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ABSTRACT

Although probing frozen models has become a standard evaluation paradigm, self-
supervised learning in audio defaults to fine-tuning when pursuing state-of-the-art
on AudioSet. A key reason is that global pooling creates an information bottle-
neck causing linear probes to misrepresent the embedding quality: The cls-token
discards crucial token information about dispersed, localized events in audio. This
weakness is rooted in the mismatch between the pretraining objective (globally)
and the downstream task (localized). Across a comprehensive benchmark of 13
datasets and 6 spectrogram-based encoders, we investigate the global pooling bot-
tleneck. We introduce binarized prototypical probes: a lightweight and simple
pooling method that learns prototypes to perform class-wise information aggrega-
tion. Despite its simplicity, our method notably outperforms linear and attentive
probing. Our work establishes probing as a competitive and efficient paradigm for
evaluating audio SSL models, challenging the reliance on costly fine-tuning.

Figure 1: The pooling bottleneck. Visualizing embeddings from a purely self-supervised model
(EAT) and its supervised+-adapted version (EAT+) for a spectrogram from urban. (a) A PCA of the
token map shows that EAT embeddings are rich but entangled, a result of the masked prediction ob-
jective, while EAT+ embeddings are localized and aligned with input events. (b) The [cls]-token’s
attention starts similarly for both models, but is diffuse for EAT in later layers, while EAT+ becomes
spatially selective, highlighting its limitation as a probe vector. (c) Our protobin disentangles
these correlated EAT embeddings to recover localized event information. (d) For the EAT+ model,
protobin further enhances the embeddings, providing a superior representation to the [cls]-token.

1 INTRODUCTION

Self-supervised learning (SSL) promises general-purpose embeddings that transfer across down-
stream tasks (Oquab et al., 2024). A key advantage is their out-of-the-box utility: instead of
compute- and label-intensive fine-tuning, one can freeze the pretrained backbone and train only
a lightweight probe. As an evaluation paradigm, probing offers a faithful and efficient assessment
of pretrained embeddings by minimizing the confounding factors of fine-tuning (Chen et al., 2020;
Rauch et al., 2025a). Fine-tuning often yields stronger downstream performance (Park et al., 2023),
but can obscure the intrinsic quality of the frozen embeddings (Kumar et al., 2022). While probing
is an established evaluation paradigm in computer vision (Oquab et al., 2024; Darcet et al., 2025)
and is also utilized in audio SSL (Niizumi et al., 2024; Yadav et al., 2024) on benchmarks such as
HEAR (Turian et al., 2022), the pursuit of state-of-the-art (SOTA) performance on AudioSet (Gem-
meke et al., 2017) still defaults to resource-intensive fine-tuning (Alex et al., 2025). This discrepancy

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

motivates our central question: why does this influential benchmark still lack a lightweight probing
method that reliably reflects a model’s performance as an alternative to fine-tuning?

The performance of a frozen probe depends on the interplay between the pretraining objective (i.e.,
the pretext task) and the pooling method (i.e., embedding extraction). Poor probing performance for
masked image modeling (MIM)-pretrained models is a direct result of the pooling method, as the
[cls]-token distributes attention too uniformly instead of focusing on key information (Przewięź-
likowski et al., 2025; Alkin et al., 2025). The superior performance of probes that utilize the full
token map (Psomas et al., 2025) creates a critical deficit for simpler methods, rendering them un-
reliable proxies for an encoder’s embedding quality. This motivates the need for probes that can
efficiently leverage all available information to provide a faithful assessment, avoiding the cost and
confounding factors of fine-tuning. Many spectrogram-based audio SSL encoders that report SOTA
performance on AudioSet via fine-tuning apply MIM-style objectives, often coupled with student-
teacher distillation (Chen et al., 2024; Alex et al., 2025; Ahmed et al., 2024; Chen et al., 2023a; Li
et al., 2024). By design, this task induces a bias toward contextualized token-level embeddings, ex-
posing any probe’s limitations that collapse the tokens into a simple global summary. While attentive
pooling, which learns a token-weighted summary, has emerged as a potential solution in computer
vision (Przewięźlikowski et al., 2025), its application to audio remains a research gap, particularly
for representing complex polyphonic scenes.

In addition, the downstream task plays a role in the performance of probes (Alex et al., 2025).
Polyphonic soundscapes are multi-label, with sparse and localized evidence for sound events in the
time-frequency domain. Forcing this information into a single descriptor, whether fixed or learnable
during probing, creates a single-vector bottleneck: Quieter but important events could be overshad-
owed by more prevalent sounds, making it difficult for a linear classifier to disentangle the mixed
signals (see Figure 1). Therefore, the limited adoption of probing and its failure to approach fine-
tuning SOTA performance on AudioSet likely reflects a pooling mismatch, not an absence of usable
information. While the pretrained [cls]-token struggles to summarize these sparse events and can
underperform in audio classification (Alex et al., 2025; Li et al., 2024), fine-tuning implicitly learns
a superior, class-conditioned aggregation over the full token map (see Figure 1).

Hypothesis: Pooling Bottleneck

The limited usage of probing as an eval-
uation tool for multi-label audio SSL
stems from the pooling method. Stan-
dard single-vector probes, from the off-
the-shelf [cls]-token to attentive pool-
ing, underutilize token embeddings. A
more valuable and reliable probe re-
quires a shift to per-class, multi-vector
aggregation to fully exploit the informa-
tion in the patch tokens (Figure 2). Figure 2: Probing on as20k with EAT.

Contributions
1. Audio probing benchmark. We conduct an extensive benchmark to systematically inves-

tigate the pooling bottleneck in audio SSL. Our analysis establishes a probing hierarchy,
demonstrates that the cls-token probe and fine-tuning can be unfaithful evaluators of au-
dio SSL models, quantifies the impact of polyphony in probing, and shows that supervised
adaption after pre-training alters cls-token’s quality and model rankings. We empirically
show that the bottleneck stems from the pooling method, not the embeddings, challenging
the validity of current evaluation practices in achieving SOTA performance on AudioSet.

2. Elevating probing in audio. Prototype methods notably outperform other pooling methods,
including linear and attentive. This result challenges the reliance on costly fine-tuning and
establishes probing as a competitive and efficient paradigm for evaluating audio SSL models.

3. Binarized prototypical probes. We introduce an efficient probe that addresses the pooling
bottleneck by performing class-wise and multi-vector information aggregation on the tokens.
We simplify prior prototypical approaches by decoupling prototypes from class constraints
and eliminating an explicit orthogonality loss, while achieving competitive performance.
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2 PROBING FROZEN EMBEDDINGS IN MULTI-LABEL AUDIO

This section formally introduces the probing task for (multi-label) audio, provides a taxonomy of
the pooling methods, and introduces our binarized prototypical probes.

2.1 PROBLEM FORMULATION AND NOTATION

We consider a multi-label classification task with a training dataset D = {(xi,yi)}Ni=1, where each
input xi belongs to a set of spectrograms X ⊆ RT×F with T time frames and F frequency bins.
Each corresponding one-hot-encoded target vector yi ∈ {0, 1}C indicates the presence or absence
of C possible classes. Multiple classes may simultaneously occur for a single input. Additionally,
we assume access to a pretrained embedding encoder fθ, parameterized by frozen weights θ. This
model fθ functions as a feature extractor, mapping an input xi to a token map:

zi = fθ(xi) ∈ RD×St×Sf (1)

where D is the embedding dimension, and St, Sf index a grid of time and frequency patch tokens. If
the backbone exposes a [cls]-token, we denote it by sclsi ∈ RD. For instance, a 10-second log-Mel
spectrogram with F=128 Mel bins (from 16 kHz audio) is patched into non-overlapping 16 × 16
time-frequency tokens, yielding T ≈ 1024 frames and thus St=64 and Sf=8. With an embedding
dimension of D=768, the resulting token map is zi ∈ R768×64×8. Given the frozen token map zi, a
probe gϕ consumes a pooled descriptor z̃i, determining how information is extracted. The resulting
vector is then processed by the probe, typically a linear classifier gϕ(z̃i) = Wz̃i + b.

2.2 A TAXONOMY OF GLOBAL POOLING METHODS

This section provides a brief taxonomy of pooling methods to contextualize our investigation.

Fixed global pooling (single-vector, non-learnable). The default approach collapses the token
map zi from the frozen backbone fθ into a single descriptor z̃i = A(zi) ∈ RD via a non-learnable
aggregator A : RD×Sf×St → RD, followed by a linear probe. If the model exposes a last-layer
[cls]-token sclsi , produced via self-attention, one can set z̃i := sclsi . While mean pooling all
tokens z̃i is a viable alternative, all encoders in our benchmark provide a cls-token, making it our
standard for fixed global pooling. A k-NN probe is also used in multi-class settings, but vanilla
k-NN performs single-label majority voting and is ill-suited to multi-label.

Learnable global pooling (single-vector, learnable). Instead of a fixed pretext-task descriptor,
this pooling family uses a learnable module to aggregate the token map into a single descriptor
z̃i while keeping fθ frozen. Attentive variants assign data-dependent weights to tokens and form
a weighted summary. They typically outperform fixed global pooling for pretrained encoders in
computer vision (El-Nouby et al., 2024; Darcet et al., 2025).

2.3 LEARNABLE PROTOTYPICAL POOLING: A PER-CLASS POOLING METHOD

As an alternative to single-vector pooling, prototypical probes aggregate evidence per class via mul-
tiple learnable exemplars (i.e., prototypes). Inspired by explainability methods (Chen et al., 2019;
Donnelly et al., 2022), the idea is to score the frozen token map by its similarity to learnable proto-
types in the embedding space, which naturally accommodates dispersed events by allowing different
classes to localize information in distinct time-frequency regions (Rauch et al., 2025a).

Binarized prototypical probes. We introduce binarized prototypical probes, a novel and efficient
instance from the prototypical pooling family (Rauch et al., 2025a; Heinrich et al., 2025) that scores
token map embeddings by matching them against a small set of prototypes that are binarized on-the-
fly. We maintain a set of C · J total learnable, class-agnostic prototypes, with parameters p̃j ∈ RD
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Figure 3: Binarized prototypical pooling (schematic). Example shown for a base audio SSL back-
bone with D=768-dim tokens and a 64×8 token map. There are J learnable prototypes, which are
binarized on-the-fly. Tokens are matched against these prototypes, max pooling aggregates spatial
evidence, and a final linear layer maps the resulting prototype scores to class logits.

for each prototype index j ∈ {1, . . . , CJ}. At each forward pass, we form the binary prototype

pj = sign
(
p̃j

)
∈ {−1,+1}D. (2)

This constraint helps encouraging large angular margins between distinct prototypes. The near-
orthogonality is an emergent property, forcing prototypes to the corners of a high-dimensional hy-
percube, creating a strong structural bias for diversity. The optimization process seeks discriminative
features to minimize classification loss and is incentivized to select orthogonal solutions. The non-
differentiability of sign(·) is handled with the straight-through-estimator (STE) (Bengio et al., 2013):
during back-propagation, ∂ sign(x)

∂x ≈ 1, so the forward pass uses hard ±1 while gradients flow to
the real-valued p̃j . Given the frozen token map zi = fθ(xi) ∈ RD×St×Sf , let zt,fi ∈ RD denote the
token at time-frequency index (t, f) ∈ {1, . . . , St} × {1, . . . , Sf}. We score each prototype against
all tokens using cosine similarity and aggregate evidence via max-pooling:

sj(t, f) :=
p⊤
j z

t,f
i

∥pj∥2 ∥zt,fi ∥2
, s̄j := max

t,f
sj(t, f). (3)

Stacking the pooled scores across all J prototypes yields the vector s̄i ∈ RJ . We use this vector as
the clip-level descriptor, i.e., set z̃i := s̄i, and map it to class logits with the linear classifier gϕ.

Figure 4: Weights and similarities ex-
ample. Trained protobin on urban.

Rationale. A prototype layer is parameter-efficient, re-
quiring only J · D parameters. The value for J is set
by multiplying the number of classes C by a small con-
stant (e.g., 20 (Rauch et al., 2025a)), offering a compact
alternative to attentive pooling heads that can require over
2D2 parameters (El-Nouby et al., 2024). By binarizing
the prototypes to pj ∈ {−1,+1}D, our method yields an
additional 32× memory reduction relative to 32-bit floats,
making it ideal for memory-constrained and on-device ap-
plications (e.g., bioacoustics). Cosine matching inherently
keeps scores scale- and dimension-invariant across back-
bones. The near-orthogonality observed between proto-
types (cf. Figure 4) is not enforced by an explicit mech-

anism but is an emergent property arising from the method. Through the binarization, we also
constrain them to the corners of a D-dimensional hypercube, creating a structural bias for diver-
sity. During training, the optimization process seeks a set of maximally discriminative prototypes
to effectively classify different audio events. The optimization process, seeking to minimize clas-
sification loss, is incentivized to select distinct, non-redundant prototypes. In the high-dimensional
embedding space, this is most effectively achieved when prototypes are nearly orthogonal. There-
fore, we simplify the training objective by eliminating the need for an explicit orthogonality loss
term used in prior work to enforce diversity (Rauch et al., 2025a; Heinrich et al., 2025). Finally,
unlike prior work, we make the prototypes class-agnostic, allowing the prototypes to better collabo-
rate in disentangling task information. The link between these diverse prototypes and their specific
class contributions is learned entirely by the linear classifier. This layer learns to map the similarity
scores from the J prototypes to the C class logits, effectively assigning semantic meaning to each
prototype based on its utility for the classification task.
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3 RELATED WORK

SSL paradigms in audio. In vision, two families dominate modern SSL: student-teacher clus-
tering/distillation (Caron et al., 2021; 2020) and MIM (He et al., 2022; Darcet et al., 2025). Hy-
brids combining global invariance with masking are considered the current best-performing mod-
els (Oquab et al., 2024; Assran et al., 2023). Spectrogram-based audio SSL largely adapts these
paradigms: vision transformer (ViT) backbones trained via masked-spectrogram prediction or stu-
dent–teacher paradigms with audio-specific augmentations (see Table 1). Audio-MAE (Huang
et al., 2022) and Dasheng (Dinkel et al., 2024) are generative masked reconstruction models (He
et al., 2022). BEATs (Chen et al., 2023a) follows BEiT-style masked token prediction with discrete
acoustic tokenizers (Bao et al., 2022). ASiT (Ahmed et al., 2024), EAT (Chen et al., 2024), and
SSLAM (Alex et al., 2025) use momentum-teacher distillation with masked/local–global or utter-
ance–frame objectives (Caron et al., 2021; Baevski et al., 2022). Except for Dasheng (which uses
additional datasets), these models pretrain on AudioSet’s as2m (Gemmeke et al., 2017), establishing
an influential line of work where SOTA is measured mostly by fine-tuning performance.

Table 1: Spectrogram-based backbones used in our work. Mask: input masking during pretrain-
ing. EMA: student–teacher with EMA teacher. Global [cls]: explicit global/token objective during
pretraining. Supervised+ have an additional fine-tuned checkpoint on as2m available.

Model Year Paradigm Supervised+ Mask EMA Global [cls] Pretrain data

A-MAE 2022 Masked spec reconstruction ✗ ✓ ✗ ✗ as2m
BEATs 2022 Masked token prediction ✓ ✓ ✗ ✗ as2m
ASiT 2024 Masked spec reconstruction + latent distillation ✗ ✓ ✓ ✓ as2m
EAT 2024 Masked latent distillation ✓ ✓ ✓ ✓ as2m
Dasheng 2024 Masked spec reconstruction ✗ ✓ ✗ ✗ as2m∗

SSLAM 2025 Masked latent distillation + mixtures ✓ ✓ ✓ ✓ as2m

Evaluation in audio SSL. Simple linear probes are widely used in computer vision (Oquab et al.,
2024) and utilized by numerous audio SSL works (Niizumi et al., 2022; 2024; 2025; Yadav et al.,
2024; Li et al., 2024; Pepino et al., 2025) on benchmarks such as HEAR (Turian et al., 2022) with
a simple probing toolkit. However, these evaluations in audio SSL have largely treated probing as
a fixed protocol. With the notable exception of a token reshaping approach from Niizumi et al.
(2022), the impact of the pooling method and the underlying performance bottleneck it creates,
has remained largely unexplored. When pursuing SOTA performance on AudioSet, audio SSL still
defaults to fine-tuning (Huang et al., 2022; Chen et al., 2023a; Ahmed et al., 2024; Chen et al.,
2024; Alex et al., 2025). We attribute this reliance on fine-tuning, further justified by the sentiment
that linear probes cannot fully reflect embedding quality (Li et al., 2024), to a pretext-pooling mis-
match: pretraining learns token-level information, yet standard probes compress the tokens into a
single global vector, discarding per-source cues critical for polyphony and localized events. A-MAE
yields weak linear probe utility in bioacoustics (Rauch et al., 2025b), consistent with findings that
generative objectives disperse information across tokens (Park et al., 2023; Alkin et al., 2025). This
limitation becomes evident in the line of work pursuing SOTA on AudioSet: Although masked-
distillation models (BEATs, EAT, ASiT) are designed to produce stronger global representation
in the [cls]-token, their performance with frozen-backbone probing is rarely reported in related
work. SSLAM includes linear probing results on selected datasets, yet cross-backbone compara-
bility is limited (Alex et al., 2025). Dasheng reports frozen MLP and k-NN results on multi-class
tasks on HEAR but does not address multi-label settings. This gap motivates a systematic study of
probing methods for frozen audio embeddings.

Advanced probe architectures. Replacing fixed global pooling with learned pooling over token
maps during probing improves alignment with MIM (Darcet et al., 2025). Attentive pooling consis-
tently outperforms fixed global pooling (Psomas et al., 2025; El-Nouby et al., 2024; Darcet et al.,
2025). Complementary analyses show that [cls] attention of backbones tends to be diffuse under
MIM, weakening it as a global descriptor (Przewięźlikowski et al., 2025). Some works in audio have
explored structured, non-attentive pooling. For instance, Niizumi et al. (2022) utilize the token map
by concatenating frequency features at each time step before temporal pooling (linpre). Attentive
pooling methods compute token weights and values differently, ranging from single-query multiple-
instance learning (abmilp) (Ilse et al., 2018) and multi-head cross-attention (mhca) (El-Nouby et al.,
2024; Chen et al., 2023b; Bardes et al., 2024) to data-dependent single-head (simpool) (Psomas
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et al., 2023) and efficient multi-query (ep) approaches (Psomas et al., 2025). Other work in audio
explores learnable per-class prototypes for probing (Rauch et al., 2025a), matched to multi-label
audio where classes localize in distinct time-frequency regions. Real-valued prototype probes show
promising results in bioacoustics (Rauch et al., 2025a). Token-aware attention and prototype de-
signs better align with MIM embeddings and polyphonic labels than single-vector summaries, yet
evaluations in audio SSL remain sparse. This further motivates our comprehensive analysis.

Positioning of this work. Prototype layers originated in vision for interpretability (Chen et al.,
2019; Donnelly et al., 2022) and were adapted to bioacoustics (Heinrich et al., 2025). Closest to
our setting, Rauch et al. (2025a) apply prototypical probing over spectrogram tokens for a domain-
specific MAE in bird sound classification. We extend this line of research with a binarized STE
variant that constrains prototypes to the hypercube, yielding strong compression and margin-like
regularization. Additionally, our work introduces two key architectural simplifications. First, we
decouple prototypes from classes, allowing class-agnostic features to emerge automatically via the
final linear layer. Second, we find that the supervised learning signal is sufficient for prototype diver-
sity in this context, eliminating the need for an explicit orthogonality loss term (Rauch et al., 2025a).
Our variant of these simplified prototypes remains highly competitive while offering a 32x memory
reduction, consistent with successes of discrete parameterizations (Courbariaux et al., 2015; Hubara
et al., 2016). Beyond these method-level contributions, our work establishes prototypical probing
as a general evaluation paradigm for the audio SSL field and delivers the first extensive probing
benchmark. This study adapts recent attentive methods from vision to serve as strong baselines
and ultimately reveals a clear hierarchy. While learned pooling is broadly advantageous, mirroring
trends in vision (Psomas et al., 2025; Darcet et al., 2025), prototypical methods consistently set the
SOTA results for probing in audio SSL, providing a competitive alternative to fine-tuning.

4 EXPERIMENTAL STUDY: A BENCHMARK ON PROBING IN AUDIO

This section first outlines our experimental setup, including backbones, pooling methods, datasets
and the evaluation protocol of the benchmark. It is followed by our main results organized as focused
questions with short rationales.

4.1 EXPERIMENTAL SETUP AND EVALUATION PROTOCOL

Backbones. We evaluate six state-of-the-art frozen spectrogram-based SSL encoders fθ, summa-
rized in Table 1. To ensure a fair comparison, we only use the ViT-base checkpoints with an em-
bedding dimension D of 768 and circa 86M parameters since this is the only configuration offered
across all models. We also include supervised+-checkpoints that were fine-tuned on as2m in addition
to pretraining. Such variants exist for EAT, BEATs, and SSLAM. Reporting results for the purely
self-supervised and the supervised+ versions allows us to quantify how supervised adaptation to the
AudioSet label space affects the quality of frozen embeddings (see Figure 1).

Datasets. We organize the benchmark into three topical groups. The primary group, general multi-
label audio, contains the smaller, balanced AudioSet subset as20k (Gemmeke et al., 2017) and
fsd50k (Fonseca et al., 2022), a curated dataset aligned with the AudioSet ontology. Following
Alex et al. (2025), we also include the polyphonic datasets desed (domestic sound events with 10 la-
bels) (Johnson et al., 2021), spass (urban soundscapes with 28 labels (Viveros-Muñoz et al., 2023)),
and urban (urban soundscapes with 10 labels (Salamon et al., 2017)). The second group focuses
on fine-grained multi-label bioacoustics, for which we use seven subsets from the birdset bench-
mark (Rauch et al., 2025b). These tasks test the models’ generalization under a domain shift and
a data-efficient, 64-shot few-shot learning protocol. The third group provides multi-class datasets
using the esc50 and sc-2 datasets. These single-label tasks serve as a control condition to isolate
the impact of polyphony and determine whether the pooling bottleneck is unique to the multi-label
audio setting. Appendix D.1 provides a detailed description of each dataset.

Pooling methods. We compare eleven pooling methods (cf. Section 3) that operate on frozen en-
coders. Each technique produces a descriptor z̃ that is passed through a linear classification layer.
Linear and mlp consume only the fixed global [cls]-token as a compact summary of the input.
Linearc, conv use the token map without attention. The former concatenates all tokens to form the
descriptor. The latter applies a lightweight convolution for local aggregation. Linpre also utilizes
the token map by concatenating frequency features at each time step before temporal pooling. Atten-
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tive pooling of the token map include abmilp, simpool, ep, and mhca (see Section 3). Prototypical
pooling for class-conditioned descriptors includes the class-dependent proto (Rauch et al., 2025a)
and our class-agnostic protobin (see Section 2.3). Refer to Appendix D.3 for a detailed overview.

Caching and probing. For each input xi in a dataset, we run an augmentation-free forward pass
through the encoder fθ and cache embeddings from the final hidden block. It contains the full token
map zi ∈ RD×Sf×St and the fixed global descriptor z̃i ∈ RD given by the last-layer’s [cls]-
token sclsi . This produces a static on-disk embedding store per backbone that we use as input to all
probes. Caching avoids repeated model inference and isolates embedding quality at the cost of a less
diverse training distribution with on-the-fly data augmentations. We accept this trade-off to preserve
computational efficiency as one of the central advantages of probing.

Training setup. All probes are trained for 30 epochs with AdamW, a cosine-annealed learning
rate scheduler (Loshchilov & Hutter, 2017), a batch size of 128, and the asymmetric multi-label
loss (Ridnik et al., 2021). This setup ensured convergence in preliminary studies across probing
methods. We apply the default settings to all pooling methods. For prototypical pooling methods,
the prototype learning rate equals the global learning rate, and the number of prototypes J is fixed
at 20 per class across datasets (10 for as20k), following Rauch et al. (2025b). While this fixed
value ensures a fair comparison across pooling methods without confounding factors, we provide a
sensitivity analysis in Appendix B which confirms that J=20 prototypes is a robust choice for our
benchmark. For future work, we hypothesize that J could be tuned for specific applications based
on factors such as the intra-class diversity and the degree of polyphony in a given dataset.

Hyperparameter selection. To keep comparisons fair, we optimize only two scalars: learning rate
and weight decay. For each dataset, we select hyperparameters on a validation split and report final
results on the held-out test split. If a validation split is unavailable, we reserve 20% of the training
set. For datasets with F -fold cross-validation, we designate one fold a priori for hyperparameter
search. We use a two-stage procedure per {backbone, dataset, probe}-combination. First, we run
50 trials with a fixed seed for comparability, using Sobol (Sobol, 1998) exploration for the first
25 trials and TPE for the remainder (Bergstra et al., 2011), under a successive-halving schedule.
All other training details are held constant across probes and backbones. Second, we take the top-
k configurations and re-evaluate each with five random seeds to estimate the mean and standard
deviation of the validation set’s mean average precision (mAP). We then choose the configuration
with the highest mean mAP, retrain it with this setting, and evaluate on the test set. Appendix D.4
provides more details on hyperparameters.

4.2 EXPERIMENTAL RESULTS

To investigate the pooling bottleneck hypothesis, we conduct an extensive benchmark with focused
questions. Our primary analysis evaluates all ten pooling methods across five general multi-label
datasets using six encoders and their three supervised+-adapted versions. For more targeted analy-
ses, we use a representative subset of the most informative probes to test our hypothesis on seven
fine-grained, few-shot bioacoustic datasets and two multi-class control tasks. Throughout our exper-
iments, we report mean average precision (mAP) for multi-label tasks and accuracy for multi-class
tasks. The complete results, which form the basis for all visualizations, are detailed in Appendix A.

(Q1) Pooling hierarchy: Is there a best-
performing pooling method?
Rationale: A clear hierarchy with proto-
types outperforming single-vector methods
would support our hypothesis that probing
benefits from multi-vector aggregation.

(Q1) Takeaway. Across backbones and datasets,
the pairwise win matrices in Figure 5, supported by
the absolute results in Table 2, show a stable and
strong hierarchy. Our protobin wins most often,
with an average improvement of +14.41 %p mAP
over linear on general audio and +12.16 %p mAP
on few-shot bioacoustics. Attentive pooling, with

mhca as the best-performing attentive method, and the simple, reshaping-based linpre improve
over fixed global descriptors but still lag behind prototypes (-4.59 %p mAP) on general audio despite
its complexity. Simple baselines are at the bottom, including [cls]-token probes and naive token
concatenation (linearc). This clear ordering provides strong support for our pooling bottleneck
hypothesis: global single-vector probes severely underutilize the rich information in the token map,
and a reliable evaluation of current MIM-based audio SSL models benefits from a shift to per-
class, multi-vector aggregation. Finally, our results reveal a trade-off between the float-based, class-
dependent proto and our class-agnostic protobin. The full precision and class dependency of
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proto appears advantageous in specific cases where capturing fine-grained details is critical (e.g. on
polyphonic urban or with the ASiT backbone). Protobin’s simplification makes it a more robust
choice for general-purpose evaluation. To help disentangle these architectural factors from the effect
of binarization, we provide an ablation with a float-based, class-agnostic variant in Appendix B.

Figure 5: Pairwise win matrices for pooling methods. Each cell shows the number of configura-
tions where a method outperforms another (ties omitted, one sd above opponent), aggregated over all
datasets and base (non-supervised+) backbones. Extracted from Table 2 and Table 5 (Appendix D.2).

Table 2: Probing benchmark results in general audio. All results are the mean with std reported in
mAP, averaged over five seeds. Best and second best probe per (dataset, backbone) are highlighted.

Input [cls] Baseline Token Map Token Map (Att.) Token Map (Prot)
Backbone linear mlp linearc conv linpre mhca ep simpool abmilp proto protobin

as
20

k

A-MAE 8.36±0.0 8.77±0.3 9.66±0.2 11.87±1.1 16.49±0.1 17.09±0.2 17.03±0.1 14.69±0.0 14.24±0.9 21.61±0.3 22.32±0.1

ASiT 18.35±0.0 19.16±0.1 13.36±0.1 13.80±0.2 18.53±0.0 18.72±0.2 18.95±0.1 18.04±0.0 16.10±0.5 21.89±0.1 20.96±0.0

Dasheng 20.98±0.1 21.09±0.1 18.23±0.1 18.57±1.1 23.56±0.0 27.49±0.1 26.53±0.1 20.89±0.0 22.96±1.9 27.59±0.1 29.94±0.2

BEATs 24.71±0.0 26.29±0.1 15.70±0.0 12.80±1.1 18.59±0.0 21.86±0.2 20.81±0.4 14.99±0.1 12.52±1.9 30.54±0.1 31.54±0.1

EAT 17.29±0.0 20.59±0.2 21.94±0.0 19.50±0.3 26.49±0.0 26.11±0.2 26.83±0.0 25.15±0.0 19.91±3.4 31.06±0.0 31.67±0.1

SSLAM 17.04±0.0 19.99±0.1 20.51±0.1 17.45±0.5 24.81±0.0 24.45±0.2 25.49±0.0 22.59±0.1 18.91±4.4 30.84±0.0 30.94±0.1

fs
d5

0k

A-MAE 19.71±0.0 21.34±0.4 25.17±0.7 40.59±0.8 36.08±0.1 45.17±0.5 43.23±0.1 34.89±0.1 32.73±4.3 49.65±0.2 49.69±0.4

ASiT 39.57±0.1 41.89±0.3 9.87±0.5 38.23±0.8 39.57±0.1 42.28±0.3 41.76±0.1 37.78±0.1 39.59±3.5 48.25±0.1 46.70±0.2

Dasheng 38.08±0.2 39.56±0.2 37.74±0.5 48.88±0.8 45.11±0.1 52.95±0.2 52.44±0.0 43.94±0.0 43.79±3.5 55.23±0.1 57.31±0.0

BEATs 46.89±0.0 49.58±0.3 36.35±0.1 37.19±1.6 39.93±0.0 48.51±0.3 46.16±0.1 40.20±0.0 40.32±3.2 57.17±0.1 58.27±0.2

EAT 36.39±0.0 44.82±0.1 38.36±0.3 46.64±0.5 48.21±0.1 51.06±0.3 51.29±0.1 49.38±0.1 45.93±4.4 56.07±0.1 55.64±0.4

SSLAM 36.06±0.0 44.26±0.2 37.21±0.4 43.50±1.4 46.11±0.0 51.48±0.5 50.83±0.1 49.86±0.2 46.38±2.4 56.93±0.1 56.99±0.1

de
se

d

A-MAE 57.46±0.0 60.52±0.1 60.88±0.1 84.10±0.3 71.28±4.2 83.57±0.2 80.13±0.1 72.05±0.0 76.69±0.3 84.11±0.1 85.57±0.1

ASiT 72.92±0.0 74.19±0.2 57.49±0.1 81.59±0.2 74.91±0.1 79.50±0.4 76.66±0.0 73.57±0.0 76.58±0.5 82.08±0.2 81.74±0.2

Dasheng 68.39±0.0 68.76±0.1 72.48±0.0 85.32±1.0 74.49±0.6 84.53±0.1 82.74±0.0 75.40±0.0 76.48±4.5 85.90±0.1 86.14±0.3

BEATs 77.56±0.0 80.56±0.2 72.23±0.0 86.83±0.6 76.97±0.0 86.91±0.0 81.88±0.0 81.08±0.1 81.77±1.0 89.04±0.1 89.22±0.6

EAT 76.15±0.0 80.92±0.0 77.90±0.1 86.68±0.3 81.00±0.0 86.06±0.2 84.13±0.1 83.43±0.0 78.80±5.6 88.70±0.1 88.82±0.1

SSLAM 72.49±0.0 77.96±0.1 76.82±0.2 85.55±0.3 80.31±0.0 85.44±0.1 83.77±0.0 83.59±0.0 81.69±0.7 87.69±0.2 88.33±0.3

sp
as

s

A-MAE 58.94±0.0 60.56±0.1 69.01±0.7 80.04±0.8 77.08±0.2 79.24±0.1 71.01±0.4 69.84±0.0 68.75±0.2 78.92±0.2 79.95±0.6

ASiT 68.80±0.0 70.27±0.2 46.44±4.5 73.26±1.1 73.88±0.0 75.76±0.5 69.44±0.0 69.04±0.0 68.36±0.6 73.66±0.1 74.69±0.2

Dasheng 66.89±0.0 64.07±0.2 76.76±0.5 75.05±0.7 72.07±0.0 80.71±0.3 73.62±0.0 74.16±0.0 72.02±0.0 76.64±0.2 80.93±0.5

BEATs 74.22±0.0 75.97±0.1 79.91±0.5 84.81±1.5 82.12±0.0 83.98±0.2 76.61±0.1 75.58±0.0 69.38±0.3 87.76±0.2 85.77±0.4

EAT 65.96±0.0 71.55±0.2 84.49±0.0 79.15±0.6 81.83±0.0 83.95±0.3 77.35±0.0 76.55±0.0 64.44±9.0 83.09±0.8 85.64±0.3

SSLAM 68.28±0.0 73.05±0.0 83.06±0.3 79.43±1.8 80.74±0.2 83.45±0.3 76.58±0.0 76.09±0.0 72.42±1.4 85.90±0.4 86.01±0.1

ur
ba

n

A-MAE 58.72±0.1 58.97±0.2 40.53±1.2 85.28±0.2 79.01±0.1 82.49±0.2 79.83±0.2 76.21±0.1 73.07±2.5 83.63±0.2 85.17±0.3

ASiT 77.53±0.0 77.55±0.2 44.53±3.9 82.12±0.5 79.32±0.0 79.93±0.3 78.48±0.0 77.25±0.1 76.76±1.6 82.35±0.2 82.28±0.2

Dasheng 69.61±0.1 69.07±0.2 75.80±0.1 85.76±0.6 77.30±0.0 84.59±0.2 82.31±0.1 79.04±0.1 77.28±0.8 85.97±0.3 86.55±0.1

BEATs 82.54±0.1 83.76±0.0 75.90±0.1 85.57±0.5 81.61±0.0 86.23±0.2 84.31±0.1 82.74±0.0 77.89±1.1 89.04±0.1 88.74±0.2

EAT 77.76±0.0 81.58±0.1 78.45±0.1 86.35±1.1 84.04±0.0 86.43±0.0 85.40±0.0 83.58±0.1 79.93±2.0 89.11±0.1 89.24±0.2

SSLAM 75.86±0.0 80.64±0.1 77.97±0.1 86.23±1.5 79.01±0.1 86.45±0.3 84.87±0.0 83.21±0.0 80.12±1.6 88.82±0.2 89.05±0.4

Figure 6: Backbone averages. Mean performance across
general audio datasets for linear and protobin. Publica-
tion years highlight how probing re-ranks models

(Q2) [cls]-token quality. Is the
linear probe a faithful evalua-
tor?
Rationale. We test if the off-the-
shelf linear probe is a reliable
and faithful proxy for embedding
quality in audio SSL. A flawed
proxy both underestimates the ab-
solute potential of the embeddings
and distorts the relative ranking of
different backbones.
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(Q2) Takeaway. Probing the [cls]-token with linear is not just a performance bottleneck, it is
also an unreliable proxy for pretrained embedding quality in audio SSL. First, Figure 6 shows that
the backbone ranking under linear is completely reshuffled when using protobin. For instance,
the backbone ranking is completely inverted: ASiT (from 2024), which appears to be the second-
strongest model under linear, drops to last place when evaluated with protobin. Conversely,
the supposedly mediocre SSLAM (current fine-tuning SOTA from 2025), a mid-tier performer with
linear, is revealed to be a top-tier model, jumping to second place. This demonstrates that the
[cls]-token is a poor indicator of the model’s true token-level embedding quality. Figure 7 con-
firms this is a systemic issue: linear/mlp act as a performance ceiling, and the gains unlocked
by token-aware pooling methods vary by backbone. Second, the [cls]-token underestimates the
true potential of the embeddings. On as20k, protobin closes 63% of the performance gap to fine-
tuning (see Figure 2), demonstrating how much information standard probes discard. This trend
holds across all encoders (Table 3), establishing that better pooling provides a more faithful measure
of embeddings.

Figure 7: Performance differences of probes across backbones. For each backbone, the plot
displays the mean and standard deviation of each pooling method as absolute percentage points
[%p] compared to the baseline performance of linear. All results are extracted from Table 2.

(Q3) Multi- vs. single-label. Is the pool-
ing bottleneck specific to multi-label?
Rationale. If fixed global pooling de-
grades from single- to multi-label while
token-aware methods remain stable, it
would implicate a polyphony-induced
bottleneck.

(Q3) Takeaway. On single-label control tasks (sc-2,
esc50), a substantial performance gap persists be-
tween the [cls]-token probe and token-aware meth-
ods, indicating the bottleneck is a general issue of the
encoders (Table 3). However, the [cls]-probe’s per-
formance degrades more sharply than other methods
when moving to the multi-label as20k. In this single-
label setting, mhca is often competitive with, or even
superior to, our protobin probe. This suggests that

a well-learned single-vector descriptor can be as effective as our multi-vector approach for single-
source audio. This dynamic changes in the presence of multiple sound sources, confirming our
core hypothesis. The constant superiority of protobin on the multi-label as20k task highlights
the fundamental limitation of single-vector methods in polyphonic scenes. Methods like mhca must
compress localized evidence for multiple distinct events into a single vector. In contrast, our multi-
vector prototypical approach can activate different specialized prototypes for different sound events
within the same audio clip. The discriminative nature of the prototypes is particularly effective at
disentangling these overlapping audio events.

Table 3: Multi- vs. single-label pooling and fine-tuning. Accuracy on sc-2 and esc50 (single-
label) and mAP on as20k (multi-label). FT denotes the reported fine-tuning performance in the
respective backbone paper, bold marks the best probe per backbone and dataset.

sc-2 (single-label) esc50 (single-label) as20k (multi-label)
Backbone linear mhca protobin FT linear mhca protobin FT linear mhca protobin FT
A–MAE 12.4 84.9 79.5 98.3 22.1 86.3 83.7 94.1 8.4 17.1 22.3 37.1
ASiT 62.2 86.3 89.5 98.9 76.1 78.3 80.3 95.3 18.4 18.7 21.0 38.6
BEATs 87.0 95.0 96.5 98.3 78.9 83.2 84.1 95.6 24.7 21.9 31.5 38.9
EAT 69.1 93.2 90.4 98.3 75.3 89.8 86.8 95.9 17.3 26.1 31.7 40.2
SSLAM 64.8 93.8 91.9 98.1 74.2 89.0 84.7 96.2 17.0 24.4 30.9 40.9
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(Q4) Supervised+ weights. Does extra
fine-tuning enrich the token map?
Rationale. Supervised+ adaptation in-
jects class information into the [cls]-
token. This lets us test if the model has
learned richer token-level information or
just a stronger global descriptor. A lo-
calized improvement, where gains are
specific to [cls] probes and in-domain
data, would suggest the latter.

(Q4) Takeaway. On in-domain, general audio tasks
(Figure 8a), the probe rankings change notably. The
[cls]-token-based methods see the largest gains, with
linear jumping from rank #10 to #6 and mlp from #7
to #3. This confirms that supervised fine-tuning injects
class-specific information into the global token. Mean-
while, attentive pooling methods are stable, and the
prototypical methods retain their top-ranked positions.
In contrast, on out-of-domain bioacoustics tasks (Fig-
ure 8b), the complete hierarchy remains stable. De-
spite a minor performance uplift across the board (see
Appendix D.2), the overall ranking is preserved: linear remains at the bottom while protobin
stays at the top. This divergence demonstrates that supervised+ primarily strengthens the single-
vector [cls] descriptor for in-domain tasks but fails to add transferable, token-level information
for out-of-domain tasks. The consistent superiority of prototypical methods in both settings further
highlights the robustness of per-class, multi-vector aggregation.

Figure 8: Pairwise win ranking changes from base to supervised+ models. We display the num-
ber of pairwise wins averaged over the backbones with fine-tuned variants (BEATs, EAT, SSLAM)
and datasets for each pooling method. Extracted from Table 2 and Table 5 (Appendix D.2).

Pooling bottleneck. Our findings confirm our hypothesis and its implications for probing as a re-
liable evaluation tool. The [cls]-token is a performance bottleneck, underutilizing the token map
and leading to an unreliable evaluation (Q2). While attentive pooling offers improvements, our re-
sults show multi-vector, per-class aggregation is a more robust strategy, particularly in polyphonic
scenes where single-vector methods are limiting (Q1, Q3). This conclusion holds even when the
[cls]-token is enhanced by supervised+ (Q4). Thus, the primary obstacle to using probing as an
evaluation tool is not the quality of the embeddings, but the limitation of the pooling method.

5 CONCLUSION AND FUTURE WORK

Conclusion. We demonstrated that the underperformance of probing in (multi-label) audio stems
not from the frozen embeddings themselves, but from an information bottleneck in pooling meth-
ods. Single-vector representations, whether from a fixed [cls]-token or learned via attention, are
ill-suited for polyphonic audio, as they compress sparse, localized events into a single descriptor.
Addressing this, we introduced binarized prototypical probes, a lightweight method that performs
per-class aggregation directly on the token map. Our comprehensive benchmark shows this approach
consistently outperforms single-vector probes and notably narrows the gap to fine-tuning. By en-
abling class-conditional vectors with a minimal memory footprint, this work establishes prototypical
probing as a viable, efficient, and faithful evaluation paradigm for audio SSL. This challenges the
default reliance on costly and confounding fine-tuning when pursuing SOTA on AudioSet.

Future Work. A next step is to move beyond the final encoder layer and explore multi-layer feature
aggregation, which could unlock even richer embeddings. Furthermore, our token-aware probing
framework could be extended from clip-level classification to more granular tasks such as event
detection and localization, where the benefits of multi-vector aggregation may be even stronger.
While our study focused on audio, the insights into pooling bottlenecks likely apply to other domains
as well. Future work could also explore integrating on-the-fly data augmentations with a frozen
backbone to push the performance ceiling of the probing paradigm even higher.
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ETHICS STATEMENT

Our research is conducted exclusively on established, publicly available datasets intended for aca-
demic audio and bioacoustics research. Our focus on probing as an evaluation method promotes
computational efficiency, significantly reducing the energy consumption and environmental impact
compared to full model fine-tuning. The methods developed are for the purpose of model analysis
and present no foreseeable societal risks or ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we make our source code, including the implementation of our pro-
posed prototypical probe and all evaluation scripts, publicly available on GitHub. To further aid
reproducibility and standardize access, we have also uploaded any datasets used in this study that
were not not previously available on the Hugging Face Hub to the platform.

• https://anonymous.4open.science/r/unmute-880E/README.md

• https://huggingface.co

Our experimental setup, including the specific datasets Section D.1, pretrained backbones, and pool-
ing methods Section D.3, is detailed in Section 4.1 and in Appendix D. Appendix D.4 also provides
a complete breakdown of our hyperparameter selection protocol with the respective ranges.

USE OF LARGE LANGUAGE MODELS

An LLM was utilized as a writing and coding assistant during the preparation of this paper. The
model was used to aid in literature discovery by summarizing concepts and identifying potentially
relevant papers for the authors’ review. Additionally, the LLM served as a writing aid to refine gram-
mar, improve sentence structure, and enhance the overall clarity and readability of the paper (e.g.,
shorten a paragraph). It was also used for streamlining code, debugging, and generating shell scripts
to help manage the experimental workflow. All research ideas, including experimental design, code
implementations, and analysis of results stem from the authors without LLM involvement. The au-
thors directed all queries, critically reviewed and carefully edited all model-generated text, and take
full responsibility for the final content of this paper.
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A DETAILED BENCHMARK RESULTS

This appendix provides supplementary material to the benchmark evaluation presented in the main
paper. Our full benchmark spans 5 general multi-label datasets, 7 few-shot bioacoustic datasets,
and 2 multi-class control tasks across 6 backbones (plus 3 supervised+ checkpoints) and 10 pooling
methods. The following tables present the complete results, with all performance metrics reported
as mean average precision (mAP) averaged for multi-label and accuracy for multi-class tasks over 5
random seeds.

Table 4: Complete benchmark probing results for general multi-label audio. This table presents
the full benchmark results, extending those in the main paper with the inclusion of Supervised+

fine-tuned checkpoints for BEATs, EAT, and SSLAM. All results are the mean mAP with standard
deviation, averaged over 5 seeds. The best and second-best performing probes for each configura-
tion are highlighted.

Input [cls] Baseline Token Map Token Map (Att.) Token Map (Proto.)

Backbone linear mlp linearc conv mhca ep simpool abmilp proto protobin

as
20

k

A-MAE 8.36±0.01 8.77±0.29 9.66±0.22 11.87±1.10 17.09±0.22 17.03±0.05 14.69±0.02 14.24±0.85 21.61±0.26 22.32±0.12

ASiT 18.35±0.01 19.16±0.13 13.36±0.12 13.80±0.19 18.72±0.17 18.95±0.07 18.04±0.01 16.10±0.51 21.89±0.06 20.96±0.02

Dasheng 20.98±0.06 21.09±0.07 18.23±0.11 18.57±1.06 27.49±0.07 26.53±0.05 20.89±0.01 22.96±1.94 27.59±0.07 29.94±0.15

BEATs 24.71±0.01 26.29±0.13 15.70±0.01 12.80±1.06 21.86±0.16 20.81±0.36 14.99±0.05 12.52±1.86 30.54±0.06 31.54±0.06

BEATs+ 40.30±0.02 40.77±0.10 31.33±0.15 34.29±0.17 37.57±0.13 37.23±0.36 27.38±0.08 30.49±2.76 42.73±0.06 41.96±0.05

EAT 17.29±0.01 20.59±0.16 21.94±0.01 19.50±0.34 26.11±0.16 26.83±0.04 25.15±0.04 19.91±3.40 31.06±0.04 31.67±0.06

EAT+ 44.32±0.02 45.31±0.06 37.44±0.16 41.85±0.15 41.87±0.24 42.53±0.09 41.66±0.02 39.14±0.42 43.36±0.05 44.64±0.02

SSLAM 17.04±0.01 19.99±0.08 20.51±0.06 17.45±0.54 24.45±0.18 25.49±0.01 22.59±0.06 18.91±4.42 30.84±0.03 30.94±0.08

SSLAM+ 45.72±0.02 46.59±0.09 37.61±0.02 43.77±0.17 43.40±0.07 44.41±0.07 43.37±0.06 41.31±0.76 44.64±0.06 43.70±0.09

fs
d5

0k

A-MAE 19.71±0.03 21.34±0.43 25.17±0.74 40.59±0.78 45.17±0.45 43.23±0.14 34.89±0.05 32.73±4.31 49.65±0.17 49.69±0.38

ASiT 39.57±0.07 41.89±0.26 9.87±0.48 38.23±0.78 42.28±0.30 41.76±0.11 37.78±0.06 39.59±3.50 48.25±0.09 46.70±0.18

Dasheng 38.08±0.17 39.56±0.15 37.74±0.51 48.88±0.79 52.95±0.19 52.44±0.04 43.94±0.04 43.79±3.49 55.23±0.09 57.31±0.02

BEATs 46.89±0.03 49.58±0.31 36.35±0.12 37.19±1.63 48.51±0.29 46.16±0.07 40.20±0.03 40.32±3.22 57.17±0.14 58.27±0.15

BEATs+ 60.72±0.00 61.87±0.11 50.17±0.41 56.32±0.48 60.01±0.10 55.97±1.20 48.30±0.09 53.88±3.87 65.39±0.08 66.09±0.13

EAT 36.39±0.03 44.82±0.08 38.36±0.30 46.64±0.45 51.06±0.29 51.29±0.10 49.38±0.07 45.93±4.36 56.07±0.11 55.64±0.37

EAT+ 66.11±0.01 67.84±0.01 56.50±0.71 67.01±0.21 64.37±0.26 65.01±0.07 63.63±0.04 61.45±0.47 67.15±0.16 66.45±0.33

SSLAM 36.06±0.01 44.26±0.24 37.21±0.43 43.50±1.36 51.48±0.51 50.83±0.06 49.86±0.23 46.38±2.44 56.93±0.05 56.99±0.13

SSLAM+ 65.36±0.01 67.36±0.06 55.12±0.21 65.64±0.06 64.28±0.05 64.53±0.06 63.31±0.07 61.88±0.53 66.55±0.02 66.02±0.29

de
se

d

A-MAE 57.46±0.01 60.52±0.13 60.88±0.14 84.10±0.31 83.57±0.20 80.13±0.05 72.05±0.03 76.69±0.27 84.11±0.07 85.57±0.10

ASiT 72.92±0.04 74.19±0.20 57.49±0.10 81.59±0.18 79.50±0.44 76.66±0.02 73.57±0.02 76.58±0.46 82.08±0.19 81.74±0.19

Dasheng 68.39±0.03 68.76±0.14 72.48±0.01 85.32±0.96 84.53±0.11 82.74±0.02 75.40±0.01 76.48±4.54 85.90±0.14 86.14±0.28

BEATs 77.56±0.03 80.56±0.15 72.23±0.01 86.83±0.55 86.91±0.04 81.88±0.04 81.08±0.05 81.77±0.95 89.04±0.08 89.22±0.55

BEATs+ 87.20±0.01 87.92±0.02 86.93±0.02 90.34±0.14 90.22±0.05 87.94±0.28 85.52±0.34 86.33±1.29 92.17±0.06 92.41±0.25

EAT 76.15±0.02 80.92±0.02 77.90±0.08 86.68±0.33 86.06±0.19 84.13±0.08 83.43±0.01 78.80±5.63 88.70±0.06 88.82±0.11

EAT+ 89.49±0.04 89.82±0.08 89.03±0.04 91.42±0.21 90.49±0.05 89.26±0.09 89.03±0.03 88.97±0.18 91.93±0.16 91.69±0.14

SSLAM 72.49±0.01 77.96±0.14 76.82±0.17 85.55±0.27 85.44±0.10 83.77±0.02 83.59±0.03 81.69±0.74 87.69±0.19 88.33±0.29

SSLAM+ 89.39±0.01 89.69±0.07 88.04±0.03 91.10±0.17 90.14±0.23 89.11±0.03 88.88±0.06 88.43±0.64 91.70±0.05 91.45±0.27

sp
as

s

A-MAE 58.94±0.03 60.56±0.11 69.01±0.66 80.04±0.78 79.24±0.14 71.01±0.38 69.84±0.02 68.75±0.20 78.92±0.24 79.95±0.64

ASiT 68.80±0.01 70.27±0.20 46.44±4.47 73.26±1.10 75.76±0.45 69.44±0.02 69.04±0.02 68.36±0.63 73.66±0.09 74.69±0.18

Dasheng 66.89±0.01 64.07±0.18 76.76±0.49 75.05±0.69 80.71±0.27 73.62±0.03 74.16±0.01 72.02±0.03 76.64±0.22 80.93±0.47

BEATs 74.22±0.01 75.97±0.14 79.91±0.54 84.81±1.49 83.98±0.16 76.61±0.09 75.58±0.03 69.38±0.34 87.76±0.24 85.77±0.43

BEATs+ 78.46±0.02 80.24±0.15 80.30±0.00 85.52±1.20 84.84±0.11 79.39±0.26 76.64±0.0 74.28±3.94 89.15±0.06 87.85±0.20

EAT 65.96±0.01 71.55±0.23 84.49±0.02 79.15±0.63 83.95±0.32 77.35±0.01 76.55±0.03 64.44±9.04 83.09±0.83 85.64±0.29

EAT+ 79.20±0.01 80.85±0.30 87.08±0.01 88.31±1.22 86.05±0.11 80.43±0.02 79.76±0.02 79.91±0.26 88.74±0.20 88.48±0.26

SSLAM 68.28±0.00 73.05±0.03 83.06±0.25 79.43±1.82 83.45±0.26 76.58±0.02 76.09±0.04 72.42±1.39 85.90±0.41 86.01±0.13

SSLAM+ 78.82±0.00 80.67±0.04 86.83±0.02 87.56±0.61 85.97±0.06 79.63±0.02 79.04±0.02 79.06±0.65 88.26±0.18 88.17±0.26

ur
ba

n

A-MAE 58.72±0.06 58.97±0.19 40.53±1.18 85.28±0.16 82.49±0.16 79.83±0.17 76.21±0.07 73.07±2.46 83.63±0.19 85.17±0.32

ASiT 77.53±0.01 77.55±0.15 44.53±3.92 82.12±0.51 79.93±0.33 78.48±0.04 77.25±0.05 76.76±1.58 82.35±0.24 82.28±0.16

Dasheng 69.61±0.10 69.07±0.17 75.80±0.13 85.76±0.59 84.59±0.16 82.31±0.09 79.04±0.05 77.28±0.81 85.97±0.31 86.55±0.13

BEATs 82.54±0.05 83.76±0.04 75.90±0.08 85.57±0.48 86.23±0.24 84.31±0.12 82.74±0.01 77.89±1.07 89.04±0.10 88.74±0.15

BEATs+ 87.70±0.01 87.79±0.02 83.84±4.13 89.15±0.19 89.02±0.30 87.72±0.23 86.51±0.36 84.24±1.11 91.12±0.09 91.25±0.19

EAT 77.76±0.04 81.58±0.05 78.45±0.08 86.35±1.14 86.43±0.03 85.40±0.01 83.58±0.05 79.93±2.00 89.11±0.12 89.24±0.20

EAT+ 88.43±0.01 88.56±0.09 87.25±0.02 90.64±0.35 89.23±0.15 88.33±0.02 87.80±0.08 87.28±0.49 91.63±0.13 91.31±0.17

SSLAM 75.86±0.02 80.64±0.05 77.97±0.07 86.23±1.54 86.45±0.30 84.87±0.02 83.21±0.04 80.12±1.58 88.82±0.17 89.05±0.38

SSLAM+ 88.10±0.02 88.24±0.02 86.52±0.02 90.38±0.55 88.84±0.20 87.84±0.10 87.49±0.13 86.07±0.94 91.24±0.09 90.93±0.07
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Table 5: Benchmark probing results for few-shot multi-label bioacoustics. This table presents
the benchmark results where the figures in the main text are extracted from. All results are the mean
mAP with standard deviation, averaged over 5 seeds. The best and second-best performing probes
for each configuration are highlighted.

[cls] Baseline Token Map (Att.) Token Map (Proto.)

Backbone linear mlp mhca ep proto protobin

hsn

A-MAE 4.83±0.02 5.08±0.09 28.32±1.22 15.62±0.37 34.63±1.45 34.55±0.26

ASiT 5.51±1.23 6.13±0.08 9.47±0.93 6.11±0.16 12.24±1.06 13.87±0.98

BEATs 10.29±0.04 10.52±1.07 24.86±2.68 16.23±1.72 33.67±1.52 32.01±1.72

BEATs+ 12.70±0.13 12.92±0.72 20.07±1.45 16.25±4.25 28.89±1.77 28.44±2.24

Dasheng 8.05±0.19 6.65±0.09 20.78±1.37 17.56±0.45 22.04±0.66 23.43±0.61

EAT 10.42±0.02 11.32±0.52 18.53±1.70 10.03±0.32 20.12±5.53 26.08±2.16

EAT+ 18.43±0.46 18.86±0.55 22.43±0.86 17.61±0.16 26.42±2.81 25.97±1.14

SSLAM 8.14±0.01 8.42±0.07 22.76±0.66 14.98±0.72 21.85±2.76 25.41±0.75

SSLAM+ 19.31±0.68 21.05±0.48 22.83±2.10 19.86±0.13 30.00±1.50 29.85±1.20

pow

A-MAE 11.04±0.05 9.86±0.44 25.27±0.79 22.35±0.08 30.08±1.02 31.76±0.73

ASiT 10.74±0.07 10.66±0.03 13.16±0.02 10.52±4.19 14.11±0.83 14.44±0.55

BEATs 16.96±0.05 16.32±0.21 22.81±1.48 17.43±1.04 30.91±2.46 30.48±1.71

BEATs+ 15.67±0.03 16.23±0.54 21.98±0.39 15.68±0.52 30.83±1.89 29.27±1.77

Dasheng 13.31±0.06 12.06±0.22 17.29±0.57 15.52±0.06 19.69±0.65 19.42±0.41

EAT 14.60±0.03 14.04±0.66 21.02±1.14 18.39±0.08 24.84±1.34 28.37±0.59

EAT+ 17.26±0.15 19.60±0.37 23.89±2.14 18.73±0.67 31.98±0.91 30.76±1.16

SSLAM 10.63±0.00 11.35±0.43 22.01±1.07 16.93±0.19 26.94±1.79 26.59±1.33

SSLAM+ 16.15±0.82 17.30±1.08 23.27±0.58 16.63±0.04 27.75±1.53 28.56±2.39

per

A-MAE 4.01±0.01 3.78±0.20 9.66±0.37 9.50±0.07 15.48±0.36 15.00±0.70

ASiT 3.31±0.02 5.76±0.44 5.60±0.33 4.94±0.04 7.38±0.17 7.57±0.20

BEATs 6.00±0.03 5.74±0.38 9.58±0.07 7.72±0.24 15.16±0.16 14.40±0.27

BEATs+ 6.50±0.05 6.91±0.26 10.64±0.45 7.60±0.73 14.93±0.45 14.93±0.23

Dasheng 5.61±0.08 4.80±0.14 8.35±0.34 7.45±0.11 10.70±0.49 11.17±0.37

EAT 4.92±0.01 4.98±0.29 8.67±0.44 8.34±0.13 12.18±0.50 12.79±0.25

EAT+ 6.61±0.00 7.06±0.38 10.62±0.75 8.39±0.04 15.29±0.31 14.88±0.29

SSLAM 4.68±0.02 4.54±0.19 10.31±0.41 8.57±0.05 11.97±1.13 13.18±0.06

SSLAM+ 6.69±0.00 6.87±0.06 10.54±0.32 7.44±0.01 15.23±0.34 14.26±0.30

nes

A-MAE 3.45±0.00 3.25±0.45 18.52±0.46 16.64±0.12 25.83±0.39 25.98±0.48

ASiT 3.83±0.06 4.93±0.41 6.13±0.53 5.48±0.06 9.25±0.44 9.67±0.22

BEATs 9.09±0.06 9.52±0.08 16.36±0.19 11.22±0.98 26.36±0.61 25.07±0.55

BEATs+ 11.43±0.08 11.85±0.09 16.91±0.50 12.07±0.62 24.54±0.17 23.47±0.33

Dasheng 5.64±0.04 4.21±0.17 12.48±0.19 12.08±0.21 17.22±0.12 18.79±0.10

EAT 7.88±0.00 8.78±0.06 16.77±0.50 13.79±0.07 21.18±0.59 22.03±0.58

EAT+ 13.49±0.08 14.06±0.52 17.71±0.85 13.67±0.08 24.79±0.52 23.45±0.36

SSLAM 5.66±0.01 6.73±0.25 17.82±0.35 14.98±0.21 21.65±0.40 21.93±0.73

SSLAM+ 12.82±0.13 14.58±0.09 18.25±0.64 13.65±0.10 25.65±0.82 25.54±0.72

sne

A-MAE 6.09±0.04 5.90±0.12 17.56±0.06 13.48±0.05 20.23±0.91 21.38±1.39

ASiT 6.41±0.13 6.92±0.46 7.12±0.41 6.79±0.11 9.63±0.32 9.63±0.35

BEATs 9.61±0.05 9.95±0.10 13.91±0.80 12.16±0.29 20.26±1.26 19.46±1.56

BEATs+ 11.18±0.08 12.05±0.16 12.31±0.11 10.64±0.32 17.36±0.95 16.83±0.77

Dasheng 8.72±0.09 7.30±0.66 12.60±0.40 11.58±0.17 15.68±0.27 17.60±0.65

EAT 10.29±0.05 10.67±0.07 14.56±0.77 11.89±0.06 16.48±0.30 16.70±0.53

EAT+ 9.63±0.01 10.04±0.48 12.41±0.45 9.66±0.17 16.19±0.63 15.40±0.83

SSLAM 9.52±0.05 9.96±0.02 13.42±0.58 11.04±0.06 16.25±0.57 16.40±0.29

SSLAM+ 10.23±0.13 10.34±0.89 14.02±0.44 10.91±0.34 17.64±0.42 16.87±1.13

uhh

A-MAE 4.88±1.05 4.28±0.17 10.70±0.15 8.42±0.44 12.17±0.29 12.57±0.34

ASiT 5.44±0.02 6.65±0.07 6.67±0.32 6.04±0.37 6.94±0.23 6.12±0.30

BEATs 9.74±0.05 10.74±0.55 10.21±0.71 7.93±0.72 12.11±0.48 12.03±0.50

BEATs+ 8.95±0.16 10.10±0.29 13.47±0.61 9.71±0.77 15.02±2.57 17.27±1.20

Dasheng 5.09±0.38 5.12±0.33 7.78±0.20 6.57±0.57 7.99±0.50 10.10±0.16

EAT 9.32±0.07 9.06±0.50 10.98±0.50 9.55±0.12 8.67±0.73 11.34±1.44

EAT+ 10.12±0.03 10.32±0.13 10.68±0.75 9.95±0.54 13.00±0.42 13.07±0.63

SSLAM 7.36±0.02 8.51±0.39 10.60±1.59 8.61±0.25 11.43±0.69 10.56±0.71

SSLAM+ 10.30±0.13 11.20±0.33 9.78±0.14 9.07±0.05 13.54±0.26 12.46±0.41

nbp

A-MAE 9.82±0.13 8.98±0.26 32.52±0.95 26.89±0.14 40.67±0.70 41.47±1.44

ASiT 12.44±0.22 13.19±0.27 16.33±0.09 14.90±0.33 19.77±0.82 20.57±0.82

BEATs 17.72±0.36 19.31±0.62 28.83±1.78 17.44±0.85 41.78±1.09 40.49±1.32

BEATs+ 21.41±0.43 22.60±0.30 32.58±0.74 22.92±0.73 42.84±0.73 42.10±1.10

Dasheng 18.04±0.13 13.68±1.13 27.45±0.14 25.93±0.10 32.12±0.59 35.09±0.57

EAT 14.59±0.11 16.95±0.51 26.86±1.17 22.14±0.33 34.39±1.07 34.40±0.59

EAT+ 23.91±0.16 25.46±1.06 32.54±0.22 24.41±0.31 40.74±0.34 39.49±0.98

SSLAM 10.41±0.07 14.58±0.78 27.31±0.47 20.62±0.15 34.39±1.17 34.76±0.74

SSLAM+ 20.84±0.27 21.69±0.21 30.32±0.38 21.79±0.19 39.86±0.91 37.44±1.34
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Table 6: Benchmark probing results for general multi-class audio. All results are the mean
accuracy with standard deviation, averaged over 5 seeds. The best and second-best performing
probes for each configuration are highlighted.

Backbone linear mhca protobin

esc50

A–MAE 22.08±0.14 86.25±0.50 83.67±1.42

ASiT 76.08±0.76 78.25±0.50 79.25±1.64

BEATs 78.92±0.29 83.17±0.76 84.08±1.70

BEATs+ 94.33±0.14 94.25±0.43 94.58±0.29

Dasheng 54.75±1.75 90.17±0.52 85.33±0.63

EAT 75.33±0.95 89.83±1.44 86.83±0.38

EAT+ 96.67±0.29 96.67±0.29 96.67±0.63

SSLAM 74.17±0.14 89.00±0.50 84.67±0.38

SSLAM+ 97.17±0.14 97.17±0.14 96.75±0.50

ks2

A–MAE 12.44±1.67 84.87±1.19 79.47±1.90

ASiT 62.23±0.22 86.26±0.13 89.52±0.58

BEATs 87.00±0.18 94.99±0.25 96.53±0.11

BEATs+ 85.79±0.27 93.60±0.27 94.72±0.53

Dasheng 78.57±0.48 98.13±0.28 98.40±0.16

EAT 69.14±0.14 93.22±0.13 90.44±2.06

EAT+ 83.27±0.02 94.42±0.20 95.75±0.15

SSLAM 64.75±0.20 93.75±0.62 91.86±0.78

SSLAM+ 83.57±0.03 94.24±0.39 95.73±0.33

B ABLATION STUDY

We conduct an ablation study to investigate two key aspects of our prototypical probes. First, we
analyze the sensitivity to the number of prototypes (J) per class to justify our choice in the main
benchmark. Second, we aim to disentangle the performance effects of our two main contributions:
the architectural simplifications (class-agnostic design, no orthogonality loss) and the binarization
itself. To achieve this, we compare three methods:

1. proto: The baseline from Rauch et al. (2025a) using float-based, class-dependent proto-
types with an orthogonality loss.

2. protobin: Our proposed method using binarized, class-agnostic prototypes without an
orthogonality loss.

3. protofloat: A new ablation variant that uses protobin’s simplified, class-agnostic archi-
tecture but with float-based prototypes. This allows us to isolate the impact of binarization.

The results across three diverse datasets (multi-label, high number of classes: as20k, multi-label
low number of classes: urban, multi-class: esc50) are presented in Table 7.

Sensitivity to number of prototypes. Our results show a clear trend across backbones and pro-
totypical probes: performance is highly sensitive to J at lower values and begins to saturate as J
increases. The jump in performance from J = 1, J = 5 and J = 10 is notable on all datasets,
though the impact varies on the task (multi-class vs. multi-label) and the dataset’s structure (e.g.,
number of classes). For instance, on urban with EAT, protobin increases from 80.05 mAP at J=1
to 89.01 with nearly 9 percentage points (%p). The effect is even more pronounced on esc50, which
sees a 14 %p increase in the same setting. The subsequent gain from 10 to 20 is only 0.23 %p on
urban. The saturation suggests that while multiple prototypes are crucial, there are only diminish-
ing returns after enough prototypes are added. In contrast, the performance difference on as20k is
much less pronounced. Using the same EAT model, the gain from J = 1 to J = 10 is only circa
2.6 %p. This suggests that the multi-label as20k dataset, with its high number of classes (527),
does not require as many prototypes per class, and that using a single prototype is not as detrimental

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Comparison of probe methods across J number of prototypes. The methods include the
linear baseline, protobin, proto and the ablation to the binarization protofloat. We addition-
ally add linear as the baseline performance. We report the mean mAP for as20k and urban, and
mean accuracy for esc50 across 3 seeds after our hyperparameter selection. The linear baseline
is static across J . Bold marks the number of prototypes used in our main benchmark results.

as20k (mAP) urban (mAP) esc50 (Accuracy)
Backbone Probe J=1 J=5 J=10 J=20 J=1 J=5 J=10 J=20 J=1 J=5 J=10 J=20

A-MAE

protobin 20.14 21.91 22.32 22.40 73.64 83.80 84.67 85.17 55.92 78.92 81.33 83.70
protofloat 20.87 22.55 23.01 23.07 77.46 84.69 85.37 86.01 67.67 80.00 81.75 82.10
proto 19.08 21.05 21.61 21.95 64.03 83.12 83.02 83.63 49.75 73.92 77.25 82.59
linear 8.36 58.72 22.08

BEATs

protobin 26.70 27.68 31.54 31.93 78.23 87.25 88.12 88.74 69.50 82.08 83.25 84.10
protofloat 27.64 30.52 30.89 31.68 79.90 87.92 88.60 88.63 75.75 84.25 84.58 84.70
proto 27.63 30.47 30.54 30.66 77.41 87.55 88.64 89.04 77.25 83.67 84.67 85.08
linear 24.71 82.54 78.92

ASiT

protobin 20.74 20.21 20.96 21.71 78.59 81.35 81.87 82.28 75.08 79.25 80.17 80.30
protofloat 21.18 21.57 21.21 21.30 79.21 82.09 82.48 82.19 76.00 79.25 79.75 80.12
proto 21.31 21.94 21.89 20.73 68.89 81.20 81.89 82.35 73.50 78.75 81.95 82.44
linear 18.35 77.53 76.08

EAT

protobin 29.08 31.61 31.67 32.12 80.05 88.60 89.01 89.24 71.00 84.25 85.00 86.81
protofloat 29.11 31.04 31.19 31.81 82.00 88.90 89.08 89.14 82.58 87.58 88.25 89.14
proto 28.64 30.65 31.06 31.30 72.34 87.65 88.84 89.11 55.33 78.08 82.58 85.91
linear 17.29 77.76 75.33

SSLAM

protobin 28.69 29.77 30.94 32.10 81.08 86.82 88.92 89.05 65.75 80.67 83.83 84.70
protofloat 29.08 30.50 30.55 31.26 81.63 87.16 89.05 89.05 79.75 86.00 86.17 86.69
proto 29.08 30.53 30.84 30.99 81.60 88.58 88.45 88.82 62.08 80.67 82.17 85.18
linear 17.04 75.86 74.17

as it is for the multi-class tasks. Regardless of the task, this analysis confirms that our choice of
J = 20 (and J = 10 for as20k) for the central benchmark is robust, capturing the vast majority of
the method’s potential performance without adding excessive parameters.

Binarization and architectural simplification. This ablation reveals that our architectural simpli-
fications are the primary driver of performance gains, while binarization offers a highly effective
trade-off between a very minor precision cost in certain cases and major efficiency benefits.

• Impact of binarization (protobin vs. protofloat): Comparing our proposed method
protobin to its float-based counterpart protofloat reveals the direct impact of binariza-
tion. On some configurations in lower and higher number of prototypes, protofloat holds
a slight performance edge over protobin. The performance differences are expected and
highlights an inherent trade-off: the full precision of 32-bit floats can capture finer-grained
details. However, protobin remains highly competitive, demonstrating that binarization
achieves a 32x memory reduction at the cost of only a very low drop in performance in
certain cases.

• Impact of simplification (protofloat vs. proto): This comparison provides the clean-
est evidence for the impact of our architectural changes. Our simplified, class-agnostic
protofloat consistently and significantly outperforms the class-dependent proto base-
line across nearly all settings. This confirms that decoupling prototypes from classes leads
to better performance.

• Overall (protobin vs. proto vs. linear): We observe that protobin frequently out-
performs the original proto baseline and linear, especially on the complex multi-label
datasets as20k and urban. It shows that the benefits of our architectural simplifications
(the class-agnostic design) are powerful enough to often outweigh the minor precision loss
from binarization, resulting in a performance gain with a simpler and more efficient model.
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Task and dataset characteristics. The ablation results also underscore the task-dependent nature
of the different prototypical architectures.

• Multi-label (as20k, urban): On these complex datasets, the results underscore the advan-
tage of our simplified and class-agnostic architecture. The presence of polyphony requires a
flexible design where prototypes can collaborate to disentangle overlapping sound events, a
strength of protobin and protofloat. This is particularly evident for models with highly
entangled embeddings (e.g., A-MAE) and on datasets with many classes (as20k), where
the scalability of reusable prototypes for different classes is beneficial.

• Muti-class (esc50): Conversely, on this single-label task, the advantage of our class-
agnostic design diminishes. With only a single dominant sound source, the simpler and
more direct supervisory signal of a class-dependent mapping can be more effective. In
cases with less discriminative embeddings (e.g., ASiT), the full float precision of proto
may also be necessary to capture fine-grained acoustic details, making it more competitive
than our regularized protobin.

On the complex, multi-label datasets (as20k, urban), the architectural flexibility of our class-
agnostic protofloat and protobin provides an advantage over the more class-dependent proto.
This supports our core hypothesis that a disentangled design is valuable for polyphonic scenes.
Conversely, on the single-label esc50 task, this advantage diminishes. Here, the baseline proto is
highly competitive, as the simpler challenge of learning a direct class-to-prototype mapping seems
to be sufficient for single-source audio.

C COMPUTATIONAL RESOURCES

To motivate the upper bound calculation, our benchmark combined 14 datasets, 9 backbones, and
10 pooling methods. Each of these combinations involved up to 50 hyperparameter trials plus 5
final evaluation runs, establishing the basis for our total run count. The computational cost of our
benchmark can be divided into two stages. The first was a one-time pre-computation of embeddings
for each of the 9 backbone checkpoints across all 14 datasets. For the 7 general audio and control
datasets, we generated embeddings once for each of the 9 backbones. For the 7 bioacoustic datasets,
this process was repeated 5 times per backbone to create distinct augmented variants for training.
This initial stage resulted in:

9︸︷︷︸
backbones

·

(
7︸︷︷︸

datasets

· 1︸︷︷︸
run/data

+ 7︸︷︷︸
bio-data

· 5︸︷︷︸
runs/data

)
= 378 pre-computation runs (4)

The second stage was the training and evaluation of the probing methods, where the hyperparameter
optimization involved 50 initial trials managed by a successive-halving scheduler, followed by 5
final evaluation runs.

The number of pooling methods evaluated varied by dataset category. For the 5 general multi-label
audio datasets, where all 10 pooling methods were evaluated, the upper bound on training runs was:

5︸︷︷︸
datasets

· 9︸︷︷︸
backbones

· 10︸︷︷︸
probes

·

(
50︸︷︷︸
HPS

+ 5︸︷︷︸
final seeds

)
= 24, 750 (5)

For the 7 few-shot bioacoustic datasets, we used a reduced set of 6 relevant pooling methods, result-
ing in:

7︸︷︷︸
datasets

· 9︸︷︷︸
backbones

· 6︸︷︷︸
probes

·

(
50︸︷︷︸
HPS

+ 5︸︷︷︸
final seeds

)
= 20, 790 (6)

Finally, for the 2 multi-class control datasets, we evaluated a core set of 3 representative probes:

2︸︷︷︸
datasets

· 9︸︷︷︸
backbones

· 3︸︷︷︸
probes

·

(
50︸︷︷︸
HPS

+ 5︸︷︷︸
final seeds

)
= 2, 970 (7)
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Summing these values gives the total upper bound on individual training runs for the entire bench-
mark:

24, 750 + 20, 790 + 2, 970 = 48,510 total runs (8)

We executed all benchmark tasks on a high-performance compute cluster equipped with NVIDIA
A100 GPUs. This includes the initial augmentation-free forward pass required to pre-compute and
cache the embeddings for all backbones, as well as the subsequent training and evaluation of all
probing methods. The resulting on-disk embedding store for all cached features occupied approxi-
mately 3.6 TB of storage. Code development and preliminary tests were performed on a workstation
using an NVIDIA RTX4090 GPU and an AMD Ryzen 9 7950X CPU.

D BENCHMARK IMPLEMENTATION DETAILS

This Appendix provides further details on the core components of our benchmark’s experimental
setup.

D.1 BENCHMARK DATASETS

Table 8 presents an overview of all 14 downstream datasets used in our benchmark, categorized into
three thematic groups along with their respective sizes.

Table 8: Overview of the benchmark datasets. The datasets are organized into three groups:
general multi-label, few-shot bioacoustic multi-label, and general multi-class. For each dataset, we
report the size of the train, validation, and test splits, the number of classes, and the audio clip length.
Note that all bioacoustic tasks follow a 64-shot training protocol.

Dataset Train Validation Test #Classes Clip Length [s]

Multi-label: General Datasets
as20k (Gemmeke et al., 2017) 18, 685 – 17, 142 527 10
desed (Johnson et al., 2021) 20, 000 – 2, 000 10 10
fsd50k (Fonseca et al., 2022) 40, 966 – 10, 231 200 10
spass (Viveros-Muñoz et al., 2023) 17, 500 3, 750 3, 750 28 10
urban (Salamon et al., 2017) 6, 000 2, 000 2, 000 10 10

Multi-label: Bioacoustic BirdSet (64-shot)
hsn (Rauch et al., 2025b) 1, 344 — 12, 000 21 5
pow (Rauch et al., 2025b) 3, 072 – 4, 560 48 5
per (Rauch et al., 2025b) 8, 448 – 15, 120 132 5
nes (Rauch et al., 2025b) 5, 696 – 24, 480 89 5
sne (Rauch et al., 2025b) 3, 584 – 23, 756 56 5
uhh (Rauch et al., 2025b) 1, 600 – 36, 367 27 5
nbp (Rauch et al., 2025b) 3, 264 – 563 51 5

Multi-class: General Datasets
esc50 (Piczak, 2015)‡ 1, 600 – 400 50 5
sc2 (Warden, 2018) 84, 848 9, 982 4, 890 12 10

AudioSet (Gemmeke et al., 2017). as2m is a large-scale dataset used to pretrain general-purpose
audio models and built from a vast collection of YouTube videos. It features a comprehensive
ontology of over 500 sound classes, making it a standard benchmark for general-purpose audio event
detection and classification. The as20k dataset represents a commonly used subset with 20,000
samples.

Domestic Environment Sound Event Detection (Johnson et al., 2021). desed is designed for eval-
uating sound event detection in domestic settings, featuring 10-second audio clips. These recordings
are annotated with temporal labels for 10 common sound classes like dishes, speech, and vacuum
cleaners. It was specifically created to facilitate research in both centralized and federated learning
scenarios.

Free Sound Dataset 50k (Fonseca et al., 2022). fsd50k is a large, open dataset for sound event
research, containing over 51,000 audio clips from the Freesound platform. It covers 200 diverse
sound classes drawn from the AudioSet Ontology, with a focus on label quality through a multi-
step human verification process. The dataset is widely used for multi-label sound classification and
detection tasks.
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Synthetic Polyphonic Dataset with Spatiotemporal Labels of Sound Sources (Viveros-Muñoz
et al., 2023). spass is a synthetic collection of polyphonic soundscapes created for sound source lo-
calization and separation tasks for 28 urban sounds. It provides detailed spatiotemporal annotations,
specifying the precise time, location, and class of each sound event within the clips. It contains a set
of five distinct acoustic background scenes. This makes it particularly valuable for developing and
testing models that can understand complex acoustic scenes.

Urban-SED (Salamon et al., 2017). urban is a collection for urban sound classification, containing
10-second audio clips of 10 common urban sound classes. These classes include events such as car
horns, sirens, and street music, recorded from real-world city environments. The dataset serves as a
popular benchmark for models tasked with environmental sound analysis.

BirdSet (Rauch et al., 2025b). BirdSet is a comprehensive, large-scale collection of datasets for
avian bioacoustics research. It aggregates recordings from various global locations, with each loca-
tion forming a distinct subset (hsn, pow, per, nes, sne, uhh, nbp). The collection is specifically
tailored to benchmark audio classification models, reflecting realistic bioacoustic monitoring chal-
lenges.

Environmental Sound Classification (Piczak, 2015). esc50 is a benchmark collection for Environ-
mental Sound Classification, consisting of 2,000 five-second audio clips. It is uniformly organized
into 50 distinct semantic classes, including animal sounds, natural soundscapes, and human non-
speech sounds. The dataset is standardized with a pre-defined 5-fold cross-validation setup, making
it a standard for evaluating audio SSL models.

Speech Commands V2 (Warden, 2018). sc2 is designed for keyword spotting and limited-
vocabulary speech recognition. It contains thousands of one-second utterances of short command
words (e.g., "up," "down," "stop") spoken by many different individuals. It contains 35 commands
in the vocabulary, providing a robust benchmark for testing general-purpose models in audio.

D.2 FEWSHOT BIRDSET DETAILS

For our few-shot learning evaluation on the seven BirdSet downstream tasks, we constructed 64-shot
training subsets. The creation of these subsets follows the pipeline detailed in (Rauch et al., 2025a),
which involves a selection of audio clips to mitigate label noise from weakly-labeled recordings. Full
details of the subset creation process and dataset characteristics can be found in the original BirdSet
publications (Rauch et al., 2025b;a). Given the challenging nature of these tasks—which are multi-
class during training but multi-label during testing, we introduced a light data augmentation strategy.
For each of the seven 64-shot datasets, we pre-generated and saved five distinct augmented variants
using only the mixup augmentation with p = 0.9, which is highly effective for bird sounds (Rauch
et al., 2025a). During each experimental run, we randomly selected a sample of one of these five
variants for training, providing diversity to the learning process without on-the-fly computational
overhead.

D.3 POOLING METHODS

Table 9 summarizes the ten distinct pooling methods evaluated in our study. It details their architec-
tural family, whether they operate on the [cls]-token or the full token map, and their computational
complexity.

Table 9: Pooling methods overview. Methods are grouped by architectural family. The #params
row lists symbolic counts, and the urban row instantiates them for our EAT-B/768 setup on urban.
Symbols: N tokens (= St · Sf ), D embed dim, C classes, H MLP hidden, k conv kernel, Dh conv
hidden, F number of frequency patches, Q queries, J prototypes.

[cls] Baseline Token Map Token Map (Att.) Token Map (Proto.)

linear mlp linearc conv linpre mhca ep simpool abmilp proto protobin

# params DC DH + HC NDC k2DDh + DhC FDC D2+DC D2+QD+DC D2+DC 2D2+QD+DC J+JC J+JC
urban ≈ 7.7k ≈ 398k ≈ 3.9M ≈ 2.7M ≈ 61.4k ≈ 1.2M ≈ 622k ≈ 598k ≈ 3.0M ≈ 155k ≈ 155k
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D.4 HYPERPARAMETER SETTINGS

For each unique combination of a backbone, dataset, and pooling method, we conducted a systematic
hyperparameter search to find the optimal learning rate and weight decay. This process ensures
that each method is evaluated under its best-performing configuration, providing a fair comparison.
Our search strategy consists of 50 trials for each combination, managed by a successive-halving
pruner to improve efficiency. The search is structured in two stages. First, we explore with 25
trials, using a Sobol sequence to perform a quasi-random search, ensuring a broad and uniform
coverage of the hyperparameter space. Second, we exploit with 25 trials using a tree-structured
parzen estimator (TPE) to focus the search on promising regions identified during the exploration
phase. The configuration yielding the highest mean Average Precision (mAP) on the validation set
is then selected for the final evaluation, where it is re-trained and tested using five different random
seeds.

The search spaces were kept compact. For all baseline, convolutional, and attentive pooling methods,
the search space was:

• Learning Rate (lr): A log-uniform distribution between 1× 10−4 and 7× 10−3.
• Weight Decay (wd): A log-uniform distribution between 1× 10−5 and 5× 10−4.

Based on preliminary experiments showing that prototypical methods benefit from a higher learning
rate, their search space for the learning rate was adjusted, while the weight decay remained the same:

• Learning Rate (lr): A log-uniform distribution between 2× 10−3 and 8× 10−2.

All other hyperparameters were held constant across all experiments to isolate the effects of the
pooling method. These fixed settings are summarized in Table 10.

Table 10: Fixed hyperparameters used for training all probing heads.

Optimizer Epochs Batch Size LR Scheduler Loss Function Prototypes/Class Prototype LR

AdamW 30 128 Cosine Asymmetric 20 Global LR
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