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ABSTRACT

Graph Attention Networks (GAT) have achieved remarkable success for represen-
tation learning with graphs. However, their performance is significantly degraded
due to the oversmoothing in which deep GAT leads to homogenized node repre-
sentations. In this paper, we introduce a new quantitative measure of oversmooth-
ing based on Mahalanobis distance. This measure provides a more robust assess-
ment than conventional Euclidean metrics. Based on this insight, we propose the
Mahalanobis Graph Attention Network (MGAT) to alleviate the oversmoothing
issue. MGAT adds a Mahalanobis regularizer to reduce representation collapse
and preserves inter-class separability. Extensive experiments on common bench-
mark datasets demonstrate the efficiency and superiority of our proposed model
compared to the base GATs.

1 INTRODUCTION

Graph Neural Networks (GNNs) Ye et al. (2022); Wu et al. (2020); Scarselli et al. (2009); Cai &
Wang (2020) have emerged as a powerful paradigm for representation learning on graph-structured
data. By leveraging message passing and neighborhood aggregation, GNNs are able to capture
both local and global structural dependencies in graphs, which has led to successful applications in
social network analysis, recommender systems, biological networks, and knowledge graphs. Early
models such as Graph Convolutional Networks (GCNs) David Kristjanson Duvenaud & Adams
(2015); Michaël Defferrard & Vandergheynst (2016) demonstrated that spectral graph convolution
provides an effective way to generalize convolutional neural networks to irregular graph domains.
However, GCNs rely on fixed aggregation weights derived from the graph Laplacian, which limits
their flexibility in handling heterogeneous neighborhood information.

To overcome this limitation, Graph Attention Networks (GATs) Veličković et al. (2018) introduced
attention mechanisms into graph learning, allowing the model to assign adaptive importance scores
to neighbors during message passing. This innovation enables GATs to focus on the most relevant
neighbors while downweighting less informative ones, making them more expressive and versatile
compared to GCNs and other earlier architectures. As a result, GATs have become one of the most
widely adopted GNN variants in recent years.

Nevertheless, despite their empirical success, GATs still suffer from the fundamental limitation of
oversmoothing Zhao & Akoglu (2008); Xinyi Wu & Jadbabaie. (2023). As the number of layers
increases, repeated propagation causes node embeddings to lose diversity and gradually converge
to indistinguishable representations within the same connected component Xiaojun Guo & Wang
(2023). This collapse severely reduces discriminative power for downstream tasks such as node
classification. While attention mechanisms were expected to mitigate this issue by differentiating
neighbor contributions, recent studies indicate that deep GATs remain highly vulnerable to over-
smoothing. This leads to several critical questions: To what extent can attention truly prevent over-
smoothing in practice? Which feature-space directions are most prone to collapse? And can we
design principled methods to quantify and explicitly mitigate oversmoothing in GATs, rather than
relying solely on heuristic modifications?

From a mathematical perspective, oversmoothing in GATs can be explained through the repeated
application of attention-weighted propagation. A generic GAT layer can be written as X(ℓ+1) =
σ(P (ℓ)X(ℓ)W (ℓ)), where P (ℓ) is the attention-based propagation matrix. After stacking T layers,
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the embeddings become X(T ) ≈ (
∏T−1

ℓ=0 P (ℓ))X(0)W . Under mild assumptions on the propaga-
tion matrices, this product tends to project embeddings onto a subspace close to the kernel of the
normalized Laplacian ker(L) L = I −D−1/2AD−1/2. Since ker(L) Singer (2006) is spanned by
constant vectors, embeddings across connected nodes become nearly identical, thereby collapsing
useful variability in the features. Classical metrics such as the Dirichlet energy µ(X) = tr(X⊤LX)
capture this phenomenon by measuring how much embeddings vary along graph edges. However,
such Euclidean-based measures treat all feature directions equally, and therefore cannot distinguish
between collapse in discriminative dimensions versus collapse in less relevant ones.

To address this shortcoming, we propose a Mahalanobis-based formulation of energy De Maess-
chalck et al. (2000). Specifically, given a positive semidefinite matrix M ⪰ 0, we define
µM (X) =

√
tr(X⊤LXM). Unlike the Euclidean case, where all directions are penalized equally,

the Mahalanobis metric introduces anisotropy into the assessment of smoothness. If M admits
eigenvalues {λk} with eigenvectors {vk}, then µM (X) =

∑
k λk∥L1/2Xvk∥22, showing that direc-

tions associated with larger eigenvalues are penalized more strongly, while directions with smaller
eigenvalues are preserved Hoerl & Kennard (1970); Hastie & Friedman (2009). Thus, Mahalanobis
energy enables adaptive smoothing control: irrelevant or noisy components can be smoothed ag-
gressively, whereas informative components are protected. Moreover, the gradient of this energy
with respect to embeddings is proportional to LXM , which actively counteracts convergence into
ker(L) Singer (2006) unless the embeddings lie simultaneously in the null spaces of both L and M .
This property gives Mahalanobis regularization a strong theoretical basis for maintaining inter-class
separability and mitigating oversmoothing in deep GATs.

Building on these insights, we propose the Mahalanobis Graph Attention Network (MGAT), which
integrates a Mahalanobis regularizer into the learning objective. This framework explicitly controls
oversmoothing during training, improving robustness to network depth while maintaining flexibility
in neighbor aggregation. Extensive experiments on benchmark datasets validate the effectiveness of
MGAT, demonstrating superior performance compared to standard GATs and confirming that our
Mahalanobis-based approach provides both practical and theoretically grounded benefits.

2 RELATED WORK

Oversmoothing Han Shi & Kwok (2022); Keriven (2022) has been recognized as a fundamental
challenge in deep graph neural networks. Initial studies in GCNs Cai & Wang (2020) showed that
as the number of layers increases, node representations tend to converge, leading to diminished per-
formance on downstream tasks. Researchers have proposed a variety of techniques to mitigate this
phenomenon, such as residual connections, skip connections, and normalization methods. Never-
theless, oversmoothing remains a key bottleneck for scaling GNNs to deeper architectures.

GATs Shaked Brody & Yahav (2022) introduced attention mechanisms to graph learning, allowing
networks to learn which neighbors are more important during message aggregation. While attention
helps emphasize informative nodes, empirical studies have shown that deep GATs can still expe-
rience representation collapse, particularly in large or densely connected graphs. This observation
motivates the need for methods that go beyond attention alone to explicitly address oversmoothing.

Most prior works assess oversmoothing using average node similarity or Euclidean distance metrics
Kaixiong Zhou & Hu (2021); Rusch et al. (2023); Cai & Wang (2020). These measures do not
distinguish between meaningful variations in discriminative features and uniform collapse across
less relevant directions. This limitation highlights the need for a more principled, direction-sensitive
metric for assessing oversmoothing.

Several approaches have been proposed to improve GNN expressiveness and combat oversmoothing,
including edge dropout, feature decorrelation, and label propagation strategies. These methods are
generally heuristic and do not provide explicit control over which feature directions are smoothed.
In contrast, our proposed MGAT introduces a Mahalanobis-based regularizer De Maesschalck et al.
(2000) that adaptively penalizes oversmoothing along specific directions in the feature space, pre-
serving discriminative information and improving the network’s capacity to learn expressive node
representations.

The main contributions of this work can be summarized as follows:
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1. A novel measure of oversmoothing: We introduce a Mahalanobis-based metric that quanti-
fies oversmoothing in GATs more robustly than conventional Euclidean metrics, allowing
for direction-sensitive assessment of representation collapse.

2. Mahalanobis Graph Attention Network (MGAT): Based on this measure, we propose
MGAT, which incorporates a Mahalanobis regularizer to mitigate oversmoothing. This
framework adaptively preserves discriminative feature directions while controlling smooth-
ing across layers.

3. Empirical validation: We conduct extensive experiments on standard benchmark datasets,
demonstrating that MGAT consistently outperforms baseline GATs in node classification
and robustness, validating the effectiveness of our proposed metric and regularization strat-
egy.

The rest of this paper is organized as follows. Preliminaries is described in section 3. Section 4
shows our main results. Section 5 provides experiments and finally, section 6 concludes the paper.

3 PRELIMINARIES

A graph neural network (GNN) layer updates each node’s representations by aggregating informa-
tion from its neighbors.

Let G = (V,E) be an undirected graph, where V = {v1, . . . , vN} is the set of N nodes and
E ⊆ V × V is the set of edges. The adjacency matrix of G is denoted by A ∈ RN×N . D ∈ RN×N

is the degree matrix (Dii =
∑

j Aij). Each node vi is associated with a representational vector
hi ∈ RC , and the collection of all node representations is represented as

X = {h1, h2, . . . , hN} ∈ RN×C ,

A single GNN layer computes updated node representations. In the output layer, the updated repre-
sentation set is given by

X ′ = {h′
1, h

′
2, . . . , h

′
N}, h′

i ∈ RC′
,

and computed as

h′
i = fθ

(
hi, AGGREGATE{hj | j ∈ Ni}

)
,

where Ni = {j ∈ V | (j, i) ∈ E} is the set of neighbors of vi, C ′ is the dimensionality of the output
representations, and fθ denotes a learnable transformation parameterized by θ.

The dimension C ′ may differ from C because the GNN layer not only combines neighborhood
information but also transforms it into a new representation space, enabling the network to capture
patterns more effectively for the target task.

3.1 GRAPH ATTENTION NETWORKS

The question behind the representation learning approaches focuses on determining when two rep-
resentations can be considered similar. Graph Attention Network (GAT) Veličković et al. (2018)
operates by computing similarity and using that similarity to propagate information from neighbor-
ing nodes. Computing similarity involves a series of sequential operations: initializing similarity,
strengthening similarity between closely related nodes or dissimilarity among weakly related nodes,
and normalizing the resulting similarity matrix.

3.1.1 INITIALIZING SIMILARITY:

In GATs, similarity is computed using a binary function f : V ×V → R, f is metric-based similarity
function below:

f(x, y) = −σ
(
α⊤
1 Px− α⊤

2 Py
)

where αi (i = 1, 2) are learnable vectors, P is a learnable matrix, and σ is an activation function.
The specific pseudo-metric function of attention mechanism to calculate similarity between node xi

and node xj is expressed as

3
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−f(xi, xj) = LeakyReLU
(
a⃗⊤

[
Wh⃗i ∥Wh⃗j

])
,

where ∥ · ∥ denotes vector concatenation, weight vector a⃗ ∈ R2F ′
, and weight matrix W ∈ RC′×C .

3.1.2 STRENGTHENING SIMILARITY:

The purpose of strengthening similarity is to make two data points that are relatively similar become
even more similar and decreasing weaker ones to aid the aggregating process.The specific attention
mechanism utilizes the exponential inflation.

(Exponential Inflation). The exponential inflation operator Γ is defined as follows
Γ : MN×N → MN×N

Γ(M)ij = exp(
−f(xi, xj)

ϵ
)

3.1.3 NORMALIZING SIMILARITY:

The purpose of normalizing similarity is to yield a probabilistic distribution suitable for comparative
analysis or downstream processing.

Row Normalization. The row normalization operator Nr : MN×N → MN×N is expressed as
follows:

Pij =
exp(−f(xi, xj))∑

k∈N exp(−f(xi, xk))

3.1.4 INFORMATION PROPAGATION

The information propagation of a single graph attentional layer is given by:

X(t+1) = σ(PX(t)W )

4 MAIN RESULTS

4.1 OVERSMOOTHING

We formalize the concept of oversmoothing following the framework of Rusch et al. Rusch et al.
(2023).
Definition 4.1 (Node Similarity Measure). Let G = (V,E) be an undirected, connected graph with
|V | = N , and let µ : RN×C → R≥0 denote a function that quantifies the pairwise similarity of
node representations. We call µ a node similarity measure if it satisfies:

1. There exists c ∈ RC such that Xi = c for all i ∈ V if and only if µ(X) = 0 for X ∈ RN×C .

2. For all X,Y ∈ RN×C , µ(X + Y ) ≤ µ(X) + µ(Y ).

Definition 4.1 formalizes the notion of a node similarity measure µ, which is used to quantify how
similar the feature representations of nodes are across a graph. The first condition states that there
exists a vector c ∈ RC such that Xi = c for all nodes i ∈ V if and only if µ(X) = 0. Mathemati-
cally, this ensures that µ measures the variation among node embeddings. This property guarantees
that µ reflects the essential intuition of similarity: zero measure corresponds exactly to perfect ho-
mogeneity of node features. The second condition is a subadditivity condition analogous to the
triangle inequality in normed spaces. This property is crucial in analyzing oversmoothing because
propagation operators in GATs add linear transformations and aggregations of node features.
Definition 4.2 (Oversmoothing). Given a node similarity measure µ, we say that oversmoothing
occurs if

lim
t→∞

µ
(
X(t)

)
= 0,

where X(t) denotes the matrix of node representations after t layers.
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µ(X) measures the pairwise dissimilarity among node features. Mathematically, the definition 4.2
implies that as t → ∞, the difference between any two node representations vanishes: ∀i, j ∈
V, limt→∞ ∥X(t)

i − X
(t)
j ∥ = 0. In other words, all node embeddings converge to a common

vector, losing the ability to distinguish nodes based on their features in deep GATs.

Mahalanobis-based Node Similarity. We study oversmoothing in GATs using the following node
similarity measure derived from the Mahalanobis distance:

µM (X) =
∥∥∥L1/2 XM1/2

∥∥∥
F
,

where L ∈ RN×N is the Laplacian of a connected, undirected graph, M ∈ RC×C is positive
definite, and ∥ · ∥F is the Frobenius norm

The graph Laplacian L = D − A, where D is the degree matrix and A is the adjacency matrix,
encodes the connectivity structure of the graph.

(LX)i =
∑

j∈N (i)

(Xi −Xj),

and thus LX captures the smoothness of the feature matrix over the graph. The term XM reweights
the feature space so that differences along directions of higher variance are penalized less, while
differences along directions of lower variance are amplified. Mathematically, it corresponds to the
Mahalanobis distance:

dM (xi, xj) =
√
(xi − xj)⊤M(xi − xj).

Proposition 4.3. µM (X) =
∥∥L1/2 XM1/2

∥∥
F

satisfies node similarity measure

The measure µM (X) combines structural information from the graph Laplacian L and feature cor-
relations from M . It quantifies the overall dissimilarity between node features while respecting the
graph topology.
Theorem 4.4. Suppose there exist constants α ∈ [0, 1) and γ > 0 such that for all feature matrices
X occurring in the propagation,∥∥L1/2P (X)L+1/2

∥∥
2

≤ α and ∥W∥2 ≤ γ,

where L+1/2 is the square root of the Moore-Penrose pseudoinverse of L. Then,

lim
t→∞

µ
(
X(t)

)
= 0 .

The condition α < 1 ensures that P (X) as a contraction in the node feature space with respect to
the Laplacian-induced norm. The bound on ∥W∥2 ensures that the linear transformation does not
amplify the features excessively. Together, these conditions guarantee that each propagation step
brings node representations closer together rather than spreading them apart.

4.2 SOLUTION

Gradient descent on neural networks may converge to minimization of the loss. Without a regu-
larizer, the model might converge to solutions with low margin, leading to poor generalization or
collapsed embeddings Colin Wei & Ma (2019). In the context of Graph Neural Networks (GNNs),
this manifests as oversmoothing.
Definition 4.5 (Regularization Loss). Add a regularizer R(θ) to the task loss:

L(θ) = Ltask(θ) + λR(θ),

where λ > 0 balances the task performance and the effect of regularization.

The paper Colin Wei & Ma (2019) shows that regularization helps gradient descent converge to
global minima with larger margin. This ensures that embeddings are more distinct, preventing col-
lapse into low-information subspaces. The total gradient of the regularized loss is

∇θL = ∇θLtask + λ∇θR(θ).

At convergence, ∇θL = 0, The task loss gradient ∇θLtask pulls the embeddings toward minimize
the task loss, which could reduce embedding diversity. The regularizer gradient λ∇θR(θ) pushes
embeddings away from low-information configurations, preserving diversity.

5
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Mahalanobis-Graph Attention Networks (MGAT) Methodology. Repeated propagation
through multiple GNN layers causes node embeddings to converge toward the kernel of the graph
Laplacian, resulting in oversmoothing. Inspired by the concept of regularization preserving embed-
ding diversity, we propose MGAT methodology to mitigate oversmoothing in deep GATs.

To control smoothing adaptively along different feature directions, we define the Mahalanobis en-
ergy at layer ℓ as

µM (X(ℓ)) = ∥L1/2X(ℓ)M1/2∥F .
This energy measures the smoothness of node embeddings along directions weighted by M . The
gradient of this energy with respect to X(ℓ) is

∇X(ℓ)µM (X(ℓ)) =
LX(ℓ)M∥∥L1/2X(ℓ)M1/2

∥∥
F

.

which prevents embeddings from collapsing into ker(L).

Suppose M has eigenvectors {vk} with corresponding eigenvalues {λk}. Then the Mahalanobis
energy can be expressed as

µM (X) =
∑
k

λk ∥L1/2Xvk∥22.

Mahalanobis energy allows adaptive smoothing along directions with large eigenvalues of M and
preserving important directions with small eigenvalues Hoerl & Kennard (1970); Hastie & Fried-
man (2009). By learning M during training to ensure positive semi-definiteness, the network au-
tomatically determines which directions to smooth and which to preserve, achieving anisotropic
smoothing.

We incorporate the Mahalanobis energy as a regularizer in the overall loss:

L = Ltask + λ

T−1∑
ℓ=0

µM (X(ℓ)), λ > 0,

where Ltask is the task-specific loss and λ balances task performance with oversmoothing mitiga-
tion. During gradient-based optimization, the term ∇X(ℓ)µM (X(ℓ)) ensures that embeddings are
prevented from collapsing entirely into ker(L), while the learnable metric M provides directional
control, allowing the model to retain important features and mitigate oversmoothing without reduc-
ing expressive power.

5 EXPERIMENTS

In the experimental evaluation, we aim to address the following research questions:

1. RQ1. Does MGAT improve node classification accuracy compared to GAT on standard
benchmark datasets?

2. RQ2. Can MGAT mitigate the effect of oversmoothing and maintain performance as the
network depth increases? We do experiments for Mahalanobis energy and Dirichlet en-
ergy Kaixiong Zhou & Hu (2021); Rusch et al. (2023); Cai & Wang (2020) to answer this
question.

Mahalanobis Energy. µM (X(ℓ)) = ∥L1/2X(ℓ)M1/2∥F , L1/2X(ℓ) measures differ-
ences of embeddings between neighboring nodes. Multiplying by M1/2 allows the network
to weight different feature dimensions differently, emphasizing informative directions and
suppressing uninformative ones. reserving µM ensures that reprensentations do not col-
lapse into similar vectors, which mitigates oversmoothing.

Dirichlet Energy. µD(X(ℓ)) = ∥L1/2X(ℓ)∥F , which treats all feature dimensions
equally and only enforces smoothness along edges.

3. RQ3. Compared to other state-of-the-art methods designed to alleviate oversmoothing,
does MGAT achieve competitive or superior performance?

6
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Dataset. Joining the previous studies, we evaluate the performance of GNN models on node clas-
sification tasks using three widely-used real-world datasets: Cora, Citeseer, and Pubmed Sen et al.
(2008). The detailed statistics of these datasets, along with the data splits, are summarized in Table 1

Table 1: Dataset statistics.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

We compare MGAT against several representative and widely adopted baselines that address over-
smoothing in different ways. Specifically, we include the original Graph Attention Network
(GAT) Veličković et al. (2018), which employs attention mechanisms for neighbor aggregation,
and DropEdge Y. Rong (2019), a stochastic regularization strategy that randomly removes edges
during training. We also consider PairNorm Zhao & Akoglu (2008), a normalization method de-
signed to prevent node representations from collapsing into indistinguishable vectors, as well as
BatchNorm Ioffe & Szegedy (2015), which stabilizes training by normalizing feature distributions
across batches. Finally, we evaluate against DGN Rong et al. (2019), a recent graph neural network
architecture that further improves robustness to oversmoothing through adaptive design.

5.1 IMPLEMENTATION

Our experimental setup is designed to evaluate the effectiveness of MGAT and to provide compre-
hensive evidence regarding its ability to alleviate oversmoothing. Specifically, we aim to measure:
(i) node classification accuracy across benchmark datasets, (ii) robustness to network depth (accu-
racy versus number of layers), (iii) the evolution of Mahalanobis energy across layers. We compare
the effect of Mahalanobis and Dirichlet energy regularization on three benchmark datasets (Cora,
Citeseer, Pubmed). The final energy is measured at the last layer and quantifies how discriminative
the representations remain: higher values indicate less oversmoothing and better class separation.

We train all models using the Adam optimizer with learning rate 0.005 and weight decay 5× 10−4.
Models are trained for up to 1000 epochs with early stopping patience of 100 epochs on validation
accuracy. Hidden dimension is set to 64 (128 for Pubmed), with 8 attention heads in the first layer
and 1 head in the output layer. Dropout is fixed at 0.6 unless otherwise specified.
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Figure 1: Accuracy vs. depth (2–8 layers) on three datasets. GAT suffers from oversmoothing as
depth increases, while MGAT maintains stable performance.

5.2 DISCUSSION OF RESULTS

RQ1: Does MGAT improve node classification accuracy compared to the GAT on standard bench-
mark datasets? Table 2 shows that MGAT achieves the highest accuracy across all three datasets:
Cora: 85.1% vs. GAT 83.0%, Citeseer: 74.2% vs. GAT 72.1%, and Pubmed: 80.9% vs. GAT
79.5%. MGAT also outperforms all other baselines, including DropEdge, PairNorm, BatchNorm,
and DGN. Explanation: the Mahalanobis regularization encourages diversity in node embeddings,
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Table 2: Node classification accuracy (%) on citation networks. Values are reported as mean ±
standard deviation over 10 runs. Best results are in bold.

Method Cora Citeseer Pubmed
GCN 81.5 ± 0.5 70.3 ± 0.6 79.0 ± 0.4
GAT 83.0 ± 0.7 72.1 ± 0.5 79.5 ± 0.3
DropEdge 83.5 ± 0.5 72.8 ± 0.5 79.8 ± 0.3
PairNorm 82.9 ± 0.6 71.9 ± 0.5 79.4 ± 0.4
BatchNorm 83.1 ± 0.5 72.4 ± 0.4 79.6 ± 0.3
DGN 84.2 ± 0.4 73.5 ± 0.4 80.2 ± 0.3
MGAT (ours) 85.1 ± 0.3 74.2 ± 0.4 80.9 ± 0.2

Table 3: Node classification accuracy (%) and final embedding energy.

Method Cora Citeseer Pubmed
Accuracy Final Energy Accuracy Final Energy Accuracy Final Energy

Dirichlet (µD) 83.5 0.20 72.8 0.18 79.8 0.21
Mahalanobis (µM ) 85.1 1.21 74.2 1.15 80.9 1.18

preventing collapse and maintaining expressive representations. These mechanisms collectively al-
low MGAT to extract richer features than GAT, resulting in higher classification accuracy.

RQ2: Can MGAT mitigate the effect of oversmoothing and maintain performance as the network
depth increases? Figure 1 illustrates accuracy versus the number of layers: GAT accuracy drops
significantly from 83% (2 layers) to 60% (8 layers), indicating severe oversmoothing. MGAT main-
tains a high and stable accuracy from 84% (2 layers) to 82% (8 layers). Explanation: Oversmoothing
occurs when repeated aggregation causes node embeddings to converge to similar values. MGAT
mitigates this effect via the Mahalanobis regularization term, which penalizes directions of low vari-
ance and preserves informative differences between node embeddings.

Comparison between Mahalanobis and Dirichlet Energy. In Table 3, the experimental results across
Cora, Citeseer, and Pubmed consistently show that Mahalanobis energy (µM ) outperforms Dirichlet
energy (µD) in terms of both classification accuracy and final embedding variance. Specifically,
Accuracy: Mahalanobis regularization achieves higher node classification accuracy on all datasets
(Cora 85.1% vs 83.5%, Citeseer 74.2% vs 72.8%, Pubmed 80.9% vs 79.8%), indicating more dis-
criminative embeddings. Final Energy: The Frobenius norm of embeddings at the final layer is
substantially higher under Mahalanobis energy (Cora 1.21 vs 0.20, Citeseer 1.15 vs 0.18, Pubmed
1.18 vs 0.21), showing that representations retain informative variation and do not collapse due to
oversmoothing. Explanation: Dirichlet energy enforces uniform smoothness along graph edges and
treats all feature dimensions equally while Mahalanobis energy introduces a learnable matrix M
that selectively weights feature dimensions, emphasizing informative directions while still penaliz-
ing oversmoothing. The key advantage of Mahalanobis energy lies in the learnable matrix M , which
preserves informative feature directions.

RQ3: Compared to other state-of-the-art methods, does MGAT achieve competitive or superior
performance? Table 2 compares MGAT with state-of-the-art baselines: MGAT outperforms DGN
(Cora: 85.1% vs 84.2%), DropEdge, and other methods. Explanation: While other baselines ei-
ther focus solely on stochastic regularization (DropEdge), normalization (PairNorm, BatchNorm),
or architectural adjustments (DGN), MGAT ensures robust feature extraction, stability across net-
work depths, and effective prevention of oversmoothing, enabling MGAT to achieve superior and
consistent performance relative to prior methods.
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A APPENDIX

Proof of Proposition 4.3.

1. Suppose µM (X) = 0.

µM (X) = ∥L1/2XM1/2∥F = 0 =⇒ L1/2XM1/2 = 0.

Since M ≻ 0, its square root M1/2 is invertible. Multiplying both sides on the right by
(M1/2)−1 gives:

L1/2X = 0.

The kernel of L1/2 is equal to the kernel of L. For a connected graph, it is well-known that

ker(L) = span{1},

where 1 ∈ RN is the all-ones vector. Therefore, all rows of X are identical:

Xi = (α1, . . . , αC)
⊤ = c ∈ RC , ∀i ∈ V.

Conversely, if Xi = c for all i, then X = 1c⊤. Since L1/21 = 0,

L1/2XM1/2 = L1/21c⊤M1/2 = 0,

so µM (X) = 0.

2. For any X,Y ∈ RN×C :

µM (X + Y ) = ∥L1/2(X + Y )M1/2∥F = ∥L1/2XM1/2 + L1/2YM1/2∥F .

By the triangle inequality of the Frobenius norm:

∥L1/2XM1/2 + L1/2YM1/2∥F ≤ ∥L1/2XM1/2∥F + ∥L1/2YM1/2∥F .

Hence,
µM (X + Y ) ≤ µM (X) + µM (Y ).

Proof of Theorem 4.4.

We have

µM (X(t+1)) =
∥∥L1/2X(t+1)M1/2

∥∥
F
=

∥∥L1/2P (X(t))X(t)WM1/2
∥∥
F
.

By the operator–Frobenius inequality,

µM (X(t+1)) ≤
∥∥L1/2P (X(t))

∥∥
2

∥∥X(t)WM1/2
∥∥
F
.

Next, ∥∥L1/2P (X(t))
∥∥
2
=

∥∥L1/2P (X(t))L+1/2L1/2
∥∥
2

≤
∥∥L1/2P (X(t))L+1/2

∥∥
2
∥L1/2∥2.
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Absorbing ∥L1/2∥2 into α, we obtain∥∥L1/2P (X(t))
∥∥
2

≤ α.

Similarly, ∥∥X(t)WM1/2
∥∥
F

≤ ∥W∥2 ∥X(t)M1/2∥F .
Since

∥X(t)M1/2∥F =
∥∥L+1/2L1/2X(t)M1/2

∥∥
F

≤ ∥L+1/2∥2 µM (X(t)),

we can absorb ∥L+1/2∥2 into γ and obtain

µM (X(t+1)) ≤ αγ µM (X(t)).

Iterating this inequality proves the contraction. As t → ∞, if αγ < 1, the Mahalanobis energy
vanishes.
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