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Abstract

Protein binder design has been transformed by
hallucination-based methods that optimize struc-
ture prediction confidence metrics, such as the
interface predicted TM-score (ipTM), via back-
propagation. However, these metrics do not re-
flect the statistical likelihood of a binder—target
complex under the learned distribution and yield
sparse gradients for optimization. In this work, we
propose a method to extract such likelihoods from
structure predictors by reinterpreting their confi-
dence outputs as an energy-based model (EBM).
By leveraging the Joint Energy-based Modeling
(JEM) framework, we introduce pTMEnergy, a
statistical energy function derived from predicted
inter-residue error distributions. We incorporate
pTMEnergy into BindEnergyCraft (BECraft), a
design pipeline that maintains the same optimiza-
tion framework as BindCraft but replaces ipTM
with our energy-based objective. BECraft outper-
forms BindCraft, RFDiffusion, and ESM3 across
multiple challenging targets, achieving higher in
silico binder success rates while reducing struc-
tural clashes. Furthermore, pTMEnergy estab-
lishes a new state-of-the-art in structure-based
virtual screening tasks for miniprotein and RNA
aptamer binders.

1. Introduction

De novo protein binder design represents a fundamental
challenge in molecular engineering, with wide-ranging ther-
apeutic and biotechnological applications (Chevalier et al.,
2017; Gainza-Cirauqui & Correia, 2018; Yang et al., 2025).
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Recent advances in deep learning have enabled consider-
able progress in computational binder design, allowing the
generation of binders tailored to specific target proteins and
greater exploration of sequence and structural space (Zam-
baldi et al., 2024; Watson et al., 2023). However, identifying
high-affinity candidates remains a bottleneck, as it typically
requires generating and virtually screening thousands of
designs to recover few promising hits.

One prominent computational design paradigm that has
emerged is hallucination-based design using structure pre-
diction models. For instance, BindCraft (Pacesa et al.,
2024) achieved unprecedented in vitro success rates across
multiple targets by hallucinating binder structures with Al-
phaFold2 and performing gradient-based optimization of the
interface predicted TM-score (ipTM), among other losses,
as a proxy for binding affinity. However, ipTM is funda-
mentally limited as an optimization objective. First, this
heuristic metric does not directly reflect the statistical like-
lihood of the full binder—target interaction, reducing its
fidelity as an objective for likelihood-based design. More-
over, as shown in Figure 1B, ipTM computes a maximum
over target residue indices, resulting in sparse gradients that
constrain optimization to only a small subset of interface
residue pairs.

To address these limitations, we revisit the internal confi-
dence distributions of structure predictors. Folding models
like AlphaFold2 output predicted alignment error (pAE)
distributions, which quantify the model’s uncertainty over
inter-residue distances. These distributions encode rich
structural priors that are typically compressed into heuristics
like ipTM. Inspired by the Joint Energy-based Modeling
(JEM) framework (Grathwohl et al., 2019), which inter-
prets classifier logits as unnormalized energies, we propose
to reinterpret AlphaFold’s pAE logits as an energy-based
model over binder—target complexes. The resulting function,
which we call pTMEnergy, provides a dense, differentiable
signal that reflects the likelihood of a folded complex under
AlphaFold’s learned distribution.

pTMEnergy offers three key advantages. First, it has a prin-
cipled probabilistic interpretation, grounding hallucination-
based design in binder likelihoods. Second, unlike ipTM,
pTMEnergy produces dense gradients across the interface,
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Figure 1. A: BindEnergyCraft (BECraft) optimizes binder sequences by backpropagating pTMEnergy, computed from pAE logits output
by AlphaFold2-Multimer. B: Gradients from ipTM are sparse across interface residue pairs, since the maximum over target residue
indices zeroes out the gradient from all but one position. pTMEnergy preserves gradients across the interface.

creating a more informative and effective optimization land-
scape (Figure 1B). Third, it is computationally efficient:
pTMEnergy is derived from the same pAE outputs used
to compute ipTM, requiring no additional model calls or
architecture modifications.

We incorporate pTMEnergy into the BindCraft pipeline to
create BindEnergyCraft (BECraft), a hallucination frame-
work that directly optimizes this energy-based objective
(Figure 1A). Across a broad benchmark of protein targets,
BECTraft consistently achieves higher in silico design suc-
cess rates than BindCraft, RFdiffusion, and ESM3. We
additionally show that pTMEnergy establishes new state-
of-the-art performance as an unsupervised scoring function
for virtual screening of both miniprotein and RNA aptamer
binders, demonstrating its generality beyond hallucination-
based optimization.

2. Related Work

Binder Design Methods. Recent generative methods have
enabled programmable design of protein binders. Structure-
based approaches such as RFDiffusion (Watson et al., 2023)
and AlphaProteo (Zambaldi et al., 2024) can generate binder
backbones conditioned on a target structure with experimen-
tal success. However, AlphaProteo is not an open-source
method. There have been several methods developed for
the design of peptides (Chen et al., 2024; Lin et al., 2024;
Li et al., 2024), but these do not translate well to the de-
sign of larger proteins. Hallucination-based approaches
directly optimize sequences using structure predictors as
proposal models. BindCraft (Pacesa et al., 2024) popular-

ized this approach by leveraging the AlphaFold2 (Jumper
et al., 2021) network, achieving unprecedented experimental
rates. BoltzDesign1 (Cho et al., 2025) extends this paradigm
beyond proteins to nucleic acids and ligands using the Boltz-
1 structure predictor (Wohlwend et al., 2024).

Binder Scoring Methods. Scoring functions for evaluating
binders span sequence-based, structure-based, and structure
prediction-based methods. Sequence models like ESM-1v
(Meier et al., 2021) capture mutational binding effects but
underperform on general binding prediction tasks. Structure-
based approaches such as DSMBind (Jin et al., 2023) esti-
mate binding likelihoods using denoising, assuming access
to high-quality complex structures. In contrast, structure
prediction models like AlphaFold2 and AlphaFold3 (Abram-
son et al., 2024) enable binding evaluation without crystal
structures. Their confidence scores, particularly interface
pTM (ipTM), correlate with binding strength (Bennett et al.,
2023).

3. Methods

Our goal is to reinterpret protein structure predictor confi-
dence outputs as an energy-based model (EBM) that assigns
a statistical likelihood to a binder—target complex, providing
a rich signal to optimize binder sequence designs. While
previous methods rely on ipTM score as an objective, this
score is a bounded heuristic for binding that yields sparse
gradients focused on just a few residue pairs. In contrast,
our proposed objective produces denser, more informative
gradients. We outline a general framework to extract such
an energy function Ep(z) in Section 3.1 and describe our
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specific instantiation, pTMEnergy, in Section 3.2. We then
integrate this energy into a gradient-based binder halluci-
nation pipeline that iteratively refines sequences to bind a
fixed target structure (Section 3.3).

3.1. Casting Protein Structure Predictors as EBMs

We begin by formalizing a method to extract an energy func-
tion Fy(x) from any black-box protein structure predictor,
where z is the amino acid sequence and structure of a pro-
tein complex. Under the energy-based modeling (EBM)
framework, we define a probability density over x as:

exp(—FEpy(z))

70 (1)

po(x) =
where Fy(z) is the unnormalized energy and Z(0) is the
intractable partition function. To derive Ey(x) from a struc-
ture predictor, we leverage the observation that any classifier
implicitly defines an energy function, from the Joint Energy-
based Model (JEM) framework (Grathwohl et al., 2019).
Consider a model fy that maps input = to a vector of K
logits, where fp(z)[y] denotes the score for class y. The
predicted class probabilities are given by:

exp(fo(z)[y])

P = S exp(fa(a) ) @
This classifier defines a joint energy model over (z, y):
exp(fo(x)ly])
Ey(x,y) = —fo(x)[y]

Marginalizing out y yields a probability over x and a corre-
sponding energy:

>y exp(fo(2)[y])
Z(0)

r) = —log»_exp(fo(x)[y))

Thus, any classifier can be interpreted as defining an energy
function via a LogSumExp(-) over its logits. This frame-
work applies naturally to modern structure predictors, whose
confidence heads are classifiers that predict inter-residue
alignment error.

po(z) =
“)

3.2. pTMEnergy

The predicted aligned error (pAE) head outputs logits over
error bins for each residue pair (7, j). Specifically, for each
residue pair (i, j), the model outputs logits ¢;; € RP over
B distance bins, corresponding to different magnitudes of
alignment error between residues. Let g;; ;, = softmax(¢;;)s
denote the predicted bin probability, and let d, be the center

of bin b. Let e;; = (¢ij.1, .-, Gij, B) denote the full predicted
error distribution. These predictions are used to compute a
global structural confidence metric known as the predicted
TM-score (pTM) (Evans et al., 2021), defined as:

PTM(x) = max — Z qubg (ds)- ©)

=1b=1

where the scaling kernel

1
d -
o) 1+ (dy/do(IN))* (6)
do(N) = 1.24 (N — 15)5 — 1.8

up-weights the contributions of low alignment errors. This
reflects the intuition that accurate local packing is crucial
for protein stability. The ipTM score simply subsets this
computation to pairs of residues on different chains. Instead
of aggregating the logits into an ipTM score, we can instead
reinterpret the pAE logits as unnormalized energy scores by
applying the LogSumExp(-) trick:

B

—log Z exp lijp (7N

b=1

Eij(x) =

To add the physical grounding that proteins with accurate
local packing have higher likelihood, we weight each bin
by g(dp) and aggregate over all inter-chain residue pairs Z,
obtaining the global pTMEnergy:

EpTMEnergy (‘T) =

m > long dy) explijp. (8)

(i,4)EL b=1

3.3. Binder Hallucination Pipeline

We incorporate pTMEnergy into a gradient-based binder
design pipeline, BindEnergyCraft (BECraft), as detailed
in Algorithm 1. We start with a target protein sequence,
and optionally structure, and initialize the binder sequence
randomly. At each step, the binder sequence (parameterized
as logits z € RE*20) is concatenated with the fixed target
sequence and passed into AF2-Multimer. The predicted
complex is processed by the confidence head to produce
pAE logits /pag, from which pTMEnergy is computed. This
value replaces the ipTM loss component in BindCraft di-
rectly. After computing the total loss £, gradients of £
are backpropagated to update z, guiding the binder toward
sequences that are well-folded, tightly interacting, and high-
likelihood under the structure predictor’s confidence model.

The overall BECraft design loss retains the structure and
weights of BindCraft. In addition to pTMEnergy which

2ESM3 is not shown in the table because its success rates are 0
across all targets and both constraint sets.
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Table 1. In silico design success rates (proportion of sequences passing each constraint set) with binomial standard-error bars.

ALK H3 IL-2Ra  IL-7Ra  InsulinR LTK TrkA  VirB8
Rosetta Constraints
RFEDiffusion [Unfiltered] .00.00 .02 01 .00.00 .00.00 .01 01 .00.00 .00.00 .00.00
RFDiffusion [Filtered] .00.00 1203 .00.00 .02.01 .07 .03 0101 .00.00 0101
BindCraft [no lpTM] .25,04 .16,04 .39,05 .14,03 .10.03 .40405 423,04 .14,03
BindCraft [lpTM + Mean] .2304 .0803 .4305 .15A04 ‘15,04 .15_04 .3605 .15A04
BindCraft .1404 .1604 .3805 .1303 .13,03 .43‘05 .2905 .15A04
BECraft .16A04 .32,05 .4705 .17A04 .23‘04 .46,05 .3605 .17_04
Folding Model Constraints

RFDiffusion [Unfiltered] .02.01 .03.01 .02.01 .04.01 .07.01 .04.01 .00.00 .03.01
RFDiffusion [Filtered] .09,03 ,16,04 .10,03 .19,04 .35,05 .18‘04 .00,00 .15,04
BindCraft [HO lpTM] .40A05 .4005 .81A04 .4305 .86,04 .66_05 .86A04 .71A05
BindCraft [ipTM + Mean] .41A05 .5005 .8()‘04 .5305 .92403 .72404 .8903 .7804
BindCraft .4805 .52_05 .8404 .5105 .87,03 .70405 .88,03 .7205
BECraft .50_05 .54,05 .8903 .6605 9103 .77‘04 .89,03 .81_04

has a weight of 0.05 as ipTM did in the original BindCraft
pipeline, the loss includes binder confidence via pLDDT
(0.1), intra-binder pAE (0.4), inter-chain pAE (0.1), residue
contacts within the binder (1.0), residue contacts between
binder and target (1.0), and binder radius of gyration (0.3).
All loss weights are identical to BindCraft.

Algorithm 1 BindEnergyCraft (BECraft): Binder Halluci-
nation with pTMEnergy
Input: Target sequence T, optional target structure S

Initialize binder logits z € R*20

for each optimization step do

x < AF2-MULTIMER (7, softmax(z), S)

Loag < CONFIDENCEHEAD(z)

E < PTMENERGY ({,AE)

L « 0.05(F) + 0.1(1 — pLDDT) + 0.1(ipAE) +
0.4(pAE) — cOnjper — CONjpyry + 0.3(radgyr)

24 2—n-V,L
end for

return arg max softmax(z)

As in BindCraft, optimization proceeds through four stages.
First, logit-space gradient descent explores the sequence
space using softmax-relaxed amino acid distributions. At
this stage, trajectories with low AF2 pLDDT are terminated.
Next, a temperature annealing schedule sharpens the soft-
max to promote convergence toward discrete sequences. In
the third stage, a straight-through estimator enables discrete
sequence prediction while preserving gradient flow. Finally,
a greedy mutation stage performs discrete refinement by
accepting point mutations that improve the loss. We do not

use MPNN-sol to redesign the interface sequence since this
step is largely intended to optimize for solubility which is
not relevant for the in silico design setting considered here.
Because pTMEnergy is computed directly from model out-
puts already available during structure prediction, it adds
no computational overhead and remains fully differentiable,
making it a seamless drop-in replacement for ipTM in binder
hallucination pipelines.

4. Experiments

We evaluate the effectiveness of pTMEnergy across four
settings. Section 4.1 benchmarks binder design success us-
ing BECraft, showing improved performance across eight
targets. Section 4.2 demonstrates that pTMEnergy leads
to binder designs with fewer atomic clashes. Section 4.3
analyzes gradient behavior, revealing that pTMEnergy pro-
vides broader and more informative optimization signals
than ipTM. Finally, we investigate whether pTMEnergy
may serve not just as an optimization objective, but as a
more accurate predictor of binding. Sections 4.4 and 4.5
evaluate pTMEnergy as a structure-based binding predictor
in miniprotein and RNA aptamer screening tasks.

4.1. BECraft Improves Binder Design Success Rate

Task. To assess the performance of BECraft, we design
binders against eight diverse protein targets from Bennett
et al. (2023). For every target, we generate 100 binder
sequences with lengths between 55 and 65 amino acids,
without applying any hotspot constraints. We then evaluate
the in silico design success rate, defined as the proportion of
generated sequences that satisfy a set of structural criteria.
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A ipTM Optimization - Target: VirB8

B pTMEnergy Optimization — Target: VirB8

Figure 2. (A) A VirB8-binding complex designed using ipTM exhibits severe atomic clashes at the interface. (B) The corresponding
pTMEnergy-optimized design for VirB8 forms a clash-free interface. (C) An ipTM-optimized binder for ALK with substantial steric
overlap. (D) The pTMEnergy-optimized design for ALK forms a well-packed, physically realistic interaction.

Table 2. Proportion of relaxed binder—target complex structures that exhibit atomic clashes, broken down by target. BECraft reduces the

clash rate compared to BindCraft across all targets.

ALK H3 IL-2Ra  IL-7Ra  InsulinR LTK TrkA VirB8
BindCraft 22 041 .16.037 .07 026 .03.017 .05.022 .03.017 .03.017 .09.029
BECraft -07.026 .05_022 .04_020 .00_000 .04,020 .01_010 .01_010 .05,022

We use two types of constraint sets to evaluate binder qual-
ity. The first set, which we refer to as Folding Model Con-
straints, is based on AlphaFold2 outputs and includes thresh-
olds on predicted structural confidence and interface quality:
pLDDT greater than 0.8, interface pTM (ipTM) greater
than 0.5, global pTM greater than 0.45, and interface pAE
less than 0.4. These constraints are directly from the Bind-
Craft filter criteria. The second set, referred to as Rosetta
Constraints, is computed using physical interface metrics
obtained from Rosetta (Alford et al., 2017). These include
shape complementarity greater than 0.5, dSASA greater
than 1, more than 6 interface residues, more than 2 inter-
face hydrogen bonds, surface hydrophobicity less than 0.37,
and fewer than 6 unsaturated hydrogen bonds across the
interface. These are again directly taken from the BindCraft
filter criteria.

We separate these two sets of constraints because folding
model metrics may advantage methods like BindCraft and
BECraft, which optimize confidence scores during design.
In contrast, Rosetta-based constraints provide an indepen-
dent and physically grounded assessment of interface quality
that does not rely on the same model used during optimiza-
tion. To ensure a fair comparison across all methods, we

disable all post-design filtering for both BECraft and the
BindCraft baseline.

Baselines. In addition to benchmarking against the original
BindCraft pipeline, we benchmark against two variants of
BindCraft. First, we remove ipTM from the loss function
to ensure that improvements observed with pTMEnergy are
due to meaningful optimization signal. Second, we evaluate
a version of ipTM that replaces the maximum operation
with mean, a simple approach to improve gradient sparsity.
We also benchmark RFDiffusion + ProteinMPNN, a widely-
used two-stage pipeline that first samples backbone struc-
tures using protein backbone generative model RFDiffusion
(Watson et al., 2023) and subsequently predicts sequences
using inverse folding model ProteinMPNN (Dauparas et al.,
2022). While we also evaluated against ESM3 (Hayes et al.,
2025), we found that success rates across all targets were
zero across both constraint settings. Therefore, we omit this
baseline. We give full details on how we ran these baselines
in 6.3. For RFDiffusion, we evaluate two conditions per tar-
get: an unfiltered setting, where 500 sequences are sampled
without any selection, and a filtered setting, where the top
100 sequences are selected based on AlphaFold2-predicted
ipTM scores. This setup is intended to mirror real-world



BindEnergyCraft: Casting Protein Structure Predictors as Energy-Based Models for Binder Design

Iteration 0 Iteration 100

Binder Residues

Binder Residues
2w

Target Residues

Iteration 200

c Frequency of Target Residues as Top Gradient Source

1.0

sssss

B B B

04 Frequency of Target Residues as Top Gradient Source

06 s0] |
)

0.2

0.0

8
Target Residue Index
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[0, 1], for ipTM and pTMEnergy respectively on an IL2Ra design task. (C-D): Frequency with which each target residue ranks in the
top-10 by gradient magnitude across all iterations, for ipTM and pTMEnergy respectively.

design pipelines, where candidate binders are generated and
then filtered post hoc.

Results. As shown in Table 1, BECraft consistently achieves
the highest in silico design success rates across both Rosetta
and Folding Model constraints. Under the Rosetta criteria,
BECraft achieves highest success rate on 7 out of 8 targets,
with gains up to 16 percentage points compared to the next
best method. Under the Folding Model constraints, BECraft
also achieves the best success rate on 7 out of 8 targets.
It is interesting to note that the mean-variant of ipTM of-
ten performs better than vanilla BindCraft on a majority
of targets, indicating that gradient sparsity is indeed lim-
iting performance. Overall, BECraft demonstrates robust
performance across a diverse panel of targets, achieving con-
sistently higher rates of success regardless of the constraint
regime.

4.2. BECraft Significantly Reduces Atomic Clashes

A common failure mode in structure-based binder design
is the generation of physically implausible complexes with
severe atomic clashes. To assess the physical realism of our
designs, we compute the fraction of sequences that result in
atomic clashes after Rosetta relaxation.

Table 2 show the percentage of relaxed structures that exhibit
any clashes, broken down by target. BECraft consistently
produces fewer designs with clashes across all targets, reduc-
ing the clash rate from 22% to 7% on ALK and from 16% to
5% on H3. Figure 2 visualizes representative binder—target
complexes to highlight the difference in physical plausibility
between ipTM-based and pTMEnergy-based optimization.
Panels A and B show designs for the VirB8 target: Panel
A, optimized using ipTM, exhibits severe atomic clashes at
the interface, while Panel B, optimized using pTMEnergy,
shows a clean, clash-free interaction despite a similar bind-
ing mode and binder topology. A similar pattern is observed

for the ALK target in Panels C and D.

4.3. Gradients of pTMEnergy

To understand the impact of pTMEnergy compared to ipTM,
we analyze the gradients each objective induces with respect
to the pAE logits, which are shape RX*L*5 where L is the
total number of residues in the complex and B is the number
of error bins. Our goal is to assess how effectively each
objective distributes learning signal across the binder—target
interface during optimization.

Figure 3A and 3B show the maximum gradient bin magni-
tude for each binder—target residue pair at steps 0, 100, and
200 of an IL2Ra design task. Gradients were computed but
not used for optimization to isolate the intrinsic signal struc-
ture of each objective. Panel A corresponds to ipTM; Panel
B to pTMEnergy. We find that ipTM gradients are highly
localized, and each binder residue receives signal from only
a single target residue per step. In contrast, pTMEnergy gra-
dients are initially concentrated at the binder termini (step
0), but rapidly spread across the binder and target interface
by steps 100 and 200.

Figure 3C and 3D quantify this difference by reporting how
often each target residue appears among the top 10 contrib-
utors by gradient magnitude. Under pTMEnergy, nearly all
target residues are engaged at some point, while ipTM con-
sistently limits signal to a small subset. Across 50 indepen-
dent design runs, pTMEnergy activates 98-100% of target
residues, compared to just 22-35% for ipTM. These find-
ings highlight pTMEnergy’s broader and more informative
optimization landscape, which improves design robustness
and reduces vulnerability to adversarial failure modes.

The differences in gradient behavior between ipTM and
pTMEnergy arise from how each objective aggregates inter-
residue alignment confidence. The ipTM score applies a
hard max; across reference residues when aggregating align-
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Table 3. Virtual screening performance on miniprotein binders.

AUPRC Precision@5 Precision@10

Supervised Model 0.176 0.167 0.167
Baselines Rosetta 0.265 0.375 0.288
FoldX 0.306 0.425 0.325
DSMBind 0.139 0.100 0.088
ipTM 0.434 0.550 0.525
Boltz-1 ipTM + Mean 0.455 0.600 0.471
pTMEnergy 0.467 0.675 0.562
ALK: AUPRC = 0.607 H3: AUPRC =0.123 IL2Ra: AUPRC = 0.343 IL7Ra: AUPRC = 0.686
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Figure 4. Distribution of predicted pTMEnergy scores. Scores are negated so that higher values indicate stronger predicted binding. Red

vertical lines indicate scores assigned to true binders.

ment confidence. This operation zeroes out gradients from
all but the single target residue that achieves the maximum
binder alignment. By contrast, pTMEnergy (Equation 8)
preserves gradient signal across the full interface. Even
residue pairs with moderate predicted alignment error con-
tribute to the energy, producing broad, coordinated updates
across the complex.

4.4. Miniprotein Binder Screening

Having demonstrated that pTMEnergy improves binder de-
sign success and atomic clash rates, we next ask whether
it can serve as an effective unsupervised predictor of bind-
ing. Traditional approaches often rely on supervised models
trained to predict binding free energies, but these require
large-scale, high-quality experimental data that are typically
limited and expensive to obtain. Alternatively, empirical en-
ergy functions from molecular mechanics or Rosetta scoring
offer physically grounded evaluations but are computation-
ally intensive (Miller III et al., 2012; Schymkowitz et al.,
2005). To sidestep these limitations, recent work has shown
that ipTM score is a useful proxy, correlating with binding
affinity in multiple contexts (Zambaldi et al., 2024). How-
ever, these confidence metrics operate on fixed, discretized

scales, limiting their effectiveness for capturing continuous,
fine-grained energy landscapes. pTMEnergy, by contrast,
defines a continuous energy landscape which we hypothe-
size makes it better suited for ranking candidate binders.

Task. We conduct a retrospective virtual screening task us-
ing experimentally characterized miniprotein binders from
Bennett et al. (2023). For each of the eight protein tar-
gets used in our design experiments, we evaluate whether
pTMEnergy can distinguish true binders from nonbinders.
Since structure prediction is a computational bottleneck,
we subsample negative examples at a 10:1 negative-to-
positive ratio. Structure prediction is performed using Boltz-
1 (Wohlwend et al., 2024), and MSAs are computed with
MMSeqs2 (Steinegger & Soding, 2017).

Baselines. We benchmark against ipTM score as well as
the modified version of ipTM where max is replaced with
mean, as described in Section 4.1. We also benchmark
pTMEnergy against three state-of-the-art unsupervised bind-
ing prediction methods: two physics-based scoring func-
tions, FoldX (Schymkowitz et al., 2005) and Rosetta (Al-
ford et al., 2017), as well as DSMBind (Jin et al., 2023), a
structure-based model trained to predict the likelihood of a
target-binder complex as a proxy for binding. We run these
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Table 4. Virtual screening performance on RNA aptamers binding to GFP.

AUPRC Precision@10 Precision@50

Transformer .288 233 273
SE(3) Transformer .288 .200 267
Equiformer 311 .300 367
Baselines EGNN 267 .340 .308
GVP-GNN 317 .300 .380
FA .290 .300 333
FAFormer 322 .400 413
ipTM .253 .150 .290
RosettaFold2NA  ipTM + Mean 257 .100 .280
pTMEnergy 352 .400 420

baselines using the same Boltz-1 structures to ensure fair
comparison, since our method does not require co-crystal
structures. Additionally, to provide a comparison against
a supervised method, we report the performance of model
that takes ESM-2 3B (Lin et al., 2022) embeddings as input
and trains a feed-forward network with two hidden layers.
For all 8 targets, we train on the remaining 7 and evaluate
on the held-out target.

Results. As shown in Table 3, pTMEnergy consistently out-
performs both baselines and ipTM score across all metrics.
Figure 4 shows the distribution of predicted energy scores
(negated so that positive is predictive of binding) with red
vertical lines denoting the scores of true binders. In general,
true binders are assigned scores in the right tail of the distri-
bution, though pTMEnergy does struggle for targets H3 and
VirB8. These results suggest that pTMEnergy provides reli-
able signal for structure-based miniprotein virtual screening,
even in the absence of labeled data or crystal structures.

4.5. RNA Aptamer Binder Screening

Finally, we assess the utility of pTMEnergy to general-
ize beyond protein—protein interactions to other classes of
biomolecular interactions. In particular, there has been re-
cent interest in scoring (Huang et al., 2024) and designing
(Nori & Jin, 2024) RNA aptamers that bind to a protein of
interest. We evaluate whether pTMEnergy can also provide
a useful signal for virtual screening of RNA aptamers.

Task. Our task is to identify aptamers that bind to the Green
fluorescent protein (GFP) target from a large number of
screened candidates. The dataset was curated by Huang
et al. (2024). K values range from OnM to 125nM, and ap-
tamers with K; < 10 are considered positives. We compare
performance on the test set which contains 252 positives
and 686 negatives.

Baselines. We compare with all baselines reported in Huang
et al. (2024), including methods that do not use 3D structure
(Vaswani, 2017) and models that use predicted structures
(Liao & Smidt, 2022; Fuchs et al., 2020; Satorras et al.,

2021; Jing et al., 2020; Puny et al., 2021). Structures are
predicted using RosettaFold2NA (Baek et al., 2024).

Results. As shown in Table 4, pTMEnergy achieves the
highest AUPRC among all methods, surpassing ipTM and
all baselines. These findings show that pTMEnergy is ef-
fective for aptamer screening, suggesting that it may also
useful in hallucination-based RNA design protocols. With
the advent of structure predictors that can jointly model
proteins, nucleic acids, and small molecules, it is now possi-
ble to extend hallucination-based design protocols beyond
protein—protein interactions. These advances open the door
to general-purpose biomolecular design frameworks that
operate across molecular modalities, such as BoltzDesign|1
(Cho et al., 2025). In the future, pTMEnergy can be inte-
grated into this framework to serve as a potentialy beneficial
optimization target for RNA—protein interaction design.

5. Conclusions

We introduced pTMEnergy, an energy function derived
from protein structure predictors’ inter-residue confidence
outputs, and integrated it into a gradient-based hallucina-
tion framework for protein binder design. Our method,
BindEnergyCraft (BECraft), demonstrates improved in
silico success rates over prior approaches across diverse pro-
tein targets. Our approach also helps reduce the frequency of
atomic clashes. Additionally, we showed that pTMEnergy
is predictive of binding in miniprotein and RNA aptamer
virtual screening tasks.

While promising, our approach has some limitations. For
example, pTMEnergy inherits the failure modes of the
confidence model it is based on. Hence, for interfaces
where structure prediction confidence is less calibrated like
antibody-antigen complexes, the binder-target likelihoods
are expected to be less accurate. It is also worth noting
that our current results are purely computational, and ex-
perimental validation is necessary to confirm the effects of
energy-based binder design.
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6. Appendix
6.1. Protein Targets

Our binder design benchmark consists of eight diverse pro-
tein targets from Bennett et al. (2023). Target details are
given in Table 5. We subsample negative examples at a 10:1
negative-to-positive ratio.

Table 5. Miniprotein dataset details.

Target PDBID Number of Positives
ALK TNWZ 27

H3 37ZT] 50

IL2Ra 1792 4

IL7Ra 3DI1 22

InsulinR  RFDiff ST 259

LTK TNX0 47

TrkA 2IFG 9

VirB8 403V 72

6.2. Binder Design In Silico Constraints

To assess the predicted quality of designed binder—target
complexes, we evaluate two sets of in silico constraints.

Folding Model Constraints. These constraints evaluate
whether the designed sequence is predicted to fold correctly
and form a stable, high-confidence complex with the tar-
get. All quantities are computed from AlphaFold2 outputs.
They are also adapted directly from the BindCraft filtering
pipeline:

e pLDDT > 0.8: Ensures that the predicted binder struc-
ture has high backbone confidence, which is correlated
with successful folding.

¢ Interface pTM (ipTM) > 0.5: Measures the predicted
alignment between the binder and target interfaces. A
higher ipTM suggests a more reliable interface geome-

try.

* Global pTM > 0.45: Assesses the overall complex
alignment confidence. This metric encourages globally
consistent binding poses.

* Interface pAE < 0.4: The average predicted aligned
error at the interface must be low, indicating precise
residue-residue contacts and reduced structural uncer-
tainty at the binding interface.

Rosetta Constraints. These constraints evaluate the phys-
ical plausibility of the predicted complex using Rosetta
(Alford et al., 2017). They are also adapted directly from
the BindCraft filtering pipeline:
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* Shape complementarity > 0.5: Promotes tight pack-
ing between binder and target surfaces, which is often
required for strong binding.

* dSASA > 1: Ensures sufficient buried surface area
at the interface, a proxy for interaction strength and
stability.

* > 6 interface residues: Prevents spurious contacts
by requiring that the interface involve a meaningful
number of residues on the binder.

* > 2 interface hydrogen bonds: Encourages the forma-
tion of stabilizing hydrogen bonds across the interface.

¢ Interface hydrophobicity < 0.37: Penalizes overly
hydrophobic interfaces, which are more prone to ag-
gregation and less biologically realistic.

¢ < 6 unsaturated interface hydrogen bonds: Reduces
the number of polar atoms at the interface that are
buried but not forming hydrogen bonds. These atoms
create unfavorable energy penalties, so minimizing
them leads to more stable and realistic interfaces.

Together, these constraint sets enable a multi-faceted assess-
ment of design quality, capturing both learned and physi-
cally interpretable indicators of binder success.

6.3. Binder Design Baseline Methods

For the RFDiffusion/PMPNN baseline, we generated 500
binder backbones per target across 8 miniprotein targets
using RFDiffusion (Watson et al., 2023). We diffuse only
on the binding chain from the target and do not specify
hotspot residues. Binder lengths were sampled between
55-65 residues and generated with 50 diffusion steps. Each
generated backbone was subsequently processed with Pro-
teinMPNN (version v_48_020) (Dauparas et al., 2022) to
design one sequence per backbone, keeping the target chain
fixed and using a sampling temperature of 0.1.

Designed sequences were then co-folded with their respec-
tive targets using AlphaFold2 (Jumper et al., 2021) and
evaluated using folding model metrics (e.g., pLDDT, ipTM,
interface pAE) and Rosetta-based physical constraints (e.g.,
shape complementarity, dSASA, hydrogen bond counts), as
detailed in Section 4.1. This evaluation pipeline leverages
the AF2 and PyRosetta (Chaudhury et al., 2010) scheme in
BindCraft.

For the ESM-3 (Hayes et al., 2025) baseline, binder se-
quences were generated by prompting the model with the
target chain sequence followed by a chain break token and a
randomly sampled length (between 5565 residues) of mask
tokens, using 20 diffusion steps. These sequences were like-
wise co-folded and evaluated using the same AlphaFold2
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and Rosetta-based criteria. ESM-3 was used under the Evo-
lutionaryScale Community License Agreement, which per-
mits non-commercial use by academic and research insti-
tutions. ProteinMPNN, RFDiffusion, and BindCraft are
licensed under the MIT License. All usage in this work
complies with these terms.

6.4. Compute Requirements

We ran all experiments on NVIDIA L40S 48GB GPUs.
BECraft, and BindCraft, take approximately 5-7 minutes per
binder, though it is quite dependent on complex sequence
length.

RFDiffusion takes approximately 2-3 minutes per binder
generated on our dataset, though inference time varied sig-
nificantly with complex sequence length. RFDiffusion re-
ports an O(n?) scale in runtime with n being sequence
length (Watson et al., 2023). Additionally, PMPNN and
ESM-3 took 1-2 seconds and < 1 minute per sequence gen-
erated respectively.

Co-folding the target and binder and scoring with AF2 de-
signs on folding metrics took several minutes per sequence,
once again varying greatly with complex sequence length.
This was the most significant computational bottleneck in
our scoring and evaluation of baselines.
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