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ABSTRACT

Image compression using Implicit Neural Representation (INR) is an emerging
technology. While it may not match the quality of cutting-edge autoencoder mod-
els, it offers two key benefits: low computational complexity and parameter-free
decoding. It also surpasses many traditional and early neural compression meth-
ods in terms of quality. In this study, we introduce a new mixed autoregressive
model (MARM) to notably decrease the decoding time for the current INR codec,
particularly in scenarios with limited computational resources. MARM includes
our proposed autoregressive upsampler (ARU) blocks, which are highly compu-
tationally efficient, and ARM from previous work to strike a balance between
decoding time and reconstruction quality. We also suggest enhancing ARU’s per-
formance using a checkerboard two-stage decoding strategy. Moreover, the bal-
ance between quality and speed can be adjusted by the ratio of different modules.
Comprehensive experiments reveal that our method significantly boosts compu-
tational efficiency while preserving image quality. It also significantly excels in
decoding acceleration when the quality requirements are more lenient.

1 INTRODUCTION

Deep learning-based lossy image compression has advanced dramatically in recent years (Ballé
et al., 2016; Ballé et al., 2018; Minnen et al., 2018a; He et al., 2022). They have made great progress
and outperformed many traditional image codecs such as JPEG (Wallace, 1992) and BPG (Bellard,
2018) on common metrics like PSNR and MS-SSIM (Wang et al., 2003). Joint backward-and-
forward adaptive entropy modeling is one of the most important techniques of these models, which
makes use of side information in forward adaptation and predictions from causal context of each
symbol in backward adaptation (Minnen et al., 2018b; Minnen & Singh, 2020; Cheng et al., 2020).
Besides neural image codecs based on autoencoder (AE), the rise of implicit neural representation
(INR) in 3D applications, which uses weights of neural network to represent information, has pro-
moted the exploration of using similar technologies in image compression. Dupont et al. (2021a)
suggest using 2D coordinates as the input for the MLP and directly outputting the RGB value of the
corresponding pixel. Taking it a step further, Ladune et al. (2022) introduce COOL-CHIC, which
utilizes trainable latent variables as the input for the MLP.

Although the AE-based methods achieve better rate-distortion performance, INR based methods
have three key advantages. The first is low-decoding complexity, which is critical to low-power
devices like smartphone or IoT devices. Leguay et al. (2023) achieve a similar BD-rate as HEVC
and nearly two magnitude less MACs (Multiplication Accumulation) compared to AE-based meth-
ods. The second is parameter-free decoding. Unlike tasks such as classification and generation, the
model output in AE-based codec is highly coupled to the model parameters. In other words, the
decoding model must have the same structure and set of parameters as the model that generated
the compressed representations in an end-to-end compression model. In real-world situations, this
character might be problematic. Suppose for some reason we update the parameters of the compres-
sion model, such as using a better training dataset. In this case, we must either recompress all of
the images that the old model compressed using the new model or save all versions of the model
(or diffs of parameters) on the decoder side. Both of these approaches are very resource-intensive.
Considering the fact that some users may never update their compression software, updating the
compression model is not feasible in practice. Since the network parameters are part of the encoded
representation, INR based methods completely circumvent the problem. The last one is INR codec
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requires no prior information about image, even the output channels can be specified per image,
which is practical for non-RGB pictures like material textures in computer graphics (Vaidyanathan
et al., 2023).

However, previous INR-based methods have some shortcomings. Low MACs in COOL-CHIC-like
methods do not necessarily imply fast decoding. The main reason is these methods use a pixel-by-
pixel fashion to decode the latents, which is suitable for modeling the distribution of pixels but is
hard to parallelize Van Den Oord et al. (2016); Van den Oord et al. (2016). Other methods, though
do not have these problems, failed to achieve good enough rate-distortion performance Dupont et al.
(2021a; 2022); Strümpler et al. (2022). Few of previous works pay attention to both quality and
decoding time, which are crucial in practical applications.

In this paper, we focus on improving decoding efficiency while keep reconstruction quality. Our
contributions include:

• We propose a parallelization-friendly autoregressive upsampler (ARU) blocks, whcich is
highly computationally efficient. The two passes checkerboard strategy in ARU promotes
the utilization of context information, improves the reconstruction quality.

• We incorporate ARU blocks and AutoRegressive Model (ARM) in COOL-CHIC to build a
a novel Mixed AutoRegressive Model (MARM). The ratio of ARU and ARM is tunable to
achieve a more flexible trade-off between quality and speed.

• We propose a new synthesis that combines MLP and CNN to further improve the recon-
struction quality.

Thorough experiments over representative datasets were performed, in which our method demon-
strates superior efficiency in computational resource-constrained environment while maintaining
competitive quality and achieves higher acceleration when relax the quality requirements.

2 RELATED WORK

2.1 NEURAL IMAGE COMPRESSION

Classical neural image compression methods extend the framework of transform encoding (Goyal,
2001). In this framework, both analysis transform ga(x;ϕg) and synthesis transform gs(ŷ; θg) use
neural network parametrized by ϕg and θg as transform functions, rather than linear transforms.
In coding procedure, latent representation y generated by ga(x;ϕg) is quantized to discrete ŷ and
losslessly compressed using entropy encoder (Ballé et al., 2016).

The process of quantifying a continues y to a finite set of discrete values will bring problems of in-
formation loss and non-differentiable characteristic. The information loss leads to the rate-distortion
trade-off

Lϕg,θg = D + λR. (1)

In training stage, the quantization is relaxed by adding standard uniform noise to make the full model
differentiable

q(ỹ|x, θg) =
∏
i

U(ỹi|yi −
1

2
, ỹi|yi +

1

2
). (2)

In the framework, the loss function equal to the standard negative evidence lower bound (ELBO)
used in variational autoencoder (VAE) training.

There are a lot of papers follow the above framework. Ballé et al. (2018) add scale hyperprior to cap-
ture more structure information in latent representation. Minnen et al. (2018a) use an autoregressive
and hierarchical context to exploit the probabilistic structure. Minnen & Singh (2020) investigate
the inter-channel relation to accelerate the encoding and decoding process. He et al. (2022) use both
inner-channel and inter-channel context models and improve the performance.

In these methods, users have to deploy the pre-trained models on both encoding and decoding sides,
which may bring problems as depicted in the previous section. But at same time, many insights
proposed by these works can also apply to INR-based methods.
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2.2 IMPLICIT NEURAL REPRESENTATION

Different from the end-to-end models that use real signals like images or videos as input, implicit
neural representation (INR) models generally use coordinates as model input. The network itself is
the compressed data representation. This idea thrives on 3D object representation. NeRF (Milden-
hall et al., 2020) synthesizes novel views of complex scenes by an underlying continuous volumetric
scene function. The function maps the 5D vector-valued input including coordination (x, y, z) and
2D viewing direction (θ, ϕ) to color (r, g, b) and density σ. MLP is used to approximate the mapping
function. To improve model performance, positional encoding is used to enhance visual quality and
hierarchical volume sampling is used to accelerate training process.

In addition to NeRF, many insights are proposed by a large body of literature. Park et al. (2019)
represent shapes as a learned continuous Signed Distance Function (SDF) from partial and noisy 3D
input data. Chen & Zhang (2019) perform binary classification for point in space to identify whether
the point is inside the shape. Then the shape could be generated from the result. Müller et al. (2022)
proposed to use multi-resolution hash encoding to argument coordinate-based representation and
achieve significant acceleration in both training and evaluation without sacrificing the quality.

INR is also used in image-relevant tasks. Chen et al. (2021) extends coordinate-based representation
to 2D images and develops a method that can present a picture at arbitrary resolution. Dupont
et al. (2021b) propose to generate parameters of the implicit function instead of grid signals such as
images in generative models to improve the quality.

Although INR-based methods have succeeded in many areas, popularizing of the technique in com-
pression is non-trivial. The main difference between compression and the tasks above is the model
size. In the INR-based compression method, model parameters are also part of the information that
needs to be transmitted, which raises the trade-off between model size and reconstruction quality.

2.3 INR BASED IMAGE COMPRESSION

In image compression, COIN (Dupont et al., 2021a) uses standard coordinate representation that
directly maps 2D coordinates (x, y) to color (r, g, b), which allows variable resolution decoding
and partial decoding. Along with architecture search and weight quantization to reduce the model
size, COIN outperforms JPEG for low bit rate. COIN++ (Dupont et al., 2022) extends the idea
of a generative INR method that compresses modulation rather than model weight to achieve data-
agnostic compression. In some dataset, COIN++ achieve significant performance improvement.

However, in universal image compression, COIN and COIN++ failed to compete with AE-based
neural image codec (Ballé et al., 2018) and JPEG for a high bit rate. Ladune et al. (2022) proposed
COOL-CHIC that uses latent along with an autoregressive decoding process to achieve comparable
RD performance to AE-based method with low complexity. Leguay et al. (2023) push the perfor-
mance forward to surpass HEVC in many conditions by leveraging a learnable upsampling module
and convolution-based synthesis.

One of the disadvantages of COOL-CHIC-like methods is the theoretical low complexity and slow
decoding process because of highly serial decoding process. We propose to replace the ARM model
in COOL-CHIC with a parallelization-friendly one to significantly reduce the decoding time.

3 METHOD

3.1 SYSTEM OVERVIEW

In image compression task, we define x ∈ NC×H×W as the H × W image to be compressed
with C channels. For common RGB pictures, C = 3. x̂ ∈ NC×H×W is the decoded image. As
shown in Fig. 1, our model includes three modules: mixed autoregressive model fψ , upsampler
fϕ and synthesis fθ. These networks are parameterized by ψ, ϕ and θ respectively. ŷ is a set of
pyramid-like multi-resolution latent variables with discrete values:

ŷ =
{
ŷi ∈ ZHi×Wi , i = 0, 1, . . . , L− 1

}
,where Hi =

H

2L−i−1
,Wi =

W

2L−i−1
. (3)

Under these notations, the image is x encoded as {ψ, ϕ, θ, ŷ}.

3



Under review as a conference paper at ICLR 2024

M
A
R
M

*

E
n
tr

op
y 

D
ec

od
er

U
p
sa

m
p
le

B
it
st

re
am

S
yn

th
es

is
*

Bitstream

E
n
tr

op
y 

D
ec

od
er

Tensor data flow

Figure 1: System architecture. The modules mark by * are proposed in this work to replace the
original ones. ψ,ϕ, θ are network parameters for MARM module, upsample module and Synthesis
module respectively. These parameters are decoded first to initialize the model. Then the MARM
module decodes latents which are integer values matrices with pyramid shapes. Upsample module
will transform these latents to a dense representation whtih shape L × H ×W . Syntesis module
transforms the dense tensor to image with (r, g, b) channels and H ×W shape. Note since the code
length of ψ, ϕ, θ is vary small, we use original notation represents both quantized and unquantized
version for simplicity.

When decompressing an image, the first step is decoding the network parameters ψ, ϕ and θ and
initializing the whole model. Then ŷ is decoded from bitstream by fψ:

ŷ = fψ(b), (4)

where b represents bitstream. Like autoencoder codec, fψ may have specific structure such as
an autoregressive network (Leguay et al., 2023). Because making use of predictions from causal
context of each symbol in this stage is very important to remove redundancy and reduce bit rate
(Ballé et al., 2018; Minnen et al., 2018a; Minnen & Singh, 2020; Cheng et al., 2020). After that, a
dense representation ẑ ∈ RL×H×W is obtained by the learnable upsampler fϕ:

ẑ = fϕ(ŷ). (5)

Finally, decoded image x̂ is reconstructed from ẑ

x̂ = fθ(ẑ). (6)

Previous work have investigated the performance of full MLP and full convolutional network as
synthesis. However the prior enforced by both structure may not apply for all input data. To enhance
the generality of method, we combine MLP and convolution layer by a residual connection, as shown
in Appendix A.

For encoding stage, different from AE-based neural image codec, implicit neural representation
based neural image codec does not require encoder. The encoding process of such methods is
the process of training neural networks. Although the coding process is different, the final target
function is the same:

L = D(x, x̂) + λR(ŷ), (7)

where D is distortion function such as mean squared error and R approximate rate with entropy.
Since the discrete value ŷ is non-differentiable, which is common to deep-learning compressor, we
use a set of real value y with same shape as ŷ and a quantization function Q in training

ŷ = Q(y). (8)

Q could be either a fixed uniform scalar quantizer (Ballé et al., 2016) or ϵ-STE quantizer (Leguay
et al., 2023) according to training stage.
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Figure 2: Network architecture of the MARM. Left part is channel-wise autoregressive model, which
predict entropy parameters conditioned on previous latent. Right part correspond to inner-channel
auto-regression model generation parameters pixel by pixel. Given the number of ARU blocks
M and total latents number L, we note i = M − 1, j = M and k = L − 1 for simplicity.
µ0 and σ0 are initialized to tensor with 0 and exp(−0.5) respectively for all images. µ and σ
with subscription means the values output as a matrix rather than serially generated scalar for those
without subscription.

3.2 MIXED AUTOREGRESSIVE MODEL

Autoregressive network is widely used in casual context prediction (Minnen et al., 2018a; Leguay
et al., 2023), which demonstrates the effectiveness of the structure in reducing redundancy of com-
pressed representation. This is more clear if we decompose the second term of Eq. 7

R(ŷ) = DKL(q||pψ) +H(ŷ), (9)

whereDKL stands for the Kullback-Leibler divergence andH for Shannon’s entropy. The first term
suggest the closer we approximate to real distribution p, the more bit we will save. In ARM model,
pψ is decomposed as:

pψ(ŷ) =
∏
l,i

pψ(ŷl,i|µl,i, σl,i),whereµl,i, σl,i = fψ(ŷl,<i), (10)

where l means the l-th latent and< imeans all pixels in a flatten latent whose index is smaller than i.
Obviously, the decoding proceeds pixel by pixel, which is time consuming and hard to parallelize. To
alleviate such problem, our autoregressive upsampler (ARU) apply autoregressive decoding across
latents. In other word, we use low-resolution latent to predict the decoding parameter of next high-
resolution latent:

pψ(ŷ) =
∏
l

pψ(ŷl|µl, σl),whereµl, σl = fψ(ŷl−1, µl−1, σl−1). (11)

This approach can significantly improve the parallelism of the autoregressive module and greatly
enhance the computational performance. Similar technique is also used in some previous work
(Reed et al., 2017).

While ARU block outperforms in efficiency, ARM can recognized more correlation between ad-
jacent pixels because of locality inside each latent. So we integrate ARU and ARM to a Mixed
AutoRegressive Model (MARM), as shown in Fig. 2. For low-resolution latents, which have more
global information, ARU is used to accelerate decoding process. For high-resolution latents, we
use ARM to capture more details such as textures. The ratio of two type blocks is controlled by a
hyperparameter M , which means the number of ARU blocks in MARM. Note when M = 0, the
MARM becomes ARM.
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Figure 3: Network architecture of ARU. ARU uses previous parameter matrix µi−1, σi−1 and latents
as input. ARU pass1 output decoding parameters µ⋄

i , σ
⋄
i for anchors in latents. ARU Pass2 generate

parameters for non-anchors conditioned on µ⋄
i , σ

⋄
i and anchors. Checkerboard means to merge

anchor of the first tensor and non-anchor of the second tensor. Detailed structure of ARU Pass1 and
ARU Pass2 can be found in appendix

3.3 TWO STAGES ARU

Although using low-resolution latent to predict higher-resolution ones is target to improve compu-
tational performance at the cost of reconstruction quality, the degradation can be reduced. Different
from pixel-by-pixel correlation or cross resolution correlation, we can utilize the locality in only two
pass in a checkerboard fashion. As shown in Fig. 3, we mark anchor in tensor ŷi, µi, σi (orange
ones of ŷ⋄i in Fig.3 ) as ŷ⋄i , µ⋄

i , σ⋄
i , non-anchor (white ones of ŷ⋄i in Fig.3 ) as ŷ◦i , µ◦

i , σ◦
i respectively.

Following the notation, joint distribution of ŷi can be written as
pψ(ŷi|µi, σi) = pψ(ŷ

⋄
i |µi, σi) · pψ(ŷ◦i |ŷ⋄i , µi, σi) = pψ(ŷ

⋄
i |µ⋄

i , σ
⋄
i ) · pψ(ŷ◦i |µ◦

i , σ
◦
i ). (12)

The anchor pixels only depend on information from previous low-resolution latent, and the correla-
tion is fitted by f⋄ψ:

µ⋄
i , σ

⋄
i = f⋄ψ(ŷi−1, µi−1, σi−1). (13)

For decoding of non-anchor pixels, all previous information is available, including the decoded
value of anchor ŷ⋄i . As another form of making use of causal context information, ARU Pass2 can
compute µ◦

i and σ◦
i accordingly

µ◦
i , σ

◦
i = f◦ψ(ŷ

⋄
i , µ

⋄
i , σ

⋄
i ). (14)

The idea of parallel predicting probability mass function of compressed representations have been
investigated in some AE-based image or video codec (He et al., 2021; Li et al., 2023). Same as these
method, INR codec also benefits from this design.

3.4 COMPLEXITY ANALYSIS

In INR codec, the process of decoding latent takes part majority of decoding time in many cases.
Given a image with n = H ×W pixels, the total number latent pixels need to be decoded is O(n).
Because of serial decoding, time complexity is the same.

If we suppose parallel operations such as convolution operation over a feature map can be finished
at O(1), which is practical for not very large pictures in even low-power device with SIMD support,
the decoding time complexity of MARM isO(M log n+(L−M)n). WhenM = L, the complexity
of our method becomes O(log n), which surpass the previous work. When M < L, the complexity
is similar to previous work. But in realistic setting, n is finite, which means the constant factor
is important as well. Actually, experiments support when L − M ≤ 2, the acceleration is still
significant.
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(a) CLIC professional valid dataset (b) Kodak dataset

(c) Decoding time with different BPP (d) Decoding time with different PSNR

Figure 4: Main results of experiments. Fig. 4b and Fig. 4a shows the rate-distortion performance
averaged over CLIC professional valid dataset and Kodak dataset respectively. Fig. 4c and Fig. 4d
shows the decoding time averaged over kodak dataset as function of BPP and PSNR. All COOL-
CHIC-like methods aggregate the result over same λ. We observe our standard (mark as std) method
achieve comparable reconstruction quality with COOL-CHICv2 on both kodak dataset and CLIC
dataset. At the same time, we reduce time consumption of decoding on CPU by a large margin.
If we relax quality restriction to set M = L i.e. using pure ARU blocks in MARM module, the
acceleration increases significantly.

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENTS SETUP

The experiment use image from CLIC professional valid set 1 and Kodak dataset (Kodak, 1993).
CLIC dataset contains a collections of natural images with different resolution. Since training set
in unnecessary for INR codec, we only perform experiments on valid set. Kodak dataset is another
widely used dataset in image compression community, which includes 24 images of size 768× 512.
The main experiment results and more ablations are performed in this dataset.

To ensure fairness in comparison, all learning-based model is implemented using PyTorch without
special optimization. For AE-based models, we use the pre-trained model in CompressAI (Bégaint
et al., 2020). Our model is implemented based on previous work of Leguay et al. (2023), which use
constriction package (Bamler, 2022) as entropy encoder. We note the work as COOL-CHICv2 in the
rest of the paper. Following setup of COOL-CHICv2, we use the configurations of L = 7, M = 5
as our standard model and L = 7, M = 0 for fast model. The model is trained on each of images in
dataset, using the loss function presented in eq.7.

1https://clic.compression.cc/2021/tasks/index.html
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(a) Original from Kodak (b) COOL-CHICv2
PSNR 36.82, BPP 0.874

(c) Ours (std)
PSNR 36.82, BPP 0.905

(d) Ours (fast)
PSNR 36.42, BPP 0.974

Figure 5: Visualization of decoded images

4.2 QUALITY RESULTS AND COMPUTATIONAL PERFORMANCE

We use peak signal-to-noise ratios (PSNR) as quality measurement and bit-per pixel (BPP) as coding
efficiency metric. Fig. 4a and Fig. 4b illustrate the decompression results of our method. Fig. 5
shows the quality results. Not surprisingly, our method performs well on metric of reconstruction
quality while fast method exceeds all COOL-CHIC-like method on decoding time, according to Fig.
4c and 4d. COOL-CHICv2 and our method achieve faster decoding time at low bit rate because of
all zero high-resolution latents, which means for these latents codec only need to transmit a special
tag rather than decode them.

4.3 COMPOSITION OF MARM

As mentioned before,M controls the ratio of ARU blocks and ARM blocks, and model performance
is highly correlated to the parameter. Fig. 6a illustrates the overall decoding quality and efficiency.
To comprehensively evaluate the efficiency of a codec, we suggest to use the Time BD-rate (TBD-
rate), which is a variant of BD-rate as the measurement. When calculating TBD-rate, We only need
to replace BPP with decoding time in common BD-rate formula.

The trend of TBD-rate is easy to understand. More ARU block lead to more significant acceleration.
But the quality does not improve when we increase the ratio of ARM blocks. In our experiment,
the model reaches the best quality at L − M = 3. When number of ARM keep increasing, the
performance degrade drastically. This may caused by the correlation between latents. For high-
resolution latent, ARU depend less on previous latent while for low-resolution latents inter-latent is
important. On the contrary, ARM does not depend on inter-latent information. Since we generally
use large M in our method, this phenomenon will not affect the effectiveness of our method.

4.4 MORE ABLATIONS

Fig.7b illustrate the performance of checkerboard and our proposed new synthesis module. No
checkerboard means is we omit the second pass when decoding latent i.e. use µ⋄

i , σ
⋄
i directly to de-

code both anchors and no-anchors, Old synthesis means we use the original one in COOL-CHICv2
It is obvious that these two structure further improve the RD-performance. Fig. 7a shows the bit
allocation. We observe that ARM blocks will allocate more bit to high-resolution latents compare
to ARU blocks, which indicates the inter-latent correlation.

5 DISCUSSION

This work presented a new module MARM to enhance the current implicit neural representation
image codec, which is the first method that achieves comparable performance in both reconstruction
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(a) Quality and efficiency of different M (b) Decoding time composition of different M

Figure 6: Ablation results when M differs. Fig. 6a shows the BD-rate and TBD-rate for different
M average over Kodak dataset. Fig. 6b shows the composition of decoding time. For more result
see Appendix. B

(a) Bit allocation (b) Ablation of tow pass ARU

Figure 7: Ablation results. Fig. 7a shows the bits allocation among latents when M = 0 and
M = L, correspond to MARM with full ARM blocks and full ARU blocks respectively. 7b shows
the rate-distortion curve average over kodak dataset with different settings when M = L = 7.

quality and decoding time. The MARM module improves the computation efficiency by leveraging
the channel-wise autoregressive architecture in low-resolution latent and pixel-wise autoregressive
to maintain the decompressing quality. The experiments show that our modificationreduce the de-
coding time by a large margin without significant quality degradation.

Although we improve the current INR-based image codec, there are still some limitations. The
first is decompressed images failed to achieve the comparable quality in both PSNR and MS-SSIM
simultaneously when using MSE distortion metric. Model capacity which is constrained by model
size can be a possible cause. In the COOL-CHIC-like method, the majority of bits are allocated to
latents while only a small part is to the network. A very small network makes it hard to capture
complex patterns. How the bits allocating ratio of latents and network affects model performance is
still an open problem. The second is our method can not be significantly accelerated by GPU. The
main reason is the coupling between entropy decoding and parameter estimation, which is more like
serial operation rather than parallel computation. There are still many engineering problem to solve.
The third problem is the high time complexity of encoding process. This problem exists in all INR-
based methods. Although there are some acceleration methods, extending these methods to image
compression is not easy. Possible reason is that most 3D representation is highly sparse comparing
to 3D space grid, while most of images such as natural photos are dense signals in spatial domain.
Developing new method or adapting above methods to accelerate encoding process is crucial for
INR-based image codec. These limitations are also great opportunities. We will therefore further
investigate these in future work.
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Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. Compressai: a pytorch
library and evaluation platform for end-to-end compression research. 2020.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8628–8638, 2021.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948, 2019.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7939–7948, 2020.
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Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
representations for image compression. In European Conference on Computer Vision, pp. 74–91.
Springer, 2022.

Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Möller, Pontus Ebelin,
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A NETWORK STRUCTURE
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Figure 8: Network structure

A.1 NEW SYNTHESIS

Previous works have investigated full MLP synthesis and full CNN synthesis. The techniques like
residual connection are also applied in block level. In this work, we propose a mixed synthesis
with a residual connection from dense representation to final MLP. The network can balance the
information from both residual connection and from CNN blocks,as shown in Fig. 8a.

A.2 TWO PASS ARU

The detailed structure of two ARU sub-blocks is show in Fig. 8b and 8c. For simplicity, we only
introduce the overall data flow of the module. In addition to previous content, we add level encod-
ing and positional encoding to promote the networks capability. As shown in 8b, Eq. 13 can be
decomposed to three steps:

vctx = f⋄ψ,ctx(ŷi−1, µi−1, σi−1), (15)

v⋄i,ab = Concat([vctx,ab, PEi,ab, LEi,ab]), (16)

µ⋄
i,ab, σ

⋄
i,ab = f⋄ψ,MLP(v

⋄
i,ab). (17)

To reduce the dimention of the output, we only use a simple mesh grid positional encoding. Let
{(a, b) ∈ Z2, 0 ≤ a < Hi, 0 ≤ b < Wi − 1} represents spatial location in i-th latent, the position
encoding is defined as

PEi,ab = [
a

Hi
− 0.5,

b

Wi
− 0.5]. (18)

And the level encoding is defined as

LEi,ab =
2i

L
. (19)
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B DECODING TIME COMPOSITION

Fig. 9 and Fig. 6b illustrate the detailed decoding time composition with different M . Obviously,
for allow parameters setting, the decoding time of latents dominates the decoding efficiency, which
is the main focus of our work. Note the loading time cannot be omitted or amortized since the model
weights are part of compressed representation for each image.

(a) (b)

(c) (d)

Figure 9: Decoding time composition when λ is different.

C BIT ALLOCATION

One of the most attractive characters of COOL-CHIC-like methods is the underlying bit allocation
mechinism. Fig. 10 - 14 are the allocation results on Kodak dataset for different M and λ. Not su-
perisingly, majority of bits is allocate to the latents when λ is small, which means more information
of details is preserved. When λ becomes larger, the codec chooses to allocate more bits to coarser
latent, as shown in Fig. 13 and Fig. 14.

An exception occurs when M = 2, which is also shown in Fig. 6a. As discussed before, this may
cause by confliction of utilizing inter-latent information, so we need to set proper M in practical
applications.
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Figure 10: λ = 0.0001

Figure 11: λ = 0.0004

Figure 12: λ = 0.001
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Figure 13: λ = 0.004

Figure 14: λ = 0.002
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