sample e-value and cumulative updates as

et =1+ X i Xs 5, 2

By =[] et 3)
=1

Wy =W;_1Ey, Wo=1. 4)

Here e, ; is the contribution from a single paired sample, E, aggregates evidence across all n;
samples in round ¢, and W; is the running wealth across rounds.

By construction, Ele; ; | F;;—1] < 1 (Ramdas et al., 2018)), where F; ;_; denotes the information
available up to sample ¢ — 1 in round ¢ (i.e., all past outcomes, but not the current one). Thus, the
wealth process {W;} is a nonnegative supermartingale, and Ville’s inequality gives

Pr(suth > 1/6) < 4.
t>1

Under review as a conference paper at ICLR 2025

Acceptance rule: adopt 6; once W; > 1/4.

Theorem 2 (Anytime Control via E-Values). With bounded differences and predictable)\ ;, the
wealth process {Wy} is a nonnegative supermartingale. Thus, the stopping time T = inf{t : W; >
1/6} controls false acceptance:

Pr(3t : accept at round t when p; < 0) < 4.

Practical guidance. Each acceptance mode offers distinct strengths:

* Hoeffding (fixed-§). Simple, conservative, and variance-agnostic; suited to small n with
fixed budgets under a union-bound split.

* Empirical Bernstein (variance-adaptive). Tighter in low-variance regimes, but overly
conservative under high variance or heavy tails.

* E-values (anytime). Default in our experiments; support early stopping and mini-batching
without pre-allocating 9.

In implementation, we instantiate the gate with e-values by default, using Hoeffding or empirical
Bernstein as drop-in alternatives for fixed-budget or low-variance settings.

Summary. These acceptance rules ensure that the SGM gate only admits proposals with statisti-
cally certified improvement, while bounding the global error rate across multiple iterations.

Novelty. While Hoeffding bounds, empirical Bernstein bounds, and e-values are well-established
in statistical learning, our novelty lies in repurposing these tools as gates for recursive self-
modification. Rather than serving as external evaluation techniques, we reinterpret them as internal
contracts that decide whether a proposed edit is permanently adopted. This shift from regulating
temporary errors to governing irreversible updates differentiates SGM from classical adaptive test-
ing and provides, to our knowledge, the first statistical framework explicitly designed for continual
self-editing processes.

3.3 ALGORITHM

Algorithm 1 SGM outer loop with certified acceptance.

Require: Initial config 6y; proposer 1I; harness #; max rounds 7'; global §
Ensure: Final config 6*; registry R

1: 0+ 6p; R+ {(fp,baseline)}; W+ 1

2: fort =1to T do

3: Ocana + PROPOSE(IL, 6, R)

4: for all 0’ € ©,q do

5: {A;}*_, + PAIREDEVALUATE(H, 6, 6’)

6: (LCB, W) < CERTIFY({A;}, 6, W) > Applies tests from Sec.
7: ifLCB >0 or W > 1/ then

8: accept 0’; update 6, R

9: else

10: reject

11: return (0*,R)

4 EXPERIMENT

We evaluate SGM across supervised learning, reinforcement learning, and optimization tasks. Un-
less otherwise stated, we use paired seeds to estimate per-proposal improvements A and apply the
decision rules from Sec.[3.2] For supervised learning (CIFAR, ImageNet), proposals undergo a two-
stage screening/confirmation protocol (few seeds x short epochs, then many seeds x longer epochs
if promising). Full hardware and compute details appear in Appendix [B

Under review as a conference paper at ICLR 2025

4.1 EXPERIMENT 1: CIFAR-100—CTHS AND DEEP-LEARNING STRESS TEST

Setup. We evaluate SGM on CIFAR-100, a high-variance benchmark, using a paired-seeds pro-
tocol: for each seed s, we train both the incumbent 6 and the proposal ¢’, recording the paired
difference Ay in percentage points (pp). Screening uses 4—6 seeds for 3—20 epochs, while promis-
ing candidates are escalated to confirmation with 12-30 seeds for 8—-60 epochsE] Proposals mutate
standard hyperparameters such as weight decay, EMA decay, and label smoothing. The safeguard is
configured with =0.1, r,,x=1.0, and a heuristic screening trigger of 0.4 pp.

Part A: Confirm-Triggered Harmonic Spending (CTHS). To directly evaluate statistical power,
we design a controlled power analysis experiment. At the confirmation stage only, we add a fixed
offset of +4.0pp to the proposal’s measured accuracy. This synthetic gain ensures that the proposal
is genuinely superior at confirmation while leaving screening unchanged. Such controlled injections
are common in power analysis and allow us to isolate the sensitivity of statistical schedules without
conflating with real proposal noise.

We compare the standard harmonic schedule, which allocates §; by round index ¢, against Confirm-
Triggered Harmonic Spending (CTHS), which allocates by the k-th confirmation event. CTHS suc-
cessfully certifies the improvement on its very first confirmation (round 1), then correctly rejects
later noisy positives (rounds 5/6), spending 0.0748 < § = 0.10. Harmonic, by contrast, does not
encounter the gain until later confirmations (rounds 3-6), where its per-round §; is smaller, and thus
makes no accepts, spending only 0.0388.

This result demonstrates that CTHS concentrates statistical power on the earliest promising event,
thereby detecting genuine gains more effectively while still respecting the global error budget.

Table 1: CIFAR-100 synthetic power analysis (+4.0pp at confirmation). CTHS certifies the improve-
ment early, while harmonic fails to accept the same gain due to smaller per-round d;.

Schedule Conf. rounds Total spend Accepts Outcome
CTHS 1,5,6 0.0748 1 Early accept; later rejections
Harmonic 3,4,5,6 0.0388 0 Later confirms, lower 0,

Part B: CIFAR-10 Sanity Check. Before turning to the higher-variance CIFAR-100 benchmark,
we ran a lightweight validation on CIFAR-10. The baseline used SGD with batch size 768, while
the proposal reduced the batch size to 64. Across 25-30 seeds, the safeguard consistently certified
a modest but reliable gain (85.5% — 87.9%, LCB > 0), leading to acceptance. This simple test
confirms that SGM can reliably detect small, consistent improvements in image classification.

Part C: Real Proposals on CIFAR-100 (Deep Learning Stress Test).

We next evaluate SGM on real hyperparameter proposals for CIFAR-100, a challenging high-
variance benchmark. The goal is to test whether SGM can certify genuine improvements while
filtering out noisy or misleading proposals.

Table 2: CIFAR-100 stress test with actual hyperparameter proposals (reporting incumbent and
proposal accuracy %). Only iteration 6 achieves a certified gain under 30-seed confirmation.

Iter Proposal Change(s) Seeds Inc. Acc.(%) Prop. Acc.(%) A (pp) LCB;_s Decision

1-5 1r, ema, warmup tweaks 6 56.05 [56.19,56.31] < +0.25 <0 Reject
weight_decay=0.001

6 L mdecay0.99 30 56.05 61.56 +5.51 +0.31 Accept

710 Warmup,weight-decay o 35 5745 [55.88,57.28] [—1.57,—0.40] <O Reject
variations

Interpretation. Across 10 iterations, only iteration 6 (weight_decay=0.001,

ema_decay=0.99) passes 30-seed, 60-epoch confirmation, improving accuracy from 56.05%
to 61.56% (+5.51pp, LCB = +0.31). Screening uses a heuristic escalation rule, triggering
confirmation once the mean improvement A exceeds 0.8, while final acceptance is decided solely

"We use disjoint seed pools between screening and confirmation.

Under review as a conference paper at ICLR 2025

(a) A and LCB across iterations (b) Commit decisions (SGM) (c) 6-spending
IR I R 0.10
/74
0 -..H‘.-_.‘\ Y Accept ’ 0.08
-@- Screen A e 7/
o -1 Screen LCB ‘ ‘g 0.06
E) @ confirm LcB g 0= 0
S -2 @ Cumulative
s 0.04 1
34
Rject OO OGO O0O0O0CO 0.02
44
T T T T T T T T T T 000 - T T T T T
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 2: CIFAR-100 stress test under SGM. Only iteration 6 passes 30-seed confirmation, leading
to acceptance. (a) Screening A and LCB across iterations, with the dashed line indicating the esca-
lation threshold. (b) Commit decisions under SGM: only iteration 6 is accepted. (c) §-spending per
iteration and cumulative total.

by confirm-stage LCBs. All other proposals either failed to escalate or were rejected despite positive
screening means. Thus, SGM certifies only genuine gains while blocking noisy regressions, acting
as a reliable statistical safeguard for deep learning pipelines. Moreover, the §-spending curve shows
this selectivity is achieved while respecting the global error budget (0.1).

Takeaway. On CIFAR-100, CTHS (Part A) shows stronger power by concentrating budget on
early confirmations, while the CIFAR-10 sanity check (Part B) demonstrates that SGM reliably de-
tects modest improvements. The CIFAR-100 stress test (Part C) confirms that SGM is conservative
against noise yet able to certify genuine deep learning gains, establishing it as both statistically
powerful and practically reliable for supervised learning.

4.2 EXPERIMENT 2: IMAGENET-100 (MID-SCALE TEST OF SAFETY)

Setup. We extended the CIFAR-100 protocol (Experiment 1) to ImageNet-100 using DeiT-S/224,
AdamW, cosine schedule, and EMA disabled. Each proposal was first screened with 4 seeds for 50
epochs and, if promising, escalated to confirmation with 12 seeds for 120 epochs. The gate used
0 = 0.1, rmax = 0.5, and a screening threshold of 0.4pp.

Results. Screening suggested modest gains (+2.9pp for mixup = 0.1), but all were overturned
during confirmation. At iteration 6, the incumbent achieved 76.65% vs. 72.62% for the proposal
(A = —4.03pp, LCB= —1.91), leading to rejection. Thus, no proposal achieved a certified gain on
ImageNet-100.

Table 3: Experiment 2 (ImageNet-100). Screening (4 seeds, 50 epochs) vs. confirmation (12 seeds,
120 epochs). All proposals were rejected under confirmation.

Iter Proposal Seeds Inc. Acc. (%) Prop. Acc. (%) A (pp) LCB;_s Decision

6 mixup=0.1, cutmix=0.0 12 76.65 72.62 -4.03 -1.91 Reject

4.3 EXPERIMENT 3: RL SAFETY CHECKS (CARTPOLE AND LUNARLANDER)

Setup. We next test SGM in reinforcement learning tasks, focusing on its role as a safety filter
rather than an optimizer. Both tasks use PPO with default hyperparameters. We run with § = 0.1
and budgets B = 8 (CartPole-v1) and B = 3 (LunarLander-v2). Paired seeds are used throughout.

CartPole-v1 (safety at saturation). Here the baseline PPO agent already solves the environment
("max = 500). We trained with 19 random seeds. Across 8 proposals, candidate modifications
underperformed the strong incumbent (mean return 447.7 &+ 54.5 vs. baseline 493.4 4+ 12.6). The
mean improvement was negative (A = —45.7) with LCB [—0.95, —0.79], leading the safeguard to
reject all proposals (Table @} Fig.[3). This confirms the desired property: when the incumbent is
near-optimal, SGM reliably blocks regressions.

Under review as a conference paper at ICLR 2025

Table 4: CartPole-v1: safety demo with 19 seeds, B=8, §=0.1.

Config n Mean &+ SD #Props Mean improv. (A) LCB;—5
Baseline 19 493.44+12.6 - - -
Proposals 152 447.7 £ 54.5 8 —45.7 [—0.95, —0.79]
(a) CartPole — Baseline vs Proposals (mean+SD) (b) LCB vs n for P5 (A = proposal — baseline)
0
500 A { { } { —
200 4 { { { { & —5004 /_/
°
B
el ©
§ 300 5 ~1000
g ;
2001 @ ~1500
100 -
mmm Baseline 2000 4 —— Hoeffding LCB
@ Proposals Empirical-Bernstein LCB
0- T T T T T T T T T T T T T
Base P1 P2 P3 P4 P5 P6 P7 P8 20 40 60 80 100
Proposals Paired seeds n

Figure 3: Ex1 (CartPole-v1, safety demo). Baseline vs. proposals: mean return with 95% Cls across
19 seeds. All proposals underperform baseline; no acceptance triggered by the gate.

LunarLander-v2 (safety under high variance). This environment is far noisier (baseline mean
reward —479.5 4+ 271.1). With n = 19 seeds and B = 3, the safeguard accepted one configuration

that warm-started training, yielding a large gain of A = 4513.24306.9 and a certified lower bound
LCB,_5 = +0.04 (Table[3] Fig.). Despite variance ~ 307, the gate still identified and certified a
genuine improvement.

Table 5: LunarLander-v2: n=19, B = 3,6 = 0.1, rpa.x = 600.
Config n Inc. mean & SD Prop. mean + SD A LCB;_s Decision

Baseline 19 —479.5+271.1 - - - -
Proposal 19 - 33.7 £ 306.9 +513.2 40.04 Accept

Takeaway. Together, these safety checks show both sides of SGM in RL: it reliably blocks re-
gressions once an environment is saturated (CartPole), and it can still admit genuine gains even
under extreme stochasticity (LunarLander). This balance of conservatism and sensitivity is central
to SGM’s role as a safety mechanism.

4.4 EXPERIMENT 4: RASTRIGIN20 (OPTIMIZATION STRESS TEST)

Setup. To evaluate SGM in a nearly deterministic regime, we used the 20-dimensional Rastrigin
function, a standard black-box optimization benchmark with many local minima (Hansen et al.,
2010; 2021). The baseline optimizer was CMA-ES (Hansen et al., 2003) with step-size ¢ = 0.5
and population size 16. Proposals modified a single hyperparameter (e.g., reducing o). Each eval-
uation used n = 80-100 random seeds, a budget of 2000 evaluations per seed, and confidence
6 €[0.30,0.35].

Results. With 80-100 seeds, proposals showed only micro-improvements (A = —0.55). SGM cer-
tified cases where the lower confidence bound crossed zero, while rejecting others. This illustrates
conservative behavior: SGM blocks spurious fluctuations but can admit genuine micro-gains.

Takeaway. Alongside Experiments [4.1] (CIFAR-100) and @3] (RL), Rastrigin20 demonstrates
SGM'’s robustness across extremes: stochastic deep learning, high-variance RL, and nearly de-

Under review as a conference paper at ICLR 2025

(a) LunarLander — Paired outcomes (b) LCB vs n (A = proposal — baseline)
- 0
8001 - //_

— 600 ° _10001
3 % o o _ ~1000
& 400 . °]
g s z
< 20 5 ~2000 1
g @

0 o o =
2 ° 7 -3000
& —200 . o @
a =
o -~
& -400 o ~4000

7 —— Hoeffding LCB
—600 L ° Empirical-Bernstein LCB
- v v v - . . . —5000 - v - - . - v .
-600 -400 -200 0 200 400 600 800 6 8 10 12 14 16 18
Baseline reward (per seed) Paired seeds n

Figure 4: Experiment 2 (LunarLander-v2). (a) Paired per-seed returns: each dot is one random seed;
the diagonal indicates parity (proposal = baseline). (b) Lower confidence bound on the improvement
A = proposal — baseline as a function of paired seeds n. We plot LCB;_s under Hoeffding (solid
blue) and empirical-Bernstein (solid orange). A proposal is certified once LCB;_5 > 0; for the
accepted configuration, this occurs at n = 19. In this high-variance regime, Hoeffding is tighter
because empirical-Bernstein over-penalizes variance.

Table 6: Rastrigin20 (d = 20). Lower f is better. SGM certifies only micro-gains when the lower
bound is positive.

Exp. n Incumbent f£SD Proposal f#SD A LCB;_; Decision
C012 100 21.41 £+ 7.42 20.86 + 7.62 —0.55 +0.009 Accept
C014 80 21.38 £ 7.46 20.83 £ 7.66 —0.55 +0.003 Accept
C012* 80 21.38 + 7.46 20.83 £+ 7.66 —0.55 —0.004 Reject

terministic optimization. It also highlights a practical tradeoff: empirical Bernstein is useful in
low-variance settings, whereas Hoeffding can be less conservative under high variance.

5 DISCUSSION

Core findings. Our experiments support three main claims about the Statistical Godel Machine
(SGM): (1) Statistical safety for recursive edits: SGM consistently enforces a confidence-based
safeguard, rejecting harmful modifications while certifying genuine improvements. This establishes
the first practical safety layer for recursive self-modification. (2) Event-triggered risk allocation
improves power: Confirm-Triggered Harmonic Spending (CTHS) concentrates the error budget on
actual confirmation events, enabling early certification of true gains (CIFAR-100) that harmonic
schedules miss. (3) Cross-domain robustness: SGM generalizes across supervised learning (CIFAR-
10/100, ImageNet-100), reinforcement learning (CartPole, LunarLander), and black-box optimiza-
tion (Rastrigin20), demonstrating consistent risk control and certifying reproducible improvements
under diverse conditions.

Why different from prior testing. Standard sequential testing or online FDR governs temporary
hypotheses: once a test ends, its mistakes do not persist. In contrast, SGM governs irreversible self-
modifications: each accepted edit permanently rewrites the incumbent and propagates forward, so
guarantees must hold not only per test but cumulatively across a recursive sequence of edits. To fur-
ther strengthen this contract, we introduce Confirm-Triggered Harmonic Spending (CTHS), which
concentrates error budget on the subset of rounds that escalate to confirmation. Unlike classic har-
monic splits that spend in every round, CTHS allocates only when an edit is at stake, improving sta-
tistical power without exceeding global risk. This combination of irreversibility and event-triggered
spending fundamentally distinguishes SGM from prior work.

Under review as a conference paper at ICLR 2025

5.1 LIMITATIONS AND FUTURE WORK

Assumptions. Our guarantees rely on bounded, i.i.d. paired differences and a stable evaluation
harness. Real-world pipelines may exhibit heavy-tailed noise, temporal correlation, or drift; in such
cases, our certificates remain valid but conservative. Extending SGM with variance-robust or drift-
aware bounds is an important next step.

Empirical scope. We validated SGM on small-to-mid scale benchmarks (CartPole, LunarLander,
Rastrigin, CIFAR-10/100, ImageNet-100). We did not include very large-scale domains such as
ImageNet-1k, Mujoco, or LLM-based agent loops. Thus, the current results demonstrate feasibility
rather than ultimate scalability. Applying SGM to these high-stakes pipelines is a natural extension.

Proposer design. Our proposers are deliberately simple (preset or random hyperparameter
tweaks), to isolate the gate’s guarantees. Stronger proposers—e.g., Bayesian optimizers or learned
mutation policies—are fully compatible with SGM and may yield richer dynamics. Studying this
interaction is future work.

Compute tradeoffs. Confirmation protocols (e.g., 30 seeds for CIFAR-100) are rigorous but
costly. In large-scale settings, adaptive or cost-aware certificates (e.g., a-spending with early stop-
ping) could reduce overhead without compromising safety.

Outlook. SGM establishes the first statistical safety layer for recursive self-modification. Its
present role is to ground the concept with principled guarantees and cross-domain feasibility. Fu-
ture work should scale the approach, relax assumptions, and integrate stronger proposers, with the
broader goal of making self-improving systems both more capable and reliably safe.

6 CONCLUSION

We presented the Statistical Godel Machine (SGM), a practical relaxation of Godel’s vision
of self-referential improvement. ~Whereas classical Godel machines demand formal logical
proofs—unattainable in stochastic, high-dimensional settings—SGM replaces them with statisti-
cal confidence certificates, making Godelian self-reference tractable for modern machine learning
pipelines.

Our analysis establishes both per-edit and cumulative guarantees, ensuring that the probability of
adopting a harmful modification remains bounded even under indefinite horizons of recursive im-
provement. A key innovation is Confirm-Triggered Harmonic Spending (CTHS), which preserves
familywise error control while concentrating the error budget on confirmation events, thereby im-
proving power on promising edits without exceeding the global budget.

Experiments across reinforcement learning, black-box optimization, and supervised learn-
ing—including a 30-seed CIFAR-100 stress test—demonstrate that SGM reliably rejects spurious
gains while certifying genuine ones. By combining the conceptual rigor of G6del machines with the
tools of statistical learning, SGM provides a principled, domain-agnostic safety layer for continual
self-modification. This is a first step: establishing feasibility and guarantees today, while point-
ing toward future systems capable of scaling recursive self-improvement to high-stakes real-world
applications.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22-31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Peter Armitage, CK McPherson, and BC Rowe. Repeated significance tests on accumulating data.
Journal of the Royal Statistical Society: Series A (General), 132(2):235-244, 1969.

Rina Foygel Barber and Emmanuel J Candes. Controlling the false discovery rate via knockoffs.
2015.

10

Under review as a conference paper at ICLR 2025

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
timization at scale. In International conference on machine learning, pp. 1437-1446. PMLR,
2018.

William Fithian, Dennis Sun, and Jonathan Taylor. Optimal inference after model selection. arXiv
preprint arXiv:1410.2597, 2014.

Dean P Foster and Robert A Stine. a-investing: a procedure for sequential control of expected false
discoveries. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(2):
429-444, 2008.

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction.
arXiv preprint arXiv:1608.04428, 2016.

Nikolaus Hansen, Sibylle D Miiller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1-18, 2003.

Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Posik. Comparing results of
31 algorithms from the black-box optimization benchmarking bbob-2009. In Proceedings of the
12th annual conference companion on Genetic and evolutionary computation, pp. 1689-1696,
2010.

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea TuSar, and Dimo Brockhoff.
Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 36(1):114-144, 2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13-30, 1963.

Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform chernoff
bounds via nonnegative supermartingales. 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. Always valid inference: Continu-
ous monitoring of a/b tests. Operations Research, 70(3):1806-1821, 2022.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):
107-115, 20009.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1-52, 2018.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penal-
ization. arXiv preprint arXiv:0907.3740, 2009.

George C Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 106-119, 1997.

Aaditya Ramdas, Tijana Zrnic, Martin Wainwright, and Michael Jordan. Saffron: an adaptive al-
gorithm for online control of the false discovery rate. In International conference on machine
learning, pp. 4286—4294. PMLR, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

11

Under review as a conference paper at ICLR 2025

Jirgen Schmidhuber. Godel machines: Fully self-referential optimal universal self-improvers. In
Artificial general intelligence, pp. 199-226. Springer, 2007.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148-175, 2015.

Chen Tessler, Daniel] Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(1):1-27, 2024.

Roman V Yampolskiy. From seed ai to technological singularity via recursively self-improving
software. arXiv preprint arXiv:1502.06512, 2015.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

A APPENDIX

A.1 HOEFFDING BOUND FOR ACCEPTANCE

We recall the classical Hoeffding inequality.

Theorem 3 (Hoeffding inequality, mean form). Let X, ..., X,, be independent with X; € |a, b
and mean p. Let i = % Z?:l X;. Then, for any € > 0,

Pr(p<p—e) < exp(— 2ne? /(b — a)z).
Equivalently, with probability at least 1 — 0,
p> = (b—a)/5 ;.

2n

Specialization to the mean. If all variables share the same bounded range [a, b], then Y., (b; —
a;)? =n(b—a)?. Letting i = 2 3" | X; and pn = E[X;], we obtain

~ E2
Pr(i—p > ¢€) < eXp(—(ffT)Q :
Equivalently, with probability at least 1 — 9,

po= o= (b—a)y/5; 5.

This one-sided lower-tail bound underlies our acceptance rule in Sec.

A.2 CARTPOLE DETAILS
A.3 LUNARLANDER-V2 DETAILS

A.4 CIFAR-10 DETAILS
B COMPUTE ENVIRONMENT

All experiments were run on a standardized cloud image with the following stack:

e PyTorch 2.1.2, Python 3.10 (Ubuntu 22.04), CUDA 11.8
* GPU: RTX 4090D (24GB) x 1, with on-demand scaling
¢ CPU: 18 vCPU AMD EPYC 9754 128-Core Processor
* Memory: 60GB

This environment was used consistently across all tasks. Only the ImageNet-100 experiments were
compute-intensive; all other tasks required modest resources.

12

Under review as a conference paper at ICLR 2025

Table 7: CartPole-v1: Per-iteration results of PAC-based safeguard. All proposals were rejected,
consistent with the strong baseline (493.4 £ 12.6). Hyperparameter changes are shown vs. incum-
bent.

Iter Proposal Mean + SD A LCB;_s Decision Changes vs. incumbent
1 450.3 +£42.7 —0.0861 —0.789 Reject Ir: 3x10™% — 1.82x1073; clip: 0.20 — 0.35; nsteps: 2k— 4k
2 439.8 £37.9 —0.1071 —0.860 Reject 1 3x107* — 1.82x1073; clip: 0.20 — 0.31; nsteps: 2k— 4k
3 455.9 £ 58.7 —0.0749 —0.856 Reject Ir: 3x10~% — 1.75x10~3; clip: 0.20 — 0.32; nsteps: 2k— 4k
4 438.2 +£52.0 —-0.1104 —-0.910 Reject Ir: 3x10™% — 1.78x1073; clip: 0.20 — 0.35; nsteps: 2k— 4k
5 463.6 £+ 65.9 —0.0595 —0.874 Reject 1 3x107* — 1.82x1072; clip: 0.20 — 0.35; nsteps: 2k— 4k
6 439.8 £37.9 —0.1071 —-0.933 Reject Ir: 3x10~% — 1.82x1073; clip: 0.20 — 0.31; nsteps: 2k— 4k
7 455.9 £+ 58.7 —-0.0749 —-0.911 Reject Ir: 3x107% — 1.75x1073; clip: 0.20 — 0.32; nsteps: 2k— 4k
8 438.2 £52.0 —0.1104 —0.954 Reject 1 3x107* — 1.78x1072; clip: 0.20 — 0.35; nsteps: 2k— 4k

Proposal means and SDs are computed across 19 seeds per iteration. Hyperparameter changes are relative to
the incumbent.

Table 8: Accepted proposals for LunarLander-v2. Both runs were warm-started from manually
seeded hyperparameters (see note).

Exp. Iter A LCB(1 —4§) Mean Reward + SD AR (mean =+ sd [min—max])
B3-ws2 1 0.7108 0.0384 - +513.2 + 306.9 [165.1-1344.8]
B5-ws3 1 07115 0.0222 - +513.8 £ 306.5 [165.8-1344.6]

Warm-start origins: B3-ws2 seeded from Ir~ 1.87 x 1073, clipa 0.343; B5-ws3 seeded from neighborhood
around B3-ws2 (Ir~ 1.78-1.86 x 1073, clip~ 0.343-0.352). (Common: batch=64, n_steps=4096)

Table 9: CIFAR-10, PAC-EB safeguard). Proposal reduces batch size relative to incumbent. Both
frozen prefix (n = 25) and full overlap (n = 30) yield positive bounds, leading to ACCEPT
decisions.

Exp. n Inc. Acc. (%) £ SD Prop. Acc. (%) +SD (A) LCBi_; (A) Decision
BS-64 (N=25) 25 85.5+ 0.7 87.85+ 0.18 12.35 40.03 ACCEPT
BS-64 (N=30) 30 85.54 =+ 0.66 87.86 + 0.19 12.32 40.18 ACCEPT

Algorithm 2 SGM outer loop: proposals certified by fixed-d or anytime e-value tests for adoption.

Require: Init. config 6y; proposer II; harness #; max rounds 7T'; risk ¢ € (0, 1); proposal period K
Ensure: Final config 6*; registry R of accepted/rejected edits

1: 0+ 0p; R+ {(fp,baseline)}; W+ 1 > anytime wealth
2: fort =1toT do

3: (C,m) < RUNINNERLOOP(6, H) > C: incumbent cache; m: metrics
4 if STAGNANT(m) or ¢t mod K = 0 then > plateau or every K rounds
5: Ocand + PROPOSEEDIT(IL, 6, R)

6: for all € RANKCANDIDATES(O,,4) do

7 {6;}*_, + PAIREDEVALUATE(H, 6,¢’,C) > per-seed diffs ; for n trials
8: S L35 > mean improvement
9: (LCB, W) < CERTIFY({d;}, a, W)
10: if LCB > 0 then
11: accept and promote
12: else
13: reject (or continue sampling if enabled)

14: return (0*,R) < (0, R)

13

Under review as a conference paper at ICLR 2025

Ex4 (CIFAR-10): Proposal reduces batch size — both N=25 and N=30 ACCEPT

Ex4 N=25: paired seeds

A mean=2.35, n=25; accept iff LB>0
|

- e ;
1 [e : . ;
9 88 L XY P % o™ ®8 o L : | '
cer{ L4 ! 3
© e 5 : | |
E 86 L Lg) : | i
2 85 T 24+ _ I i
o P — -+ LB Hoeffding=-46.60 !
Seal T e LB EB=-79.66 :
= 01— ‘ —, . ;
84 85 86 87 88 -80 —-60 -40 -20 0
Incumbent acc (%) A = Proposal — Incumbent (acc pts)

Ex4 N=30: paired seeds A mean=2.22, n=30; accept iff LB>0
- g : 1 i
] LX) - : . !
] 0 e teenvdes o - : | |
g 874 e el : | i
o e = . . 1
© T 5 : | !
861 L 347 : : !
8 T Co I |
o P i
o871 - - 24 —-+ LB Hoeffding=-42.47 !
= :
ga . LB EB=-66.12, i
84 85 86 87 88 -60 =50 -40 -30 -20 -10 0

Incumbent acc (%)

Figure 5: CIFAR-10. Test accuracy vs. epochs for baseline (batch 768) and proposal (batch 64). The
proposal yields a small, consistent accuracy gain; acceptance is triggered when LCB;_5(A) > 0

(both n = 25 and n = 30).

14

A = Proposal — Incumbent (acc pts)

	Introduction
	Related Work
	Methods
	SGM Gate (Interface)
	Statistical Guarantees
	Fixed-delta Acceptance via Hoeffding
	Variance-Adaptive Acceptance (Empirical Bernstein)
	Anytime Acceptance via E-Values

	Algorithm

	Experiment
	Experiment 1: CIFAR-100—CTHS and Deep-Learning Stress Test
	Experiment 2: ImageNet-100 (Mid-Scale Test of Safety)
	Experiment 3: RL Safety Checks (CartPole and LunarLander)
	Experiment 4: Rastrigin20 (Optimization Stress Test)

	Discussion
	Limitations and Future Work

	Conclusion
	Appendix
	Hoeffding Bound for Acceptance
	CartPole Details
	LunarLander-v2 Details
	CIFAR-10 Details

	Compute Environment

