

000 001 002 003 004 005 SGM: A STATISTICAL GÖDEL MACHINE FOR RISK- 006 CONTROLLED RECURSIVE SELF-MODIFICATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Recursive self-modification is increasingly central in AutoML, neural architecture
031 search, and adaptive optimization, yet no existing framework ensures that such
032 changes are made safely. Gödel machines offer a principled safeguard by requiring
033 formal proofs of improvement before rewriting code; however, such proofs are
034 unattainable in stochastic, high-dimensional settings. We introduce the *Statistical*
035 *Gödel Machine (SGM)*, the first *statistical safety layer for recursive edits*. SGM
036 replaces proof-based requirements with statistical confidence tests (e-values, Ho-
037 effding bounds), admitting a modification only when superiority is certified at a
038 chosen confidence level, while allocating a global error budget to bound cumu-
039 lative risk across rounds. We also propose *Confirm-Triggered Harmonic Spend-
040 ing (CTHS)*, which indexes spending by confirmation events rather than rounds,
041 concentrating the error budget on promising edits while preserving familywise
042 validity. Experiments across supervised learning, reinforcement learning, and
043 black-box optimization validate this role: SGM certifies genuine gains on CIFAR-
044 100, rejects spurious improvement on ImageNet-100, and demonstrates robustness
045 on RL and optimization benchmarks. Together, these results position SGM as
046 foundational infrastructure for continual, risk-aware self-modification in learning
047 systems. Code is available at: <https://github.com/gravitywavelet/sgm-anon>.
048
049

1 INTRODUCTION

050 Recursive self-modification has often been discussed as a cornerstone for building continually im-
051 proving ML systems (Yampolskiy, 2015). Modern ML already hints at this trend: reinforcement
052 learning agents tune hyperparameters online, AutoML loops search over training recipes, and op-
053 timization pipelines reconfigure code and settings during runs. Yet these procedures often adopt
054 changes on the basis of noisy gains, creating the risk of harmful edits – modifications that seems
055 beneficial in finite trials but ultimately degrade true performance. Such risks are especially concerning
056 in high-stakes scientific domains such as drug design, protein engineering, or climate modeling,
057 where spurious gains can misdirect costly pipelines.
058

059 Gödel machines (Schmidhuber, 2007) offer a conceptually clean answer: an agent rewrites its code
060 only when it can *prove* the rewrite increases expected utility. But in stochastic, high-dimensional
061 ML, such formal proofs are unattainable. At the other extreme, practical AutoML and RL sys-
062 tems adopt edits using heuristics such as rolling averages, best-of-seeds, or bandit rules, which lack
063 guarantees and may silently accumulate regressions. This gap motivates our question:

064 *Can we provide a principled safety layer for recursive edits, ensuring that self-modification proceeds
065 only when supported by rigorous statistical evidence?*

066 We introduce the *Statistical Gödel Machine (SGM)*, which establishes the first *statistical safety*
067 *layer for recursive self-modification*. Instead of demanding logical proofs, SGM admits a modi-
068 fication only when statistical certificates certify superiority at a chosen confidence level. To remain
069 safe across many rounds, SGM allocates a global error budget using union-bound splits or anytime
070 spending rules (e.g., e-values), bounding the probability of ever adopting a harmful change. Impor-
071 ntly, SGM is not designed to generate stronger proposals, but to serve as a *risk-control framework*
072 that can wrap around arbitrary proposers, consistently filtering noise while preserving genuine
073 progress.
074

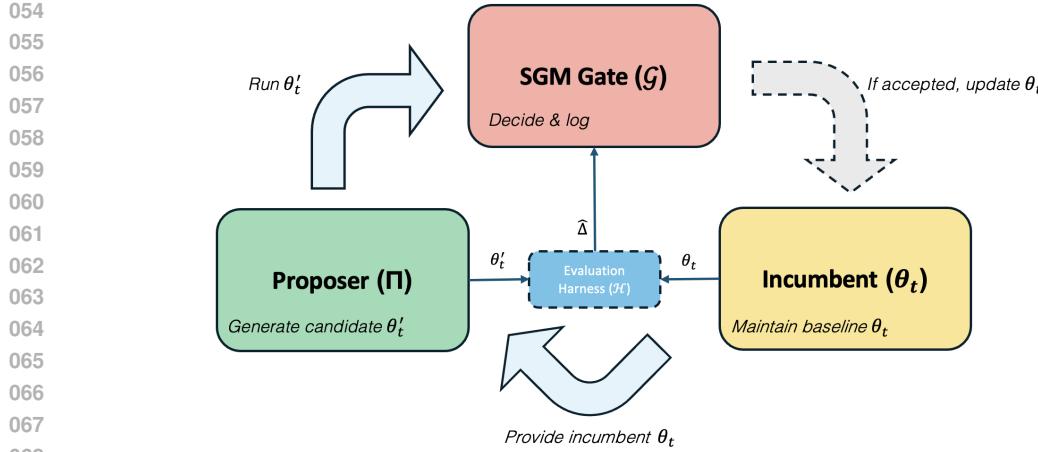


Figure 1: SGM architecture: At each round t , the **Proposer** (Π) generates a candidate θ'_t , which is compared to the current **Incumbent** (θ_t) by the **Evaluation Harness** (\mathcal{H}). The **SGM Gate** (\mathcal{G}) then applies statistical tests to certify or reject the edit, ensuring risk-controlled acceptance with bounded error probability. If certified, the incumbent is updated; otherwise, the system remains unchanged.

Unlike standard sequential testing or online false discovery rate (FDR) methods, SGM governs *irreversible commits*: each accepted edit rewrites the incumbent and persists into future rounds, requiring error control across an open-ended sequence.

We evaluate SGM across reinforcement learning, black-box optimization, and supervised learning. On CIFAR-100, SGM certified a genuine +5.5pp gain under a 30-seed stress test, while on ImageNet-100 it correctly rejected a seemingly promising edit that failed confirmation. These results highlight SGM’s role as a reusable risk-control layer for self-improving ML pipelines.

CONTRIBUTIONS

This paper makes three contributions:

- **Statistical safety for recursive edits.** We introduce SGM, the first framework to replace Gödel’s proof-based requirement with PAC-style statistical tests, enabling safe self-modification in noisy, high-dimensional ML.
- **Event-triggered cumulative risk control.** We propose confirmation-triggered harmonic spending (CTHS), which concentrates the error budget on rounds that escalate to confirmation, improving power on promising edits while preserving familywise validity.
- **Cross-domain validation.** We demonstrate SGM across supervised learning (CIFAR-100, ImageNet-100), reinforcement learning, and black-box optimization, showing both certified gains and principled rejections.

2 RELATED WORK

Gödel machines and self-referential improvement. Gödel machines formalize fully self-referential agents that rewrite their own code once a proof guarantees higher expected utility (Schmidhuber, 2007). While conceptually elegant, such proofs are unattainable in stochastic, high-dimensional ML. SGM retains the same outer-loop self-edit structure but *relaxes proof obligations into PAC-style statistical guarantees with cumulative error control*, yielding a tractable analogue for modern pipelines.

Statistical testing and adaptive error control. SGM builds on concentration inequalities such as Hoeffding bounds (Hoeffding, 1963) and variance-adaptive alternatives like empirical Bernstein bounds (Maurer & Pontil, 2009). To ensure long-run safety, it leverages either conservative union-bound schedules or adaptive anytime spending rules such as α -investing and e -values (Foster &

108 Stine, 2008; Howard et al., 2020; Waudby-Smith & Ramdas, 2024). Prior work in sequential analysis
 109 and adaptive testing (e.g., LIL bounds, mixture SPRTs) regulates error rates under adaptivity, but has
 110 not been applied to recursive self-modification where accepted edits persist.

112 **Safe RL, AutoML, and adaptive selection.** Safe RL methods constrain expected cost or risk
 113 through CMDPs (Altman, 2021), trust-region or Lagrangian techniques, or shielded policies
 114 (Achiam et al., 2017; Tessler et al., 2018; Garcia & Fernández, 2015). These safeguard *policy
 115 execution* during learning, whereas SGM safeguards *system-level commits* that permanently alter
 116 the learner. Similarly, Bayesian optimization (BO) and AutoML frameworks (Shahriari et al., 2015;
 117 Li et al., 2018; Falkner et al., 2018; Jaderberg et al., 2017) improve models by balancing exploration
 118 and exploitation, but typically adopt candidates heuristically based on noisy validation estimates.
 119 Recent work on risk-aware BO introduces conservative acquisition rules, yet still governs *trial al-
 120 location* rather than irreversible adoption. By contrast, SGM is complementary to AutoML: it does
 121 not propose candidates more efficiently, but acts as a *drop-in gate* that certifies any proposed edit
 122 with explicit statistical guarantees before it is committed.

123 **Adaptivity, online FDR, and A/B testing.** Repeated adaptivity can invalidate p -values and confi-
 124 dence intervals (Armitage et al., 1969). Methods such as selective inference, knockoffs, and online
 125 FDR (Fithian et al., 2014; Barber & Candès, 2015; Ramdas et al., 2018) address this in external
 126 evaluations, while adaptive A/B testing frameworks (Johari et al., 2022) mitigate bias under repeated
 127 peeking. These approaches regulate *temporary* error rates, whereas SGM governs *irreversible*
 128 commits inside a self-modifying system. This persistence motivates familywise error control (FWER)
 129 rather than FDR, since a single harmful commit can permanently degrade performance.

130 **Program synthesis and self-modifying ML systems.** Meta-learning, NAS, and program synthe-
 131 sis (Zoph & Le, 2016; Real et al., 2019; Gaunt et al., 2016) demonstrate empirical self-improvement
 132 but rely on heuristic adoption rules. Proof-carrying code and certified optimization passes in
 133 PL/verification (Necula, 1997; Leroy, 2009) demand logical certificates. SGM occupies a middle
 134 ground: edits need not be logically proven, but must satisfy statistically certified advantages with
 135 controlled cumulative error—bridging principled safety with data-driven ML.

3 METHODS

3.1 SGM GATE (INTERFACE)

141 **Definition 1 (SGM Gate).** At outer round t , a proposer Π maps the transcript \mathcal{T}_{t-1} (past proposals,
 142 outcomes, and decisions) to a candidate θ'_t , while a harness \mathcal{H} produces paired outcomes comparing
 143 incumbent θ_t and proposal. The SGM Gate \mathcal{G} outputs a decision $D_t \in \{\text{ACCEPT}, \text{REJECT}\}$ and a
 144 statistical certificate $C_t(\delta_t)$, while managing a global error budget δ .

145 The gate enforces two guarantees:

- **Per-edit safety.** For each round t ,

$$\Pr(\text{harmful accept at } t) \leq \delta_t.$$

- **Cumulative safety.** For any horizon T' ,

$$\Pr(\exists t \leq T' : \text{harmful accept}) \leq \delta,$$

152 using either fixed allocation ($\delta_t = \delta/T$) or an anytime spending rule (e.g. e -values, α -
 153 investing).

3.2 STATISTICAL GUARANTEES

156 The SGM gate provides rigorous, distribution-free guarantees for deciding whether to accept a pro-
 157 posed configuration. All tests operate on *bounded paired differences* $\Delta_i \in [a, b]$, oriented so that
 158 $\Delta_i > 0$ denotes improvement (accuracy or reward gains, or negated loss/error). We normalize by
 159 $R = \max\{|a|, |b|\}$ and define the mean normalized improvement

$$\bar{\Delta} = \frac{1}{n} \sum_{i=1}^n \frac{\Delta_i}{R} \in [-1, 1].$$

162 **Error allocation.** To control familywise error across B proposal rounds, we allocate the global
 163 tolerance δ using a harmonic schedule:

$$164 \quad \delta_t = \frac{\delta}{tH_B}, \quad H_B = \sum_{i=1}^B \frac{1}{i}.$$

167 This ensures $\sum_{t=1}^B \delta_t = \delta$, bounding the probability of *any* false acceptance across all rounds by δ .

169 3.2.1 FIXED- δ ACCEPTANCE VIA HOEFFDING

171 **Hoeffding acceptance rule.** Given paired improvements $X_i \in [a, b]$, the empirical mean $\hat{\mu} =$
 172 $\frac{1}{n} \sum_i X_i$ admits a one-sided lower confidence bound

$$174 \quad \text{LCB}_{1-\delta} = \hat{\mu} - (b - a) \sqrt{\frac{1}{2n} \ln \frac{1}{\delta}}.$$

175 We accept a proposal only if $\text{LCB}_{1-\delta} > 0$.

177 This follows from Hoeffding's inequality, which guarantees that

$$178 \quad \Pr(\mu < \text{LCB}_{1-\delta}) \leq \delta.$$

179 **Theorem 1** (Union-Bound Guarantee). *If each round is tested with $\delta_t = \delta/T$, then with probability*
 180 *at least $1 - \delta$ no harmful modification is accepted across T rounds:*

$$182 \quad \Pr(\exists t \leq T : \mu_t < 0 \wedge \text{accepted}) \leq \delta.$$

184 This rule follows directly from Hoeffding's inequality (Appendix A.1).

185 3.2.2 VARIANCE-ADAPTIVE ACCEPTANCE (EMPIRICAL BERNSTEIN)

187 Hoeffding's bound ignores variance, leading to loose thresholds. The empirical Bernstein inequality
 188 (Maurer & Pontil, 2009) adapts to observed variance:

$$190 \quad \Pr\left(\mu < \hat{\mu} - \sqrt{\frac{2\hat{\sigma}^2 \ln(3/\delta)}{n}} - \frac{3(b-a) \ln(3/\delta)}{n}\right) \leq \delta, \quad (1)$$

192 where $\hat{\sigma}^2$ is the empirical variance. This yields tighter confidence intervals in low-variance regimes
 193 (e.g., deterministic optimization), while retaining PAC guarantees.

194 3.2.3 ANYTIME ACCEPTANCE VIA E-VALUES

196 Unlike the fixed- n tests above, *e*-values provide an *anytime-valid guarantee* (Howard et al., 2020),
 197 enabling sequential testing over an unbounded horizon. At round t , we compare the incumbent
 198 θ_t with the proposal θ'_t using paired differences $\Delta_{t,i} \in [a, b]$. Define the normalized variables
 199 $X_{t,i} = \Delta_{t,i}/R \in [-1, 1]$, where $R = \max\{|a|, |b|\}$.

200 Let $\lambda_{t,i} \in [0, 1]$ be a predictable choice (based only on past data, not the current sample) that deter-
 201 mines the betting fraction: small λ yields conservative updates, while large λ increases sensitivity
 202 but also variance. In our implementation, we fix $\lambda_{t,i} = 1$, corresponding to staking the full fraction
 203 on each observation. Given this choice, we define the per-sample *e*-value and cumulative updates as

$$205 \quad e_{t,i} = 1 + \lambda_{t,i} X_{t,i}, \quad (2)$$

$$206 \quad E_t = \prod_{i=1}^{n_t} e_{t,i}, \quad (3)$$

$$208 \quad W_t = W_{t-1} E_t, \quad W_0 = 1. \quad (4)$$

210 Here $e_{t,i}$ is the contribution from a single paired sample, E_t aggregates evidence across all n_t
 211 samples in round t , and W_t is the running wealth across rounds.

212 By construction, $\mathbb{E}[e_{t,i} \mid \mathcal{F}_{t,i-1}] \leq 1$ (Ramdas et al., 2018), where $\mathcal{F}_{t,i-1}$ denotes the information
 213 available up to sample $i-1$ in round t (i.e., all past outcomes, but not the current one). Thus, the
 214 wealth process $\{W_t\}$ is a nonnegative supermartingale, and Ville's inequality gives

$$215 \quad \Pr\left(\sup_{t \geq 1} W_t \geq 1/\delta\right) \leq \delta.$$

216 **Acceptance rule:** adopt θ'_t once $W_t \geq 1/\delta$.
 217

218 **Theorem 2** (Anytime Control via E-Values). *With bounded differences and predictable $\lambda_{t,i}$, the*
 219 *wealth process $\{W_t\}$ is a nonnegative supermartingale. Thus, the stopping time $\tau = \inf\{t : W_t \geq$*
 220 *1/\delta\} controls false acceptance:*

$$221 \quad \Pr(\exists t : \text{accept at round } t \text{ when } \mu_t \leq 0) \leq \delta. \\ 222$$

223 **Practical guidance.** Each acceptance mode offers distinct strengths:
 224

- 225 • **Hoeffding (fixed- δ).** Simple, conservative, and variance-agnostic; suited to small n with
 226 fixed budgets under a union-bound split.
- 227 • **Empirical Bernstein (variance-adaptive).** Tighter in low-variance regimes, but overly
 228 conservative under high variance or heavy tails.
- 229 • **E-values (anytime).** Default in our experiments; support early stopping and mini-batching
 230 without pre-allocating δ .
 231

232 In implementation, we instantiate the gate with e -values by default, using Hoeffding or empirical
 233 Bernstein as drop-in alternatives for fixed-budget or low-variance settings.
 234

235 **Summary.** These acceptance rules ensure that the SGM gate only admits proposals with statisti-
 236 cally certified improvement, while bounding the global error rate across multiple iterations.
 237

238 **Novelty.** While Hoeffding bounds, empirical Bernstein bounds, and e -values are well-established
 239 in statistical learning, our novelty lies in repurposing these tools as *gates for recursive self-*
 240 *modification*. Rather than serving as external evaluation techniques, we reinterpret them as internal
 241 contracts that decide whether a proposed edit is permanently adopted. This shift from regulating
 242 temporary errors to governing irreversible updates differentiates SGM from classical adaptive testing
 243 and provides, to our knowledge, the first statistical framework explicitly designed for continual
 244 self-editing processes.

245 **3.3 ALGORITHM**
 246

248 **Algorithm 1** SGM outer loop with certified acceptance.

249 **Require:** Initial config θ_0 ; proposer Π ; harness \mathcal{H} ; max rounds T ; global δ
 250 **Ensure:** Final config θ^* ; registry \mathcal{R}

251 1: $\theta \leftarrow \theta_0$; $\mathcal{R} \leftarrow \{(\theta_0, \text{baseline})\}$; $W \leftarrow 1$
 2: **for** $t = 1$ to T **do**
 3: $\Theta_{\text{cand}} \leftarrow \text{PROPOSE}(\Pi, \theta, \mathcal{R})$
 4: **for all** $\theta' \in \Theta_{\text{cand}}$ **do**
 5: $\{\Delta_i\}_{i=1}^n \leftarrow \text{PAIREDEVALUATE}(\mathcal{H}, \theta, \theta')$
 6: $(\text{LCB}, W) \leftarrow \text{CERTIFY}(\{\Delta_i\}, \delta, W)$ ▷ Applies tests from Sec. 3.2
 7: **if** $\text{LCB} > 0$ **or** $W \geq 1/\delta$ **then**
 8: **accept** θ' ; update θ, \mathcal{R}
 9: **else**
 10: **reject**
 11: **return** (θ^*, \mathcal{R})

262
 263 **4 EXPERIMENT**

264 We evaluate SGM across supervised learning, reinforcement learning, and optimization tasks. Un-
 265 less otherwise stated, we use paired seeds to estimate per-proposal improvements Δ_s and apply the
 266 decision rules from Sec. 3.2. For supervised learning (CIFAR, ImageNet), proposals undergo a two-
 267 stage screening/confirmation protocol (few seeds \times short epochs, then many seeds \times longer epochs
 268 if promising). Full hardware and compute details appear in Appendix B.

270 4.1 EXPERIMENT 1: CIFAR-100—CTHS AND DEEP-LEARNING STRESS TEST
271

272 **Setup.** We evaluate SGM on CIFAR-100, a high-variance benchmark, using a paired-seeds pro-
273 tocol: for each seed s , we train both the incumbent θ and the proposal θ' , recording the paired
274 difference Δ_s in percentage points (pp). Screening uses 4–6 seeds for 3–20 epochs, while promis-
275 ing candidates are escalated to confirmation with 12–30 seeds for 8–60 epochs.¹ Proposals mutate
276 standard hyperparameters such as weight decay, EMA decay, and label smoothing. The safeguard is
277 configured with $\delta=0.1$, $r_{\max}=1.0$, and a heuristic screening trigger of 0.4 pp.

278 **Part A: Confirm-Triggered Harmonic Spending (CTHS).** To directly evaluate statistical power,
279 we design a controlled *power analysis* experiment. At the confirmation stage only, we add a fixed
280 offset of +4.0pp to the proposal’s measured accuracy. This synthetic gain ensures that the proposal
281 is genuinely superior at confirmation while leaving screening unchanged. Such controlled injections
282 are common in power analysis and allow us to isolate the sensitivity of statistical schedules without
283 conflating with real proposal noise.

284 We compare the standard harmonic schedule, which allocates δ_t by round index t , against *Confirm-*
285 *Triggered Harmonic Spending (CTHS)*, which allocates by the k -th confirmation event. CTHS suc-
286 cessfully certifies the improvement on its very first confirmation (round 1), then correctly rejects
287 later noisy positives (rounds 5/6), spending $0.0748 < \delta = 0.10$. Harmonic, by contrast, does not
288 encounter the gain until later confirmations (rounds 3–6), where its per-round δ_t is smaller, and thus
289 makes no accepts, spending only 0.0388.

290 This result demonstrates that CTHS concentrates statistical power on the earliest promising event,
291 thereby detecting genuine gains more effectively while still respecting the global error budget.

293 Table 1: CIFAR-100 synthetic power analysis (+4.0pp at confirmation). CTHS certifies the improve-
294 ment early, while harmonic fails to accept the same gain due to smaller per-round δ_t .

Schedule	Conf. rounds	Total spend	Accepts	Outcome
CTHS	1, 5, 6	0.0748	1	Early accept; later rejections
Harmonic	3, 4, 5, 6	0.0388	0	Later confirms, lower δ_t

299 **Part B: CIFAR-10 Sanity Check.** Before turning to the higher-variance CIFAR-100 benchmark,
300 we ran a lightweight validation on CIFAR-10. The baseline used SGD with batch size 768, while
301 the proposal reduced the batch size to 64. Across 25–30 seeds, the safeguard consistently certified
302 a modest but reliable gain ($85.5\% \rightarrow 87.9\%$, $LCB > 0$), leading to acceptance. This simple test
303 confirms that SGM can reliably detect small, consistent improvements in image classification.

305 **Part C: Real Proposals on CIFAR-100 (Deep Learning Stress Test).**

306 We next evaluate SGM on *real* hyperparameter proposals for CIFAR-100, a challenging high-
307 variance benchmark. The goal is to test whether SGM can certify genuine improvements while
308 filtering out noisy or misleading proposals.

310 Table 2: CIFAR-100 stress test with actual hyperparameter proposals (reporting incumbent and
311 proposal accuracy %). Only iteration 6 achieves a certified gain under 30-seed confirmation.

Iter	Proposal Change(s)	Seeds	Inc. Acc. (%)	Prop. Acc. (%)	$\bar{\Delta}$ (pp)	$LCB_{1-\delta}$	Decision
1–5	lr, ema, warmup tweaks	6	56.05	[56.19, 56.31]	$\leq +0.25$	< 0	Reject
6	weight_decay=0.001 ema_decay=0.99	30	56.05	61.56	+5.51	+0.31	Accept
7–10	warmup, weight_decay variations	6–30	57.45	[55.88, 57.28]	[-1.57, -0.40]	< 0	Reject

319 **Interpretation.** Across 10 iterations, only iteration 6 (weight_decay=0.001,
320 ema_decay=0.99) passes 30-seed, 60-epoch confirmation, improving accuracy from 56.05%
321 to 61.56% (+5.51pp, $LCB = +0.31$). Screening uses a heuristic escalation rule, triggering
322 confirmation once the mean improvement $\bar{\Delta}$ exceeds 0.8, while final acceptance is decided solely

323 ¹We use disjoint seed pools between screening and confirmation.

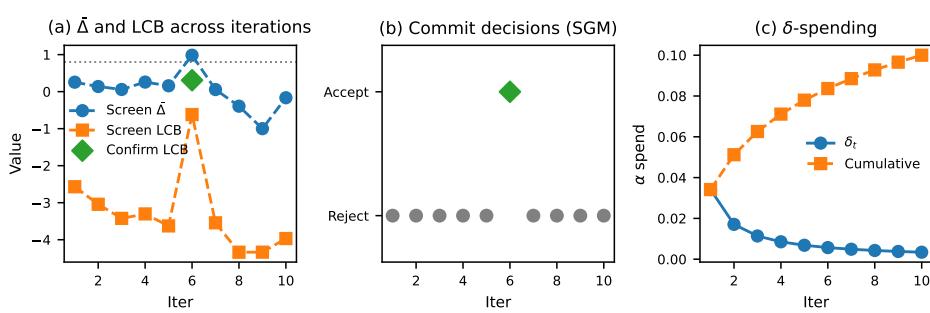


Figure 2: CIFAR-100 stress test under SGM. Only iteration 6 passes 30-seed confirmation, leading to acceptance. (a) Screening $\bar{\Delta}$ and LCB across iterations, with the dashed line indicating the escalation threshold. (b) Commit decisions under SGM: only iteration 6 is accepted. (c) δ -spending per iteration and cumulative total.

by confirm-stage LCBs. All other proposals either failed to escalate or were rejected despite positive screening means. Thus, SGM certifies only genuine gains while blocking noisy regressions, acting as a reliable statistical safeguard for deep learning pipelines. Moreover, the δ -spending curve shows this selectivity is achieved while respecting the global error budget (0.1).

Takeaway. On CIFAR-100, CTHS (Part A) shows stronger power by concentrating budget on early confirmations, while the CIFAR-10 sanity check (Part B) demonstrates that SGM reliably detects modest improvements. The CIFAR-100 stress test (Part C) confirms that SGM is conservative against noise yet able to certify genuine deep learning gains, establishing it as both statistically powerful and practically reliable for supervised learning.

4.2 EXPERIMENT 2: IMAGENET-100 (MID-SCALE TEST OF SAFETY)

Setup. We extended the CIFAR-100 protocol (Experiment 1) to ImageNet-100 using DeiT-S/224, AdamW, cosine schedule, and EMA disabled. Each proposal was first screened with 4 seeds for 50 epochs and, if promising, escalated to confirmation with 12 seeds for 120 epochs. The gate used $\delta = 0.1$, $r_{\max} = 0.5$, and a screening threshold of 0.4pp.

Results. Screening suggested modest gains (+2.9pp for mixup = 0.1), but all were overturned during confirmation. At iteration 6, the incumbent achieved 76.65% vs. 72.62% for the proposal ($\bar{\Delta} = -4.03$ pp, LCB = -1.91), leading to rejection. Thus, no proposal achieved a certified gain on ImageNet-100.

Table 3: Experiment 2 (ImageNet-100). Screening (4 seeds, 50 epochs) vs. confirmation (12 seeds, 120 epochs). All proposals were rejected under confirmation.

Iter	Proposal	Seeds	Inc. Acc. (%)	Prop. Acc. (%)	$\bar{\Delta}$ (pp)	$LCB_{1-\delta}$	Decision
6	mixup=0.1, cutmix=0.0	12	76.65	72.62	-4.03	-1.91	Reject

4.3 EXPERIMENT 3: RL SAFETY CHECKS (CARTPOLE AND LUNARLANDER)

Setup. We next test SGM in reinforcement learning tasks, focusing on its role as a safety filter rather than an optimizer. Both tasks use PPO with default hyperparameters. We run with $\delta = 0.1$ and budgets $B = 8$ (CartPole-v1) and $B = 3$ (LunarLander-v2). Paired seeds are used throughout.

CartPole-v1 (safety at saturation). Here the baseline PPO agent already solves the environment ($r_{\max} = 500$). We trained with 19 random seeds. Across 8 proposals, candidate modifications underperformed the strong incumbent (mean return 447.7 ± 54.5 vs. baseline 493.4 ± 12.6). The mean improvement was negative ($\bar{\Delta} = -45.7$) with LCB $[-0.95, -0.79]$, leading the safeguard to reject all proposals (Table 4, Fig. 3). This confirms the desired property: when the incumbent is near-optimal, SGM reliably blocks regressions.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431Table 4: CartPole-v1: safety demo with 19 seeds, $B=8$, $\delta=0.1$.

Config	n	Mean \pm SD	#Props	Mean improv. ($\bar{\Delta}$)	$LCB_{1-\delta}$
Baseline	19	493.4 ± 12.6	—	—	—
Proposals	152	447.7 ± 54.5	8	-45.7	$[-0.95, -0.79]$

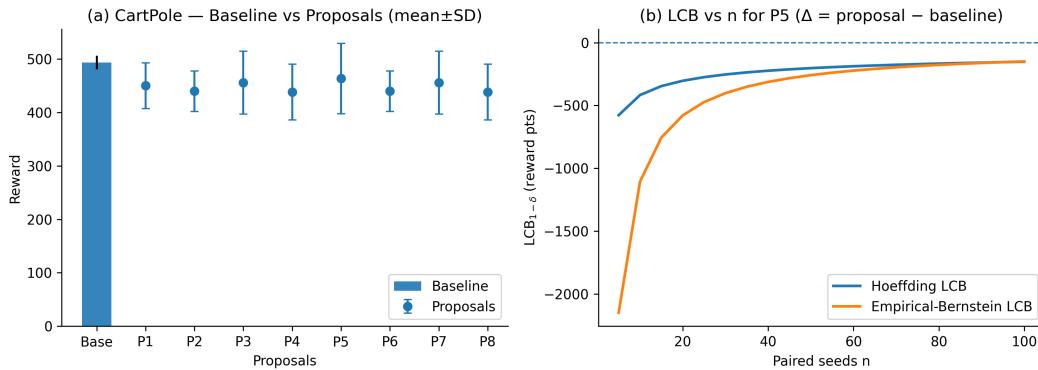


Figure 3: Ex1 (CartPole-v1, safety demo). Baseline vs. proposals: mean return with 95% CIs across 19 seeds. All proposals underperform baseline; no acceptance triggered by the gate.

LunarLander-v2 (safety under high variance). This environment is far noisier (baseline mean reward -479.5 ± 271.1). With $n = 19$ seeds and $B = 3$, the safeguard accepted one configuration that warm-started training, yielding a large gain of $\bar{\Delta} = +513.2 \pm 306.9$ and a certified lower bound $LCB_{1-\delta} = +0.04$ (Table 5, Fig. 4). Despite variance ≈ 307 , the gate still identified and certified a genuine improvement.

Table 5: LunarLander-v2: $n=19$, $B = 3$, $\delta = 0.1$, $r_{\max} = 600$.

Config	n	Inc. mean \pm SD	Prop. mean \pm SD	$\bar{\Delta}$	$LCB_{1-\delta}$	Decision
Baseline	19	-479.5 ± 271.1	—	—	—	—
Proposal	19	—	33.7 ± 306.9	$+513.2$	$+0.04$	Accept

Takeaway. Together, these safety checks show both sides of SGM in RL: it reliably blocks regressions once an environment is saturated (CartPole), and it can still admit genuine gains even under extreme stochasticity (LunarLander). This balance of conservatism and sensitivity is central to SGM’s role as a safety mechanism.

4.4 EXPERIMENT 4: RASTRIGIN20 (OPTIMIZATION STRESS TEST)

Setup. To evaluate SGM in a nearly deterministic regime, we used the 20-dimensional Rastrigin function, a standard black-box optimization benchmark with many local minima (Hansen et al., 2010; 2021). The baseline optimizer was CMA-ES (Hansen et al., 2003) with step-size $\sigma = 0.5$ and population size 16. Proposals modified a single hyperparameter (e.g., reducing σ). Each evaluation used $n = 80$ –100 random seeds, a budget of 2000 evaluations per seed, and confidence $\delta \in [0.30, 0.35]$.

Results. With 80–100 seeds, proposals showed only micro-improvements ($\bar{\Delta} \approx -0.55$). SGM certified cases where the lower confidence bound crossed zero, while rejecting others. This illustrates conservative behavior: SGM blocks spurious fluctuations but can admit genuine micro-gains.

Takeaway. Alongside Experiments 4.1 (CIFAR-100) and 4.3 (RL), Rastrigin20 demonstrates SGM’s robustness across extremes: stochastic deep learning, high-variance RL, and nearly de-

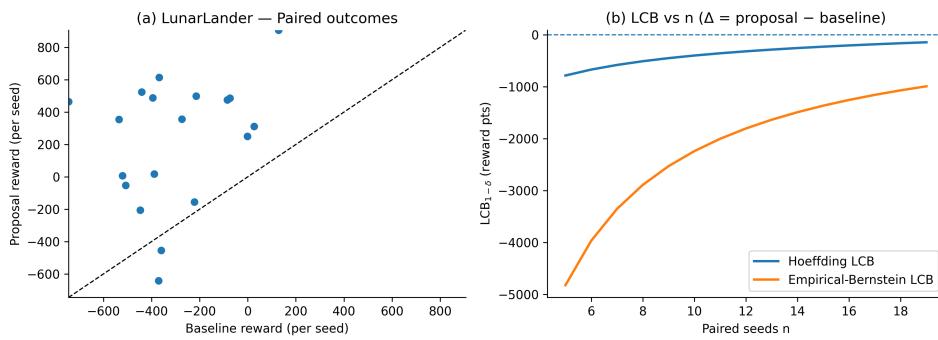


Figure 4: Experiment 2 (LunarLander-v2). **(a)** Paired *per-seed* returns: each dot is one random seed; the diagonal indicates parity (proposal = baseline). **(b)** Lower confidence bound on the improvement $\Delta = \text{proposal} - \text{baseline}$ as a function of paired seeds n . We plot $\text{LCB}_{1-\delta}$ under Hoeffding (solid blue) and empirical-Bernstein (solid orange). A proposal is certified once $\text{LCB}_{1-\delta} > 0$; for the accepted configuration, this occurs at $n = 19$. In this high-variance regime, Hoeffding is tighter because empirical-Bernstein over-penalizes variance.

Table 6: Rastrigin20 ($d = 20$). Lower f is better. SGM certifies only micro-gains when the lower bound is positive.

Exp.	n	Incumbent $\bar{f} \pm \text{SD}$	Proposal $\bar{f} \pm \text{SD}$	$\bar{\Delta}$	$\text{LCB}_{1-\delta}$	Decision
C012	100	21.41 ± 7.42	20.86 ± 7.62	-0.55	+0.009	Accept
C014	80	21.38 ± 7.46	20.83 ± 7.66	-0.55	+0.003	Accept
C012*	80	21.38 ± 7.46	20.83 ± 7.66	-0.55	-0.004	Reject

terministic optimization. It also highlights a practical tradeoff: empirical Bernstein is useful in low-variance settings, whereas Hoeffding can be less conservative under high variance.

5 DISCUSSION

Core findings. Our experiments support three main claims about the Statistical Gödel Machine (SGM): (1) *Statistical safety for recursive edits*: SGM consistently enforces a confidence-based safeguard, rejecting harmful modifications while certifying genuine improvements. This establishes the first practical safety layer for recursive self-modification. (2) *Event-triggered risk allocation improves power*: Confirm-Triggered Harmonic Spending (CTHS) concentrates the error budget on actual confirmation events, enabling early certification of true gains (CIFAR-100) that harmonic schedules miss. (3) *Cross-domain robustness*: SGM generalizes across supervised learning (CIFAR-10/100, ImageNet-100), reinforcement learning (CartPole, LunarLander), and black-box optimization (Rastrigin20), demonstrating consistent risk control and certifying reproducible improvements under diverse conditions.

Why different from prior testing. Standard sequential testing or online FDR governs temporary hypotheses: once a test ends, its mistakes do not persist. In contrast, SGM governs *irreversible self-modifications*: each accepted edit permanently rewrites the incumbent and propagates forward, so guarantees must hold not only per test but cumulatively across a recursive sequence of edits. To further strengthen this contract, we introduce *Confirm-Triggered Harmonic Spending (CTHS)*, which concentrates error budget on the subset of rounds that escalate to confirmation. Unlike classic harmonic splits that spend in every round, CTHS allocates only when an edit is at stake, improving statistical power without exceeding global risk. This combination of irreversibility and event-triggered spending fundamentally distinguishes SGM from prior work.

486 5.1 LIMITATIONS AND FUTURE WORK
487488 **Assumptions.** Our guarantees rely on bounded, i.i.d. paired differences and a stable evaluation
489 harness. Real-world pipelines may exhibit heavy-tailed noise, temporal correlation, or drift; in such
490 cases, our certificates remain valid but conservative. Extending SGM with variance-robust or drift-
491 aware bounds is an important next step.492 **Empirical scope.** We validated SGM on small-to-mid scale benchmarks (CartPole, LunarLander,
493 Rastrigin, CIFAR-10/100, ImageNet-100). We did not include very large-scale domains such as
494 ImageNet-1k, Mujoco, or LLM-based agent loops. Thus, the current results demonstrate feasibility
495 rather than ultimate scalability. Applying SGM to these high-stakes pipelines is a natural extension.
496497 **Proposer design.** Our proposers are deliberately simple (preset or random hyperparameter
498 tweaks), to isolate the gate’s guarantees. Stronger proposers—e.g., Bayesian optimizers or learned
499 mutation policies—are fully compatible with SGM and may yield richer dynamics. Studying this
500 interaction is future work.
501502 **Compute tradeoffs.** Confirmation protocols (e.g., 30 seeds for CIFAR-100) are rigorous but
503 costly. In large-scale settings, adaptive or cost-aware certificates (e.g., α -spending with early stop-
504 ping) could reduce overhead without compromising safety.
505506 **Outlook.** SGM establishes the *first statistical safety layer* for recursive self-modification. Its
507 present role is to ground the concept with principled guarantees and cross-domain feasibility. Fu-
508 ture work should scale the approach, relax assumptions, and integrate stronger proposers, with the
509 broader goal of making self-improving systems both more capable and reliably safe.
510511 6 CONCLUSION
512513 We presented the Statistical Gödel Machine (SGM), a practical relaxation of Gödel’s vision
514 of self-referential improvement. Whereas classical Gödel machines demand formal logical
515 proofs—unattainable in stochastic, high-dimensional settings—SGM replaces them with statisti-
516 cal confidence certificates, making Gödelian self-reference tractable for modern machine learning
517 pipelines.518 Our analysis establishes both per-edit and cumulative guarantees, ensuring that the probability of
519 adopting a harmful modification remains bounded even under indefinite horizons of recursive im-
520 provement. A key innovation is *Confirm-Triggered Harmonic Spending (CTHS)*, which preserves
521 familywise error control while concentrating the error budget on confirmation events, thereby im-
522 proving power on promising edits without exceeding the global budget.523 Experiments across reinforcement learning, black-box optimization, and supervised learning—
524 including a 30-seed CIFAR-100 stress test—demonstrate that SGM reliably rejects spurious
525 gains while certifying genuine ones. By combining the conceptual rigor of Gödel machines with the
526 tools of statistical learning, SGM provides a principled, domain-agnostic safety layer for continual
527 self-modification. This is a first step: establishing feasibility and guarantees today, while pointing
528 toward future systems capable of scaling recursive self-improvement to high-stakes real-world
529 applications.530
531 REFERENCES532 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
533 *International conference on machine learning*, pp. 22–31. PMLR, 2017.
534
535 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.
536
537 Peter Armitage, CK McPherson, and BC Rowe. Repeated significance tests on accumulating data.
538 *Journal of the Royal Statistical Society: Series A (General)*, 132(2):235–244, 1969.
539 Rina Foygel Barber and Emmanuel J Candès. Controlling the false discovery rate via knockoffs.
2015.

540 Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter op-
 541 timization at scale. In *International conference on machine learning*, pp. 1437–1446. PMLR,
 542 2018.

543 William Fithian, Dennis Sun, and Jonathan Taylor. Optimal inference after model selection. *arXiv*
 544 *preprint arXiv:1410.2597*, 2014.

545 Dean P Foster and Robert A Stine. α -investing: a procedure for sequential control of expected false
 546 discoveries. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 70(2):
 547 429–444, 2008.

548 Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
 549 *Journal of Machine Learning Research*, 16(1):1437–1480, 2015.

550 Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
 551 Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction.
 552 *arXiv preprint arXiv:1608.04428*, 2016.

553 Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
 554 the derandomized evolution strategy with covariance matrix adaptation (cma-es). *Evolutionary*
 555 *computation*, 11(1):1–18, 2003.

556 Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošk. Comparing results of
 557 31 algorithms from the black-box optimization benchmarking bbob-2009. In *Proceedings of the*
 558 *12th annual conference companion on Genetic and evolutionary computation*, pp. 1689–1696,
 559 2010.

560 Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
 561 Coco: A platform for comparing continuous optimizers in a black-box setting. *Optimization*
 562 *Methods and Software*, 36(1):114–144, 2021.

563 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the*
 564 *American statistical association*, 58(301):13–30, 1963.

565 Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform chernoff
 566 bounds via nonnegative supermartingales. 2020.

567 Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
 568 Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
 569 ing of neural networks. *arXiv preprint arXiv:1711.09846*, 2017.

570 Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. Always valid inference: Continu-
 571 ous monitoring of a/b tests. *Operations Research*, 70(3):1806–1821, 2022.

572 Xavier Leroy. Formal verification of a realistic compiler. *Communications of the ACM*, 52(7):
 573 107–115, 2009.

574 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
 575 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning*
 576 *Research*, 18(185):1–52, 2018.

577 Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penal-
 578 ization. *arXiv preprint arXiv:0907.3740*, 2009.

579 George C Necula. Proof-carrying code. In *Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
 580 posium on Principles of programming languages*, pp. 106–119, 1997.

581 Aaditya Ramdas, Tijana Zrnic, Martin Wainwright, and Michael Jordan. Saffron: an adaptive al-
 582 gorithm for online control of the false discovery rate. In *International conference on machine*
 583 *learning*, pp. 4286–4294. PMLR, 2018.

584 Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
 585 classifier architecture search. In *Proceedings of the aaai conference on artificial intelligence*,
 586 volume 33, pp. 4780–4789, 2019.

594 Jürgen Schmidhuber. Gödel machines: Fully self-referential optimal universal self-improvers. In
 595 *Artificial general intelligence*, pp. 199–226. Springer, 2007.
 596

597 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 598 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
 599 148–175, 2015.

600 Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv*
 601 preprint *arXiv:1805.11074*, 2018.

602 Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting.
 603 *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 86(1):1–27, 2024.

604

605 Roman V Yampolskiy. From seed ai to technological singularity via recursively self-improving
 606 software. *arXiv preprint arXiv:1502.06512*, 2015.

607 Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. *arXiv preprint*
 608 *arXiv:1611.01578*, 2016.

609

610 **A APPENDIX**

611 **A.1 HOEFFDING BOUND FOR ACCEPTANCE**

612 We recall the classical Hoeffding inequality.

613 **Theorem 3** (Hoeffding inequality, mean form). *Let X_1, \dots, X_n be independent with $X_i \in [a, b]$ and mean μ . Let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$. Then, for any $\epsilon > 0$,*

$$614 \Pr(\mu \leq \hat{\mu} - \epsilon) \leq \exp\left(-2n\epsilon^2/(b-a)^2\right).$$

615 Equivalently, with probability at least $1 - \delta$,

$$616 \mu \geq \hat{\mu} - (b-a)\sqrt{\frac{1}{2n} \ln \frac{1}{\delta}}.$$

617 **Specialization to the mean.** If all variables share the same bounded range $[a, b]$, then $\sum_{i=1}^n (b_i - a_i)^2 = n(b-a)^2$. Letting $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[X_i]$, we obtain

$$618 \Pr(\hat{\mu} - \mu \geq \epsilon) \leq \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right).$$

619 Equivalently, with probability at least $1 - \delta$,

$$620 \mu \geq \hat{\mu} - (b-a)\sqrt{\frac{1}{2n} \ln \frac{1}{\delta}}.$$

621 This one-sided lower-tail bound underlies our acceptance rule in Sec. 3.2.

622 **A.2 CARTPOLE DETAILS**

623 **A.3 LUNARLANDER-V2 DETAILS**

624 **A.4 CIFAR-10 DETAILS**

625 **B COMPUTE ENVIRONMENT**

626 All experiments were run on a standardized cloud image with the following stack:

627

- PyTorch 2.1.2, Python 3.10 (Ubuntu 22.04), CUDA 11.8
- GPU: RTX 4090D (24GB) $\times 1$, with on-demand scaling
- CPU: 18 vCPU AMD EPYC 9754 128-Core Processor
- Memory: 60GB

628 This environment was used consistently across all tasks. Only the ImageNet-100 experiments were
 629 compute-intensive; all other tasks required modest resources.

648

649

650 Table 7: CartPole-v1: Per-iteration results of PAC-based safeguard. All proposals were rejected,
651 consistent with the strong baseline (493.4 ± 12.6). Hyperparameter changes are shown vs. incum-
652 bent.

Iter	Proposal Mean \pm SD	$\bar{\Delta}$	$LCB_{1-\delta}$	Decision	Changes vs. incumbent
1	450.3 ± 42.7	-0.0861	-0.789	Reject	lr: $3 \times 10^{-4} \rightarrow 1.82 \times 10^{-3}$; clip: $0.20 \rightarrow 0.35$; nsteps: $2k \rightarrow 4k$
2	439.8 ± 37.9	-0.1071	-0.860	Reject	lr: $3 \times 10^{-4} \rightarrow 1.82 \times 10^{-3}$; clip: $0.20 \rightarrow 0.31$; nsteps: $2k \rightarrow 4k$
3	455.9 ± 58.7	-0.0749	-0.856	Reject	lr: $3 \times 10^{-4} \rightarrow 1.75 \times 10^{-3}$; clip: $0.20 \rightarrow 0.32$; nsteps: $2k \rightarrow 4k$
4	438.2 ± 52.0	-0.1104	-0.910	Reject	lr: $3 \times 10^{-4} \rightarrow 1.78 \times 10^{-3}$; clip: $0.20 \rightarrow 0.35$; nsteps: $2k \rightarrow 4k$
5	463.6 ± 65.9	-0.0595	-0.874	Reject	lr: $3 \times 10^{-4} \rightarrow 1.82 \times 10^{-3}$; clip: $0.20 \rightarrow 0.35$; nsteps: $2k \rightarrow 4k$
6	439.8 ± 37.9	-0.1071	-0.933	Reject	lr: $3 \times 10^{-4} \rightarrow 1.82 \times 10^{-3}$; clip: $0.20 \rightarrow 0.31$; nsteps: $2k \rightarrow 4k$
7	455.9 ± 58.7	-0.0749	-0.911	Reject	lr: $3 \times 10^{-4} \rightarrow 1.75 \times 10^{-3}$; clip: $0.20 \rightarrow 0.32$; nsteps: $2k \rightarrow 4k$
8	438.2 ± 52.0	-0.1104	-0.954	Reject	lr: $3 \times 10^{-4} \rightarrow 1.78 \times 10^{-3}$; clip: $0.20 \rightarrow 0.35$; nsteps: $2k \rightarrow 4k$

662 Proposal means and SDs are computed across 19 seeds per iteration. Hyperparameter changes are relative to
663 the incumbent.

664

665

666 Table 8: Accepted proposals for LunarLander-v2. Both runs were warm-started from manually
667 seeded hyperparameters (see note).

Exp.	Iter	$\bar{\Delta}$	$LCB(1 - \delta)$	Mean Reward \pm SD	ΔR (mean \pm sd [min–max])
B3-ws2	1	0.7108	0.0384	–	$+513.2 \pm 306.9$ [165.1–1344.8]
B5-ws3	1	0.7115	0.0222	–	$+513.8 \pm 306.5$ [165.8–1344.6]

672 Warm-start origins: B3-ws2 seeded from $lr \approx 1.87 \times 10^{-3}$, $clip \approx 0.343$; B5-ws3 seeded from neighborhood
673 around B3-ws2 ($lr \approx 1.78$ – 1.86×10^{-3} , $clip \approx 0.343$ – 0.352). (Common: batch=64, n_steps=4096)

674

675

676 Table 9: CIFAR-10, PAC-EB safeguard). Proposal reduces batch size relative to incumbent. Both
677 frozen prefix ($n = 25$) and full overlap ($n = 30$) yield positive bounds, leading to ACCEPT
678 decisions.

Exp.	n	Inc. Acc. (%) \pm SD	Prop. Acc. (%) \pm SD	$(\bar{\Delta})$	$LCB_{1-\delta}(\bar{\Delta})$	Decision
BS-64 (N=25)	25	85.5 ± 0.7	87.85 ± 0.18	$+2.35$	$+0.03$	ACCEPT
BS-64 (N=30)	30	85.54 ± 0.66	87.86 ± 0.19	$+2.32$	$+0.18$	ACCEPT

684 **Algorithm 2** SGM outer loop: proposals certified by fixed- δ or anytime e -value tests for adoption.685 **Require:** Init. config θ_0 ; proposer Π ; harness \mathcal{H} ; max rounds T ; risk $\delta \in (0, 1)$; proposal period K 686 **Ensure:** Final config θ^* ; registry \mathcal{R} of accepted/rejected edits

```

1:  $\theta \leftarrow \theta_0$ ;  $\mathcal{R} \leftarrow \{(\theta_0, \text{baseline})\}$ ;  $W \leftarrow 1$                                  $\triangleright$  anytime wealth
2: for  $t = 1$  to  $T$  do
3:    $(\mathcal{C}, \mathbf{m}) \leftarrow \text{RUNINNERLOOP}(\theta, \mathcal{H})$                                  $\triangleright \mathcal{C}$ : incumbent cache;  $\mathbf{m}$ : metrics
4:   if STAGNANT( $\mathbf{m}$ ) or  $t \bmod K = 0$  then                                 $\triangleright$  plateau or every  $K$  rounds
5:      $\Theta_{\text{cand}} \leftarrow \text{PROPOSEEDIT}(\Pi, \theta, \mathcal{R})$ 
6:     for all  $\theta' \in \text{RANKCANDIDATES}(\Theta_{\text{cand}})$  do
7:        $\{\delta_i\}_{i=1}^n \leftarrow \text{PAIREDEVALUATE}(\mathcal{H}, \theta, \theta', \mathcal{C})$                                  $\triangleright$  per-seed diffs  $\delta_i$  for  $n$  trials
8:        $\bar{\delta} \leftarrow \frac{1}{n} \sum_{i=1}^n \delta_i$                                  $\triangleright$  mean improvement
9:        $(LCB, W) \leftarrow \text{CERTIFY}(\{\delta_i\}, \alpha, W)$ 
10:      if  $LCB > 0$  then
11:        accept and promote
12:      else
13:        reject (or continue sampling if enabled)
14: return  $(\theta^*, \mathcal{R}) \leftarrow (\theta, \mathcal{R})$ 

```

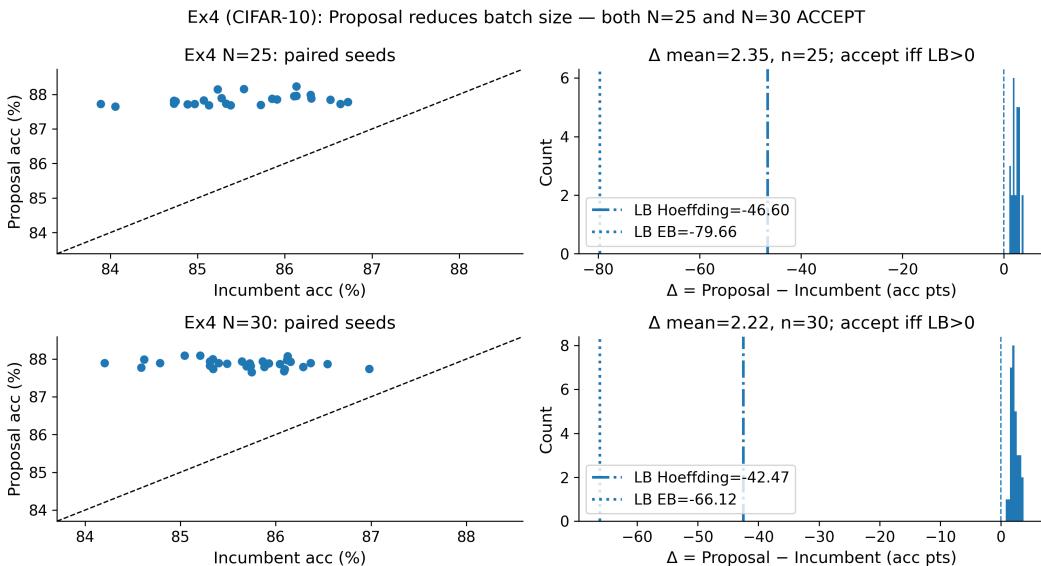


Figure 5: CIFAR-10. Test accuracy vs. epochs for baseline (batch 768) and proposal (batch 64). The proposal yields a small, consistent accuracy gain; acceptance is triggered when $LCB_{1-\delta}(\hat{\Delta}) > 0$ (both $n = 25$ and $n = 30$).