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Abstract

To combat the memory bandwidth-bound nature of autoregressive LLM
inference, previous research has proposed the speculative decoding frame-
work. To perform speculative decoding, a small draft model proposes
candidate continuations of the input sequence that are then verified in
parallel by the base model. One way to specify the draft model, as used in
the recent Medusa decoding framework, is as a collection of lightweight
heads, called draft heads, that operate on the base model’s hidden states. To
date, all existing draft heads have been sequentially independent, meaning
that they speculate tokens in the candidate continuation independently
of any preceding tokens in the candidate continuation. In this work, we
propose Hydra heads: a sequentially-dependent drop-in replacement for
standard draft heads that significantly improves the accuracy of draft head
speculation. We further explore the design space of Hydra head training
objectives and architectures, and propose a carefully tuned Hydra head
recipe, which we call Hydra++, that improves decoding throughput by up
to 1.31x and 2.70x compared to Medusa decoding and autoregressive de-
coding respectively. Overall, Hydra heads are a simple and well-motivated
intervention on standard draft heads that significantly improve the end-to-
end speed of draft head-based speculative decoding. We make our code
publicly available at https://github.com/zankner/Hydra.

1 Introduction

As transformer-based large language models (LLMs) have entered widespread deployment,
research into improving the inference efficiency of these models has become increasingly
important. While LLM pretraining achieves high hardware utilization by operating over
the entire input sequence in parallel, the efficiency of LLM inference has traditionally been
constrained by the need to generate tokens one by one in sequence. On current GPU
hardware, the serial nature of LLM decoding makes it a memory bandwidth-bound problem,
with throughput limited by the movement of large weight matrices from GPU main memory
to local registers. As each generation step requires accessing the entirety of the model’s
weights, but only involves a comparatively small number of FLOPs (processing just one
token for each sequence in the batch), LLM decoding tends to under-utilize the GPU'’s
abundant capacity for floating-point computation.

To mitigate the memory bandwidth bottleneck in sequential LLM decoding, recent research
has investigated accelerating LLM inference through speculative decoding. Speculative de-
coding uses a smaller draft model to propose a multi-token candidate continuation of the
current sequence on each generation step. The original LLM then verifies all tokens in the
candidate continuation in parallel, appending some subset of them to the sequence and
discarding the rest. Because each verification step requires only a single forward pass
through the original LLM, but may result in more than one token being appended to the
sequence, speculative decoding can accelerate decoding by reducing the amount of weight
data movement required per generated token.
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A critical component in any application of speculative decoding is the choice of draft
model, which must be cheap enough such that the cost of querying it does not negate the
efficiency gains from querying the base model in parallel, but accurate enough such that
the acceptance rate in the verification step remains high. While the draft models used in
speculative decoding have traditionally been stand-alone, independently-trained language
models, Stern et al|(2018) and |Cai et al.| (2024) instead investigate structuring the draft
model as a collection of lightweight heads operating on the base model’s semantically rich
hidden states. We refer to the lightweight heads that operate on the original hidden states
of the LLM as draft heads. In the draft head paradigm, each draft head is responsible for
predicting the identity of a token a fixed number of steps into the future.

All draft heads to date make predictions only as a function of the base model’s hidden
states from previously verified tokens, making them unaware of earlier tokens in the current
candidate continuation. Because of the strong statistical dependencies between neighboring
tokens in language, this sequential independence limits the prediction accuracy of existing
draft head architectures. In this work, we propose Hydra heads: a drop-in sequentially
dependent alternative to standard draft heads that improves token prediction accuracy and
thus end-to-end decoding throughput. To construct sequentially dependent draft heads,
we set each head’s output to be a function of the candidate continuation so far. This simple
design change leads to significantly better speculation quality as compared to standard draft
heads, increasing the average candidate continuation acceptance length by up to 0.46 tokens.
This improvement in speculation quality corresponds to a significant improvement in
decoding speeds, with Hydra head-based decoding achieving up to 1.1x better throughput
than Medusa decoding.

In addition to proposing Hydra heads, we further explore the design space of their training
objective and architecture. We find that extending the depth of the draft head MLPs, using
a teacher distillation objective, and adding an extra transformer decoder layer to better
encode the already verified sequence achieves up to 1.31x and 2.70x higher throughput
than standard Medusa decoding and regular autoregressive decoding respectively.

Finally, we investigate Hydra and Hydra++ decoding in alternative inference settings. The
first setting that we consider is batched inference. The next setting we examine is non-
greedy decoding. We show that by using typical acceptance sampling (Cai et al.,2024), a
non-distribution-preserving verification criterion, Hydra++ can achieve the same quality
generations as non-greedy sampling of the base model while not compromising acceptance
length.

Contributions In this work, we present the following contributions:

* We analyze the standard formulation of draft heads and observe that they are se-
quentially independent during decoding. We propose Hydra heads as a sequentially
dependent alternative and show that introducing sequential dependence increases
end-to-end decoding throughput by up to 1.10x as compared to Medusa decoding
(Section|6.1)).

* We explore the design space of Hydra heads to produce a draft head recipe Hy-
dra++ that further increases decoding throughput by up to 1.31x and 2.70x over
Medusa decoding and standard autoregressive decoding respectively (Section 3.1}
Section|[6.1).

* We analyze the performance of Hydra decoding in the batched inference setting,
demonstrating that it achieves better throughput than Medusa at all batch sizes
evaluated (Section[6.2)).

* We demonstrate that sampling using the typical acceptance criterion allows Hy-
dra++ to achieve the same quality as sampling from the base model while preserving
the throughput benefits of speculation (Section 6.3).
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2 Background

Speculative decoding. Speculative decoding (Stern et al |2018; [Leviathan et al., 2023} |Chen
et al.;[2023) provides a general framework for efficient LLM decoding. Speculative decoding
generates text by combining an expensive, high-quality base model with a cheaper, lower-
quality draft model. For each decoding step, the draft model generates one or more candidate
continuations, each of which extends several tokens into the future. We then use a single
forward pass through the base model to verify these candidate continuations in parallel
based on some verification criterion. The verification process determines which candidate
tokens will be appended to the sequence and which will be discarded.

In the simplest form of speculative decoding, the draft model only generates a single
candidate continuation on each generation step. Letting x<; be the sequence that has been
generated so far and fixing some speculation length K, we query the joint distribution of the
draft model pgrat(Xt+1,-- -, Xt+k | X<¢) to generate a candidate continuation %1, ..., £t k.
We then invoke the base model on the candidate continuation to compute the conditional
probabilities: ppase(£1+1 | X<t),-- -, Poase (Rt4k | X<t, Re41, ..., Xe1k—1); querying the base
model is done in a single forward pass. These base model probabilities become the input
to the verification criterion, which selects some prefix £;11, ..., ft+naccept of the candidate

continuation to accept, discarding the rest.

Common verification criteria for use with speculative decoding include rejection resampling
(Leviathan et al., 2023; |(Chen et al., 2023), which guarantees that the output distribution
matches the base model’s distribution, and greedy acceptance (Stern et al.|[2018), in which
candidate tokens are accepted if they match the base LLM’s most likely prediction. For all
verification criteria in common use, using a draft model whose predictions more accurately
match those of the base model will result in increased average acceptance lengths, and
consequently greater decoding throughput.

Tree decoding. Speculative decoding can be generalized to settings in which the draft
model proposes a tree of candidate continuations, rather than a single candidate continu-
ation (Miao et al., 2023} Spector & Re, [2023} Cai et al., 2024). Nodes of this candidate tree
correspond to candidate tokens, and the children of a node represent different possible
tokens that might follow it in the continuation. Thus, each path along the tree represents
a different candidate continuation. To populate a node with m children, we query the
draft model for the m most likely tokens that might follow it, conditioned on the sequence
generated so far and the candidate continuation defined by the path to the node from the
root of the tree. The children at each node are sorted in descending order of conditional
probability. Typically, static trees are employed where the structure of the tree is fixed at
design time, meaning that the number of children m at each position in the tree does not
depend on any runtime data.

After populating the candidate continuation tree using the draft model, we compute the
conditional probabilities of all nodes in the tree using a single forward pass through the
base model. We query the base model for these conditional probabilities in a single forward
pass by packing all of the tree’s tokens into a single input sequence, and manipulating the
attention mask to ensure that each token can only attend to its parents in the tree. The
conditional probabilities obtained from querying the base model can then be used as input
to the same verification criteria that are used in the single-candidate setting.

Lightweight heads as a draft model. While typically the draft model used in speculative
decoding is an independently-trained language model, Stern et al.|(2018) define the draft
model as a collection of lightweight heads, which we refer to as draft heads, that take as
input the base model’s hidden state. Taking K to be the maximum speculation length, the
draft model used by Stern et al.|is defined by a collection of small MLPS fqyaft 1, .-, fdraft K
responsible for predicting the tokens 1, .. ., K steps into the future. The predictions of these
heads are statistically independent of each other; letting x<; denote the sequence generated
so far, and letting ;1 denote the last-layer hidden state of the token most recently processed
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Figure 1: A visualization of generating a candidate continuation using existing draft heads
and using our Hydra draft heads. Lines going into a head represent inputs to the draft head.
While the only input to existing draft heads is the base model’s last-layer hidden state for
the most recently processed token, Hydra heads leverage earlier tokens in the candidate
continuation as additional inputs.

by the base model, [Stern et al. compute their draft predictions on each generation step as

Paraft(Xt+i | X<t+i-1) = faratti(he-1)
Figure [l] provides a visualization of candidate continuation generation using draft heads.

Medusa decoding. Medusa decoding (Cai et al.,2024) is a particular configuration of the
techniques listed above. Specifically, it is speculative decoding with a tree of candidates,
where the draft model is a collection of draft heads.

While Medusa decoding is agnostic to the architecture used for each draft head fq4¢ ;,(Cail
et al.|(2024) choose to use a single-layer MLP with a residual connection.

3 Hydra Heads

The key observation behind Hydra heads is that there is no sequential dependence in stan-
dard draft heads, i.e., each draft head makes predictions independently. A draft model de-

fined by a collection of draft heads predicts the identity of the it" future token as farafti(he—1).
However, h;_1 is only a function of the already generated sequence x<;_1. Thus, when
using draft heads:

Paratt(Re+ilX<t, R4, - - Ri4ic1) = Parat(Rr4ilx<i—1)
Intuitively, this means that there is no sequential dependence between draft heads: when
we use a draft head to speculate the i token in a candidate continuation, it is unaware of
the 14,24, .., (i — 1)"" tokens in the candidate continuation.

We propose Hydra heads, which are sequentially-dependent draft heads. Hydra heads are
sequentially dependent as they are a function of both the base model’s hidden state up to
time t as well as the input embeddings of the tokens sampled by previous Hydra heads.
Namely, the draft model is now a collection of Hydra heads { fHydra,1/ -+ fHydra, x} and the

i" future token’s distribution is parameterized by this collection of Hydra heads as:
Pdraft(Revilx<t, Rev1, - Retim1) = frydrai(he—1, Xt Res1, o Re4i1)

where h;_1 is again the base model’s hidden state of the final token in the already decoded
sequence. The sequential dependence of Hydra heads v.s. standard draft heads is visualized
in Figure [l We use the term Hydra Decoding to refer to speculative decoding with tree
candidates and Hydra heads.
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As with Medusa, the framework of Hydra decoding is compatible with any choice of
model architecture used to implement fpyqra ;- The most basic Hydra head architecture we
examine is simply a single hidden layer MLP whose input is the hidden state /;_; concate-
nated with the input embeddings of the preceding tokens in the candidate continuation
Ex,, Et,.,, - Ez,,; ,, where the concatenation is performed along the feature dimension.

3.1 Hydra++

With the goal of further improving draft heads, we investigate draft head training objective
and architecture improvements orthogonal to the introduction of sequential dependence.
We detail this search for the optimal draft head recipe in Appendix|A} Ultimately, we find
that three changes are beneficial:

1. Scaling: We extend the MLP of each head to 4 layers. In our experiments we found
that scaling to 5 layers and beyond provides no additional benefit.

2. Distillation: Following (Zhou et al., 2024), we train on a self-distillation objective
where the draft heads are trained to predict the base model’s distribution for a given
token instead of the true token.

3. Prefix Attention: To improve our draft model’s ability to condition on information
from across the entire context, as opposed to just the most recently-verified token,
we extend the base model with an additional self-attention decoder layer whose
only role is to produce more informative hidden states for use as input to the draft
model. This added layer is only queried once per decoding step.

We refer to the version of Hydra that leverages all of the above changes as Hydra++.

4 Discovering performant decoding trees

Similarly to Medusa, we always perform tree-based speculative decoding with a static tree
topology computed offline. Computing a performant tree topology for a given inference
setting is nontrivial, because different settings call for different tree topologies; the choice of
base model, draft model, batch size (discussed more in Section[6.2), and hardware can all
affect the relative performance of different trees.

We derive our decoding trees in a data-driven manner using a two-stage algorithm: first, we
find a sequence of “proposal” trees T, ..., Ty with sizes 1,. .., N such that each proposal
tree approximately maximizes expected acceptance length given its size; then, we choose
the optimal tree size for a given setup by empirically measuring the end-to-end throughput
achieved using each T;, and selecting the tree which maximizes throughput.

To determine the sequence of proposal trees T, ..., Ty, we follow a simple iterative greedy
procedure. We first initialize Tj to the trivial one-node tree. Then, on each step i, we simulate
speculative decoding using T;_1 on a corpus of sample text, and identify the child of an
existing node that would yield the greatest improvement in expected acceptance length if
added to the tree. We then add this node to T;_; to form the tree T;, and repeat.

After computing T7, ..., Ty, we measure the throughput of speculative decoding using each
T; in our desired inference configuration (i.e., batch size, hardware, etc.), and select the tree
which empirically maximizes decoding throughput.

In practice, we set the maximum tree size as N = 100, and use a 100-question subset of the
Alpaca dataset (laori et al.,|2023) to gather our simulated acceptance length and throughput
statistics. We provide more details on the trees discovered for each decoding strategy and
batch size in Appendix [B}

5 Shared training and evaluation details

In this section, we detail the elements of our training and evaluation procedure that are
common across all our experiments.
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Hydra vs. Medusa Decoding
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Figure 2: Performance comparison on MT-Bench of Hydra++, Hydra, Medusa, and the
baseline of autogressive decoding. Hydra heads increase decoding throughput and average
acceptance length compared to all other methods.

Models. As our base model we build on the Vicuna family of models (Chiang et al.,[2023),
which are conversation-finetuned LLaMa models (Touvron et al.,[2023). We consider 7B,
13B, and 33B parameter Vicuna models.

Training. While draft heads can be trained in conjunction with the base model, in this
work we only study base models with frozen weights. All models are trained on the
ShareGPT dataset (ShareGPT), 2023), a collection of multi-turn conversations. Training
is performed on 8x NVIDIA A100-80GB GPUs and conducted using the HuggingFace
Trainer (HuggingFace). We use a cosine learning rate schedule with warmup (Loshchilov &
Hutter,[2017) and a peak learning rate of 1e-3, and we use the AdamW optimizer (Loshchilov
& Hutter, 2019) with parameters 1 = 0.9, 8, = 0.999. All Hydra and Medusa heads are
trained for one epoch, as we observed that performance for those models saturates at one
epoch and fails to improve with further training. All Hydra++ heads are trained for ten
epochs.

Evaluation. All evaluations are performed on MT-Bench (Zheng et al., 2023), a multi-turn
conversation benchmark. Unless otherwise specified, experiments are conducted using
speculative decoding with the greedy verification criterion; since there is no stochasticity
in the greedy sampling procedure, we do not report the quality of generations as they are
identical to the base model. Instead, we report the average throughput, which is the number
of tokens generated per second, and the average acceptance length, which is the number of
tokens generated per decoding step, to evaluate the speed and quality of Hydra decoding.
We benchmark all 7B and 13B parameter experiments on a single A100-40GB GPU and all
33B parameter experiments on a single A100-80GB GPU.

6 Results

In this section we investigate the performance characteristics of Hydra decoding. We
examine the effect of draft model architecture on throughput and latency across a range of
batch sizes, and also investigate the effect of draft model architecture on generation quality
when decoding with non-distribution-preserving verification criteria.

6.1 Batch-size-1 decoding throughput experiments

To assess the effect of our interventions on draft model prediction accuracy (and thus
decoding throughput), we compare the batch-size-1 decoding throughput achievable using
Medusa draft heads, our basic Hydra draft heads, and our enhanced Hydra++ draft heads.
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Effect of Batch Size on Hydra and Medusa

6-

N

Baseline
—e— Medusa
N —e— Hydra

Hydra++

Avg. Throughput (Tok / S)

Avg. Latency (S / User)

50- b

4 4
Batch Size Batch Size

Figure 3: Performance comparison on MT-Bench of Hydra++, Hydra, Medusa, and the
baseline of autogressive decoding for batched inference. Hydra heads increase decoding
throughput for all batch sizes examined.

We also include the throughput of non-speculative autoregressive decoding as a baseline.
We summarize the results of these decoding throughput experiments in Figure

We find that across all base model sizes evaluated, Hydra achieves higher average accep-
tance lengths than Medusa, and Hydra++ achieves higher acceptance lengths than Hydra,
leading to significant improvements in decoding throughput in both cases. Specifically,
Hydra heads achieve a 2.36x,2.17x, and 2.15x improvement in throughput as compared
to autoregressive decoding for the 7B, 13B, and 33B parameter base models respectively.
This translates to a throughput improvement over Medusa decoding of 1.11x,1.10x, and
1.11x for the 7B, 13B, and 33B parameter base models respectively. Furthermore, Hydra++
is even more performant and achieves throughput improvements compared to autoregres-
sive decoding of 2.70x,2.50x, and 2.53x which translates to throughput improvements
over Medusa of 1.27x,1.27x, and 1.31x for the 7B, 13B, and 33B parameter base models
respectively. These results demonstrate that making draft heads sequentially dependent
significantly improves their prediction accuracy, and thus their decoding speed. Moreover,
these results show that any overheads introduced by passing from Hydra to the more
expressive Hydra++ architecture are more than compensated for by the increase in accuracy
that those changes enable. We further investigate draft head overheads in Appendix D}

6.2 Speculative decoding for batched inference

Speculative decoding techniques are typically evaluated in the batch-size-1 setting. When
there is only a single sequence in the batch, decoding is extremely memory bandwidth-
bound, and large numbers of FLOPs can be consumed in the verification step of speculative
decoding “for free” without significantly increasing the latency per decoding step. However,
at larger batch sizes it is easier for verification to become compute-bound, and the number
of tokens verified per sequence per step must be more tightly controlled to avoid saturating
the GPU’s compute capacity and entering the regime where speculative decoding becomes
unprofitable.

To assess whether or not the performance gains from Hydra and Hydra++ observed at batch
size 1 continue to hold in the batched inference regime, we evaluated the throughput and
latency of Medusa, Hydra, and Hydra ++ at batch sizes {1,2, 4, 8} using greedy verification
and a 7B base model. We derived the decoding tree used for each draft model and batch
size configuration using the algorithm described in Section [4}

Results We plot the relationship between batch size, throughput, and latency using the 7B
base model in Figure (3] While we find that all speculative decoding techniques outperform
standard autoregressive decoding for all batch sizes examined, the relative improvement
of speculative decoding decreases as the batch size increases. Specifically, for batch size 1
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Figure 4: Average speculation length and MT-bench score as a function of the posterior
threshold for typical acceptance-based decoding. Hydra++ achieves comparable generation
quality to the base model while preserving acceptance length.

Hydra++ has a 2.70x improvement in throughput compared to standard decoding, but this
gain decreases to 1.63x at batch size 8. These results suggest that while the gain from Hydra
decoding is less significant at larger batch sizes, Hydra decoding is still an improvement
over both Medusa and standard decoding at larger batch sizes.

6.3 Typical acceptance sampling

So far we have used the greedy acceptance criterion, where candidate tokens are only
accepted if they match the greedy next-token prediction of the base LLM. We now evaluate
the impact of Hydra decoding on throughput and quality using the non-greedy, non-
distribution-preserving typical acceptance verification criterion introduced by Cai et al.| (2024).

Typical acceptance criterion. The purpose of the typical acceptance verification criterion
is to sample more diverse and creative sequences than greedy acceptance, while preserving
the efficiency benefits of speculative decoding by avoiding the degradation in acceptance
rate observed when employing rejection resampling (Gante| [2023} |Spector & Re| [2023).

The typical acceptance criterion specifies that a speculated token £;; is accepted if:

Pbase (ﬁtﬂ' |x§tr Rep1soor Reyio1 T) > min(e, & exp(fH(pbase(' |xStr X1, Xppio1s T))))
where € is known as the posterior threshold, a is known as the posterior alpha, T is the sampling
temperature, and H(-) is the entropy. Both € and « are hyperparameters to be tuned. For
further analysis of typical acceptance, we refer the reader to [Cai et al.|(2024).

Setup. We evaluate how different settings of € and « affect both acceptance length and
generation quality. Following |Cai et al|(2024), we evaluate typical acceptance on the
“Writing” and “Roleplay” categories of MT-Bench, and report the average LLM-as-a-judge
score to quantify generation quality (Zheng et al.|[2023). We fix the sampling temperature
T = 0.7, vary the posterior threshold ¢ € {0.05,0.1,0.15,0.2,0.25}, and set the posterior
alpha as o = /€.

Results. We plot how varying the posterior threshold affects both the average speculation
length and the quality of the resulting generations in Figure |4, For Medusa, Hydra, and
Hydra++, increasing the posterior threshold slightly decreases the average speculation
length, but for all posterior thresholds examined, Hydra and Hydra++ have a significantly
higher average acceptance length than Medusa. While neither Medusa nor Hydra is able to
achieve the same quality as random sampling from the base model for any of the posterior
thresholds considered, for e = 0.15 Hydra++ achieves the same generation quality as
sampling directly from the base model. These results demonstrate that the improved head
quality achieved from Hydra++ is necessary to match the generation quality of the baseline
for non-greedy inference while still maintaining a high average acceptance length.
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7 Related Work

Accelerating LLM inference is an area of active research. The technique our work is based
on, speculative decoding, was first proposed by |[Leviathan et al.| (2023) and [Chen et al.
(2023), and anticipated in a restricted form by |Stern et al.|(2018). Recent work has explored
alternatives to standard draft models such as using retrieval mechanisms to propose con-
tinuations (He et al., 2023), and reformulating language model sampling in terms of Jacobi
iteration (Fu et al.,|2023). Another direction of speculative decoding research has investi-
gated verifying a tree of candidate continuations rather than a single continuation (Miao
et al.,[2023; |Spector & Re} 2023} |Cai et al., 2024). In addition to tree decoding, Spector & Re
(2023) also propose extending the basic speculative decoding framework by constructing
a hierarchy of draft models, with each aiding speculative decoding for the next. Other
contemporary directions of research on speculative decoding include online training of
the draft model based on user queries (Liu et al., 2023a) and knowledge distilattion based
alignment of the draft model (Zhou et al 2024). We would also like to acknowledge the
concurrent work EAGLE (Li et al.,[2024) which is the work most similar to ours. We discuss
EAGLE in Appendix C| We would also like to acknowledge|Zhang et al.| (2024); Wertheimer
et al.|(2024) who concurrently investigated sequentially dependent draft heads.

Another direction for accelerating LLM inference is minimizing the memory impact of
LLMs. A common technique is to compress the LLM either by quantizing its weights or
pruning the features of the model (Dettmers et al) 2022 Xiao et al.| 2023} |[Frantar et al.,
2023} [Frantar & Alistarh) [2023} [Liu et al., 2023b} |Alizadeh et al., 2024} [Sheng et al.,[2023).
To decrease the memory footprint of the KV-cache, [Shazeer|(2019) and |Ainslie et al.| (2023)
introduce multi-query and grouped-query attention respectively. These works reduce the
size of the KV-cache by using fewer key and value heads as compared to the number of
query heads in attention. Another method for decreasing the memory footprint of LLMs is
knowledge distillation, where a smaller student network is trained to be as accurate as the
original larger model (Sanh et al.,2020). These memory-reduction and inference acceleration
techniques are orthogonal to, and potentially complementary with, speculative decoding.

Increasing the batch size at which inference is performed is another technique for improving
LLM inference throughput. Multiple works investigate better scheduling for batched
inference and improved management of shared resources during batched inference (Yu
et al.,[2022; Kwon et al.,[2023).

8 Conclusion

In this work, we systematically examine draft head-based speculative decoding and propose
methods for improving the speculation quality of draft heads. We make the observation that
previously-proposed draft heads are sequentially independent, leading to poor prediction
quality. To fix this problem, we propose Hydra heads: a drop-in, sequentially-dependent
replacement for standard draft heads. Hydra heads are made sequentially dependent by
taking as input the base model’s input embeddings of tokens in the candidate continuation.
This simple change leads to significant improvements in decoding speed: Hydra decoding
achieves up to a 1.11x improvement in end-to-end throughput as compared to Medusa
decoding. We also investigate different training objectives and architectures for Hydra
heads, ultimately proposing a Hydra head recipe we call Hydra++ that increases decoding
throughput by up to 1.31 x and 2.70x as compared to Medusa and autoregressive decoding
respectively. Finally, we demonstrate that Hydra++ continues to confer benefits when
performing batched inference, and that by using typical acceptance sampling Hydra++ can
achieve the same quality as non-greedy sampling of the base model without compromising
accepted continuation length. Draft head based speculative decoding is an efficient and
simple alternative to the standard speculative decoding paradigm, and our work takes an
important step towards maximizing the performance of decoding with draft heads through
the construction of sequentially dependent draft heads.
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Exploring the Training Objective
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Figure 5: Performance comparison on MT-Bench of different Hydra head training objectives.
Training based on a teacher loss leads to the most performant Hydra heads.

A Exploring the Design Space of Hydra Heads

In this section we explore modifications to the training procedure and architecture of Hydra
heads.

A1 Exploring the Training Procedure of Hydra Heads

Adding noise to the input sequence. [Jain et al|(2024) demonstrate that adding noise
to the input embeddings of an LLM during finetuning can improve the resulting model’s
performance. Specifically, they sample noise € € RE*L* ~ Uniform(—1,1), scale it by a
factor “nﬁ, and then add the scaled noise to the input embeddings, where B is the batch

size, L is the sequence length, d is the model dimension, and apejse is a hyperparameter
that controls the strength of the noise. We consider whether applying such noise to the
hidden states of the base LLM can also improve the performance of the Hydra heads. For
our experiments, we set apgige = 75.

Distilling the base LLM. In the standard Medusa decoding framework, the draft heads
are trained to predict the text of the underlying fine-tuning dataset. We question whether
this is the optimal training objective as, during inference, the goal of the draft heads is only
to predict the token which the base LLM would have autoregressively predicted. Following
Zhou et al.| (2024), we investigate using a teacher loss where each Hydra head’s training loss
is the cross entropy between its predicted distribution and the base model’s next token
distribution.

A.1.1 Results

To test how each of our training interventions affects Hydra head quality, we evaluate both
interventions separately as well as jointly. We compare decoding using Hydra heads trained
with the proposed interventions and decoding using Hydra heads trained in the standard
manner. We report the decoding throughput as well as the average acceptance length for
each intervention in Figure[5 We find that the most performant intervention is to just train
on the teacher loss without any additional embedding noise. Specifically, decoding with
heads trained with just the teacher loss achieves a 1.04x improvement in throughput for
Vicuna 7B compared to decoding with vanilla Hydra heads. Interestingly, we find that
any addition of noise to the input sequence degrades the acceptance length and thus the
decoding speed. Based on these result, we conduct all future experiments using the teacher
loss instead of the next token prediction loss.
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Exploring the Head Architecture
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Figure 6: Performance comparison on MT-Bench of the standard MLP only Hydra head
architecture and the PrefixMLP head architecture, which introduces an additional decoder
layer. The PrefixMLP Hydra head architecture outperforms a standalone MLP Hydra head.

A.2 Exploring Alternative Hydra Head Architectures

Hydra-specific prefix attention. For MLP-based Hydra heads, the only representation of
the already-generated sequence passed to the heads as input is the base model’s hidden
state corresponding to the most recently processed token. However, as the base model is
trained independently of the Hydra heads, it is not obvious whether sufficient information
regarding the context is encoded in the last token’s hidden state. To better aggregate relevant
information over the entire context for use by the Hydra heads, we propose to extend the
base LLM with an additional decoder layer which is used solely to produce better input
representations for the draft model. While each Hydra head is still a single layer MLP, they
each now take as input the additional decoder layer’s representation of the final token in
the already generated sequence. As the additional decoder layer is trained in conjunction
with the Hydra heads, it can learn what information from the already generated sequence is
useful for the Hydra heads. We note that all Hydra heads share the same additional decoder
layer hidden state, meaning the additional decoder layer is only queried once per Hydra
decoding step. We refer to the resulting Hydra head architecture consisting of an additional
decoder layer along with the standard MLP as the PrefixMLP Hydra head architecture.

A.2.1 Results.

To test whether adding an additional Hydra-specific decoder layer improves modelling
performance, we compare decoding with our proposed PrefixMLP architecture to decod-
ing using the standard MLP-only Hydra head (Figure[6). We find that the decoding with
PrefixMLP heads improves the average acceptance length by 1.12x which leads to an im-
provement in average decoding throughput of 1.08 x. This result suggests that aggregating
context from the generated sequence in a Hydra head aware manner improves Hydra
decoding performance.

B Discovering Performant Decoding Trees

We plot the results from searching for the optimal tree at each batch size investigated in
Figure[7| Figure|8| and Figure|9|for Medusa, Hydra, and Hydra++ decoding respectively.
For all decoding strategies evaluated, as the batch size increases the size of the tree which
maximizes throughput decreases as well.

C Eagle Decoding

Concurrently to our work, [Li et al|(2024) have proposed the EAGLE decoding framework.
Similar to existing speculative decoding techniques based on draft heads, the draft model in
EAGLE leverages the base model’s hidden states as input. However, EAGLE does not use a

14



Published as a conference paper at COLM 2024

Medusa 7b Decoding Tree Performance

Batch Size 1 e Batch Size 4
pAg Y& Best Tree Batch Size 1 Y Best Tree Batch Size 4

350 e Batch Size 2 Batch Size 8
Y& Best Tree Batch Size 2 Y% Best Tree Batch Size 8

.o'*o"."-o
o ooooo...

Throughput (Tok / S)

...00.00'*00000.-00.0.-...
°® .oooo.oo........%::

0 20 4 60 8 100
Nodes in Tree

Figure 7: Results from determining the optimal decoding tree for Medusa with a 7B base
model. Each point represents the throughput measured when using the tree that maximizes
the expected accepted length for a given tree size. For each setting considered, the point
marked by a star denotes the tree size that achieves the greatest throughput.

Hydra 7b Decoding Tree Performance
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Figure 8: Results from determining the optimal decoding tree for Hydra with a 7B base
model. Each point represents the throughput measured when using the tree that maximizes
the expected accepted length for a given tree size. For each setting considered, the point
marked by a star denotes the tree size that achieves the greatest throughput.

collection of draft heads and instead uses a singular draft head as the draft model. Similar
to our work, EAGLE introduces sequential dependence to their draft head. Concretely, the
EAGLE draft head is structured as a transformer decoder layer which takes as input both the
hidden states and input embeddings of the entire sequence. During each step of generating
a candidate continuation, the EAGLE draft model not only predicts the next token in the
continuation, but also predicts an estimate of the hidden state that the base model would
have computed for that candidate token. EAGLE then extends the input to its draft head
with both the input embedding of the predicted token, as well as the estimated hidden state.
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Hydra++ 7b Decoding Tree Performance
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Figure 9: Results from determining the optimal decoding tree for Hydra++ with a 7B base
model. Each point represents the throughput measured when using the tree that maximizes
the expected accepted length for a given tree size. For each setting considered, the point
marked by a star denotes the tree size that achieves the greatest throughput.
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Figure 10: Comparison of Hydra++ and EAGLE. We find that both draft heads achieve
comparable throughput.

Li et al.|(2024) demonstrate that EAGLE decoding provides a speedup relative to Medusa’s
sequentially-independent draft heads. Given that EAGLE was developed entirely indepen-
dently of Hydra, we believe that Hydra and EAGLE, taken together, constitute valuable
evidence that the benefits of sequential dependence in speculative decoding are robust and
replicable.

We independently train and evaluate EAGLE draft heads using Vicuna 7B as the base model.
We compare the throughput and acceptance length of EAGLE and Hydra++ in Figure
We find that while EAGLE achieves a higher average acceptance length, both EAGLE and

Hydra++ achieve comparable decoding throughput. We attribute this to the added overhead
of EAGLE draft heads, as they require querying a full self-attention block for each position
in the candidate continuation, whereas Hydra++ only queries an additional self-attention
block once per decoding step, with the rest of the computation in the Hydra++ draft model
being done by shallow MLPs.
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Model Prefix Attention Head1 Head2 Head3 Head4

Medusa - 0.3 0.3 0.3 0.3
Hydra++ 1.2 0.6 1.4 1.2 0.7

Table 1: Breakdown of overhead during speculative decoding in milliseconds. We report
the time spent performing prefix attention and decoding for each speculative head. As
can be seen, Hydra decoding incurs greater overhead than Medusa decoding. Despite the
overhead, Hydra decoding leads to end-to-end throughput improvements over Medusa.

Model MT Chat Translation Summary QA  Math RAG Avg.

Medusa 2.00x 1.68 x 1.59 x 1.67x 198x 154x 1.75x
Hydra++ 2.52x 2.02x 1.89x 2.08x 259x 1.87x 2.17x

Table 2: Relative improvement in decoding throughput over standard autoregressive
decoding for both Medusa and Hydra++ on the SpecBench evaluation suite. We find that
across all task categories, Hydra++ achieves significantly better throughput than Medusa
decoding.

D Analysis of Hydra Head overheads

To better understand the efficiency gains from Hydra decoding, we analyze the overhead in-
troduced by both: 1) the additional decoder layer from prefix attention and 2) the sequential
dependence of Hydra heads. Namely, to introduce sequential dependence, Hydra heads
additionally take as input the embeddings of the preceding speculated tokens. As such,
the first layer of a Hydra head has a greater number of input features than a Medusa head,
and the number of input features grows for later Hydra heads. We report the average time
spent performing prefix attention and the time spent in each speculative decoding head
for both Medusa and Hydra++ at the 8B model scale with batch size one in Table[l} To
contextualize the time spent performing speculative decoding, the average time to perform
a decoding step through the base model is 28 milliseconds. While Hydra decoding incurs
additional overhead as compared to Medusa, Hydra still achieves an end-to-end throughput
improvement as it improves the average acceptance length.

E Evaluation on SpecBench

In addition to MT-Bench, we evaluate the performance of Hydra++ on the SpecBench (Xia
et al., 2024) speculative decoding evaluation suite. While MT-Bench is a chat based bench-
mark, SpecBench includes a broader range of tasks to test the performance of speculative
decoding methods in a variety of settings. Specifically, SpecBench is composed of multi-turn
chat (MT Chat), translation, summary, QA, math, and retrieval augmented generation (RAG)
tasks. We report the relative improvement in throughput over autoregressive decoding for
both Medusa and Hydra++ 8B at batch size one in Table

We find that Hydra++ significantly outperforms Medusa across all tasks in SpecBench.
Averaged across all tasks, Hydra++ achieves an improvement in throughout over Medusa of
1.24 <. The speedup we observe over Medusa on SpecBench is very similar to the speedup
measured on MT-Bench (1.27x), suggesting that the gains from Hydra++ relative to Medusa
generalize to a broad range of tasks. For both Medusa and Hydra++, the summary and RAG
tasks see the smallest improvement in throughput over the baseline. An important area for
further work is to investigate whether the speedup on these tasks can be improved from
increasing the amount of summarization and RAG data seen during training, or whether
the reduced performance from speculative decoding is inherent to the task.
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