

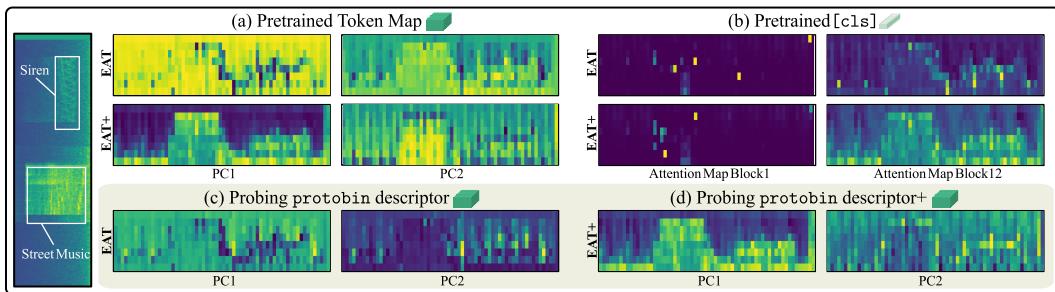
000 UNMUTE THE PATCH TOKENS: RETHINKING PROBING 001 IN MULTI-LABEL AUDIO CLASSIFICATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Although probing frozen models has become a standard evaluation paradigm, self-
010 supervised learning in audio defaults to fine-tuning **when pursuing state-of-the-art**
011 **on AudioSet**. A key reason is that global pooling creates an information bottleneck
012 causing linear probes to misrepresent the embedding quality: The `cls`-token
013 discards crucial token information about dispersed, localized events in audio. This
014 weakness is rooted in the mismatch between the pretraining objective (globally)
015 and the downstream task (localized). Across a comprehensive benchmark of 13
016 datasets and 6 spectrogram-based encoders, we investigate the global pooling bot-
017 tleneck. We introduce binarized prototypical probes: a lightweight and simple
018 pooling method that learns prototypes to perform class-wise information aggrega-
019 tion. Despite its simplicity, our method notably outperforms linear and attentive
020 probing. Our work establishes probing as a competitive and efficient paradigm for
021 evaluating audio SSL models, challenging the reliance on costly fine-tuning.
022



023
024 **Figure 1: The pooling bottleneck.** Visualizing embeddings from a purely self-supervised model
025 (EAT) and its supervised⁺-adapted version (EAT⁺) for a spectrogram from urban. **(a)** A PCA of the
026 token map shows that EAT embeddings are rich but entangled, a result of the masked prediction ob-
027 jective, while EAT⁺ embeddings are localized and aligned with input events. **(b)** The `[cls]`-token's
028 attention starts similarly for both models, but is diffuse for EAT in later layers, while EAT⁺ becomes
029 spatially selective, highlighting its limitation as a probe vector. **(c)** Our protobin disentangles
030 these correlated EAT embeddings to recover localized event information. **(d)** For the EAT⁺ model,
031 protobin further enhances the embeddings, providing a superior representation to the `[cls]`-token.
032

033 1 INTRODUCTION 034

035 Self-supervised learning (SSL) promises general-purpose embeddings that transfer across down-
036 stream tasks (Oquab et al., 2024). A key advantage is their out-of-the-box utility: instead of
037 compute- and label-intensive fine-tuning, one can freeze the pretrained backbone and train only
038 a lightweight probe. As an evaluation paradigm, probing offers a faithful and efficient assessment
039 of pretrained embeddings by minimizing the confounding factors of fine-tuning (Chen et al., 2020;
040 Rauch et al., 2025a). Fine-tuning often yields stronger downstream performance (Park et al., 2023),
041 but can obscure the intrinsic quality of the frozen embeddings (Kumar et al., 2022). **While probing**
042 **is an established evaluation paradigm in computer vision** (Oquab et al., 2024; Dariset et al., 2025)
043 **and is also utilized in audio SSL** (Niizumi et al., 2024; Yadav et al., 2024) **on benchmarks such as**
044 **HEAR** (Turian et al., 2022), **the pursuit of state-of-the-art (SOTA) performance on AudioSet** (Gem-
045 meke et al., 2017) **still defaults to resource-intensive fine-tuning** (Alex et al., 2025). **This discrepancy**

054 motivates our central question: why does this influential benchmark still lack a lightweight probing
 055 method that reliably reflects a model’s performance as an alternative to fine-tuning?

056
 057 The performance of a frozen probe depends on the interplay between the *pretraining objective* (i.e.,
 058 the pretext task) and the *pooling method* (i.e., embedding extraction). Poor probing performance for
 059 masked image modeling (MIM)-pretrained models is a direct result of the pooling method, as the
 060 [cls]-token distributes attention too uniformly instead of focusing on key information (Przewięź-
 061 likowski et al., 2025; Alkin et al., 2025). The superior performance of probes that utilize the full
 062 token map (Psomas et al., 2025) creates a critical deficit for simpler methods, rendering them un-
 063 reliable proxies for an encoder’s embedding quality. This motivates the need for probes that can
 064 efficiently leverage all available information to provide a faithful assessment, avoiding the cost and
 065 confounding factors of fine-tuning. **Many spectrogram-based audio SSL encoders that report SOTA**
 066 **performance on AudioSet via fine-tuning** apply MIM-style objectives, often coupled with student-
 067 teacher distillation (Chen et al., 2024; Alex et al., 2025; Ahmed et al., 2024; Chen et al., 2023a; Li
 068 et al., 2024). By design, this task induces a bias toward contextualized token-level embeddings, ex-
 069 posing any probe’s limitations that collapse the tokens into a simple global summary. While attentive
 070 pooling, which learns a token-weighted summary, has emerged as a potential solution in computer
 071 vision (Przewięźlikowski et al., 2025), its application to audio remains a research gap, **particularly**
 072 **for representing complex polyphonic scenes.**

073 In addition, the *downstream task* plays a role in the performance of probes (Alex et al., 2025).
 074 Polyphonic soundscapes are multi-label, with sparse and localized evidence for sound events in the
 075 time-frequency domain. Forcing this information into a single descriptor, whether fixed or learnable
 076 during probing, creates a single-vector bottleneck: Quieter but important events could be overshad-
 077 owed by more prevalent sounds, making it difficult for a linear classifier to disentangle the mixed
 078 signals (see Figure 1). **Therefore, the limited adoption of probing and its failure to approach fine-**
 079 **tuning SOTA performance on AudioSet likely reflects a pooling mismatch, not an absence of usable**
 080 **information.** While the pretrained [cls]-token struggles to summarize these sparse events and can
 081 underperform in audio classification (Alex et al., 2025; Li et al., 2024), fine-tuning implicitly learns
 082 a superior, class-conditioned aggregation over the full token map (see Figure 1).

Hypothesis: Pooling Bottleneck

083 The limited usage of probing as an eval-
 084 uation tool for multi-label audio SSL
 085 stems from the pooling method. Stan-
 086 dard single-vector probes, from the off-
 087 the-shelf [cls]-token to attentive pool-
 088 ing, underutilize token embeddings. A
 089 more valuable and reliable probe re-
 090 quires a shift to per-class, multi-vector
 091 aggregation to fully exploit the infor-
 092 mation in the patch tokens (Figure 2).

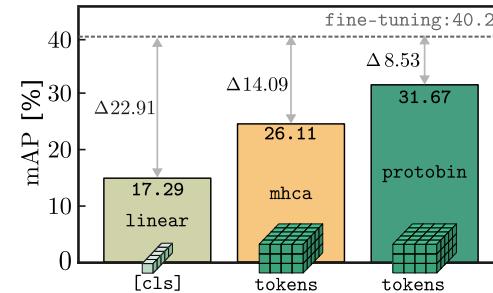


Figure 2: **Probing on as20k with EAT.**

Contributions

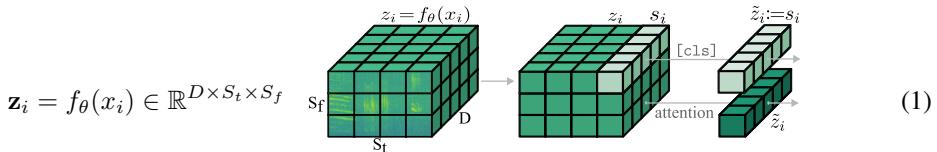
1. **Audio probing benchmark.** We conduct an extensive benchmark to systematically investi-
 093 giate the pooling bottleneck in audio SSL. Our analysis establishes a probing hierarchy,
 094 demonstrates that the `cls`-token probe and fine-tuning can be unfaithful evaluators of
 095 audio SSL models, quantifies the impact of polyphony in probing, and shows that supervised
 096 adaption after pre-training alters `cls`-token’s quality and model rankings. We empirically
 097 show that the bottleneck stems from the pooling method, not the embeddings, challenging
 098 the validity of current evaluation practices in **achieving SOTA performance on AudioSet**.
2. **Elevating probing in audio.** Prototype methods notably outperform other pooling methods,
 099 including linear and attentive. This result challenges the reliance on costly fine-tuning and
 100 establishes probing as a competitive and efficient paradigm for evaluating audio SSL models.
3. **Binarized prototypical probes.** We introduce an efficient probe that addresses the pooling
 101 bottleneck by performing **class-wise and multi-vector information aggregation on the tokens**.
 102 **We simplify prior prototypical approaches by decoupling prototypes from class constraints**
 103 **and eliminating an explicit orthogonality loss, while achieving competitive performance.**

108

2 PROBING FROZEN EMBEDDINGS IN MULTI-LABEL AUDIO

110 This section formally introduces the probing task for (multi-label) audio, provides a taxonomy of
111 the pooling methods, and introduces our binarized prototypical probes.
112113

2.1 PROBLEM FORMULATION AND NOTATION

115 We consider a multi-label classification task with a training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, where each
116 input x_i belongs to a set of spectrograms $\mathcal{X} \subseteq \mathbb{R}^{T \times F}$ with T time frames and F frequency bins.
117 Each corresponding one-hot-encoded target vector $y_i \in \{0, 1\}^C$ indicates the presence or absence
118 of C possible classes. Multiple classes may simultaneously occur for a single input. Additionally,
119 we assume access to a pretrained embedding encoder f_θ , parameterized by frozen weights θ . This
120 model f_θ functions as a feature extractor, mapping an input x_i to a token map:
121122 where D is the embedding dimension, and S_t, S_f index a grid of time and frequency patch tokens. If
123 the backbone exposes a [cls]-token, we denote it by $s_i^{cls} \in \mathbb{R}^D$. For instance, a 10-second log-Mel
124 spectrogram with $F=128$ Mel bins (from 16 kHz audio) is patched into non-overlapping 16×16
125 time-frequency tokens, yielding $T \approx 1024$ frames and thus $S_t=64$ and $S_f=8$. With an embedding
126 dimension of $D=768$, the resulting token map is $\mathbf{z}_i \in \mathbb{R}^{768 \times 64 \times 8}$. Given the frozen token map \mathbf{z}_i , a
127 probe g_ϕ consumes a pooled descriptor $\tilde{\mathbf{z}}_i$, determining how information is extracted. The resulting
128 vector is then processed by the probe, typically a linear classifier $g_\phi(\tilde{\mathbf{z}}_i) = \mathbf{W}\tilde{\mathbf{z}}_i + \mathbf{b}$.
129

130

2.2 A TAXONOMY OF GLOBAL POOLING METHODS

131 **This section provides a brief taxonomy of pooling methods to contextualize our investigation.**

132 **Fixed global pooling (single-vector, non-learnable).** The default approach collapses the token
133 map \mathbf{z}_i from the frozen backbone f_θ into a single descriptor $\tilde{\mathbf{z}}_i = A(\mathbf{z}_i) \in \mathbb{R}^D$ via a non-learnable
134 aggregator $A : \mathbb{R}^{D \times S_f \times S_t} \rightarrow \mathbb{R}^D$, followed by a linear probe. If the model exposes a last-layer
135 [cls]-token s_i^{cls} , produced via self-attention, one can set $\tilde{\mathbf{z}}_i := s_i^{cls}$. **While mean pooling all**
136 **tokens $\tilde{\mathbf{z}}_i$ is a viable alternative, all encoders in our benchmark provide a cls -token, making it our**
137 **standard for fixed global pooling.** A k -NN probe is also used in multi-class settings, but vanilla
138 k -NN performs single-label majority voting and is ill-suited to multi-label.
139

140 **Learnable global pooling (single-vector, learnable).** Instead of a fixed pretext-task descriptor,
141 this pooling family uses a learnable module to aggregate the token map into a single descriptor
142 $\tilde{\mathbf{z}}_i$ while keeping f_θ frozen. Attentive variants assign data-dependent weights to tokens and form
143 a weighted summary. They typically outperform fixed global pooling for pretrained encoders in
144 computer vision (El-Nouby et al., 2024; Dariset et al., 2025).
145

146

2.3 LEARNABLE PROTOTYPICAL POOLING: A PER-CLASS POOLING METHOD

147 As an alternative to single-vector pooling, prototypical probes aggregate evidence per class via
148 multiple learnable exemplars (i.e., prototypes). Inspired by explainability methods (Chen et al., 2019;
149 Donnelly et al., 2022), the idea is to score the frozen token map by its similarity to learnable
150 prototypes in the embedding space, which naturally accommodates dispersed events by allowing different
151 classes to localize information in distinct time-frequency regions (Rauch et al., 2025a).
152

153 **Binarized prototypical probes.** We introduce *binarized prototypical probes*, a novel and efficient
154 instance from the prototypical pooling family (Rauch et al., 2025a; Heinrich et al., 2025) that scores
155 token map embeddings by matching them against a small set of prototypes that are binarized on-the-
156 fly. We maintain a set of $C \cdot J$ total learnable, **class-agnostic** prototypes, with parameters $\tilde{\mathbf{p}}_j \in \mathbb{R}^D$
157

3

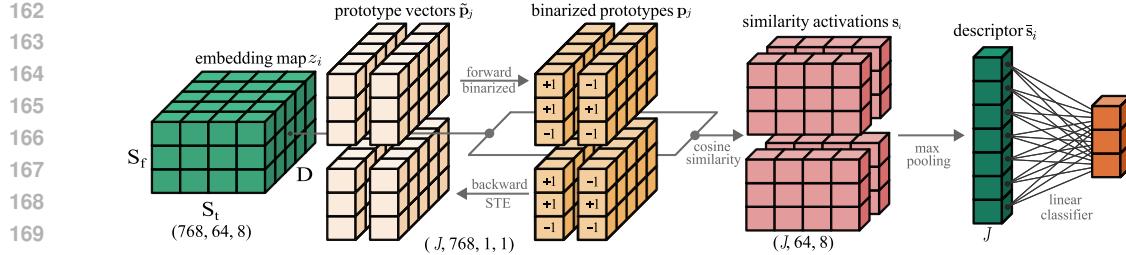


Figure 3: **Binarized prototypical pooling (schematic).** Example shown for a base audio SSL backbone with $D=768$ -dim tokens and a 64×8 token map. There are J learnable prototypes, which are binarized on-the-fly. Tokens are matched against these prototypes, max pooling aggregates spatial evidence, and a final linear layer maps the resulting prototype scores to class logits.

for each prototype index $j \in \{1, \dots, CJ\}$. At each forward pass, we form the binary prototype

$$p_j = \text{sign}(\tilde{p}_j) \in \{-1, +1\}^D. \quad (2)$$

This constraint helps encouraging large angular margins between distinct prototypes. The near-orthogonality is an emergent property, forcing prototypes to the corners of a high-dimensional hypercube, creating a strong structural bias for diversity. The optimization process seeks discriminative features to minimize classification loss and is incentivized to select orthogonal solutions. The non-differentiability of $\text{sign}(\cdot)$ is handled with the straight-through-estimator (STE) (Bengio et al., 2013): during back-propagation, $\frac{\partial \text{sign}(x)}{\partial x} \approx 1$, so the forward pass uses hard ± 1 while gradients flow to the real-valued \tilde{p}_j . Given the frozen token map $\mathbf{z}_i = f_\theta(x_i) \in \mathbb{R}^{D \times S_t \times S_f}$, let $\mathbf{z}_i^{t,f} \in \mathbb{R}^D$ denote the token at time-frequency index $(t, f) \in \{1, \dots, S_t\} \times \{1, \dots, S_f\}$. We score each prototype against all tokens using cosine similarity and aggregate evidence via max-pooling:

$$s_j(t, f) := \frac{\mathbf{p}_j^\top \mathbf{z}_i^{t,f}}{\|\mathbf{p}_j\|_2 \|\mathbf{z}_i^{t,f}\|_2}, \quad \bar{s}_j := \max_{t,f} s_j(t, f). \quad (3)$$

Stacking the pooled scores across all J prototypes yields the vector $\bar{s}_i \in \mathbb{R}^J$. We use this vector as the clip-level descriptor, i.e., set $\tilde{\mathbf{z}}_i := \bar{s}_i$, and map it to class logits with the linear classifier g_ϕ .

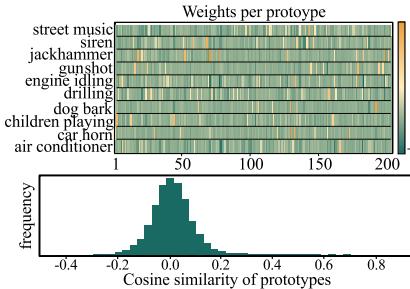


Figure 4: **Weights and similarities example.** Trained protobin on urban.

Rationale. A prototype layer is parameter-efficient, requiring only $J \cdot D$ parameters. The value for J is set by multiplying the number of classes C by a small constant (e.g., 20 (Rauch et al., 2025a)), offering a compact alternative to attentive pooling heads that can require over $2D^2$ parameters (El-Nouby et al., 2024). By binarizing the prototypes to $\mathbf{p}_j \in \{-1, +1\}^D$, our method yields an additional $32 \times$ memory reduction relative to 32-bit floats, making it ideal for memory-constrained and on-device applications (e.g., bioacoustics). Cosine matching inherently keeps scores scale- and dimension-invariant across backbones. The near-orthogonality observed between prototypes (cf. Figure 4) is not enforced by an explicit mechanism but is an emergent property arising from the method. Through the binarization, we also constrain them to the corners of a D -dimensional hypercube, creating a structural bias for diversity.

During training, the optimization process seeks a set of maximally discriminative prototypes to effectively classify different audio events. The optimization process, seeking to minimize classification loss, is incentivized to select distinct, non-redundant prototypes. In the high-dimensional embedding space, this is most effectively achieved when prototypes are nearly orthogonal. Therefore, we simplify the training objective by eliminating the need for an explicit orthogonality loss term used in prior work to enforce diversity (Rauch et al., 2025a; Heinrich et al., 2025). Finally, unlike prior work, we make the prototypes class-agnostic, allowing the prototypes to better collaborate in disentangling task information. The link between these diverse prototypes and their specific class contributions is learned entirely by the linear classifier. This layer learns to map the similarity scores from the J prototypes to the C class logits, effectively assigning semantic meaning to each prototype based on its utility for the classification task.

216 3 RELATED WORK

218 **SSL paradigms in audio.** In vision, two families dominate modern SSL: student-teacher clustering/distillation (Caron et al., 2021; 2020) and MIM (He et al., 2022; Dariset et al., 2025). Hybrids combining global invariance with masking are considered the current best-performing models (Oquab et al., 2024; Assran et al., 2023). Spectrogram-based audio SSL largely adapts these paradigms: vision transformer (ViT) backbones trained via masked-spectrogram prediction or student-teacher paradigms with audio-specific augmentations (see Table 1). Audio-MAE (Huang et al., 2022) and Dasheng (Dinkel et al., 2024) are generative masked reconstruction models (He et al., 2022). BEATs (Chen et al., 2023a) follows BEiT-style masked token prediction with discrete acoustic tokenizers (Bao et al., 2022). ASiT (Ahmed et al., 2024), EAT (Chen et al., 2024), and SSLAM (Alex et al., 2025) use momentum-teacher distillation with masked/local-global or utterance-frame objectives (Caron et al., 2021; Baevski et al., 2022). Except for Dasheng (which uses additional datasets), these models pretrain on AudioSet’s as2m (Gemmeke et al., 2017), establishing an influential line of work where SOTA is measured mostly by fine-tuning performance.

231 Table 1: **Spectrogram-based backbones used in our work.** Mask: input masking during pretraining. EMA: student-teacher with EMA teacher. Global [cls]: explicit global/token objective during 232 pretraining. Supervised⁺ have an additional fine-tuned checkpoint on as2m available.

235 Model	236 Year	237 Paradigm	238 Supervised ⁺	239 Mask	240 EMA	241 Global [cls]	242 Pretrain data
A-MAE	2022	Masked spec reconstruction	✗	✓	✗	✗	as2m
BEATs	2022	Masked token prediction	✓	✓	✗	✗	as2m
ASiT	2024	Masked spec reconstruction + latent distillation	✗	✓	✓	✓	as2m
EAT	2024	Masked latent distillation	✓	✓	✓	✓	as2m
Dasheng	2024	Masked spec reconstruction	✗	✓	✗	✗	as2m*
SSLAM	2025	Masked latent distillation + mixtures	✓	✓	✓	✓	as2m

243 **Evaluation in audio SSL.** Simple linear probes are widely used in computer vision (Oquab et al., 244 2024) and utilized by numerous audio SSL works (Niizumi et al., 2022; 2024; 2025; Yadav et al., 245 2024; Li et al., 2024; Pepino et al., 2025) on benchmarks such as HEAR (Turian et al., 2022) with 246 a simple probing toolkit. However, these evaluations in audio SSL have largely treated probing as 247 a fixed protocol. With the notable exception of a token reshaping approach from Niizumi et al. 248 (2022), the impact of the pooling method and the underlying performance bottleneck it creates, 249 has remained largely unexplored. When pursuing SOTA performance on AudioSet, audio SSL still 250 defaults to fine-tuning (Huang et al., 2022; Chen et al., 2023a; Ahmed et al., 2024; Chen et al., 251 2024; Alex et al., 2025). We attribute this reliance on fine-tuning, further justified by the sentiment 252 that linear probes cannot fully reflect embedding quality (Li et al., 2024), to a pretext-pooling 253 mismatch: pretraining learns token-level information, yet standard probes compress the tokens into a 254 single global vector, discarding per-source cues critical for polyphony and localized events. A-MAE 255 yields weak linear probe utility in bioacoustics (Rauch et al., 2025b), consistent with findings that 256 generative objectives disperse information across tokens (Park et al., 2023; Alkin et al., 2025). This 257 limitation becomes evident in the line of work pursuing SOTA on AudioSet: Although masked- 258 distillation models (BEATs, EAT, ASiT) are designed to produce stronger global representation 259 in the [cls]-token, their performance with frozen-backbone probing is rarely reported in related 260 work. SSLAM includes linear probing results on selected datasets, yet cross-backbone comparability 261 is limited (Alex et al., 2025). Dasheng reports frozen MLP and k -NN results on multi-class 262 tasks on HEAR but does not address multi-label settings. This gap motivates a systematic study of 263 probing methods for frozen audio embeddings.

264 **Advanced probe architectures.** Replacing fixed global pooling with learned pooling over token 265 maps during probing improves alignment with MIM (Dariset et al., 2025). Attentive pooling 266 consistently outperforms fixed global pooling (Psomas et al., 2025; El-Nouby et al., 2024; Dariset et al., 267 2025). Complementary analyses show that [cls] attention of backbones tends to be diffuse under 268 MIM, weakening it as a global descriptor (Przewięźlikowski et al., 2025). Some works in audio have 269 explored structured, non-attentive pooling. For instance, Niizumi et al. (2022) utilize the token map by concatenating frequency features at each time step before temporal pooling (linpre). Attentive 270 pooling methods compute token weights and values differently, ranging from single-query multiple- 271 instance learning (abmilp) (Ilse et al., 2018) and multi-head cross-attention (mhca) (El-Nouby et al., 272 2024; Chen et al., 2023b; Bardes et al., 2024) to data-dependent single-head (simpool) (Psomas 273

270 et al., 2023) and efficient multi-query (ep) approaches (Psomas et al., 2025). Other work in audio
 271 explores learnable per-class prototypes for probing (Rauch et al., 2025a), matched to multi-label
 272 audio where classes localize in distinct time-frequency regions. Real-valued prototype probes show
 273 promising results in bioacoustics (Rauch et al., 2025a). Token-aware attention and prototype de-
 274 signs better align with MIM embeddings and polyphonic labels than single-vector summaries, yet
 275 evaluations in audio SSL remain sparse. **This further motivates our comprehensive analysis.**

276 **Positioning of this work.** Prototype layers originated in vision for interpretability (Chen et al.,
 277 2019; Donnelly et al., 2022) and were adapted to bioacoustics (Heinrich et al., 2025). Closest to
 278 our setting, Rauch et al. (2025a) apply prototypical probing over spectrogram tokens for a domain-
 279 specific MAE in bird sound classification. We extend this line of research with a binarized STE
 280 variant that constrains prototypes to the hypercube, yielding strong compression and margin-like
 281 regularization. Additionally, our work introduces two key architectural simplifications. First, we
 282 decouple prototypes from classes, allowing class-agnostic features to emerge automatically via the
 283 final linear layer. Second, we find that the supervised learning signal is sufficient for prototype diver-
 284 sity in this context, eliminating the need for an explicit orthogonality loss term (Rauch et al., 2025a).
 285 Our variant of these simplified prototypes remains highly competitive while offering a 32x memory
 286 reduction, consistent with successes of discrete parameterizations (Courbariaux et al., 2015; Hubara
 287 et al., 2016). Beyond these method-level contributions, our work establishes prototypical probing
 288 as a general evaluation paradigm for the audio SSL field and delivers the first extensive probing
 289 benchmark. This study adapts recent attentive methods from vision to serve as strong baselines
 290 and ultimately reveals a clear hierarchy. While learned pooling is broadly advantageous, mirroring
 291 trends in vision (Psomas et al., 2025; Darct et al., 2025), prototypical methods consistently set the
 292 SOTA results for probing in audio SSL, providing a competitive alternative to fine-tuning.

293 4 EXPERIMENTAL STUDY: A BENCHMARK ON PROBING IN AUDIO

295 This section first outlines our experimental setup, including backbones, pooling methods, datasets
 296 and the evaluation protocol of the benchmark. It is followed by our main results organized as focused
 297 questions with short rationales.

300 4.1 EXPERIMENTAL SETUP AND EVALUATION PROTOCOL

301 **Backbones.** We evaluate six state-of-the-art frozen spectrogram-based SSL encoders f_θ , summa-
 302 rized in Table 1. To ensure a fair comparison, we only use the ViT-base checkpoints with an em-
 303 bedding dimension D of 768 and circa 86M parameters since this is the only configuration offered
 304 across all models. We also include supervised⁺-checkpoints that were fine-tuned on as2m in addition
 305 to pretraining. Such variants exist for EAT, BEATs, and SSLAM. Reporting results for the purely
 306 self-supervised and the supervised⁺ versions allows us to quantify how supervised adaptation to the
 307 AudioSet label space affects the quality of frozen embeddings (see Figure 1).

308 **Datasets.** We organize the benchmark into three topical groups. The primary group, general multi-
 309 label audio, contains the smaller, balanced AudioSet subset as20k (Gemmeke et al., 2017) and
 310 fsd50k (Fonseca et al., 2022), a curated dataset aligned with the AudioSet ontology. Following
 311 Alex et al. (2025), we also include the polyphonic datasets desed (domestic sound events with 10 la-
 312 bels) (Johnson et al., 2021), spass (urban soundscapes with 28 labels (Viveros-Muñoz et al., 2023)),
 313 and urban (urban soundscapes with 10 labels (Salamon et al., 2017)). The second group focuses
 314 on fine-grained multi-label bioacoustics, for which we use seven subsets from the birdset bench-
 315 mark (Rauch et al., 2025b). **These tasks test the models' generalization under a domain shift and**
 316 **a data-efficient, 64-shot few-shot learning protocol.** The third group provides multi-class datasets
 317 using the esc50 and sc-2 datasets. **These single-label tasks serve as a control condition to isolate**
 318 **the impact of polyphony and determine whether the pooling bottleneck is unique to the multi-label**
 319 **audio setting.** Appendix D.1 provides a detailed description of each dataset.

320 **Pooling methods.** We compare **eleven** pooling methods (cf. Section 3) that operate on frozen en-
 321 coders. Each technique produces a descriptor \tilde{z} that is passed through a linear classification layer.
 322 Linear and mlp consume only the fixed global $[cls]$ -token as a compact summary of the input.
 323 Linearc, conv use the token map without attention. The former concatenates all tokens to form the
 descriptor. The latter applies a lightweight convolution for local aggregation. Linpre also utilizes
 the token map by concatenating frequency features at each time step before temporal pooling. Atten-

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823<br

proto appears advantageous in specific cases where capturing fine-grained details is critical (e.g. on polyphonic urban or with the ASiT backbone). Protobin’s simplification makes it a more robust choice for general-purpose evaluation. To help disentangle these architectural factors from the effect of binarization, we provide an ablation with a float-based, class-agnostic variant in Appendix B.

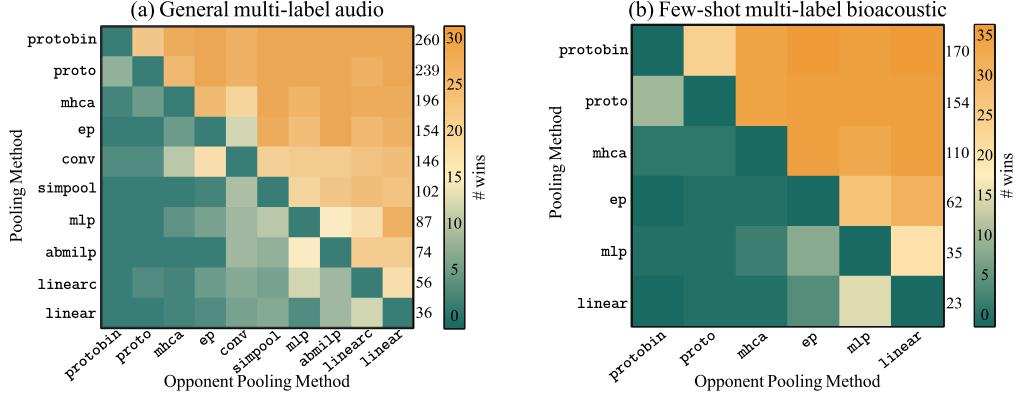
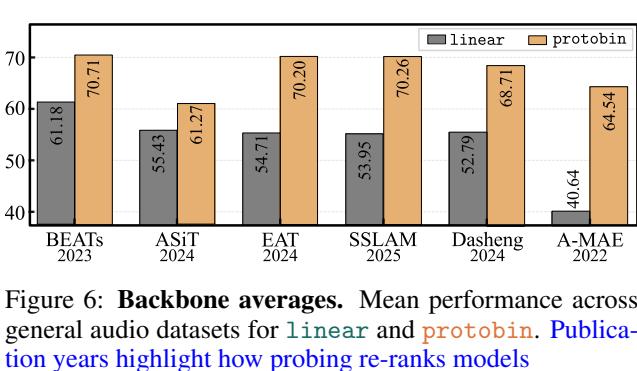


Figure 5: **Pairwise win matrices for pooling methods.** Each cell shows the number of configurations where a method outperforms another (ties omitted, one sd above opponent), aggregated over all datasets and base (non-supervised⁺) backbones. Extracted from Table 2 and Table 5 (Appendix D.2).

Table 2: **Probing benchmark results in general audio.** All results are the mean with std reported in mAP, averaged over five seeds. **Best** and second best probe per (dataset, backbone) are highlighted.

Input	[cls]	Baseline	Token Map				Token Map (Att.)				Token Map (Prot)		
			Backbone	linear	mlp	linear	conv	linpre	mhca	ep	simpool	abmilp	proto
as20k	A-MAE	8.36 \pm 0.0	8.77 \pm 0.3	9.66 \pm 0.2	11.87 \pm 1.1	16.49 \pm 0.1	17.09 \pm 0.2	17.03 \pm 0.1	14.69 \pm 0.0	14.24 \pm 0.9	21.61 \pm 0.3	22.32 \pm 0.1	
	ASiT	18.35 \pm 0.0	19.16 \pm 0.1	13.36 \pm 0.1	13.80 \pm 0.2	18.53 \pm 0.0	18.72 \pm 0.2	18.95 \pm 0.1	18.04 \pm 0.1	16.10 \pm 0.5	21.89 \pm 0.1	20.96 \pm 0.0	
	Dasheng	20.98 \pm 0.1	21.09 \pm 0.1	18.23 \pm 0.1	18.57 \pm 1.1	23.56 \pm 0.0	27.49 \pm 0.1	26.53 \pm 0.1	20.89 \pm 0.0	22.96 \pm 1.9	27.59 \pm 0.1	29.94 \pm 0.2	
	BEATs	24.71 \pm 0.0	26.29 \pm 0.1	15.70 \pm 0.0	12.80 \pm 1.1	18.59 \pm 0.0	21.86 \pm 0.2	20.81 \pm 0.4	14.99 \pm 0.1	12.52 \pm 1.9	30.54 \pm 0.1	31.54 \pm 0.1	
	EAT	17.29 \pm 0.0	20.59 \pm 0.2	21.94 \pm 0.0	19.50 \pm 0.3	26.49 \pm 0.0	26.11 \pm 0.2	26.83 \pm 0.0	25.15 \pm 0.0	19.91 \pm 3.4	31.06 \pm 0.0	31.67 \pm 0.1	
	SSLM	17.04 \pm 0.0	19.99 \pm 0.1	20.51 \pm 0.1	17.45 \pm 0.5	24.81 \pm 0.0	24.45 \pm 0.2	25.49 \pm 0.0	22.59 \pm 0.1	18.91 \pm 4.4	30.84 \pm 0.0	30.94 \pm 0.1	
fsd50k	A-MAE	19.71 \pm 0.0	21.34 \pm 0.4	25.17 \pm 0.7	40.59 \pm 0.8	36.08 \pm 0.1	45.17 \pm 0.5	43.23 \pm 0.1	34.89 \pm 0.1	32.73 \pm 4.3	49.65 \pm 0.2	49.69 \pm 0.4	
	ASiT	39.57 \pm 0.1	41.89 \pm 0.3	9.87 \pm 0.5	38.23 \pm 0.8	39.57 \pm 0.1	42.28 \pm 0.3	41.76 \pm 0.1	37.75 \pm 0.1	39.59 \pm 3.5	48.25 \pm 0.1	46.70 \pm 0.2	
	Dasheng	38.08 \pm 0.2	39.56 \pm 0.2	37.74 \pm 0.5	48.88 \pm 0.8	45.11 \pm 0.1	52.95 \pm 0.2	52.44 \pm 0.0	43.94 \pm 0.0	43.79 \pm 3.5	55.23 \pm 0.1	57.31 \pm 0.0	
	BEATs	46.89 \pm 0.0	49.58 \pm 0.3	36.35 \pm 0.1	37.19 \pm 0.3	39.93 \pm 0.0	48.51 \pm 0.3	46.16 \pm 0.1	40.20 \pm 0.0	40.32 \pm 3.2	57.17 \pm 0.1	58.27 \pm 0.2	
	EAT	36.39 \pm 0.0	44.82 \pm 0.1	38.36 \pm 0.3	46.64 \pm 0.5	48.21 \pm 0.1	51.06 \pm 0.3	51.29 \pm 0.1	49.38 \pm 0.1	45.93 \pm 4.4	56.07 \pm 0.1	55.64 \pm 0.4	
	SSLM	36.06 \pm 0.0	44.26 \pm 0.2	37.21 \pm 0.4	43.50 \pm 1.4	46.11 \pm 0.0	51.48 \pm 0.5	50.83 \pm 0.1	49.86 \pm 0.2	46.38 \pm 2.4	56.93 \pm 0.1	56.99 \pm 0.1	
dosed	A-MAE	57.46 \pm 0.0	60.52 \pm 0.1	60.88 \pm 0.1	84.10 \pm 0.3	71.28 \pm 4.2	83.57 \pm 0.2	80.13 \pm 0.1	72.05 \pm 0.0	76.69 \pm 0.3	84.11 \pm 0.1	85.57 \pm 0.1	
	ASiT	72.92 \pm 0.0	74.19 \pm 0.2	57.49 \pm 0.1	81.59 \pm 0.2	74.91 \pm 0.1	79.50 \pm 0.2	76.66 \pm 0.0	73.57 \pm 0.0	76.58 \pm 0.8	82.08 \pm 0.2	81.74 \pm 0.2	
	Dasheng	68.39 \pm 0.0	68.76 \pm 0.1	72.48 \pm 0.0	85.32 \pm 0.2	74.49 \pm 0.6	84.53 \pm 0.1	82.74 \pm 0.0	75.40 \pm 0.0	76.48 \pm 4.5	85.90 \pm 0.1	86.14 \pm 0.3	
	BEATs	77.56 \pm 0.0	80.56 \pm 0.2	72.23 \pm 0.0	86.83 \pm 0.6	76.97 \pm 0.0	86.91 \pm 0.0	81.88 \pm 0.0	81.08 \pm 0.1	81.77 \pm 1.0	89.04 \pm 0.1	89.22 \pm 0.6	
	EAT	76.15 \pm 0.0	80.92 \pm 0.0	77.90 \pm 0.1	86.68 \pm 0.3	81.00 \pm 0.0	86.06 \pm 0.2	84.13 \pm 0.1	83.43 \pm 0.0	78.80 \pm 5.6	88.70 \pm 0.1	88.82 \pm 0.1	
	SSLM	72.49 \pm 0.0	77.96 \pm 0.1	76.82 \pm 0.2	85.55 \pm 0.3	80.31 \pm 0.0	85.44 \pm 0.0	83.77 \pm 0.0	83.59 \pm 0.9	81.69 \pm 0.7	87.69 \pm 0.2	88.33 \pm 0.3	
spass	A-MAE	58.94 \pm 0.0	60.56 \pm 0.1	69.01 \pm 0.7	80.04 \pm 0.8	77.08 \pm 0.2	79.24 \pm 0.1	71.01 \pm 0.4	69.84 \pm 0.0	68.75 \pm 0.2	78.92 \pm 0.2	79.95 \pm 0.6	
	ASiT	68.80 \pm 0.0	70.27 \pm 0.2	46.44 \pm 4.5	73.26 \pm 1.1	73.88 \pm 0.0	75.76 \pm 0.5	69.44 \pm 0.0	69.04 \pm 0.0	68.36 \pm 0.6	73.66 \pm 0.1	74.69 \pm 0.2	
	Dasheng	66.89 \pm 0.0	64.07 \pm 0.2	76.76 \pm 0.5	75.05 \pm 0.7	72.07 \pm 0.0	80.71 \pm 0.3	73.62 \pm 0.0	74.16 \pm 0.0	72.02 \pm 0.0	76.64 \pm 0.2	80.93 \pm 0.5	
	BEATs	74.22 \pm 0.0	75.97 \pm 0.1	79.91 \pm 0.5	84.81 \pm 1.5	82.12 \pm 0.0	83.98 \pm 0.2	76.61 \pm 0.1	75.58 \pm 0.0	69.38 \pm 0.3	87.76 \pm 0.2	85.77 \pm 0.4	
	EAT	65.96 \pm 0.0	71.55 \pm 0.2	84.49 \pm 0.0	79.15 \pm 0.6	81.83 \pm 0.0	83.95 \pm 0.3	77.35 \pm 0.2	76.55 \pm 0.0	64.44 \pm 9.0	83.09 \pm 0.8	85.64 \pm 0.3	
	SSLM	68.28 \pm 0.0	73.05 \pm 0.0	83.06 \pm 0.3	79.43 \pm 1.8	80.74 \pm 0.2	83.45 \pm 0.3	76.58 \pm 0.0	76.09 \pm 0.0	72.42 \pm 1.4	85.90 \pm 0.4	86.01 \pm 0.1	
urban	A-MAE	58.72 \pm 0.1	58.97 \pm 0.2	40.53 \pm 1.2	85.28 \pm 0.2	79.01 \pm 0.1	82.49 \pm 0.2	79.83 \pm 0.2	76.21 \pm 0.1	73.07 \pm 2.5	83.63 \pm 0.2	85.17 \pm 0.3	
	ASiT	77.53 \pm 0.0	77.55 \pm 0.2	44.53 \pm 3.9	82.12 \pm 0.5	79.32 \pm 0.0	78.48 \pm 0.0	77.25 \pm 0.0	76.70 \pm 1.6	82.35 \pm 0.2	82.28 \pm 0.2		
	Dasheng	69.61 \pm 0.1	69.07 \pm 0.2	75.80 \pm 0.1	85.76 \pm 0.6	77.30 \pm 0.0	84.59 \pm 0.2	82.31 \pm 0.1	79.04 \pm 0.1	77.28 \pm 0.8	85.97 \pm 0.3	86.55 \pm 0.1	
	BEATs	82.54 \pm 0.1	83.76 \pm 0.0	75.90 \pm 0.1	85.57 \pm 0.5	81.61 \pm 0.0	86.23 \pm 0.2	84.31 \pm 0.1	82.74 \pm 0.0	77.89 \pm 1.1	89.04 \pm 0.1	88.74 \pm 0.2	
	EAT	77.76 \pm 0.0	81.58 \pm 0.1	78.45 \pm 0.1	86.35 \pm 1.1	84.04 \pm 0.0	86.43 \pm 0.0	85.40 \pm 0.0	83.58 \pm 0.1	79.93 \pm 2.0	89.11 \pm 0.1	89.24 \pm 0.2	
	SSLM	75.86 \pm 0.0	80.64 \pm 0.1	77.97 \pm 0.1	86.23 \pm 1.5	79.01 \pm 0.1	86.45 \pm 0.3	84.87 \pm 0.0	83.21 \pm 0.0	80.12 \pm 1.6	88.82 \pm 0.2	89.05 \pm 0.4	



(Q2) [cls]-token quality. Is the linear probe a faithful evaluator?

Rationale. We test if the off-the-shelf linear probe is a reliable and faithful proxy for embedding quality in audio SSL. A flawed proxy both underestimates the absolute potential of the embeddings and distorts the relative ranking of different backbones.

(Q₂) **Takeaway.** Probing the [cls]-token with linear is not just a performance bottleneck, it is also an unreliable proxy for pretrained embedding quality in audio SSL. First, Figure 6 shows that the backbone ranking under linear is completely reshuffled when using protobin. For instance, the backbone ranking is completely inverted: ASiT (from 2024), which appears to be the second-strongest model under linear, drops to last place when evaluated with protobin. Conversely, the supposedly mediocre SSLAM (current fine-tuning SOTA from 2025), a mid-tier performer with linear, is revealed to be a top-tier model, jumping to second place. This demonstrates that the [cls]-token is a poor indicator of the model’s true token-level embedding quality. Figure 7 confirms this is a systemic issue: linear/mlp act as a performance ceiling, and the gains unlocked by token-aware pooling methods vary by backbone. Second, the [cls]-token underestimates the true potential of the embeddings. On as20k, protobin closes 63% of the performance gap to fine-tuning (see Figure 2), demonstrating how much information standard probes discard. This trend holds across all encoders (Table 3), establishing that better pooling provides a more faithful measure of embeddings.

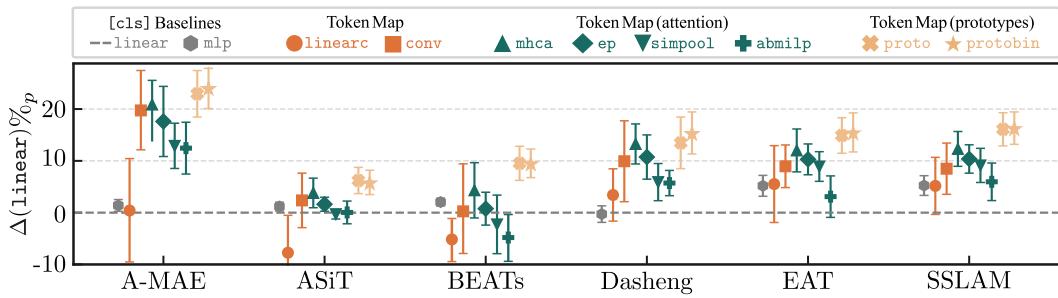


Figure 7: **Performance differences of probes across backbones.** For each backbone, the plot displays the mean and standard deviation of each pooling method as absolute percentage points [%p] compared to the baseline performance of linear. All results are extracted from Table 2.

(Q₃) **Multi- vs. single-label.** *Is the pooling bottleneck specific to multi-label?*

Rationale. If fixed global pooling degrades from single- to multi-label while token-aware methods remain stable, it would implicate a polyphony-induced bottleneck.

(Q₃) **Takeaway.** On single-label control tasks (sc-2, esc50), a substantial performance gap persists between the [cls]-token probe and token-aware methods, indicating the bottleneck is a general issue of the encoders (Table 3). However, the [cls]-probe’s performance degrades more sharply than other methods when moving to the multi-label as20k. In this single-label setting, mhca is often competitive with, or even superior to, our protobin probe. This suggests that

a well-learned single-vector descriptor can be as effective as our multi-vector approach for single-source audio. This dynamic changes in the presence of multiple sound sources, confirming our core hypothesis. The constant superiority of protobin on the multi-label as20k task highlights the fundamental limitation of single-vector methods in polyphonic scenes. Methods like mhca must compress localized evidence for multiple distinct events into a single vector. In contrast, our multi-vector prototypical approach can activate different specialized prototypes for different sound events within the same audio clip. The discriminative nature of the prototypes is particularly effective at disentangling these overlapping audio events.

Table 3: **Multi- vs. single-label pooling and fine-tuning.** Accuracy on sc-2 and esc50 (single-label) and mAP on as20k (multi-label). FT denotes the reported fine-tuning performance in the respective backbone paper, **bold** marks the best probe per backbone and dataset.

Backbone	sc-2 (single-label)			esc50 (single-label)			as20k (multi-label)					
	linear	mhca	protobin	FT	linear	mhca	protobin	FT	linear	mhca	protobin	FT
A-MAE	12.4	84.9	79.5	98.3	22.1	86.3	83.7	94.1	8.4	17.1	22.3	37.1
ASiT	62.2	86.3	89.5	98.9	76.1	78.3	80.3	95.3	18.4	18.7	21.0	38.6
BEATs	87.0	95.0	96.5	98.3	78.9	83.2	84.1	95.6	24.7	21.9	31.5	38.9
EAT	69.1	93.2	90.4	98.3	75.3	89.8	86.8	95.9	17.3	26.1	31.7	40.2
SSLAM	64.8	93.8	91.9	98.1	74.2	89.0	84.7	96.2	17.0	24.4	30.9	40.9

(Q₄) **Takeaway.** On in-domain, general audio tasks (Figure 8a), the probe rankings change notably. The [cls]-token-based methods see the largest gains, with linear jumping from rank #10 to #6 and mlp from #7 to #3. This confirms that supervised fine-tuning injects class-specific information into the global token. Meanwhile, attentive pooling methods are stable, and the prototypical methods retain their top-ranked positions. In contrast, on out-of-domain bioacoustics tasks (Figure 8b), the complete hierarchy remains stable. Despite a minor performance uplift across the board (see Appendix D.2), the overall ranking is preserved: linear remains at the bottom while protobin stays at the top. This divergence demonstrates that supervised⁺ primarily strengthens the single-vector [cls] descriptor for in-domain tasks but fails to add transferable, token-level information for out-of-domain tasks. The consistent superiority of prototypical methods in both settings further highlights the robustness of per-class, multi-vector aggregation.

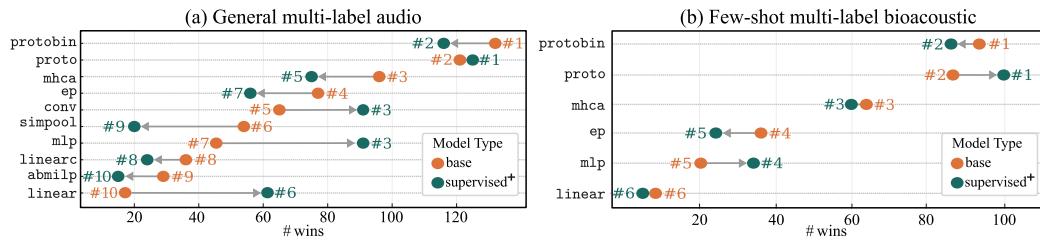


Figure 8: **Pairwise win ranking changes from base to supervised⁺ models.** We display the number of pairwise wins averaged over the backbones with fine-tuned variants (BEATs, EAT, SSLAM) and datasets for each pooling method. Extracted from Table 2 and Table 5 (Appendix D.2).

Pooling bottleneck. Our findings confirm our hypothesis and its implications for probing as a reliable evaluation tool. The [cls]-token is a performance bottleneck, underutilizing the token map and leading to an unreliable evaluation (Q₂). While attentive pooling offers improvements, our results show multi-vector, per-class aggregation is a more robust strategy, particularly in polyphonic scenes where single-vector methods are limiting (Q₁, Q₃). This conclusion holds even when the [cls]-token is enhanced by supervised⁺ (Q₄). Thus, the primary obstacle to using probing as an evaluation tool is not the quality of the embeddings, but the limitation of the pooling method.

5 CONCLUSION AND FUTURE WORK

Conclusion. We demonstrated that the underperformance of probing in (multi-label) audio stems not from the frozen embeddings themselves, but from an information bottleneck in pooling methods. Single-vector representations, whether from a fixed [cls]-token or learned via attention, are ill-suited for polyphonic audio, as they compress sparse, localized events into a single descriptor. Addressing this, we introduced binarized prototypical probes, a lightweight method that performs per-class aggregation directly on the token map. Our comprehensive benchmark shows this approach consistently outperforms single-vector probes and notably narrows the gap to fine-tuning. By enabling class-conditional vectors with a minimal memory footprint, this work establishes prototypical probing as a viable, efficient, and faithful evaluation paradigm for audio SSL. This challenges the default reliance on costly and confounding fine-tuning when pursuing SOTA on AudioSet.

Future Work. A next step is to move beyond the final encoder layer and explore multi-layer feature aggregation, which could unlock even richer embeddings. Furthermore, our token-aware probing framework could be extended from clip-level classification to more granular tasks such as event detection and localization, where the benefits of multi-vector aggregation may be even stronger. While our study focused on audio, the insights into pooling bottlenecks likely apply to other domains as well. Future work could also explore integrating on-the-fly data augmentations with a frozen backbone to push the performance ceiling of the probing paradigm even higher.

(Q₄) **Supervised⁺ weights.** *Does extra fine-tuning enrich the token map?*

Rationale. Supervised⁺ adaptation injects class information into the [cls]-token. This lets us test if the model has learned richer token-level information or just a stronger global descriptor. A localized improvement, where gains are specific to [cls] probes and in-domain data, would suggest the latter.

Supervised⁺ stays at the top while protobin stays at the top. This divergence demonstrates that supervised⁺ primarily strengthens the single-vector [cls] descriptor for in-domain tasks but fails to add transferable, token-level information for out-of-domain tasks. The consistent superiority of prototypical methods in both settings further highlights the robustness of per-class, multi-vector aggregation.

540 ETHICS STATEMENT

541

542 Our research is conducted exclusively on established, publicly available datasets intended for aca-
 543 demic audio and bioacoustics research. Our focus on probing as an evaluation method promotes
 544 computational efficiency, significantly reducing the energy consumption and environmental impact
 545 compared to full model fine-tuning. The methods developed are for the purpose of model analysis
 546 and present no foreseeable societal risks or ethical concerns.

547

548 REPRODUCIBILITY STATEMENT

549

550 To ensure full reproducibility, we make our source code, including the implementation of our pro-
 551 posed prototypical probe and all evaluation scripts, publicly available on GitHub. To further aid
 552 reproducibility and standardize access, we have also uploaded any datasets used in this study that
 553 were not previously available on the Hugging Face Hub to the platform.

554

- <https://anonymous.4open.science/r/unmute-880E/README.md>
- <https://huggingface.co>

555

556 Our experimental setup, including the specific datasets Section D.1, pretrained backbones, and pool-
 557 ing methods Section D.3, is detailed in Section 4.1 and in Appendix D. Appendix D.4 also provides
 558 a complete breakdown of our hyperparameter selection protocol with the respective ranges.

559

560 USE OF LARGE LANGUAGE MODELS

561

562 An LLM was utilized as a writing and coding assistant during the preparation of this paper. The
 563 model was used to aid in literature discovery by summarizing concepts and identifying potentially
 564 relevant papers for the authors' review. Additionally, the LLM served as a writing aid to refine gram-
 565 mar, improve sentence structure, and enhance the overall clarity and readability of the paper (e.g.,
 566 shorten a paragraph). It was also used for streamlining code, debugging, and generating shell scripts
 567 to help manage the experimental workflow. All research ideas, including experimental design, code
 568 implementations, and analysis of results stem from the authors without LLM involvement. The au-
 569 thors directed all queries, critically reviewed and carefully edited all model-generated text, and take
 570 full responsibility for the final content of this paper.

571

572 REFERENCES

573

574 Sara Atito Ali Ahmed, Muhammad Awais, Wenwu Wang, Mark D. Plumbley, and Josef Kittler.
 575 ASiT: Local-Global Audio Spectrogram Vision Transformer for Event Classification. *IEEE/ACM*
 576 *Transactions on Audio, Speech, and Language Processing*, 2024.

577 Tony Alex, Sara Ahmed, Armin Mustafa, Muhammad Awais, and Philip JB Jackson. SSLAM:
 578 Enhancing Self-Supervised Models With Audio Mixtures For Polyphonic Soundscapes. In *Inter-
 579 national Conference on Learning Representations (ICLR)*, 2025.

580 Benedikt Alkin, Lukas Miklautz, Sepp Hochreiter, and Johannes Brandstetter. Mim-refiner: A con-
 581 trastive learning boost from intermediate pre-trained representations. In *International Conference*
 582 *on Learning Representations (ICLR)*, 2025.

583 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
 584 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
 585 predictive architecture. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 586 (*CVPR*), 2023.

587 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. data2vec: A
 588 general framework for self-supervised learning in speech, vision and language. In *International*
 589 *Conference on Machine Learning (ICML)*, 2022.

590 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
 591 *arXiv:2106.08254*, 2022. URL <https://arxiv.org/abs/2106.08254>.

594 Adrien Bardes, Quentin Garrido, Jean Ponce, Michael Rabbat, Yann LeCun, Mahmoud Assran, and
 595 Nicolas Ballas. Revisiting feature prediction for learning visual representations from video. In
 596 *arXiv preprint arXiv:2404.08471*, 2024.

597

598 Joshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradi-
 599 ents Through Stochastic Neurons for Conditional Computation. *arXiv:1308.3432*, 2013. doi:
 600 10.48550/arXiv.1308.3432.

601 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
 602 optimization. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2011.

603 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Un-
 604 supervised learning of visual features by contrasting cluster assignments. In *Advances in Neural*
 605 *Information Processing Systems (NeurIPS)*, 2020.

606

607 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 608 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
 609 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.

610 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
 611 like that: deep learning for interpretable image recognition. *Advances in Neural Information*
 612 *Processing Systems (NeurIPS)*, 2019.

613 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, Wanxiang Che,
 614 Xiangzhan Yu, and Furu Wei. Beats: Audio pre-training with acoustic tokenizers. In *International*
 615 *Conference on Machine Learning (ICML)*, 2023a.

616

617 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 618 contrastive learning of visual representations. In *International Conference on Machine Learning*
 619 *(ICML)*, 2020.

620 Wenxi Chen, Yuzhe Liang, Ziyang Ma, Zhisheng Zheng, and Xie Chen. Eat: Self-supervised pre-
 621 training with efficient audio transformer. In *International Joint Conference on Artificial Intelli-
 622 gence (IJCAI)*, 2024.

623 Xiaokang Chen, Mingyu Ding, Xiaodi Wang, Ying Xin, Shentong Mo, Yunhao Wang, Shumin Han,
 624 Ping Wang, Gang Zeng, and Jingdong Wang. Context autoencoder for self-supervised represen-
 625 tation learning. *International Journal of Computer Vision*, 2023b.

626

627 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep Neu-
 628 ral Networks with binary weights during propagations. In *Advances in Neural Information Pro-
 629 cessing Systems (NeurIPS)*, 2015.

630 Timothée Dariset, Federico Baldassarre, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Clus-
 631 ter and Predict Latent Patches for Improved Masked Image Modeling. *TMLR*, 2025.

632 Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang, and Bin Wang. Scaling
 633 up masked audio encoder learning for general audio classification. *arXiv:2406.06992*, 2024.

634

635 Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. Deformable protopnet: An interpretable
 636 image classifier using deformable prototypes. In *IEEE/CVF Conference on Computer Vision and*
 637 *Pattern Recognition (CVPR)*, 2022.

638 Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Vaishaal Shankar,
 639 Alexander Toshev, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large au-
 640 toregressive image models. In *International Conference on Machine Learning (ICML)*, 2024.

641

642 Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. FSD50K: An Open
 643 Dataset of Human-Labeled Sound Events. *arXiv:2010.00475*, 2022. doi: 10.48550/arXiv.2010.
 644 00475.

645 Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing
 646 Moore, Manoj Plakal, and Marvin Ritter. Audio Set: An ontology and human-labeled dataset for
 647 audio events. In *2017 IEEE International Conference on Acoustics, Speech and Signal Processing*
 648 *(ICASSP)*, 2017.

648 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
 649 autoencoders are scalable vision learners. In *IEEE/CVF Conference on Computer Vision and*
 650 *Pattern Recognition (CVPR)*, 2022.

651

652 René Heinrich, Lukas Rauch, Bernhard Sick, and Christoph Scholz. Audioprotopnet: An inter-
 653 pretable deep learning model for bird sound classification. *Ecological Informatics*, 2025.

654

655 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
 656 Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. *Advances in Neural Infor-*
 657 *mation Processing Systems (NeurIPS)*, 2022.

658

659 Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
 660 Neural Networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.

661

662 Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Attention-based deep multiple instance
 663 learning. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*,
 2018.

664

665 David S. Johnson, Wolfgang Lorenz, Michael Taenzer, Stylianos Mimalakis, Sascha Grollmisch,
 666 Jakob Abeßer, and Hanna Lukashevich. DESED-FL and URBAN-FL: Federated Learning
 667 Datasets for Sound Event Detection. *arXiv:2102.08833*, 2021.

668

669 Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
 distort pretrained features and underperform out-of-distribution. *arXiv:2202.10054*, 2022. URL
<https://arxiv.org/abs/2202.10054>.

670

671 Xian Li, Nian Shao, and Xiaofei Li. Self-supervised audio teacher-student transformer for both
 672 clip-level and frame-level tasks. *IEEE/ACM Transactions on Audio, Speech, and Language Pro-*
 673 *cessing*, 2024.

674

675 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
 676 *ence on Learning Representations (ICLR)*, 2017.

677

678 Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Masked
 679 spectrogram modeling using masked autoencoders for learning general-purpose audio represen-
 680 tation, 2022.

681

682 Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Byol for
 683 audio: Exploring pre-trained general-purpose audio representations. *IEEE/ACM Transactions on*
684 Audio, Speech, and Language Processing, 2024.

685

686 Daisuke Niizumi, Daiki Takeuchi, Masahiro Yasuda, Binh Thien Nguyen, Yasunori Ohishi, and
 687 Noboru Harada. M2D-CLAP: Exploring general-purpose audio-language representations beyond
 688 CLAP. *IEEE Access*, 2025.

689

690 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 691 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 692 robust visual features without supervision. *TMLR*, 2024.

693

694 Namuk Park, Wonjae Kim, Byeongho Heo, Taekyung Kim, and Sangdoo Yun. What do self-
 695 supervised vision transformers learn? In *International Conference on Learning Representations*
 696 (*ICLR*), 2023. URL <https://openreview.net/forum?id=azCKuYyS74>.

697

698 Leonardo Pepino, Pablo Riera, and Luciana Ferrer. EnCodecMAE: leveraging neural codecs for
 699 universal audio representation learning. In *Interspeech 2025*, 2025.

700

701 Karol J. Piczak. Esc: Dataset for environmental sound classification. In *ACM International Confer-*
702 ence on Multimedia (MM), 2015.

703

704 Marcin Przewięźlikowski, Randall Balestrieri, Wojciech Jasiński, Marek Śmiejka, and Bartosz
 705 Zieliński. Beyond [CLS]: Exploring the true potential of masked image modeling representa-
 706 tions. *arXiv preprint arXiv:2412.03215*, 2025. URL <https://arxiv.org/abs/2412.03215>.

702 Bill Psomas, Ioannis Kakogeorgiou, Konstantinos Karantzalos, and Yannis Avrithis. Keep it sim-
 703 pool: Who said supervised transformers suffer from attention deficit? In *Proceedings of the*
 704 *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.

705 Bill Psomas, Dionysis Christopoulos, Eirini Baltzi, Ioannis Kakogeorgiou, Tilemachos Aravanis,
 706 Nikos Komodakis, Konstantinos Karantzalos, Yannis Avrithis, and Giorgos Tolias. Attention,
 707 please! revisiting attentive probing for masked image modeling. *arXiv:2506.10178*, 2025.

708 Lukas Rauch, Heinrich René, Ilyass Moummad, Alexis Joly, Bernhard Sick, and CHristoph Scholz.
 709 Can masked autoencoders also listen to birds? *TMLR*, 2025a.

710 Lukas Rauch, Raphael Schwinger, Moritz Wirth, René Heinrich, Denis Huseljic, Marek Herde,
 711 Jonas Lange, Stefan Kahl, Bernhard Sick, Sven Tomforde, and Christoph Scholz. BirdSet: A
 712 Large-Scale Dataset for Audio Classification in Avian Bioacoustics. In *International Conference*
 713 *on Learning Representations (ICLR)*, 2025b.

714 Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and
 715 Lih Zelnik-Manor. Asymmetric loss for multi-label classification. In *IEEE/CVF International*
 716 *Conference on Computer Vision (ICCV)*, 2021.

717 Justin Salamon, Duncan MacConnell, Mark Cartwright, Peter Li, and Juan Pablo Bello. Scaper: A
 718 library for soundscape synthesis and augmentation. In *2017 IEEE Workshop on Applications of*
 719 *Signal Processing to Audio and Acoustics (WASPAA)*, 2017.

720 Ilya M Sobol. On quasi-Monte Carlo integrations. *Math. Comput. Simul.*, 1998.

721 Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W. Schuller, Christian J. Stein-
 722 metz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk McNally, Max Henry, Nicolas Pinto,
 723 Camille Noufi, Christian Clough, Dorien Herremans, Eduardo Fonseca, Jesse Engel, Justin Sal-
 724 amon, Philippe Esling, Pranay Manocha, Shinji Watanabe, Zeyu Jin, and Yonatan Bisk. Hear:
 725 Holistic evaluation of audio representations. *arXiv:2203.03022*, 2022.

726 Rhoddy Viveros-Muñoz, Pablo Huijse, Victor Vargas, Diego Espejo, Victor Poblete, Jorge P. Arenas,
 727 Matthieu Vernier, Diego Vergara, and Enrique Suárez. The SPASS dataset: A new synthetic
 728 polyphonic dataset with spatiotemporal labels of sound sources. *Applied Acoustics*, 2023.

729 Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition.
 730 *arXiv:1804.03209*, 2018.

731 Sarthak Yadav, Sergios Theodoridis, Lars Kai Hansen, and Zheng-Hua Tan. Masked autoencoders
 732 with multi-window local-global attention are better audio learners. In *International Conference*
 733 *on Learning Representations (ICLR)*, 2024.

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DETAILED BENCHMARK RESULTS

758 This appendix provides supplementary material to the benchmark evaluation presented in the main
 759 paper. Our full benchmark spans 5 general multi-label datasets, 7 few-shot bioacoustic datasets,
 760 and 2 multi-class control tasks across 6 backbones (plus 3 supervised⁺ checkpoints) and 10 pooling
 761 methods. The following tables present the complete results, with all performance metrics reported
 762 as mean average precision (mAP) averaged for multi-label and accuracy for multi-class tasks over 5
 763 random seeds.

764 **Table 4: Complete benchmark probing results for general multi-label audio.** This table presents
 765 the full benchmark results, extending those in the main paper with the inclusion of Supervised⁺
 766 fine-tuned checkpoints for BEATs, EAT, and SSLAM. All results are the mean mAP with standard
 767 deviation, averaged over 5 seeds. The best and second-best performing probes for each configura-
 768 tion are highlighted.

770	Input	771 [cls]		772 Baseline		773 Token Map		774 Token Map (Att.)				775 Token Map (Proto.)	
		776 Backbone	777 linear	778 mlp	779 linearc	780 conv	781 mhca	782 ep	783 simpool	784 abmilp	785 proto	786 protobin	
777 as20k	A-MAE	8.36±0.01	8.77±0.29	9.66±0.22	11.87±1.10	17.09±0.22	17.03±0.05	14.69±0.02	14.24±0.85	21.61±0.26	22.32±0.12		
	ASiT	18.35±0.01	19.16±0.13	13.36±0.12	13.80±0.19	18.72±0.17	18.95±0.07	18.04±0.01	16.10±0.51	21.89±0.06	20.96±0.02		
	Dasheng	20.98±0.06	21.09±0.07	18.23±0.11	18.57±1.06	27.49±0.07	26.53±0.05	20.89±0.01	22.96±1.94	27.59±0.07	29.94±0.15		
	BEATs	24.71±0.01	26.29±0.13	15.70±0.01	12.80±1.06	21.86±0.14	20.81±0.36	14.99±0.05	12.52±1.86	30.54±0.06	31.54±0.06		
	BEATs+	40.30±0.02	40.77±0.10	31.33±0.15	34.29±0.17	37.57±0.13	37.23±0.36	27.38±0.08	30.49±2.76	42.73±0.06	41.96±0.05		
	EAT	17.29±0.01	20.59±0.16	21.94±0.01	19.50±0.34	26.11±0.16	26.83±0.04	25.15±0.04	19.91±3.40	31.06±0.04	31.67±0.06		
	EAT+	44.32±0.02	45.31±0.06	37.44±0.16	41.85±0.15	41.87±0.24	42.53±0.09	41.66±0.02	39.14±0.42	43.36±0.05	44.64±0.02		
	SSLAM	17.04±0.01	19.99±0.08	20.51±0.06	17.45±0.54	24.45±0.18	25.49±0.01	22.59±0.06	18.91±4.42	30.84±0.03	30.94±0.08		
	SSLAM+	45.72±0.02	46.59±0.09	37.61±0.02	43.77±0.17	43.40±0.07	44.41±0.07	43.37±0.06	41.31±0.76	44.64±0.06	43.70±0.09		
	A-MAE	19.71±0.03	21.34±0.43	25.17±0.74	40.59±0.75	45.17±0.45	43.23±0.14	34.89±0.05	32.73±4.31	49.65±0.17	49.69±0.38		
780 fsd50k	ASiT	39.57±0.07	41.89±0.26	9.87±0.48	38.23±0.78	42.28±0.30	41.76±0.11	37.78±0.06	39.59±3.50	48.25±0.09	46.70±0.18		
	Dasheng	38.08±0.17	39.56±0.15	37.74±0.51	48.88±0.79	52.95±0.19	52.44±0.04	43.94±0.04	43.79±3.49	55.23±0.09	57.31±0.02		
	BEATs	46.89±0.03	49.58±0.31	36.35±0.12	37.19±1.63	48.51±0.29	46.16±0.07	40.20±0.03	40.32±3.22	57.17±0.14	58.27±0.15		
	BEATs+	60.72±0.00	61.87±0.11	50.17±0.41	56.32±0.48	60.01±0.10	55.97±1.20	48.30±0.08	53.88±3.87	65.39±0.08	66.09±0.13		
	EAT	36.39±0.03	44.82±0.08	38.36±0.30	46.64±0.45	51.06±0.28	51.29±0.10	49.38±0.07	45.93±4.36	56.07±0.11	55.64±0.37		
	EAT+	66.11±0.01	67.84±0.01	56.50±0.71	67.01±0.21	64.37±0.26	65.01±0.07	63.63±0.04	61.45±0.47	67.15±0.16	66.45±0.33		
	SSLAM	36.06±0.01	44.26±0.24	37.21±0.43	43.50±1.36	51.48±0.51	50.83±0.06	49.86±0.23	46.38±2.44	56.93±0.05	56.99±0.13		
	SSLAM+	65.36±0.01	67.36±0.06	55.12±0.21	65.64±0.06	64.28±0.05	64.53±0.06	63.31±0.07	61.88±0.53	66.55±0.02	66.02±0.29		
	A-MAE	57.46±0.01	60.52±0.13	60.88±0.14	84.10±0.31	83.57±0.20	80.13±0.05	72.05±0.03	76.69±0.27	84.11±0.07	85.57±0.10		
	ASiT	72.92±0.04	74.19±0.20	57.49±0.10	81.59±0.18	79.50±0.44	76.66±0.02	73.57±0.02	76.58±0.46	82.08±0.19	81.74±0.19		
781 desed	Dasheng	68.39±0.03	68.76±0.14	72.48±0.01	85.32±0.96	84.53±0.11	82.74±0.02	75.40±0.01	76.48±4.54	85.90±0.14	86.14±0.28		
	BEATs	77.56±0.03	80.56±0.15	72.23±0.01	86.83±0.55	86.91±0.04	81.88±0.04	81.08±0.05	81.77±0.95	89.04±0.08	89.22±0.55		
	BEATs+	87.20±0.01	87.92±0.02	86.93±0.02	90.34±0.14	90.22±0.05	87.94±0.28	85.52±0.34	86.33±1.29	92.17±0.06	92.41±0.25		
	EAT	76.15±0.02	80.92±0.02	77.90±0.08	86.68±0.33	86.06±0.19	84.13±0.08	83.43±0.01	78.80±5.63	88.70±0.06	88.82±0.11		
	EAT+	89.49±0.04	89.82±0.08	89.03±0.04	91.42±0.21	90.49±0.05	89.26±0.09	89.03±0.03	88.97±0.18	91.93±0.16	91.69±0.14		
	SSLAM	72.49±0.01	77.96±0.14	76.82±0.17	85.55±0.27	85.44±0.10	83.77±0.02	83.59±0.03	81.69±0.74	87.69±0.19	88.33±0.29		
	SSLAM+	89.39±0.01	89.69±0.07	88.04±0.03	91.10±0.17	90.14±0.23	89.11±0.03	88.88±0.06	88.43±0.64	91.70±0.05	91.45±0.27		
	A-MAE	58.94±0.03	60.56±0.11	69.01±0.66	80.04±0.78	79.24±0.14	71.01±0.38	69.84±0.02	68.75±0.20	78.92±0.24	79.95±0.64		
	ASiT	68.80±0.01	70.27±0.20	46.44±4.47	73.26±1.10	75.76±0.45	69.44±0.02	69.04±0.02	68.36±0.63	73.66±0.09	74.69±0.18		
782 spass	Dasheng	66.89±0.01	64.07±0.18	76.76±0.49	75.05±0.69	80.71±0.27	73.62±0.03	74.16±0.01	72.02±0.03	76.64±0.22	80.93±0.47		
	BEATs	74.22±0.01	75.97±0.14	79.91±0.54	84.81±1.49	83.98±0.16	76.61±0.09	75.58±0.03	69.38±0.34	87.76±0.24	85.77±0.43		
	BEATs+	78.46±0.02	80.24±0.15	80.30±0.00	85.52±0.20	84.84±0.11	79.39±0.26	76.64±0.20	74.28±3.94	89.15±0.06	87.85±0.20		
	EAT	65.96±0.01	71.55±0.23	84.49±0.02	79.15±0.63	83.95±0.32	77.35±0.01	76.55±0.03	64.44±9.04	83.09±0.83	85.64±0.29		
	EAT+	79.20±0.01	80.85±0.30	87.08±0.01	88.31±1.22	86.05±0.11	80.43±0.02	79.76±0.02	79.91±0.26	88.74±0.20	88.48±0.26		
	SSLAM	68.28±0.00	73.05±0.03	83.06±0.25	79.43±1.82	83.45±0.26	76.58±0.02	76.09±0.04	72.42±1.39	85.90±0.41	86.01±0.13		
	SSLAM+	78.82±0.00	80.67±0.04	86.83±0.02	87.56±0.61	85.97±0.06	79.63±0.02	79.04±0.02	79.06±0.65	88.26±0.18	88.17±0.26		
	A-MAE	58.72±0.06	58.97±0.19	40.53±1.18	85.28±0.16	82.49±0.16	79.83±0.17	76.21±0.07	73.07±2.46	83.63±0.19	85.17±0.32		
	ASiT	77.53±0.01	77.55±0.15	44.53±3.92	82.12±0.51	79.93±0.33	78.48±0.04	77.25±0.05	76.76±1.58	82.35±0.24	82.28±0.16		
783 urban	Dasheng	69.61±0.10	69.07±0.17	75.80±0.13	85.76±0.59	84.59±0.16	82.31±0.09	79.04±0.05	77.28±0.81	85.97±0.31	86.55±0.13		
	BEATs	82.54±0.05	83.76±0.04	75.90±0.08	85.57±0.48	86.23±0.24	84.31±0.12	82.74±0.01	77.89±1.07	89.04±0.10	88.74±0.15		
	BEATs+	87.70±0.01	87.79±0.02	83.84±4.13	89.15±0.19	89.02±0.30	87.72±0.23	86.51±0.36	84.24±1.11	91.12±0.06	91.25±0.19		
	EAT	77.76±0.04	81.58±0.05	78.45±0.08	86.35±1.14	86.43±0.03	85.40±0.01	83.58±0.05	79.93±2.00	89.11±0.12	89.24±0.20		
	EAT+	88.43±0.01	88.56±0.09	87.25±0.02	90.64±0.35	89.23±0.15	88.33±0.02	87.80±0.08	87.28±0.49	91.63±0.13	91.31±0.17		
	SSLAM	75.86±0.02	80.64±0.05	77.97±0.07	86.23±1.54	86.45±0.30	84.87±0.02	83.21±0.04	80.12±1.58	88.82±0.17	89.05±0.38		
	SSLAM+	88.10±0.02	88.24±0.02	86.52±0.02	90.38±0.55	88.84±0.20	87.84±0.10	87.49±0.13	86.07±0.94	91.24±0.09	90.93±0.07		

810
 811
 812
 813 **Table 5: Benchmark probing results for few-shot multi-label bioacoustics.** This table presents
 814 the benchmark results where the figures in the main text are extracted from. All results are the mean
 815 mAP with standard deviation, averaged over 5 seeds. The **best** and second-best performing probes
 816 for each configuration are highlighted.
 817

	Backbone	[cls] Baseline		Token Map (Att.)		Token Map (Proto.)	
		linear	mlp	mhca	ep	proto	protobin
hsn	A-MAE	4.83 \pm 0.02	5.08 \pm 0.09	28.32 \pm 1.22	15.62 \pm 0.37	34.63 \pm 1.45	34.55 \pm 0.26
	ASiT	5.51 \pm 1.23	6.13 \pm 0.08	9.47 \pm 0.93	6.11 \pm 0.16	12.24 \pm 1.06	13.87 \pm 0.98
	BEATs	10.29 \pm 0.04	10.52 \pm 1.07	24.86 \pm 2.68	16.23 \pm 1.72	33.67 \pm 1.52	32.01 \pm 1.72
	BEATs+	12.70 \pm 0.13	12.92 \pm 0.72	20.07 \pm 1.45	16.25 \pm 4.25	28.89 \pm 1.77	28.44 \pm 2.24
	Dasheng	8.05 \pm 0.19	6.65 \pm 0.09	20.78 \pm 1.37	17.56 \pm 0.45	22.04 \pm 0.66	23.43 \pm 0.61
	EAT	10.42 \pm 0.02	11.32 \pm 0.52	18.53 \pm 1.70	10.03 \pm 0.32	20.12 \pm 5.53	26.08 \pm 2.16
	EAT+	18.43 \pm 0.46	18.86 \pm 0.55	22.43 \pm 0.86	17.61 \pm 0.16	26.42 \pm 2.81	25.97 \pm 1.14
	SSLAM	8.14 \pm 0.01	8.42 \pm 0.07	22.76 \pm 0.66	14.98 \pm 0.72	21.85 \pm 2.76	25.41 \pm 0.75
	SSLAM+	19.31 \pm 0.68	21.05 \pm 0.48	22.83 \pm 2.10	19.86 \pm 0.13	30.00 \pm 1.50	29.85 \pm 1.20
pow	A-MAE	11.04 \pm 0.05	9.86 \pm 0.44	25.27 \pm 0.79	22.35 \pm 0.08	30.08 \pm 1.02	31.76 \pm 0.73
	ASiT	10.74 \pm 0.07	10.66 \pm 0.03	13.16 \pm 0.02	10.52 \pm 4.19	14.11 \pm 0.83	14.44 \pm 0.55
	BEATs	16.96 \pm 0.05	16.32 \pm 0.21	22.81 \pm 1.48	17.43 \pm 1.04	30.91 \pm 2.46	30.48 \pm 1.71
	BEATs+	15.67 \pm 0.03	16.23 \pm 0.54	21.98 \pm 0.39	15.68 \pm 0.52	30.83 \pm 1.89	29.27 \pm 1.77
	Dasheng	13.31 \pm 0.06	12.06 \pm 0.22	17.29 \pm 0.57	15.52 \pm 0.06	19.69 \pm 0.65	19.42 \pm 0.41
	EAT	14.60 \pm 0.03	14.04 \pm 0.66	21.02 \pm 1.14	18.39 \pm 0.08	24.84 \pm 1.34	28.37 \pm 0.59
	EAT+	17.26 \pm 0.15	19.60 \pm 0.37	23.89 \pm 2.14	18.73 \pm 0.67	31.98 \pm 0.91	30.76 \pm 1.16
	SSLAM	10.63 \pm 0.00	11.35 \pm 0.43	22.01 \pm 1.07	16.93 \pm 0.19	26.94 \pm 1.79	26.59 \pm 1.33
	SSLAM+	16.15 \pm 0.82	17.30 \pm 1.08	23.27 \pm 0.58	16.63 \pm 0.04	27.75 \pm 1.53	28.56 \pm 2.39
per	A-MAE	4.01 \pm 0.01	3.78 \pm 0.20	9.66 \pm 0.37	9.50 \pm 0.07	15.48 \pm 0.36	15.00 \pm 0.70
	ASiT	3.31 \pm 0.02	5.76 \pm 0.44	5.60 \pm 0.33	4.94 \pm 0.04	7.38 \pm 0.17	7.57 \pm 0.20
	BEATs	6.00 \pm 0.03	5.74 \pm 0.38	9.58 \pm 0.07	7.72 \pm 0.24	15.16 \pm 0.16	14.40 \pm 0.27
	BEATs+	6.50 \pm 0.05	6.91 \pm 0.26	10.64 \pm 0.45	7.60 \pm 0.73	14.93 \pm 0.45	14.93 \pm 0.23
	Dasheng	5.61 \pm 0.08	4.80 \pm 0.14	8.35 \pm 0.34	7.45 \pm 0.11	10.70 \pm 0.49	11.17 \pm 0.37
	EAT	4.92 \pm 0.01	4.98 \pm 0.29	8.67 \pm 0.44	8.34 \pm 0.13	12.18 \pm 0.50	12.79 \pm 0.25
	EAT+	6.61 \pm 0.00	7.06 \pm 0.38	10.62 \pm 0.75	8.39 \pm 0.04	15.29 \pm 0.31	14.88 \pm 0.29
	SSLAM	4.68 \pm 0.02	4.54 \pm 0.19	10.31 \pm 0.41	8.57 \pm 0.05	11.97 \pm 1.13	13.18 \pm 0.06
	SSLAM+	6.69 \pm 0.00	6.87 \pm 0.06	10.54 \pm 0.32	7.44 \pm 0.01	15.23 \pm 0.34	14.26 \pm 0.30
nes	A-MAE	3.45 \pm 0.00	3.25 \pm 0.45	18.52 \pm 0.46	16.64 \pm 0.12	25.83 \pm 0.39	25.98 \pm 0.48
	ASiT	3.83 \pm 0.06	4.93 \pm 0.41	6.13 \pm 0.53	5.48 \pm 0.06	9.25 \pm 0.44	9.67 \pm 0.22
	BEATs	9.09 \pm 0.06	9.52 \pm 0.08	16.30 \pm 0.19	11.22 \pm 0.98	26.36 \pm 0.61	25.07 \pm 0.55
	BEATs+	11.43 \pm 0.08	11.85 \pm 0.09	16.91 \pm 0.50	12.07 \pm 0.62	24.54 \pm 0.17	23.47 \pm 0.33
	Dasheng	5.64 \pm 0.04	4.21 \pm 0.17	12.48 \pm 0.19	12.08 \pm 0.21	17.22 \pm 0.12	18.79 \pm 0.10
	EAT	7.88 \pm 0.00	8.78 \pm 0.06	16.77 \pm 0.50	13.79 \pm 0.07	21.18 \pm 0.59	22.03 \pm 0.58
	EAT+	13.49 \pm 0.08	14.06 \pm 0.52	17.71 \pm 0.85	13.67 \pm 0.08	24.79 \pm 0.52	23.45 \pm 0.36
	SSLAM	5.66 \pm 0.01	6.73 \pm 0.25	17.82 \pm 0.35	14.98 \pm 0.21	21.65 \pm 0.40	21.93 \pm 0.73
	SSLAM+	12.82 \pm 0.13	14.58 \pm 0.09	18.25 \pm 0.64	13.65 \pm 0.10	25.65 \pm 0.82	25.54 \pm 0.72
sne	A-MAE	6.09 \pm 0.04	5.90 \pm 0.12	17.56 \pm 0.06	13.48 \pm 0.05	20.23 \pm 0.91	21.38 \pm 1.39
	ASiT	6.41 \pm 0.13	6.92 \pm 0.46	7.12 \pm 0.41	6.79 \pm 0.11	9.63 \pm 0.32	9.63 \pm 0.35
	BEATs	9.61 \pm 0.05	9.95 \pm 0.10	13.91 \pm 0.80	12.16 \pm 0.29	20.26 \pm 1.26	19.46 \pm 1.56
	BEATs+	11.18 \pm 0.08	12.05 \pm 0.16	12.31 \pm 0.11	10.64 \pm 0.32	17.36 \pm 0.95	16.83 \pm 0.77
	Dasheng	8.72 \pm 0.09	7.30 \pm 0.66	12.60 \pm 0.40	11.58 \pm 0.17	15.68 \pm 0.27	17.60 \pm 0.65
	EAT	10.29 \pm 0.05	10.67 \pm 0.07	14.56 \pm 0.77	11.89 \pm 0.06	16.48 \pm 0.30	16.70 \pm 0.53
	EAT+	9.63 \pm 0.07	10.04 \pm 0.48	12.41 \pm 0.45	9.66 \pm 0.17	16.19 \pm 0.63	15.40 \pm 0.83
	SSLAM	9.52 \pm 0.05	9.96 \pm 0.02	13.42 \pm 0.58	11.04 \pm 0.06	16.25 \pm 0.57	16.40 \pm 0.29
	SSLAM+	10.23 \pm 0.13	10.34 \pm 0.89	14.02 \pm 0.44	10.91 \pm 0.34	17.64 \pm 0.42	16.87 \pm 1.13
uhh	A-MAE	4.88 \pm 0.05	4.28 \pm 0.17	10.70 \pm 0.15	8.42 \pm 0.44	12.17 \pm 0.29	12.57 \pm 0.34
	ASiT	5.44 \pm 0.02	6.65 \pm 0.07	6.67 \pm 0.32	6.04 \pm 0.37	6.94 \pm 0.23	6.12 \pm 0.30
	BEATs	9.74 \pm 0.05	10.74 \pm 0.55	10.21 \pm 0.71	7.93 \pm 0.72	12.11 \pm 0.48	12.03 \pm 0.50
	BEATs+	8.95 \pm 0.16	10.10 \pm 0.29	13.47 \pm 0.61	9.71 \pm 0.77	15.02 \pm 0.57	17.27 \pm 1.20
	Dasheng	5.09 \pm 0.38	5.12 \pm 0.33	7.78 \pm 0.20	6.57 \pm 0.57	7.99 \pm 0.50	10.10 \pm 0.16
	EAT	9.32 \pm 0.07	9.06 \pm 0.50	10.98 \pm 0.50	9.55 \pm 0.12	8.67 \pm 0.73	11.34 \pm 1.44
	EAT+	10.12 \pm 0.03	10.32 \pm 0.13	10.68 \pm 0.75	9.95 \pm 0.54	13.00 \pm 0.42	13.07 \pm 0.63
	SSLAM	7.36 \pm 0.02	8.51 \pm 0.39	10.60 \pm 1.59	8.61 \pm 0.25	11.43 \pm 0.69	10.56 \pm 0.71
	SSLAM+	10.30 \pm 0.13	11.20 \pm 0.33	9.78 \pm 0.14	9.07 \pm 0.05	13.54 \pm 0.26	12.46 \pm 0.41
nbp	A-MAE	9.82 \pm 0.13	8.98 \pm 0.26	32.52 \pm 0.95	26.89 \pm 0.14	40.67 \pm 0.70	41.47 \pm 1.44
	ASiT	12.44 \pm 0.22	13.19 \pm 0.27	16.33 \pm 0.09	14.90 \pm 0.33	19.77 \pm 0.82	20.57 \pm 0.82
	BEATs	17.72 \pm 0.36	19.31 \pm 0.62	28.83 \pm 1.78	17.44 \pm 0.85	41.78 \pm 1.09	40.49 \pm 1.32
	BEATs+	21.41 \pm 0.43	22.60 \pm 0.30	32.58 \pm 0.74	22.92 \pm 0.73	42.84 \pm 0.73	42.10 \pm 1.10
	Dasheng	18.04 \pm 0.13	13.68 \pm 1.13	27.45 \pm 0.14	25.93 \pm 0.10	32.12 \pm 0.59	35.09 \pm 0.57
	EAT	14.59 \pm 0.11	16.95 \pm 0.51	26.86 \pm 1.17	22.14 \pm 0.33	34.39 \pm 1.07	34.40 \pm 0.59
	EAT+	23.91 \pm 0.16	25.46 \pm 1.06	32.54 \pm 0.22	24.41 \pm 0.31	40.74 \pm 0.34	39.49 \pm 0.98
	SSLAM	10.41 \pm 0.07	14.58 \pm 0.78	27.31 \pm 0.47	20.62 \pm 0.15	34.39 \pm 1.17	34.76 \pm 0.74
	SSLAM+	20.84 \pm 0.27	21.69 \pm 0.21	30.32 \pm 0.38	21.79 \pm 0.19	39.86 \pm 0.91	37.44 \pm 1.34

864
 865 **Table 6: Benchmark probing results for general multi-class audio.** All results are the mean
 866 accuracy with standard deviation, averaged over 5 seeds. The **best** and second-best performing
 867 probes for each configuration are highlighted.

Backbone	linear	mhca	protobin
esc50	A-MAE	22.08±0.14	86.25 ±0.50
	ASiT	76.08±0.76	78.25 ±0.50
	BEATs	78.92±0.29	83.17 ±0.76
	BEATs+	94.33 ±0.14	94.25±0.43
	Dasheng	54.75±1.75	90.17 ±0.52
	EAT	75.33±0.95	89.83 ±1.44
	EAT+	96.67 ±0.29	96.67±0.29
	SSLAM	74.17±0.14	89.00 ±0.50
ks2	SSLAM+	97.17 ±0.14	97.17±0.14
	A-MAE	12.44±1.67	84.87 ±1.19
	ASiT	62.23±0.22	86.26 ±0.13
	BEATs	87.00±0.18	94.99 ±0.25
	BEATs+	85.79±0.27	93.60 ±0.27
	Dasheng	78.57±0.48	98.13 ±0.28
	EAT	69.14±0.14	93.22 ±0.13
	EAT+	83.27±0.02	94.42 ±0.20
as20k	SSLAM	64.75±0.20	93.75 ±0.62
	SSLAM+	83.57±0.03	94.24 ±0.39

B ABLATION STUDY

893 We conduct an ablation study to investigate two key aspects of our prototypical probes. First, we
 894 analyze the sensitivity to the number of prototypes (J) per class to justify our choice in the main
 895 benchmark. Second, we aim to disentangle the performance effects of our two main contributions:
 896 the architectural simplifications (class-agnostic design, no orthogonality loss) and the binarization
 897 itself. To achieve this, we compare three methods:

1. **proto**: The baseline from [Rauch et al. \(2025a\)](#) using float-based, class-dependent prototypes with an orthogonality loss.
2. **protobin**: Our proposed method using binarized, class-agnostic prototypes without an orthogonality loss.
3. **protofloat**: A new ablation variant that uses **protobin**'s simplified, class-agnostic architecture but with float-based prototypes. This allows us to isolate the impact of binarization.

905 The results across three diverse datasets (multi-label, high number of classes: as20k, multi-label
 906 low number of classes: urban, multi-class: esc50) are presented in [Table 7](#).

907 **Sensitivity to number of prototypes.** Our results show a clear trend across backbones and pro-
 908 tototypical probes: performance is highly sensitive to J at lower values and begins to saturate as J
 909 increases. The jump in performance from $J = 1$, $J = 5$ and $J = 10$ is notable on all datasets,
 910 though the impact varies on the task (multi-class vs. multi-label) and the dataset's structure (e.g.,
 911 number of classes). For instance, on urban with EAT, **protobin** increases from 80.05 mAP at $J=1$
 912 to 89.01 with nearly 9 percentage points (%_p). The effect is even more pronounced on esc50, which
 913 sees a 14 %_p increase in the same setting. The subsequent gain from 10 to 20 is only 0.23 %_p on
 914 urban. The saturation suggests that while multiple prototypes are crucial, there are only diminish-
 915 ing returns after enough prototypes are added. In contrast, the performance difference on as20k is
 916 much less pronounced. Using the same EAT model, the gain from $J = 1$ to $J = 10$ is only circa
 917 2.6 %_p. This suggests that the multi-label as20k dataset, with its high number of classes (527),
 918 does not require as many prototypes per class, and that using a single prototype is not as detrimental

918
 919 **Table 7: Comparison of probe methods across J number of prototypes.** The methods include the
 920 **linear** baseline, **protobin**, **proto** and the ablation to the binarization **protofloat**. We addition-
 921 ally add **linear** as the baseline performance. We report the mean mAP for **as20k** and **urban**, and
 922 mean accuracy for **esc50** across 3 seeds after our hyperparameter selection. The **linear** baseline
 923 is static across J . **Bold** marks the number of prototypes used in our main benchmark results.

924	925	Backbone	Probe	926 as20k (mAP)				927 urban (mAP)				928 esc50 (Accuracy)			
				J=1	J=5	J=10	J=20	J=1	J=5	J=10	J=20	J=1	J=5	J=10	J=20
926	927	A-MAE	protobin	20.14	21.91	22.32	22.40	73.64	83.80	84.67	85.17	55.92	78.92	81.33	83.70
			protofloat	20.87	22.55	23.01	23.07	77.46	84.69	85.37	86.01	67.67	80.00	81.75	82.10
			proto	19.08	21.05	21.61	21.95	64.03	83.12	83.02	83.63	49.75	73.92	77.25	82.59
			linear		8.36			58.72					22.08		
929	930	BEATs	protobin	26.70	27.68	31.54	31.93	78.23	87.25	88.12	88.74	69.50	82.08	83.25	84.10
			protofloat	27.64	30.52	30.89	31.68	79.90	87.92	88.60	88.63	75.75	84.25	84.58	84.70
			proto	27.63	30.47	30.54	30.66	77.41	87.55	88.64	89.04	77.25	83.67	84.67	85.08
			linear		24.71			82.54					78.92		
932	933	ASiT	protobin	20.74	20.21	20.96	21.71	78.59	81.35	81.87	82.28	75.08	79.25	80.17	80.30
			protofloat	21.18	21.57	21.21	21.30	79.21	82.09	82.48	82.19	76.00	79.25	79.75	80.12
			proto	21.31	21.94	21.89	20.73	68.89	81.20	81.89	82.35	73.50	78.75	81.95	82.44
			linear		18.35			77.53					76.08		
935	936	EAT	protobin	29.08	31.61	31.67	32.12	80.05	88.60	89.01	89.24	71.00	84.25	85.00	86.81
			protofloat	29.11	31.04	31.19	31.81	82.00	88.90	89.08	89.14	82.58	87.58	88.25	89.14
			proto	28.64	30.65	31.06	31.30	72.34	87.65	88.84	89.11	55.33	78.08	82.58	85.91
			linear		17.29			77.76					75.33		
938	939	SSLAM	protobin	28.69	29.77	30.94	32.10	81.08	86.82	88.92	89.05	65.75	80.67	83.83	84.70
			protofloat	29.08	30.50	30.55	31.26	81.63	87.16	89.05	89.05	79.75	86.00	86.17	86.69
			proto	29.08	30.53	30.84	30.99	81.60	88.58	88.45	88.82	62.08	80.67	82.17	85.18
			linear		17.04			75.86					74.17		

943 as it is for the multi-class tasks. Regardless of the task, this analysis confirms that our choice of
 944 $J = 20$ (and $J = 10$ for **as20k**) for the central benchmark is robust, capturing the vast majority of
 945 the method’s potential performance without adding excessive parameters.

946 **Binarization and architectural simplification.** This ablation reveals that our architectural simpli-
 947 fications are the primary driver of performance gains, while binarization offers a highly effective
 948 trade-off between a very minor precision cost in certain cases and major efficiency benefits.

949

- 950 • *Impact of binarization* (protobin vs. protofloat): Comparing our proposed method
 951 protobin to its float-based counterpart protofloat reveals the direct impact of binarization.
 952 On some configurations in lower and higher number of prototypes, protofloat holds
 953 a slight performance edge over protobin. The performance differences are expected and
 954 highlights an inherent trade-off: the full precision of 32-bit floats can capture finer-grained
 955 details. However, protobin remains highly competitive, demonstrating that binarization
 956 achieves a 32x memory reduction at the cost of only a very low drop in performance in
 957 certain cases.
- 958 • *Impact of simplification* (protofloat vs. proto): This comparison provides the clean-
 959 est evidence for the impact of our architectural changes. Our simplified, class-agnostic
 960 protofloat consistently and significantly outperforms the class-dependent proto baseline
 961 across nearly all settings. This confirms that decoupling prototypes from classes leads
 962 to better performance.
- 963 • *Overall* (protobin vs. proto vs. linear): We observe that protobin frequently out-
 964 performs the original proto baseline and linear, especially on the complex multi-label
 965 datasets **as20k** and **urban**. It shows that the benefits of our architectural simplifications
 966 (the class-agnostic design) are powerful enough to often outweigh the minor precision loss
 967 from binarization, resulting in a performance gain with a simpler and more efficient model.

972
973
974

Task and dataset characteristics. The ablation results also underscore the task-dependent nature of the different prototypical architectures.

975
976
977
978
979
980
981
982
983
984
985
986

- *Multi-label* (as20k, urban): On these complex datasets, the results underscore the advantage of our simplified and class-agnostic architecture. The presence of polyphony requires a flexible design where prototypes can collaborate to disentangle overlapping sound events, a strength of protobin and protofloat. This is particularly evident for models with highly entangled embeddings (e.g., A-MAE) and on datasets with many classes (as20k), where the scalability of reusable prototypes for different classes is beneficial.
- *Muti-class* (esc50): Conversely, on this single-label task, the advantage of our class-agnostic design diminishes. With only a single dominant sound source, the simpler and more direct supervisory signal of a class-dependent mapping can be more effective. In cases with less discriminative embeddings (e.g., ASiT), the full float precision of proto may also be necessary to capture fine-grained acoustic details, making it more competitive than our regularized protobin.

987
988
989
990
991
992

On the complex, multi-label datasets (as20k, urban), the architectural flexibility of our class-agnostic protofloat and protobin provides an advantage over the more class-dependent proto. This supports our core hypothesis that a disentangled design is valuable for polyphonic scenes. Conversely, on the single-label esc50 task, this advantage diminishes. Here, the baseline proto is highly competitive, as the simpler challenge of learning a direct class-to-prototype mapping seems to be sufficient for single-source audio.

993
994
995

C COMPUTATIONAL RESOURCES

996
997
998
999
1000
1001
1002
1003

To motivate the upper bound calculation, our benchmark combined 14 datasets, 9 backbones, and 10 pooling methods. Each of these combinations involved up to 50 hyperparameter trials plus 5 final evaluation runs, establishing the basis for our total run count. The computational cost of our benchmark can be divided into two stages. The first was a one-time pre-computation of embeddings for each of the 9 backbone checkpoints across all 14 datasets. For the 7 general audio and control datasets, we generated embeddings once for each of the 9 backbones. For the 7 bioacoustic datasets, this process was repeated 5 times per backbone to create distinct augmented variants for training. This initial stage resulted in:

1004
1005
1006
1007

$$\underbrace{9}_{\text{backbones}} \cdot \left(\underbrace{7}_{\text{datasets}} \cdot \underbrace{1}_{\text{run/data}} + \underbrace{7}_{\text{bio-data}} \cdot \underbrace{5}_{\text{runs/data}} \right) = 378 \text{ pre-computation runs} \quad (4)$$

1008

The second stage was the training and evaluation of the probing methods, where the hyperparameter optimization involved 50 initial trials managed by a successive-halving scheduler, followed by 5 final evaluation runs.

1009

The number of pooling methods evaluated varied by dataset category. For the 5 general multi-label audio datasets, where all 10 pooling methods were evaluated, the upper bound on training runs was:

1010
1011
1012
1013
1014
1015
1016

$$\underbrace{5}_{\text{datasets}} \cdot \underbrace{9}_{\text{backbones}} \cdot \underbrace{10}_{\text{probes}} \cdot \left(\underbrace{50}_{\text{HPS}} + \underbrace{5}_{\text{final seeds}} \right) = 24,750 \quad (5)$$

1017
1018

For the 7 few-shot bioacoustic datasets, we used a reduced set of 6 relevant pooling methods, resulting in:

1019
1020
1021

$$\underbrace{7}_{\text{datasets}} \cdot \underbrace{9}_{\text{backbones}} \cdot \underbrace{6}_{\text{probes}} \cdot \left(\underbrace{50}_{\text{HPS}} + \underbrace{5}_{\text{final seeds}} \right) = 20,790 \quad (6)$$

1022
1023

Finally, for the 2 multi-class control datasets, we evaluated a core set of 3 representative probes:

1024
1025

$$\underbrace{2}_{\text{datasets}} \cdot \underbrace{9}_{\text{backbones}} \cdot \underbrace{3}_{\text{probes}} \cdot \left(\underbrace{50}_{\text{HPS}} + \underbrace{5}_{\text{final seeds}} \right) = 2,970 \quad (7)$$

1026 Summing these values gives the total upper bound on individual training runs for the entire bench-
 1027 mark:

$$24,750 + 20,790 + 2,970 = \mathbf{48,510} \text{ total runs} \quad (8)$$

1030 We executed all benchmark tasks on a high-performance compute cluster equipped with NVIDIA
 1031 A100 GPUs. This includes the initial augmentation-free forward pass required to pre-compute and
 1032 cache the embeddings for all backbones, as well as the subsequent training and evaluation of all
 1033 probing methods. The resulting on-disk embedding store for all cached features occupied approxi-
 1034 mately 3.6 TB of storage. Code development and preliminary tests were performed on a workstation
 1035 using an NVIDIA RTX4090 GPU and an AMD Ryzen 9 7950X CPU.

D BENCHMARK IMPLEMENTATION DETAILS

This Appendix provides further details on the core components of our benchmark’s experimental setup.

D.1 BENCHMARK DATASETS

Table 8 presents an overview of all 14 downstream datasets used in our benchmark, categorized into three thematic groups along with their respective sizes.

Table 8: **Overview of the benchmark datasets.** The datasets are organized into three groups: general multi-label, few-shot bioacoustic multi-label, and general multi-class. For each dataset, we report the size of the train, validation, and test splits, the number of classes, and the audio clip length. Note that all bioacoustic tasks follow a 64-shot training protocol.

Dataset	Train	Validation	Test	#Classes	Clip Length [s]
<i>Multi-label: General Datasets</i>					
as20k (Gemmeke et al., 2017)	18,685	—	17,142	527	10
deseed (Johnson et al., 2021)	20,000	—	2,000	10	10
fsd50k (Fonseca et al., 2022)	40,966	—	10,231	200	10
spass (Viveros-Muñoz et al., 2023)	17,500	3,750	3,750	28	10
urban (Salamon et al., 2017)	6,000	2,000	2,000	10	10
<i>Multi-label: Bioacoustic BirdSet (64-shot)</i>					
hsn (Rauch et al., 2025b)	1,344	—	12,000	21	5
pow (Rauch et al., 2025b)	3,072	—	4,560	48	5
per (Rauch et al., 2025b)	8,448	—	15,120	132	5
nes (Rauch et al., 2025b)	5,696	—	24,480	89	5
sne (Rauch et al., 2025b)	3,584	—	23,756	56	5
uhh (Rauch et al., 2025b)	1,600	—	36,367	27	5
nbp (Rauch et al., 2025b)	3,264	—	563	51	5
<i>Multi-class: General Datasets</i>					
esc50 (Piczak, 2015) [‡]	1,600	—	400	50	5
sc2 (Warden, 2018)	84,848	9,982	4,890	12	10

1065 **AudioSet** (Gemmeke et al., 2017). **as2m** is a large-scale dataset used to pretrain general-purpose
 1066 audio models and built from a vast collection of YouTube videos. It features a comprehensive
 1067 ontology of over 500 sound classes, making it a standard benchmark for general-purpose audio event
 1068 detection and classification. The **as20k** dataset represents a commonly used subset with 20,000
 1069 samples.

1071 **Domestic Environment Sound Event Detection** (Johnson et al., 2021). **deseed** is designed for eval-
 1072 uating sound event detection in domestic settings, featuring 10-second audio clips. These recordings
 1073 are annotated with temporal labels for 10 common sound classes like dishes, speech, and vacuum
 1074 cleaners. It was specifically created to facilitate research in both centralized and federated learning
 1075 scenarios.

1076 **Free Sound Dataset 50k** (Fonseca et al., 2022). **fsd50k** is a large, open dataset for sound event
 1077 research, containing over 51,000 audio clips from the Freesound platform. It covers 200 diverse
 1078 sound classes drawn from the AudioSet Ontology, with a focus on label quality through a multi-
 1079 step human verification process. The dataset is widely used for multi-label sound classification and
 detection tasks.

1080
 1081 **Synthetic Polyphonic Dataset with Spatiotemporal Labels of Sound Sources** (Viveros-Muñoz
 1082 et al., 2023). spass is a synthetic collection of polyphonic soundscapes created for sound source lo-
 1083 calization and separation tasks for 28 urban sounds. It provides detailed spatiotemporal annotations,
 1084 specifying the precise time, location, and class of each sound event within the clips. It contains a set
 1085 of five distinct acoustic background scenes. This makes it particularly valuable for developing and
 1086 testing models that can understand complex acoustic scenes.

1087 **Urban-SED** (Salamon et al., 2017). urban is a collection for urban sound classification, containing
 1088 10-second audio clips of 10 common urban sound classes. These classes include events such as car
 1089 horns, sirens, and street music, recorded from real-world city environments. The dataset serves as a
 1090 popular benchmark for models tasked with environmental sound analysis.

1091 **BirdSet** (Rauch et al., 2025b). BirdSet is a comprehensive, large-scale collection of datasets for
 1092 avian bioacoustics research. It aggregates recordings from various global locations, with each location
 1093 forming a distinct subset (hsn, pow, per, nes, sne, uhh, nbp). The collection is specifically
 1094 tailored to benchmark audio classification models, reflecting realistic bioacoustic monitoring chal-
 1095 lallenges.

1096 **Environmental Sound Classification** (Piczak, 2015). esc50 is a benchmark collection for Environ-
 1097 mental Sound Classification, consisting of 2,000 five-second audio clips. It is uniformly organized
 1098 into 50 distinct semantic classes, including animal sounds, natural soundscapes, and human non-
 1099 speech sounds. The dataset is standardized with a pre-defined 5-fold cross-validation setup, making
 1100 it a standard for evaluating audio SSL models.

1101 **Speech Commands V2** (Warden, 2018). sc2 is designed for keyword spotting and limited-
 1102 vocabulary speech recognition. It contains thousands of one-second utterances of short command
 1103 words (e.g., "up," "down," "stop") spoken by many different individuals. It contains 35 commands
 1104 in the vocabulary, providing a robust benchmark for testing general-purpose models in audio.

1105 D.2 FEWSHOT BIRDSET DETAILS

1106 For our few-shot learning evaluation on the seven BirdSet downstream tasks, we constructed 64-shot
 1107 training subsets. The creation of these subsets follows the pipeline detailed in (Rauch et al., 2025a),
 1108 which involves a selection of audio clips to mitigate label noise from weakly-labeled recordings. Full
 1109 details of the subset creation process and dataset characteristics can be found in the original BirdSet
 1110 publications (Rauch et al., 2025b;a). Given the challenging nature of these tasks—which are multi-
 1111 class during training but multi-label during testing, we introduced a light data augmentation strategy.
 1112 For each of the seven 64-shot datasets, we pre-generated and saved five distinct augmented variants
 1113 using only the mixup augmentation with $p = 0.9$, which is highly effective for bird sounds (Rauch
 1114 et al., 2025a). During each experimental run, we randomly selected a sample of one of these five
 1115 variants for training, providing diversity to the learning process without on-the-fly computational
 1116 overhead.

1118 D.3 POOLING METHODS

1119 Table 9 summarizes the ten distinct pooling methods evaluated in our study. It details their architec-
 1120 tural family, whether they operate on the [cls]-token or the full token map, and their computational
 1121 complexity.

1122 Table 9: **Pooling methods overview.** Methods are grouped by architectural family. The #params
 1123 row lists symbolic counts, and the urban row instantiates them for our EAT-B/768 setup on urban.
 1124 Symbols: N tokens ($= S_t \cdot S_f$), D embed dim, C classes, H MLP hidden, k conv kernel, D_h conv
 1125 hidden, F number of frequency patches, Q queries, J prototypes.

	[cls] Baseline		Token Map			Token Map (Att.)				Token Map (Proto.)	
	linear	mlp	linear	conv	linpre	mhca	ep	simpool	abmilp	proto	protobin
# params urban	DC $\approx 7.7k$	$DH + HC$ $\approx 398k$	NDC $\approx 3.9M$	$k^2 DD_h + D_h C$ $\approx 2.7M$	FDC $\approx 61.4k$	$D^2 + DC$ $\approx 1.2M$	$D^2 + QD + DC$ $\approx 622k$	$D^2 + DC$ $\approx 598k$	$2D^2 + QD + DC$ $\approx 3.0M$	$J + JC$ $\approx 155k$	$J + JC$ $\approx 155k$

1132
 1133

1134 D.4 HYPERPARAMETER SETTINGS
1135

1136 For each unique combination of a backbone, dataset, and pooling method, we conducted a systematic
 1137 hyperparameter search to find the optimal learning rate and weight decay. This process ensures
 1138 that each method is evaluated under its best-performing configuration, providing a fair comparison.
 1139 Our search strategy consists of 50 trials for each combination, managed by a successive-halving
 1140 pruner to improve efficiency. The search is structured in two stages. First, we explore with 25
 1141 trials, using a Sobol sequence to perform a quasi-random search, ensuring a broad and uniform
 1142 coverage of the hyperparameter space. Second, we exploit with 25 trials using a tree-structured
 1143 parzen estimator (TPE) to focus the search on promising regions identified during the exploration
 1144 phase. The configuration yielding the highest mean Average Precision (mAP) on the validation set
 1145 is then selected for the final evaluation, where it is re-trained and tested using five different random
 1146 seeds.

1147 The search spaces were kept compact. For all baseline, convolutional, and attentive pooling methods,
 1148 the search space was:

1149 • **Learning Rate (lr):** A log-uniform distribution between 1×10^{-4} and 7×10^{-3} .
 1150 • **Weight Decay (wd):** A log-uniform distribution between 1×10^{-5} and 5×10^{-4} .

1152 Based on preliminary experiments showing that prototypical methods benefit from a higher learning
 1153 rate, their search space for the learning rate was adjusted, while the weight decay remained the same:
 1154

1155 • **Learning Rate (lr):** A log-uniform distribution between 2×10^{-3} and 8×10^{-2} .

1157 All other hyperparameters were held constant across all experiments to isolate the effects of the
 1158 pooling method. These fixed settings are summarized in Table 10.

1159
1160 Table 10: Fixed hyperparameters used for training all probing heads.

Optimizer	Epochs	Batch Size	LR Scheduler	Loss Function	Prototypes/Class	Prototype LR
AdamW	30	128	Cosine	Asymmetric	20	Global LR