

FALCON: FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann Generators tackle this problem by pairing a generative model, capable of exact likelihood computation, with importance sampling to obtain consistent samples under the target distribution. Current Boltzmann Generators primarily use continuous normalizing flows (CNFs) trained with flow matching for efficient training of powerful models. However, likelihood calculation for these models is extremely costly, requiring thousands of function evaluations per sample, severely limiting their adoption. In this work, we propose FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON), a method which allows for few-step sampling with a likelihood accurate enough for importance sampling applications by introducing a hybrid training objective that encourages invertibility. We show FALCON outperforms state-of-the-art normalizing flow models for molecular Boltzmann sampling and is *two orders of magnitude faster* than the equivalently performing CNF model.

1 INTRODUCTION

Sampling molecular configurations from the Boltzmann distribution $p(x) \propto \exp(-\mathcal{E}(x))$ where $\mathcal{E}(x)$ is the potential energy of a configuration x , is a foundational and long-standing challenge in statistical physics. The ability to generate samples according to this distribution is the foundation for determining many other observables, such as free energies and heat capacities, which govern real-world behaviour. Consequently, efficient Boltzmann sampling is essential for progress in a large range of areas, from characterizing the function of biomolecules, to accelerating drug design, and discovering novel materials (Frenkel & Smit, 2023; Liu, 2001; Ohno et al., 2018; Stoltz et al., 2010).

The difficulty of this task arises from the structure of the energy for molecules of interest. The energy landscape is high dimensional and non-smooth with many local energy minima. These rugged energies severely challenge classical simulation-based methods like Molecular Dynamics (MD) (Leimkuhler & Matthews, 2015) and Monte Carlo Markov Chains (MCMC) as they become easily trapped in local minima, requiring a computationally inaccessible number of steps to mix between modes. These samplers generate many correlated samples, creating large inefficiencies, where an ideal sampler would generate i.i.d. samples from the underlying data distribution, $p(x)$.

Boltzmann Generators (BGs) have emerged as a way to address this inefficiency by amortizing the cost through the training of a generative model to learn to sample from $p_\theta(x)$ close to $p(x)$. These samples can then be corrected to $p(x)$ using self-normalized importance sampling (SNIS) (Noé et al., 2019). SNIS requires efficient access to $p_\theta(x)$ and $\mathcal{E}(x)$ for every sample drawn $x \sim p_\theta(x)$ for the correction step, but guarantees statistical consistency of the corrected samples, as illustrated in Fig. 1 (Noé et al., 2019; Liu, 2001).

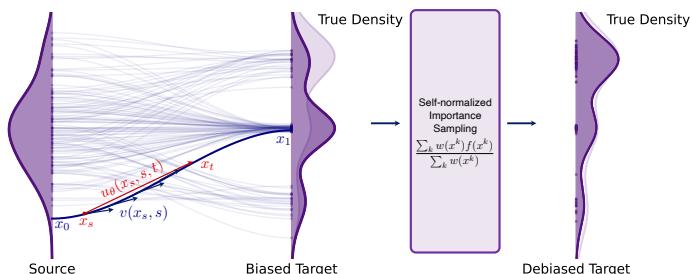


Figure 1: Flow map learns from biased data, with SNIS re-weighting generated samples **consistent** with the Boltzmann distribution, **approaching equality with infinite samples under mild regularity conditions**.

The main design choice in BGs is which type of generator to use. Modern BGs (Klein et al., 2023a; Klein & Noe, 2024) primarily make use of generators based on continuous normalizing flows (CNFs) (Chen et al., 2018; Grathwohl et al., 2019) due to their expressive power, ease of training, and flexibility of parameterization (Köhler et al., 2020) (see Table 1). However, while it is possible to access the $p_\theta(x)$ of a CNF, it is extremely computationally costly to approximate $p_\theta(x)$ with sufficient accuracy. Two primary reasons contribute to this cost: (1) Approximate estimators are not sufficiently accurate, making full Jacobian calculations necessary for each step along the flow; and (2) Many steps are necessary to control discretization error for sufficient performance (Fig. 2).

Recently, there have been significant advancements in few-step generation using flow models (Song et al., 2023; Boffi et al., 2025a; Frans et al., 2025; Guo et al., 2025; Sabour et al., 2025; Geng et al., 2025). These models are extremely powerful few-step generators with flexible architectures and efficient simulation-free training; however, these few-step samplers do not natively admit efficient estimators of the likelihood, making them unsuitable for the high-precision demands of importance sampling and scientific applications such as Boltzmann Generation (Rehman et al., 2025).

In this work, we investigate how to design a generative model that combines the best of both worlds: the training efficiency and architectural freedom of simulation-free flow models with the fast sampling and likelihood evaluation of discrete-time invertible models. We propose FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON), a flow-based model that enables few-step sampling while providing a likelihood estimate that is both fast to compute and accurate enough for importance sampling applications. FALCON leverages a hybrid training objective that combines a regression loss for stable and efficient few-step generation with a cycle-consistency term to encourage invertibility prior to convergence. Our main contributions are:

- We introduce FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON): a new continuous flow-based generative model for Boltzmann sampling that is invertible, trainable with a regression loss, and supports free-form architectures, while enabling both few-step generation and efficient likelihood evaluation.
- Orthogonally, we introduce a simple and scalable, softly equivariant continuous flow architecture that significantly improves over the current state-of-the-art equivariant flow model architecture.
- We show that FALCON is **two orders of magnitude faster** than CNF-based Boltzmann Generators for equivalent performance (Fig. 2, drastically reducing the computational cost of CNFs, and taking significant strides towards real-world large-scale molecular sampling applications.
- We show that FALCON outperforms the current state-of-the-art normalizing flow-based Boltzmann Generator across all metrics, even when FALCON is given **250× fewer samples** (Tan et al., 2025a).

2 BACKGROUND AND PRELIMINARIES

We are interested in drawing statistically independent samples from a target Boltzmann distribution p_{target} with partition function \mathcal{Z} , defined over \mathbb{R}^d :

$$p_{\text{target}}(x) \propto \exp(-\mathcal{E}(x)), \quad \mathcal{Z} = \int_{\mathbb{R}^d} \exp(-\mathcal{E}(x)) dx \quad (1)$$

where $\mathcal{E} : \mathbb{R}^d \rightarrow \mathbb{R}$ is the energy of the system, which we can efficiently compute for any x . In this work we do not require the energy to be differentiable. Unlike in the pure sampling setting (Akhound-Sadegh et al., 2024; Havens et al., 2025; Akhound-Sadegh et al., 2025; Midgley et al., 2023; Zhang & Chen, 2022; Vargas et al., 2023), we also assume access to a small biased dataset $\mathcal{D} = \{x^i\}_{i=1}^N$ of N samples (Noé et al., 2019). This makes it possible to perform an initial learning phase that fits a generative model with parameters θ , producing a proposal distribution, $p^\theta(x)$ (Noé et al., 2019).

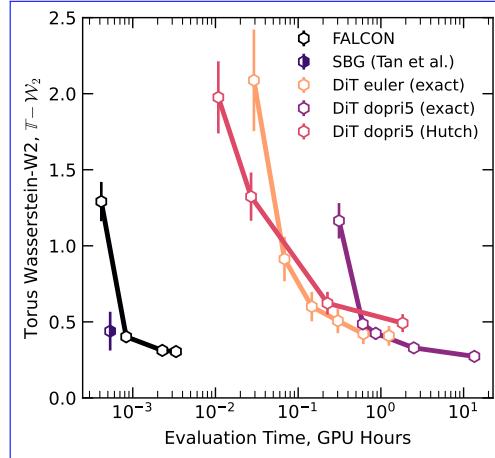


Figure 2: Performance-inference time comparison between NFs and CNFs for 10^4 dipeptide samples.

Boltzmann Generators. (BGs) (Noé et al., 2019) combine deep generative models capable of exact likelihoods, with a target energy function and a self-normalized importance sampling (SNIS) step to re-weight generated samples to the target Boltzmann distribution. The generative model is first trained on a possibly biased dataset \mathcal{D} as close as possible to p_{target} . BGs then draw K independent samples $x^i \sim p_1^\theta, i \in [K]$ and compute the corresponding unnormalized importance weights for each sample such that $w(x^i) \triangleq \exp(-\mathcal{E}(x^i))/p_1^\theta(x^i)$. Given these importance weights, we can then compute a consistent Monte–Carlo estimate of any observable $o(x)$ of interest under p_{target} using self-normalized importance sampling (Liu, 2001) as:

$$\mathbb{E}_{p_{\text{target}}}[o(x)] = \mathbb{E}_{p_1^\theta}[o(x)\bar{w}(x)] \approx \frac{\sum_{i=1}^K w(x^i)o(x^i)}{\sum_{i=1}^K w(x^i)}. \quad (2)$$

This allows for inference-time scaling as the Monte–Carlo estimate of any observable converges in probability to the correct value as the number of samples grows.

Flow Matching Models. Flow matching models (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu, 2022; Peluchetti, 2021) are probabilistic generative models that learn a continuous interpolation between an easy-to-sample distribution $p_0 = p_{\text{noise}}$ and the data distribution $p_1 = p_{\text{data}}$ in \mathbb{R}^d . Let $x_s = sx_1 + (1-s)x_0$ be a point at time $s \in [0, 1]$ between two points $x_0 \sim p_0$ and $x_1 \sim p_1$. The flow matching objective is then $\mathbb{E}_{x_0 \sim p_0, x_1 \sim p_1, s \sim \text{Unif}(0,1)} w(s) \|v_\theta(x_s, s) - (x_1 - x_0)\|_2^2$ for some parameterized vector field v_θ , and weighting function $w : [0, 1] \rightarrow \mathbb{R}^+$. We can then sample using an ordinary differential equation (ODE) $x_s^\theta = \int_0^s v_\theta(x_\tau, \tau) d\tau$ with the initial condition $x_0 \sim p_0$ and are guaranteed (under some mild assumptions) that $p_1^\theta(\hat{x}_1) \approx p_1(\hat{x}_1)$.

Furthermore, the density p_s^θ can be computed using the instantaneous change of variables formula (Chen et al., 2018) $\frac{\partial \log p(x_s)}{\partial s} = -\text{tr}\left(\frac{\partial v_\theta}{\partial x_s}\right)$ using the integral across time by solving a single $d+1$ dimensional ODE:

$$\begin{bmatrix} x_t \\ \log p_s^\theta(x_s) \end{bmatrix} = \int_0^s \begin{bmatrix} v_\theta(x_\tau, \tau) \\ -\text{tr}\left(\frac{\partial v_\theta}{\partial x_\tau}\right) \end{bmatrix} d\tau, \text{ with initial condition } \begin{bmatrix} x_0 \\ \log p_0(x_0) \end{bmatrix} \quad (3)$$

where the integral is discretized into T steps and the trace can either be computed exactly in $O(dT)$ function evaluations or approximated using Hutchinson’s trace estimator $\text{tr}(\bar{J}) = \mathbb{E}_\epsilon[\epsilon^T J \epsilon]$ for some noise vector $\epsilon \in \mathbb{R}^d$ in $O(T)$ function evaluations (Hutchinson, 1990). In practice, this is a major bottleneck because a large number of steps is needed to control discretization error (see Fig. 2).

Few-step Flow Models. Flow matching models can require hundreds of steps for accurate approximation of p_1 . To speed up sampling, few-step flow models such as consistency models (CMs) (Song et al., 2023), optimal transport-based methods (Pooladian et al., 2023; Tong et al., 2024a;b; Shi et al., 2023), and flow map models (Boffi et al., 2025a; Sabour et al., 2025; Geng et al., 2025; Frans et al., 2025; Guo et al., 2025) attempt to train a model that generates high quality samples in many fewer steps. Recently, efficient models that take not only the current sample time, but also the target sample time have shown particular flexibility and effectiveness in the one- to few-step regimes. In these models, u_θ is augmented with an additional input t , which denotes the target time to capture the *average velocity* (Geng et al., 2025) u as:

$$u(x_s, s, t) = \frac{1}{t-s} \int_s^t v(x_\tau, \tau) d\tau \quad (4)$$

to minimize the average velocity objective:

$$\mathbb{E}_{s, t, x_s} \left[w(s, t) \left\| u_\theta(x_s, s, t) - \frac{1}{t-s} \int_s^t v(x_\tau, \tau) d\tau \right\|^2 \right] \quad (5)$$

where the average velocity u_θ is parameterized by a neural network as depicted in Fig. 1 and v is the vector field of the probability flow ODE that transports samples from the noise distribution p_0 to the data distribution p_1 . Once the average velocity is learned, then samples can be drawn using

any discretization of the time interval $[0, 1]$, such that $t_0 = 0, t_1, \dots, t_T = 1$ as $x_{t_i} = x_{t_{i-1}} + (t_i - t_{i-1})u_\theta(x_{t_{i-1}}, t_{i-1}, t_i)$ for $i \in 1 \dots T$. However, thus far, few-step flow models have only been applied for fast generation, and, as we show, do not natively guarantee efficient access to likelihoods in realistic settings as the learned average velocity map u_θ is not guaranteed to be invertible before the training objective is perfectly minimized, making the standard change-of-variables formula inapplicable. These models and their relationship to FALCON are summarized in Table 1.

3 FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS

We now introduce FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON), a novel flow-based generative model designed to address the inherent efficiency limitations of using continuous flow models with Boltzmann Generators. Our method departs from traditional continuous normalizing flow (CNFs) by training a flow map that operates in a few discrete steps, while simultaneously achieving invertibility to ensure fast and accurate likelihood computation for Boltzmann Generation. This is achieved through a hybrid training objective, which, by enabling stable few-step generation, dramatically reduces the inference cost. This efficiency allows us to use much larger and more expressive architectures (Vaswani et al., 2017; Peebles & Xie, 2023; Ma et al., 2024) that were previously computationally infeasible to scale in the BG setting.

Flow Maps are Flawed Boltzmann Generators. The core of FALCON is a generative process that learns an invertible map from a simple base distribution p_0 to the target molecular distribution p_1 in a small number of steps. We first examine the suitability of the existing few-step flows for importance sampling applications, concluding that, on their own, they are not sufficient. We first define the continuous map with respect to a vector field v as:

$$X_v(x_s, s, t) = \int_s^t v(x_\tau, \tau) d\tau + x_s, \quad (6)$$

and note that under mild regularity conditions on v , this map is always invertible up to discretization error. For any invertible map, we can compute the change in density with respect to the input using the change of variables formula, which requires computing the Jacobian, at the approximate cost of d function evaluations, and the determinant, which, while an $O(d^3)$ operation, is in practice negligible compared to the function evaluation cost.

This invertibility property also holds for flow map models at the optima, which we address in the following proposition.

Proposition 1. Let u_θ^* be a minimizer of Eq. 5 with respect to some v . Also, define the Jacobian of X as $\mathbf{J}_X = \frac{\partial X}{\partial x_s}$, and the discrete flow map:

$$X_u(x_s, s, t) = x_s + (t - s)u_\theta^*(x_s, s, t) \quad (7)$$

Then, for sufficiently smooth u_θ^* and v and for any $(s, t) \in [0, 1]^2$,

1. $X_u(\cdot, s, t)$ is an invertible map everywhere,
2. $\log p_t^{u^*}(x_t) = \log p_s^{u^*}(x_s) - \log |\det \mathbf{J}_{X_u}(x_s)|$ almost everywhere.

We provide a more precise statement and proofs for all propositions in §A. This means that *optimal* flow maps are, in some ways, ideal Boltzmann Generators in that they have relatively efficient access to both samples and likelihood; however, this property only holds at the optima, and in the case that $X_u(\cdot, s, t) = X_v(\cdot, s, t)$ for all s, t , which in practice is extremely challenging to satisfy.

In practice, for standard flow map models, $X_u(\cdot, s, t) \neq X_v(\cdot, s, t)$ and we have no guarantee that X_u will be invertible, making efficient likelihood calculation all but impossible. However, we note that this condition is actually much stronger than we need for FALCON. For our uses, while we would like $X_u(\cdot, s, t)$ to be close to $X_v(\cdot, s, t)$, for accurate and efficient likelihood computation, we only require that X_u is invertible, not that it matches the particular invertible map defined by X_v . This leads us to define an additional invertibility loss:

$$\mathcal{L}_{\text{inv}}(\theta) = \mathbb{E}_{s, t, x_s} \|x_s - X_u(X_u(x_s, s, t), t, s)\|^2, \quad (8)$$

to be used in conjunction with the average velocity objective and flow matching objectives, \mathcal{L}_{cfm} , for a final loss comprised of three components:

$$\mathcal{L}(\theta) = \mathcal{L}_{\text{cfm}}(\theta) + \lambda_{\text{avg}} \mathcal{L}_{\text{avg}}(\theta) + \lambda_r \mathcal{L}_{\text{inv}}(\theta), \quad (9)$$

with variants \mathcal{L}_{avg} proposed below. Minimizing this loss has a less strict requirement for the correctness of the Boltzmann Generator specifically:

216 **Proposition 2.** Let u_θ^* be a minimizer of \mathcal{L}_{inv} (Eq. (8)) with respect to some v . Then, for sufficiently
 217 smooth u_θ^* and v and for any $(s, t) \in [0, 1]^2$, $X_u(\cdot, s, t)$ is an invertible map *everywhere*, and
 218 $\log p_t^{u^*}(x_t) = \log p_s^{u^*}(x_s) - \log |\det \mathbf{J}_{X_u}(x_s)|$ *almost everywhere*.
 219
 220

221 Thus, minimizing the invertibility loss is sufficient for valid Boltzmann Generation, even without
 222 exactly reproducing the continuous-time flow. Note that the proposition provides a constructive
 223 guarantee of invertibility, and, in practice, we only require the existence of an inverse, not its explicit
 224 form. This condition ensures that FALCON acts as a consistent generator of the target energy
 225 distribution, $\mathcal{E}(x)$, while benefiting from fast inference-time scalability.
 226

227 **FALCON Enables Scalable Architectures.** Previous Boltzmann Generators based on continuous
 228 normalizing flows for molecular applications utilize small equivariant architectures (Klein et al.,
 229 2023a; Klein & Noe, 2024; Tan et al., 2025a; Aggarwal et al., 2025) *up to 2.3 million parameters*.
 230 These models are limited in their scale due to the high cost of inference with multi-step adaptive
 231 step size samplers, which are needed to control the error in the likelihood calculation. FALCON,
 232 by enabling relatively cheap few-step sampling, can greatly improve performance. Specifically, we
 233 use a standard diffusion transformer (DiT) network (Peebles & Xie, 2023) with an additional time
 234 embedding head. We also use a combination of data augmentation to enforce soft SO(3) (rotation)
 235 equivariance and subtraction of the mean to enforce translation invariance following (Tan et al.,
 236 2025a;b).
 237

238 **Formulations for \mathcal{L}_{avg} in the context of Boltzmann Generators.** Many forms of \mathcal{L}_{avg} have been
 239 explored in the context of fast generation (Geng et al., 2025; Guo et al., 2025; Boffi et al., 2025a;
 240 Sabour et al., 2025); We discuss these losses in §B. In this work, we consider the following loss,
 241 which is equivalent to the MeanFlow loss of Geng et al. (2025), as well as the ESD objective in Boffi
 242 et al. (2025a). This choice is based on the superior performance of this loss in image experiments
 243 (Sabour et al., 2025), as well as its potential for efficient implementation, which we discuss below.
 244

$$\mathcal{L}_{\text{avg}} \triangleq \mathbb{E}_{s, t, x_s} \left\| u_\theta(\mathbf{x}_s, s, t) - \text{sg} \left(v(x_s, s) - (t-s)(v(x_s, s) \partial_{x_s} u_\theta + \partial_s u_\theta) \right) \right\|^2 \quad (10)$$

245 Note that since $x_s = sx_1 + (1-s)x_0$, we can directly use $v(x_s, s) = x_1 - x_0$.
 246

247 **Efficient Implementation.** As noted in multiple previous works, \mathcal{L}_{avg} can be efficiently im-
 248 plemented using a single Jacobian vector prod-
 249 uct (JVP) call using forward automatic differ-
 250 entiation. Specifically, we have:
 251

$$252 u_\theta(x_s, s, t), \frac{du_\theta}{ds} = \text{jvp}(u_\theta, (x_s, s, t), (v_s, 1, 0))$$

253 where the jvp function takes a callable function,
 254 inputs, and a vector which is the vector part of
 255 the JVP.
 256

257 Additionally, for this loss specifically, we
 258 can combine \mathcal{L}_{cfm} and \mathcal{L}_{avg} if we implement
 259 $v(x_s, s) = u_\theta(x_s, s, s)$, i.e. passing the same
 260 time to u , representing the instantaneous velocity.
 261 Specifically, we can implement the sum
 262 of the two losses by changing the distribution
 263 of s, t in Eq. 10 to include some percentage of
 264 the time when $s = t$ to correspond with some
 265 fraction of \mathcal{L}_{cfm} loss.
 266

267 Our method is the first to require flow maps both in the forward and backward directions. We
 268 therefore need to consider the parameterization $u_\theta(x_s, t, s)$, i.e. the backwards direction, specifically
 269 at the discontinuity when $s = t$. When $t \rightarrow s^+$, then $u_\theta(x_s, s, t) = v(x_s, s)$, but when $t \rightarrow s^-$, then
 $u_\theta(x_s, s, t) = -v(x_s, s)$. To address this, we parameterize our flow map u_θ such that $u_\theta(x_s, s, t) =$
 $\text{sign}(t-s)h_\theta(x_s, s, t)$ (Sabour et al., 2025).
 270

Algorithm 1: Training FALCON

Input: Sampleable p_0 and p_1 , regularization
 weight λ_r , network u_θ

Output: The trained network u_θ

while training **do**

$$\begin{aligned} (x_0, x_1) &\sim p_0 \times p_1; \\ x_s &\leftarrow sx_1 + (1-s)x_0; \\ v_s &\leftarrow x_1 - x_0; \\ u_\theta, \frac{\partial u_\theta}{\partial s} &\leftarrow \text{jvp}(u_\theta, (x_s, s, t), (v_s, 1, 0)); \\ u_{\text{tgt}} &\leftarrow v_s - (t-s)\frac{\partial u_\theta}{\partial s}; \\ \hat{x}_t &\leftarrow x_s + (t-s)u_\theta; \\ \hat{x}_s &\leftarrow \hat{x}_t + (s-t)u_\theta(\hat{x}_t, t, s); \\ \mathcal{L}(\theta) &\leftarrow \|\mathcal{L}_{\text{avg}}\|^2 + \lambda_r \|x_s - \hat{x}_s\|^2; \\ \theta &\leftarrow \text{update}(\theta, \nabla_\theta \mathcal{L}(\theta)); \end{aligned}$$

return u_θ ;

270

4 EXPERIMENTS

271
 272 In this section, we first demonstrate that FALCON achieves more scalable performance over
 273 state-of-the-art continuous flows across both global and local metrics on tri-alanine, alanine
 274 tetrapeptide, and hexa-alanine (Table 3). Next, we empirically demonstrate that FALCON flows
 275 exceed the performance of state-of-the-art discrete NFs, even when they are given vastly larger
 276 sampling budgets (Fig. 4). Then, we elucidate the importance of regularization in achieving
 277 invertibility and aiding generative performance (Fig. 6). Finally, we ablate inference schedules and
 278 show their impact on performance across metrics as a function of sampler choice (Fig. 7).

279

4.1 EXPERIMENTAL SETUP

280 **Datasets.** We evaluate the performance of FALCON on equilibrium conformation sampling
 281 tasks, focusing on alanine dipeptide (ALDP), tri-alanine (AL3), alanine tetrapeptide (AL4), and
 282 hexa-alanine (AL6). Datasets are obtained from implicit solvent molecular dynamics (MD)
 283 simulations with the `amber-14` force field, as detailed in §D.3. We train on biased data and test
 284 on a held-out unbiased dataset, using self-normalized importance sampling (SNIS) and force-field
 285 energies to compute log-likelihoods and re-sample molecules from the target Boltzmann density.

286 **Baselines.** We benchmark FALCON against both discrete and continuous normalizing flows.
 287 We include four discrete normalizing flow baselines: (1) SE(3)-EACF (Midgley et al., 2023); (2)
 288 `RegFlow` (Rehman et al., 2025); (3) SBG (Tan et al., 2025a) with standard SNIS (SBG IS); and
 289 (4) SBG with SMC sampling (SBG SMC), as well as three continuous flows: (1) ECNF (Klein
 290 et al., 2023b); (2) ECNF++ (Tan et al., 2025a); and (3) BoltzNCE (Aggarwal et al., 2025), a recent
 291 SE(3)-equivariant architecture leveraging geometric vector perceptrons (GVPs) (Jing et al., 2020)
 292 on alanine dipeptide. For all continuous flows, samples and likelihoods are generated by integrating
 293 over the vector field using the Dormand–Prince 4(5) integrator with $\text{atol} = \text{rtol} = 10^{-5}$ (Dormand
 294 & Prince, 1986) to ensure a fair comparison between methods. More details on architectures and
 295 parameters are covered in §D.1.

296 **Metrics.** We report Effective Sample Size (ESS), and the 2-Wasserstein distance on both the energy
 297 distribution ($\mathcal{E}\mathcal{W}_2$), and dihedral angles ($\mathbb{T}\mathcal{W}_2$). The full definitions of the metrics are included in §E.
 298 The energy captures local details, as minor atomic displacements yield large variations in the energy
 299 distribution, while $\mathbb{T}\mathcal{W}_2$ captures global structure via mode coverage across metastable states. We
 300 include energy histograms in the main text, with Ramachandran plots relegated to §F.4. For robustness,
 301 all quantitative experiments are performed on three seeds of the model and reported as mean \pm
 302 standard deviation in the tables and figures. For all benchmarks, in cases where dashes are present,
 303 data was unavailable, except for SBG SMC (Tan et al., 2025a), where ESS is not a valid metric.

304

4.2 FALCON OUTPERFORMS STATE-OF-THE-ART METHODS

305

Superior Scalability Over Continuous Flows.

306 Computing likelihoods in CNFs is computationally prohibitive, limiting their scalability in
 307 the Boltzmann Generator setting. Although the current state-of-the-art, ECNF++, performs ex-
 308 ceptionally well on ESS and $\mathbb{T}\mathcal{W}_2$ for alanine
 309 dipeptide (see Table 2) (Tan et al., 2025a), it fails
 310 to scale to larger molecules, as seen in Table 3.
 311 In contrast, for larger systems—tri-alanine, ala-
 312 nine tetrapeptide, and hexa-alanine—FALCON
 313 substantially outperforms ECNF++ across all metrics, demonstrating superior scalability to larger
 314 molecular systems. The true MD energy distributions, learned proposals, and re-sampled energies for
 315 alanine dipeptide, tri-alanine, alanine tetrapeptide, and hexa-alanine are all shown in Fig. 3.

316 **Improved Sample Quality Over Discrete Flows.** Discrete NFs have recently been shown to be
 317 highly performant Boltzmann Generators (Rehman et al., 2025; Tan et al., 2025a;b). SBG (Tan et al.,
 318 2025a), based on the TARFlow architecture (Zhai et al., 2024), outperforms all previously reported
 319 methods across both global and local metrics (see Table 3). Here, we demonstrate that FALCON,
 320 even in a few steps, can outperform SBG across all metrics. We make two main claims to assert
 321 FALCON’s competitive advantage, in comparison with discrete NFs: (1) Discrete NFs, despite being
 322 fast one-step generators, consistently underperform compared to FALCON across all global and local

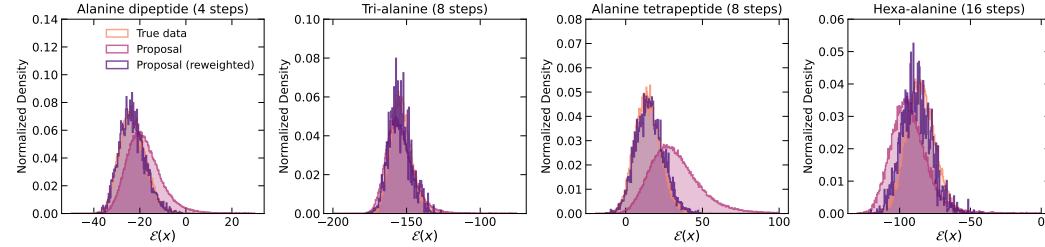
323

Table 2: Results on alanine dipeptide.

Algorithm ↓	Alanine dipeptide (ALDP)		
	ESS ↑	$\mathcal{E}\mathcal{W}_2$ ↓	$\mathbb{T}\mathcal{W}_2$ ↓
BoltzNCE	—	0.27 ± 0.02	0.57 ± 0.00
SE(3)-EACF	$< 10^{-3}$	108.202	2.867
<code>RegFlow</code>	0.036	0.519	0.958
ECNF	0.119	0.419	0.311
ECNF++	0.275 ± 0.010	0.914 ± 0.122	0.189 ± 0.019
SBG IS	0.030 ± 0.012	0.873 ± 0.338	0.439 ± 0.129
SBG SMC	—	0.741 ± 0.189	0.431 ± 0.141
FALCON (Ours)	0.067 ± 0.013	0.225 ± 0.104	0.402 ± 0.021

324 Table 3: Quantitative results on tri-alanine (AL3), alanine tetrapeptide (AL4), and hexa-alanine (AL6). Baseline
325 methods presented with SNIS, unless stated otherwise. Evaluations are conducted over 10^4 samples.

Algorithm ↓	Tri-alanine (AL3)			Tetrapeptide (AL4)			Hexa-alanine (AL6)		
	ESS ↑	$\mathcal{E}\text{-}\mathcal{W}_2$ ↓	$\mathbb{T}\text{-}\mathcal{W}_2$ ↓	ESS ↑	$\mathcal{E}\text{-}\mathcal{W}_2$ ↓	$\mathbb{T}\text{-}\mathcal{W}_2$ ↓	ESS ↑	$\mathcal{E}\text{-}\mathcal{W}_2$ ↓	$\mathbb{T}\text{-}\mathcal{W}_2$ ↓
ECNF++	0.003 ± 0.002	2.206 ± 0.813	0.962 ± 0.253	0.016 ± 0.001	5.638 ± 0.483	1.002 ± 0.061	0.006 ± 0.001	10.668 ± 0.285	1.902 ± 0.055
RepFlow	0.029	1.051	1.612	0.010	6.277	3.476	—	—	—
SBG IS	0.052 ± 0.013	0.758 ± 0.506	0.502 ± 0.016	0.046 ± 0.014	1.068 ± 0.495	0.969 ± 0.067	0.034 ± 0.015	1.021 ± 0.239	1.431 ± 0.085
SBG SMC	—	0.598 ± 0.084	0.503 ± 0.029	—	1.007 ± 0.382	1.039 ± 0.069	—	1.189 ± 0.357	1.444 ± 0.140
FALCON (Ours)	0.077 ± 0.004	0.544 ± 0.013	0.452 ± 0.011	0.055 ± 0.003	0.686 ± 0.047	0.858 ± 0.077	0.060 ± 0.017	0.892 ± 0.311	1.256 ± 0.132



341 Figure 3: True MD energy distribution with best FALCON unweighted and re-sampled proposals for alanine
342 dipeptide (left), tri-alanine (center left), and alanine tetrapeptide (center right), and hexa-alanine (right).

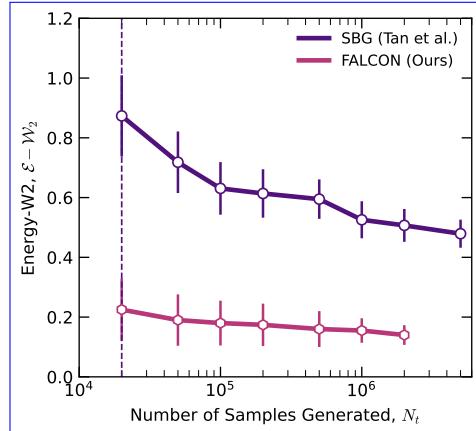
343 metrics (Table 3); and (2) Increasing the number of samples can partially close this gap; however, even
344 with 5×10^6 samples— $250\times$ more than those used to evaluate FALCON—SBG’s performance on
345 $\mathcal{E}\text{-}\mathcal{W}_2$ remains significantly worse than that of a 4-step FALCON Flow (as demonstrated in Fig. 4).

346 4.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

347 **Training Efficiency Compared to Discrete NFs.** Discrete NFs benefit from fast inference, but are slow
348 and unstable to train due to the maximum likelihood
349 objective (Xu & Campbell, 2023; Andrade, 2024). By
350 contrast, CNFs trained with a flow matching objective
351 trade more stable and faster training for slower inference.
352 When considering both training and evaluation
353 time together (Table 4), we see that FALCON—despite
354 being marginally slower at inference than the discrete
355 NFs for the same number of samples—achieves faster
356 cumulative training + inference times for superior
357 performance due to the expedited training objective.

358 **Inference Efficiency Compared to CNFs.** A primary
359 contribution of FALCON is the dramatic reduction
360 in the computational cost required to achieve high-
361 quality samples with accurate likelihoods. Fig. 2 di-
362 rectly illustrates this advantage. To reach a comparable
363 level of performance on the $\mathbb{T}\text{-}\mathcal{W}_2$ metric for alanine dipeptide, a traditional CNF requires inference
364 times that are two orders of magnitude longer than FALCON. This efficiency gain is what enables
365 the use of larger, more expressive architectures and makes large-scale molecular sampling practical.
366 For additional discussion, see §F.3.

367 Table 4: Cumulative training + inference time across flows. 10^4 samples evaluated with ($\text{atol} = \text{rtol} = 10^{-5}$ for
368 our CNF and 4-step FALCON). All experiments were conducted on one NVIDIA L40S with batch size 1024.
369 Note: For hexa-alanine, obtaining 10^4 samples from the Dopri5-integrated CNF was computationally infeasible.



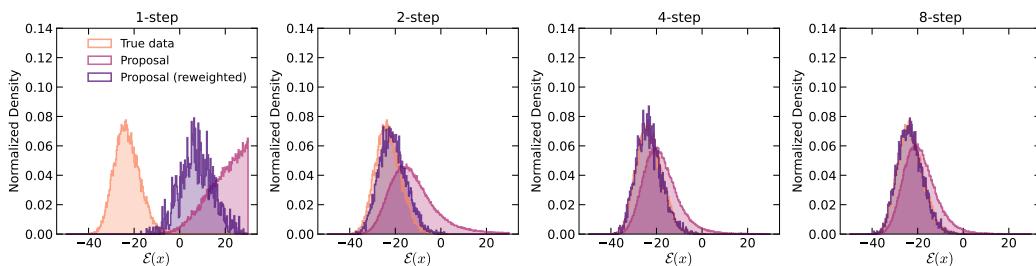
370 Figure 4: Performance with additional samples.

	ECNF++	SBG	DiT CNF (Ours)	FALCON (Ours)
Alanine dipeptide	12.52	16.83	9.56	7.65
Tri-alanine	19.59	24.67	17.54	11.45
Alanine tetrapeptide	32.17	41.67	24.10	18.84
Hexa-alanine	137.4	57.50	82.10	25.76

378
 379 Table 5: Quantitative results on alanine dipeptide, tri-alanine, alanine tetrapeptide, and hexa-alanine compared
 380 to our Dopri5-integrated CNFs. Evaluations were conducted over 10^4 points across methods. Note: For hexa-
 381 alanine, obtaining 10^4 samples from the Dopri5-integrated CNF was computationally infeasible.

System	Algorithm ↓	ESS ↑	$\mathcal{E}\text{-}\mathcal{W}_2$ ↓	$\mathbb{T}\text{-}\mathcal{W}_2$ ↓	NFE
Alanine dipeptide	FALCON-Dopri5	0.264 ± 0.058	0.442 ± 0.048	0.218 ± 0.023	257
	FALCON	0.067 ± 0.013	0.225 ± 0.104	0.402 ± 0.021	4
Tri-alanine	FALCON-Dopri5	0.125 ± 0.034	0.382 ± 0.053	0.370 ± 0.093	265
	FALCON	0.077 ± 0.004	0.544 ± 0.013	0.452 ± 0.011	8
Alanine tetrapeptide	FALCON-Dopri5	0.129 ± 0.015	0.665 ± 0.047	0.640 ± 0.093	200
	FALCON	0.055 ± 0.003	0.686 ± 0.047	0.858 ± 0.077	8
Hexa-alanine	FALCON-Dopri5	0.128 ± 0.031	1.013 ± 0.115	1.320 ± 0.201	207
	FALCON	0.060 ± 0.017	0.892 ± 0.311	1.256 ± 0.132	16

392
 393 **Inference vs. Accuracy Trade-off.** In FALCON, by using a flow map formulation, we can trade
 394 off performance for faster evaluation by adjusting the number of inference steps post-hoc. In Table 5,
 395 we show that a high-NFE, adaptive step solver achieves superior performance to the state-of-the-art
 396 continuous time ECNF++, as well as a few-step FALCON Flow; however, we also demonstrate that
 397 in this few-step regime, FALCON still outperforms every method considered (see Table 3) using
 398 two orders of magnitude fewer function evaluations (only 4-16 steps, depending on the dataset).
 399 Depending on the compute budget and goal, we demonstrate in Fig. 5 how FALCON is able to
 400 interpolate between slow and accurate sampling with fast but less accurate sampling.



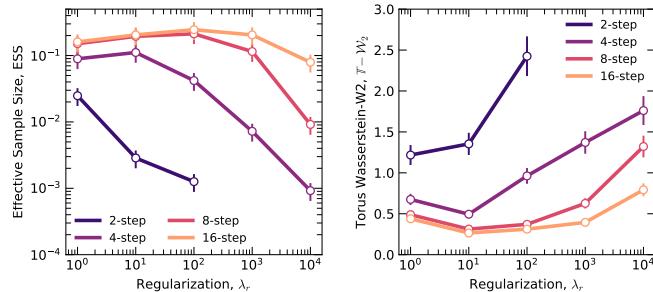
401
 402 Figure 5: Improved proposal and re-weighted sample energies with increased steps for alanine dipeptide.
 403

4.4 ABLATION STUDIES AND DESIGN CHOICES

Verifying FALCON’s Invertibility.

404 As CNFs are only invertible at convergence, we introduce a regularization term in the loss to promote
 405 numerical invertibility in the few-step regime. In Fig. 6, we demonstrate the trade-off from this term on both
 406 the ESS and 2-Wasserstein distance on dihedral angles: weak regularization leads to poor invertibility and
 407 degraded performance, whereas strong regularization enforces flow invertibility, albeit at the cost of reduced sample quality. We fix the regularization constant to 10.0 for all
 408 experiments performed, unless stated otherwise to balance performance and numerical invertibility.
 409

410 We also directly prove that an inverse exists for our trained flow, by training an auxiliary network to
 411 invert a frozen FALCON Flow for the forward direction. We find that FALCON achieves invertibility
 412 errors on the order of 10^{-4} , which is the same order of magnitude as the invertibility of discrete and
 413 continuous NFs. Additional details can be found in §F.2 and Fig. 12.



414
 415 Figure 6: Performance trade-off with increasing regularization.
 416

432
 433 **Impact of Inference Schedules.** In the few
 434 step regime, performance can be significantly
 435 impacted by the choice of inference schedule.
 436 We run ablations on various schedules for ala-
 437 nine dipeptide with 8-steps, summarizing the
 438 results in Fig. 7. We note that the EDM scheduler
 439 substantially outperforms all other schedulers,
 440 in agreement with observations from the dif-
 441 fusion literature (Karras et al., 2022); sampling
 442 more points near the data distribution proves
 443 beneficial in aiding generative performance as
 444 the variance of the flow field is higher closer to
 445 the target distribution. For all reported results,
 446 we use the EDM scheduler. In §D.2, we provide
 447 additional details regarding scheduler definitions,
 448 inference setups, and parameter selection for EDM.

5 RELATED WORK

449 **Boltzmann Generators.** Boltzmann Generators (BGs) (Noé et al., 2019) are used to sample
 450 molecular conformations (Klein et al., 2023a) and enable consistent estimates of thermodynamic
 451 observables (Wirnsberger et al., 2020; Rizzi et al., 2023; Schebek et al., 2024). While traditionally
 452 BGs are based on discrete normalizing flows, more recent work in machine learning makes use of
 453 more powerful continuous normalizing flow architectures for invariance (Köhler et al., 2020; Köhler
 454 et al., 2023) and expressive power (Klein et al., 2023a; Klein & Noé, 2024). A few other works have
 455 explored the usage of approximate likelihoods (Draxler et al., 2024; Sorrenson et al., 2024; Aggarwal
 456 et al., 2025), but have until now been unable to scale. Rehman et al. (2025) also proposes a more
 457 efficient BG using a new-regression-based objective to train discrete normalizing flow architectures,
 458 but requires an invertible architecture limiting scalability and performance.

459 **Few-step Flows.** Diffusion and flow matching methods are now central to domains from vision
 460 (Song et al., 2021a;b; Lipman et al., 2023) to scientific applications in material and drug discovery
 461 (Abramson et al., 2024; Noé et al., 2019). Scalable regression-based losses make these models fast to
 462 train, yet inference remains costly due to the need for numerous vector field integrations, motivating
 463 efforts to reduce computational expense. One- and few-step methods, like consistency models (Song
 464 et al., 2023; Song & Dhariwal, 2023; Geng et al., 2024), shortcut models (Frans et al., 2025), and
 465 flow maps (Boffi et al., 2025a;b; Sabour et al., 2025; Guo et al., 2025) have gained recent attention.
 466 Although there have been numerous efforts in improving generative performance in image settings,
 467 developing invertible few-step flows for scientific applications has seen far less interest. Our work, as
 468 far as we know, is the first demonstration of an invertible few-step flow with fast likelihoods.

6 CONCLUSION

470 In this work, we introduced FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS,
 471 a novel few-step flow-based generative model designed to address the long-standing challenge
 472 of scalable and efficient Boltzmann distribution sampling. Our approach successfully combines
 473 the expressiveness and training efficiency of modern flow-based models with a few-step sampling
 474 capability and for fast, accurate likelihood estimation. By leveraging a hybrid training objective,
 475 FALCON provides a practical solution for the computationally expensive likelihood evaluations that
 476 have historically limited the widespread adoption of Boltzmann Generators.

477 Our empirical results demonstrate that FALCON not only outperforms the existing state-of-the-art
 478 discrete normalizing flow models, but also provides a significant leap in computational efficiency
 479 over previous continuous flow models. We showed that our model is *two orders of magnitude faster*
 480 than an equivalently performing CNF-based Boltzmann Generator, making real-world, molecular
 481 sampling applications significantly more feasible. This represents a critical step toward unlocking the
 482 potential of Boltzmann Generators in fields ranging from drug discovery to materials science.

483 **Limitations.** Despite its advancements, FALCON has several key limitations that are crucial to
 484 acknowledge. First, while our results demonstrate that the computed likelihoods are *empirically*
 485 *good enough* for practical applications, we cannot efficiently guarantee their theoretical correctness.
 486 This represents a trade-off between computational efficiency and absolute theoretical certainty.

486 Additionally, while theoretically possible, achieving true one-step generation remains out of reach for
487 our current models, and we believe further architectural improvements and training methodologies
488 are necessary to fully realize this potential.

489 Finally, our current research has primarily focused on the application of FALCON to Boltzmann
490 Generation in molecular conformation sampling. Future work will explore applying our approach
491 to Bayesian inference, robotics, and other domains where rapid and accurate likelihood estimation
492 is critical. We also see potential in models with structured Jacobians (Rezende & Mohamed, 2015;
493 Dinh et al., 2017; Zhai et al., 2024; Kolesnikov et al., 2024) to facilitate even faster sampling.

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 **ETHICS STATEMENT**
541542 Our work is primarily focused on theoretical algorithmic development for faster and more accurate
543 generative models for sampling from Boltzmann densities, with reduced focus on experimental
544 implementation. However, we recommend that future users of our work exercise appropriate caution
545 when applying it to domains that may involve sensitive considerations.546 **REPRODUCIBILITY STATEMENT**
547548 We undertake multiple measures to ensure the reproducibility of our work. A dedicated section in §F.1
549 outlines the setup required to generate each of our reported figures. Further, we provide comprehensive
550 information on the MD datasets used to train our models, including simulation parameters as well as
551 the training, validation, and test splits used. We also include a separate section detailing model configu-
552 rations, learning rate schedules, optimizer settings, hyperparameter choices, and other relevant aspects
553 to facilitate reproduction in §D.1. We will also release all developed code publicly upon acceptance.

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
597 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Boden-
598 stein, David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvu-
599 nakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex
600 Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie,
601 Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A. Khan, Caro-
602 line M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savo, Sukhdeep Singh, Adrian Stecula,
603 Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
604 Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M.
605 Jumper. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*,
606 630(8016):493–500, June 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w.
607 URL <https://www.nature.com/articles/s41586-024-07487-w>. Publisher: Nature Publish-
608 ing Group.

609 Rishal Aggarwal, Jacky Chen, Nicholas M Boffi, and David Ryan Koes. BoltzNCE: Learning
610 likelihoods for boltzmann generation with stochastic interpolants and noise contrastive estimation.
611 *arXiv preprint arXiv:2507.00846*, 2025.

612 Tara Akhoud-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
613 Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay
614 Malkin, and Alexander Tong. Iterated Denoising Energy Matching for Sampling from Boltzmann
615 Densities, February 2024. URL <http://arxiv.org/abs/2402.06121>. arXiv:2402.06121 [cs,
616 stat].

617 Tara Akhoud-Sadegh, Jungyoon Lee, Avishek Joey Bose, Valentin De Bortoli, Arnaud Doucet,
618 Michael M. Bronstein, Dominique Beaini, Siamak Ravanbakhsh, Kirill Neklyudov, and Alexander
619 Tong. Progressive inference-time annealing of diffusion models for sampling from boltzmann
620 densities. In *Advances in Neural Information Processing Systems*, 2025.

621 Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
622 *International Conference on Learning Representations (ICLR)*, 2023.

624 Daniel Andrade. Stable training of normalizing flows for high-dimensional variational inference.
625 *arXiv preprint arXiv:2402.16408*, 2024.

627 Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. How to build a consistency model:
628 Learning flow maps via self-distillation, 2025a. URL <https://arxiv.org/abs/2505.18825>.

629 Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
630 with stochastic interpolants: A mathematical framework for consistency models. *Transactions on
631 Machine Learning Research*, 2025b.

633 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
634 differential equations. *Neural Information Processing Systems (NIPS)*, 2018.

636 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
637 *International Conference on Learning Representations (ICLR)*, 2017.

638 John R Dormand and Peter J Prince. Runge-kutta triples. *Computers & Mathematics with Applications*,
639 12(9):1007–1017, 1986.

641 Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe. Free-
642 form flows: Make any architecture a normalizing flow. In *International Conference on Artificial
643 Intelligence and Statistics*, pp. 2197–2205. PMLR, 2024.

644 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
645 models, 2025. URL <https://arxiv.org/abs/2410.12557>.

647 Daan Frenkel and Berend Smit. *Understanding Molecular Simulation: from Algorithms to Applica-
648 tions*. Elsevier, 2023.

648 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
649 made easy. *arXiv preprint arXiv:2406.14548*, 2024.

650

651 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
652 one-step generative modeling, 2025. URL <https://arxiv.org/abs/2505.13447>.

653

654 Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
655 free-form continuous dynamics for scalable reversible generative models. In *International Conference on Representation Learning (ICLR)*, 2019.

656

657 Yi Guo, Wei Wang, Zhihang Yuan, Rong Cao, Kuan Chen, Zhengyang Chen, Yuanyuan Huo, Yang
658 Zhang, Yuping Wang, Shouda Liu, and Yuxuan Wang. Splitmeanflow: Interval splitting consistency
659 in few-step generative modeling, 2025. URL <https://arxiv.org/abs/2507.16884>.

660

661 Aaron Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Brandon
662 Wood, Daniel Levine, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, and
663 Ricky T. Q. Chen. Adjoint sampling: Highly scalable diffusion samplers via adjoint matching,
664 2025. URL <https://arxiv.org/abs/2504.11713>.

665

666 M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
667 splines. *Communications in Statistics - Simulation and Computation*, 19(2):433–450, 1990. doi:
668 10.1080/03610919008812866.

669

670 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
671 from protein structure with geometric vector perceptrons. *arXiv preprint arXiv:2009.01411*, 2020.

672

673 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
674 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
675 2022.

676

677 Leslie Kish. Confidence intervals for clustered samples. *American Sociological Review*, 22(2):
678 154–165, 1957.

679

680 Leon Klein and Frank Noe. Transferable Boltzmann Generators. *Advances in Neural Information Processing Systems*, 37:45281–45314, December 2024.
681 URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/5035a409f5798e188079e236f437e522-Abstract-Conference.html.

682

683 Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. *Advances in Neural Information Processing Systems*, 36:59886–59910, December 2023a.
684 URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/bc827452450356f9f558f4e4568d553b-Abstract-Conference.html.

685

686 Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. *Neural Information Processing Systems (NeurIPS)*, 2023b.

687

688 Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
689 symmetric densities. *International Conference on Machine Learning (ICML)*, 2020.

690

691 Alexander Kolesnikov, André Susano Pinto, and Michael Tschannen. Jet: A modern transformer-
692 based normalizing flow. *arXiv preprint arXiv:2412.15129*, 2024.

693

694 Jonas Köhler, Michele Invernizzi, Pim De Haan, and Frank Noe. Rigid Body Flows for Sampling
695 Molecular Crystal Structures. In *Proceedings of the 40th International Conference on Machine
696 Learning*, pp. 17301–17326. PMLR, July 2023. URL <https://proceedings.mlr.press/v202/kohler23a.html>. ISSN: 2640-3498.

697

698 Benedict Leimkuhler and Charles Matthews. *Molecular Dynamics: With Deterministic and Stochastic
699 Numerical Methods*. Springer, 2015.

700

701 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
702 for generative modeling. *International Conference on Learning Representations (ICLR)*, 2023.

703

704 Jun S Liu. *Monte Carlo Strategies in Scientific Computing*. Springer, 2001.

702 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv*, 2022.
 703

704 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 705 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 706 transformers. In *Computer Vision – ECCV 2024*, 2024.

707 Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and José Miguel
 708 Hernández-Lobato. Flow annealed importance sampling bootstrap. *International Conference on*
 709 *Learning Representations (ICLR)*, 2023.

710 Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
 711 states of many-body systems with deep learning. *Science*, 365(6457):eaaw1147, 2019.

712 Kaoru Ohno, Keivan Esfarjani, and Yoshiyuki Kawazoe. *Computational Materials Science: From Ab*
 713 *Initio to Monte Carlo Methods*. Springer, 2018.

714 William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In *2023 IEEE/CVF*
 715 *International Conference on Computer Vision (ICCV)*, pp. 4172–4182, Paris, France, October
 716 2023. IEEE. ISBN 9798350307184. doi: 10.1109/ICCV51070.2023.00387. URL <https://ieeexplore.ieee.org/document/10377858/>.

717 Stefano Peluchetti. Non-denoising forward-time diffusions, 2021.

718 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
 719 and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings.
 720 In *International Conference on Machine Learning*, 2023.

721 Danyal Rehman, Oscar Davis, Jiarui Lu, Jian Tang, Michael Bronstein, Yoshua Bengio, Alexander
 722 Tong, and Avishek Joey Bose. Efficient regression-based training of normalizing flows for
 723 boltzmann generators, 2025. URL <https://arxiv.org/abs/2506.01158>.

724 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. *International*
 725 *Conference on Machine Learning (ICML)*, 2015.

726 Andrea Rizzi, Paolo Carloni, and Michele Parrinello. Free energies at qm accuracy from force fields
 727 via multimap targeted estimation. *Proceedings of the National Academy of Sciences*, 2023.

728 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
 729 flow map distillation, 2025. URL <https://arxiv.org/abs/2506.14603>.

730 Maximilian Schebek, Michele Invernizzi, Frank Noé, and Jutta Rogal. Efficient mapping of phase
 731 diagrams with conditional boltzmann generators. *Machine Learning: Science and Technology*,
 732 2024.

733 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 734 bridge matching. In *Advances in Neural Information Processing Systems*, 2023.

735 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv*
 736 preprint [arXiv:2310.14189](https://arxiv.org/abs/2310.14189), 2023.

737 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 738 Poole. Score-based generative modeling through stochastic differential equations. In *International*
 739 *Conference on Learning Representations (ICLR)*, 2021a.

740 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 741 Poole. Score-based generative modeling through stochastic differential equations, 2021b. URL
 742 <https://arxiv.org/abs/2011.13456>.

743 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International*
 744 *Conference on Machine Learning*, 2023.

745 Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Lea Zimmermann, and
 746 Ullrich Köthe. Lifting architectural constraints of injective flows. In *International Conference on*
 747 *Learning Representations*, 2024.

756 Gabriel Stoltz, Mathias Rousset, and Tony Lelièvre. *Free Energy Computations: A Mathematical*
 757 *Perspective*. World Scientific, 2010.

758

759 Charlie B. Tan, Avishek Joey Bose, Chen Lin, Leon Klein, Michael M. Bronstein, and Alexander
 760 Tong. Scalable Equilibrium Sampling with Sequential Boltzmann Generators, February 2025a.
 761 URL <http://arxiv.org/abs/2502.18462>. arXiv:2502.18462 [cs].

762

763 Charlie B. Tan, Majdi Hassan, Leon Klein, Saifuddin Syed, Dominique Beaini, Michael M. Bronstein,
 764 Alexander Tong, and Kirill Neklyudov. Amortized sampling with transferable normalizing flows.
 765 In *Advances in Neural Information Processing Systems*, 2025b.

766

767 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 768 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 769 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024a.

770

771 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet,
 772 Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow matching.
 773 In *AISTATS*, 2024b.

774

775 Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. *International*
 776 *Conference on Learning Representations (ICLR)*, 2023.

777

778 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 779 Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

780

781 Peter Wirnsberger, Andrew J Ballard, George Papamakarios, Stuart Abercrombie, Sébastien
 782 Racanière, Alexander Pritzel, Danilo Jimenez Rezende, and Charles Blundell. Targeted free
 783 energy estimation via learned mappings. *J. Chem. Phys.*, 2020.

784

785 Zuheng Xu and Trevor Campbell. Embracing the chaos: analysis and diagnosis of numerical
 786 instability in variational flows. *Advances in Neural Information Processing Systems*, 36:32360–
 787 32386, 2023.

788

789 Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
 790 Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing Flows
 791 are Capable Generative Models, December 2024. URL <http://arxiv.org/abs/2412.06329>.
 792 arXiv:2412.06329 [cs].

793

794 Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling.
 795 *International Conference on Learning Representations (ICLR)*, 2022.

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

A THEORY

Proposition 1. Let u_θ^* be a minimizer of Eq. 5 with respect to some v . Also, define the *Jacobian of X* as $\mathbf{J}_X = \frac{\partial X}{\partial x_s}$, and the *discrete flow map*:

$$X_u(x_s, s, t) = x_s + (t - s)u_\theta^*(x_s, s, t) \quad (7)$$

Then, for sufficiently smooth u_θ^* and v and for any $(s, t) \in [0, 1]^2$,

1. $X_u(\cdot, s, t)$ is an invertible map *everywhere*,
2. $\log p_t^{u^*}(x_t) = \log p_s^{u^*}(x_s) - \log |\det \mathbf{J}_{X_u}(x_s)|$ *almost everywhere*.

We first define what we mean by sufficiently smooth in both propositions.

Assumption 1. u_θ^* is C^1 *almost everywhere*.

This assumption on u_θ^* allows the application of the change of variables formula almost everywhere, which is necessary to compute the log likelihood under u . We note that this is satisfied by most sufficiently expressive modern architectures including those using ReLU type activations, which are not C^1 everywhere, but are almost everywhere.

Assumption 2. v is uniformly Lipschitz continuous in x and continuous in t .

This assumption on v is necessary in order to satisfy the **Picard-Lindelöf Theorem**. We note that if the Lipschitz condition does not hold then the Peano existence theorem implies that the initial value problem (IVP) of the ODE may not be invertible. If, however, we have both continuity in x and t as well as a Lipschitz condition for v on x , then by the Picard-Lindelöf Theorem, we have existence and uniqueness of the IVP. We first recall Picard-Lindelöf.

Theorem 1 (Picard-Lindelöf). Let $D \subset \mathbb{R}^d \times \mathbb{R}$ be a closed rectangle with $(x_0, t_0) \in \text{int } D$, the interior of D . Let $v : D \rightarrow \mathbb{R}^d$ be a function that is continuous in t and Lipschitz continuous in x (with Lipschitz constant independent from t). Then there exists some $\epsilon > 0$ such that the initial value problem is:

$$\frac{dx}{dt} = v(x_t, t), \quad x(t_0) = x_0 \quad (11)$$

has a unique solution $x(t)$ on the interval $[t_0 - \epsilon, t_0 + \epsilon]$.

Under these conditions on v we are now able to prove the proposition.

Proof. Recall that if u_θ^* minimizes Eq. 5:

$$\mathbb{E}_{s,t,x_s} \left[w(s, t) \|u_\theta(x_s, s, t) - \frac{1}{t-s} \int_s^t v(x_\tau, \tau) d\tau\|^2 \right]$$

then we have that $u_\theta^*(x_s, s, t) = \frac{1}{t-s} \int_s^t v(x_\tau, \tau) d\tau$ for all $s, t \in [0, 1]^2$. Furthermore we have

$$X_u(x_s, s, t) = x_s + (t - s)u_\theta^*(x_s, s, t) \quad (12)$$

$$= x_s + (t - s) \frac{1}{t - s} \int_s^t v(x_\tau, \tau) d\tau \quad (13)$$

$$= x_s + \int_s^t v(x_\tau, \tau) d\tau \quad (14)$$

which by application of the Picard-Lindelöf theorem is invertible for all s, t , proving part 1 of the proposition.

To prove part 2, we note that Eq. 14 is differentiable with respect to x_s and X_s is invertible, therefore by the change-of-variables formula and **Assumption 1**, we arrive at part 2 of the proposition. \square

Proposition 2. Let u_θ^* be a minimizer of \mathcal{L}_{inv} (Eq. (8)) with respect to some v . Then, for sufficiently smooth u_θ^* and v and for any $(s, t) \in [0, 1]^2$, $X_u(\cdot, s, t)$ is an invertible map *everywhere*, and $\log p_t^{u^*}(x_t) = \log p_s^{u^*}(x_s) - \log |\det \mathbf{J}_{X_u}(x_s)|$ *almost everywhere*.

Proof. First we recall Eq. 8:

$$\mathcal{L}_{\text{inv}} = \mathbb{E}_{s,t,x_s} \|x_s - X_u(X_u(x_s, s, t), t, s)\|^2 \quad (15)$$

864 In this case, the minimizer of \mathcal{L}_{inv} that is also in C^1 is pointwise invertible by definition as $X_u(\cdot, t, s)$
 865 is the inverse of $X_u(\cdot, s, t)$ as $\mathcal{L}_{\text{inv}} \rightarrow 0$ everywhere.

866 For the change of variables to apply, we also need Assumption 1 to apply almost everywhere. \square

868 We note that this loss ensures *pointwise* invertibility. Additional restrictions are needed to ensure that
 869 the log likelihood can be calculated efficiently.

871 B OTHER FORMULATIONS FOR \mathcal{L}_{AVG}

873 There are various formulations of \mathcal{L}_{avg} that have been explored in the recent literature. We note that
 874 FALCON directly benefits from any new advancements in this rapidly-evolving research direction.
 875 Specifically, the following three different \mathcal{L}_{avg} losses can be used for training flow maps.

876 1. $\mathcal{L}_1 \triangleq \mathbb{E}_{s,t,x_s} \left\| u_\theta(s, t, x_s) - \text{sg} \left(v(x_s, s) - (t-s)(v(x_s, s) \partial_{x_s} u_\theta + \partial_s u_\theta) \right) \right\|^2$, which is equivalent
 877 to the MeanFlow loss of Geng et al. (2025), as well as the ESD objective in Boffi et al. (2025a).
 878 Note that since $x_s = sx_1 + (1-s)x_0$, we can directly use $v(x_s, s) = x_1 - x_0$.

879 2. $\mathcal{L}_2 \triangleq \mathbb{E}_{s,t,x_s} \left\| u_\theta(s, t, x_s) - \text{sg} \left(\lambda u_\theta(x_s, s, r) + (1-\lambda)u_\theta(X_u(x_s, s, r), r, t) \right) \right\|^2$, for $r = \lambda s + (1-\lambda)t$, is equivalent to the SplitMeanFlow loss of Guo et al. (2025), as well as the scaled PSD
 880 objective in Boffi et al. (2025a). In Boffi et al. (2025a), two ways of sampling the intermediate
 881 time r are explored. Deterministic mid-point sampling, which sets $\lambda = 0.5$, as well as uniform
 882 sampling of λ . Guo et al. (2025) only explores uniform sampling. This is also a generalization of
 883 Frans et al. (2025), which additionally samples s and t in a binary-tree fashion.

884 3. $\mathcal{L}_3 \triangleq \mathbb{E}_{s,t,x_s} \left\| \partial_t X_u(x_s, s, t) - \text{sg} \left(u_\theta(X_u(x_s, s, t), t, t) \right) \right\|^2$ is the Lagrangian objective pre-
 885 sented in Boffi et al. (2025a).

886 As discussed in §3, we choose $\mathcal{L}_{\text{avg}} \triangleq \mathcal{L}_1$ in this paper. This choice is based on the superior
 887 performance of this loss compared to \mathcal{L}_3 in the image experiments of Sabour et al. (2025) and the
 888 fact that using jvp, it can be trained more efficiently compared to \mathcal{L}_2 .

889 C EXTENDED RELATED WORK

890 C.1 RELATION TO FREE-FORM FLOWS

891 Free-form Flows (FFF) enable arbitrary architectures to function as normalizing flows by jointly
 892 training an auxiliary network to approximate the inverse of the forward model (Draxler et al., 2024).
 893 The forward model maps data to latents, while the auxiliary network regularizes this mapping by
 894 learning a tractable estimator for the Jacobian term in the change of variables. As correctly highlighted
 895 by Draxler et al. (2024), although the loss encourages invertibility, this guarantee only holds when the
 896 reconstruction error is sufficiently small—a condition that can be difficult to meet in practice. In our
 897 setting, FALCON is trained with an entirely different loss function—albeit with a cycle-consistency
 898 term to promote invertibility—similar to that observed by Draxler et al. (2024). In addition, we
 899 explicitly validate invertibility for FALCON, in line with their observations through a dedicated
 900 experiment.

901 C.2 RELATION TO REGFLOWS

902 RegFlows (Rehman et al., 2025) enable a more efficient training process for standard discrete normal-
 903 izing flows by avoiding the maximum-likelihood (MLE) objective, whose unstable training dynamics
 904 often make optimization a challenge; instead, RegFlows distill the knowledge of a predefined invert-
 905 ible coupling—either using a pre-trained continuous normalizing flow or a pre-computed optimal
 906 transport map—into a discrete normalizing flow via a regression objective. While this sidesteps issues
 907 associated with MLE and yields an efficient training pipeline, it also imposes a strict requirement on
 908 the existence of an invertible reference map, which must be provided in advance.

909 Further, RegFlows are constrained to inherently invertible architectures, which limits their expressiv-
 910 ity and ultimately their scalability. As we show in Table 2 and Table 3, even when comparing against
 911 the strongest RegFlow variant (NSF), FALCON consistently outperforms it across all metrics, with

918 pronounced gains on larger peptide systems. In contrast, FALCON is the first few-step Boltzmann
 919 Generator to employ a fully free-form architecture, surpassing state-of-the-art inherently invertible
 920 discrete flows (and even continuous normalizing flows) while avoiding the strict architectural
 921 constraints imposed by invertibility. Note, although FALCON is only guaranteed to be invertible
 922 either at convergence or via an additional regression objective, this relaxation enables substantially
 923 higher expressivity and delivers significant empirical performance gains. Lastly, we demonstrate the
 924 practical invertibility of FALCON through experiments performed in §F.2.

925 D EXPERIMENTAL DETAILS

928 All training experiments are run on a heterogeneous cluster of NVIDIA H100 and L40S GPUs
 929 using distributed data parallelism (DDP). All models were trained with three random seeds, and
 930 reported values are averages across runs. Additional training and inference details are included in
 931 the following. For benchmarks with existing methods, in cases where dashes are present, data was
 932 unavailable, except for the case with SBG SMC (Tan et al., 2025a), where ESS is not a valid metric.

933 D.1 TRAINING DETAILS

935 **Architecture.** We adopt a Diffusion Transformer (DiT) backbone for FALCON, with the same
 936 model size used for all peptides. The details of the backbone configuration are in Table 6 below.

937 Table 6: Overview of FALCON configurations across datasets.

938 Dataset	Hidden Size	Blocks	Heads	Cond. Dim.	Parameters (M)
940 Alanine dipeptide	192	6	6	64	3.2
941 Tri-alanine	192	6	6	64	3.2
942 Alanine tetrapeptide	192	6	6	64	3.2
943 Hexa-alanine	192	6	6	64	3.2

945 **Training Configuration** All models were trained with an exponential moving average (EMA) on
 946 the weights using a decay rate of 0.999. Logit values were clipped at 0.002, with compositional
 947 energy regularization disabled. For evaluation, we generated 10^4 proposal samples, and used the
 948 same number for re-sampling and computing all metrics. Lastly, center-of-mass augmentation was
 949 applied with a standard deviation of $1/\sqrt{n}$, where n is the number of particles.

950 **Hyperparameters** Optimization was performed using AdamW with learning rate $lr = 5 \times 10^{-4}$,
 951 $\beta = (0.9, 0.999)$, $\epsilon = 10^{-8}$, and weight decay 10^{-4} . A cosine annealing learning rate schedule with
 952 a warm-up phase covering 5% of the training iterations was also used.

954 D.2 INFERENCE SCHEDULERS

955 We evaluated five inference schedules to assess their impact on generative performance. The linear
 956 baseline distributes steps uniformly across the trajectory, while the geometric, cosine, Chebyshev,
 957 and EDM schedules bias step allocation to emphasize regions where the data distribution is more
 958 sensitive. The mathematical definitions and parameter settings for each schedule are provided below.

959 **Linear.** The linear schedule spaces is distributed uniformly between 1 and 0, with $N \in \mathbb{N}$ denoting
 960 the total number of inference steps such that:

$$962 \quad t_i = 1 - \frac{i}{N}, \quad i \in \{0, \dots, N\}. \quad (16)$$

964 **Geometric.** The geometric schedule exponentially allocates more resolution to early steps. We let
 965 $\alpha \in \mathbb{R}$ and $\alpha > 1$, denote the geometric base. For all experiments conducted, we set $\alpha = 2$:

$$966 \quad t_i = \frac{\alpha^{N-i} - 1}{\alpha^N - 1}, \quad i \in \{0, \dots, N\}. \quad (17)$$

968 **Cosine.** The cosine schedule follows a squared-cosine law, concentrating more steps near $t = 0$.
 969 This has been used in diffusion models for improved stability. With $N \in \mathbb{N}$:

$$971 \quad t_i = \cos^2\left(\frac{\pi}{2} \cdot \frac{i}{N}\right), \quad i \in \{0, \dots, N\}, \quad t_N = 0. \quad (18)$$

Chebyshev. The Chebyshev schedule, derived from the nodes of Chebyshev polynomials of the first kind, minimizes polynomial interpolation error, and distributes steps more densely near boundaries:

$$t_i = \frac{1}{2} \left(\cos \left(\frac{\pi(i+0.5)}{N+1} \right) + 1 \right), \quad i \in \{0, \dots, N\}, \quad t_N = 0. \quad (19)$$

EDM. The EDM schedule (Karras et al., 2022) parameterizes the noise level σ using a power-law with exponent $\rho \in \mathbb{R}^+$. The interpolation is performed in ρ -space to allocate more steps where the generative process is most sensitive. For all experiments performed, we use the same parameters proposed by Karras et al. (2022), with $\rho = 7$, $\sigma_{\min} = 10^{-3}$, and $\sigma_{\max} = 1$, and $\sigma_{\min}, \sigma_{\max} \in \mathbb{R}^+$:

$$\sigma_i = \left(\sigma_{\max}^{1/\rho} + \frac{i}{N} \left(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho} \right) \right)^{\rho}, \quad i \in \{0, \dots, N\}, \quad (20)$$

$$t_i = \frac{\sigma_i - \sigma_{\min}}{\sigma_{\max} - \sigma_{\min}}, \quad t_N = 0. \quad (21)$$

This formulation ensures a smooth transition between σ_{\max} (high noise) and σ_{\min} (low noise, near-deterministic refinement).

D.3 DATASET DETAILS

For the datasets used, we follow the same training, validation, and test split used by (Tan et al., 2025a), where a single MCMC chain is decomposed into 10^5 , 2×10^4 , and 10^4 samples for training, validation, and test. The training and validation data are each taken as contiguous regions of the chain to simulate the realistic scenario where you have generated an MCMC trajectory and would like to use a Boltzmann Generator to continue generating samples. The data is split so that (after warmup) the first 10^5 samples are for train, the next 2×10^4 are for validation, and the test samples are uniformly strided sub-samples from the remaining MCMC chain. Earlier parts of the trajectory undersample certain modes enabling a biased training set that we attempt to debias through access to the energy function and SNIS. MD simulations were all run for 1 μ s, with a timestep of 1 fs, at temperatures of 300K, 310K, and 300K for alanine dipeptide, tri-alanine, and alanine tetrapeptide, respectively, in line with those conducted by Klein & Noe (2024). The force fields used for all three molecules, in the same order, were the Amber ff99SBildn, Amber 14, and Amber ff99SBildn, in line with prior work by Tan et al. (2025a).

Alanine Dipeptide. The Ramachandran plots for the training and test split are provided in Fig. 8. Following Klein et al. (2023a), we up sample the lowest sampled mode (middle right) to make the problem easier for BGs. This also has the added benefit of testing what happens to FALCON when the training dataset is biased relative to the true distribution.

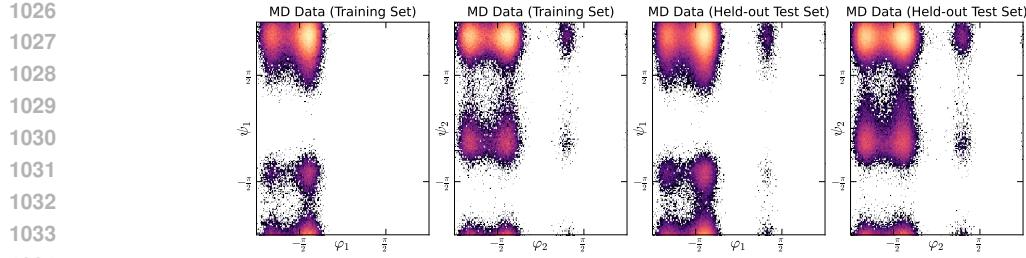
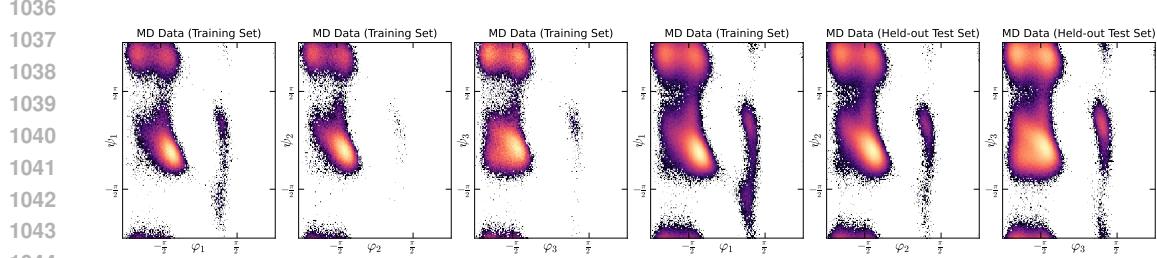
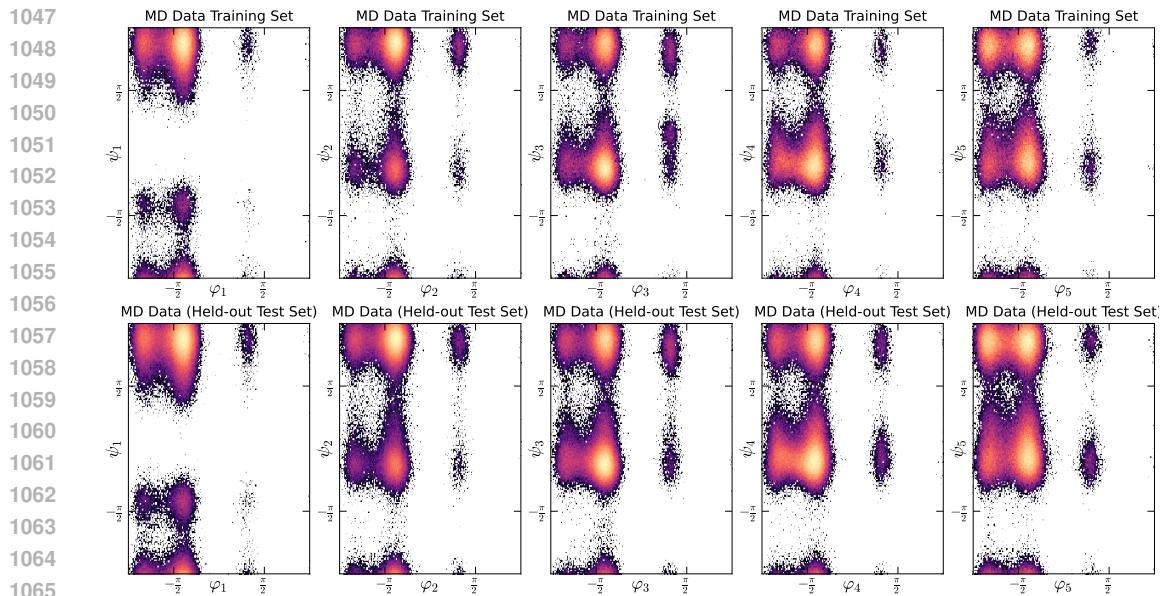


Figure 8: **Left:** Training data for alanine dipeptide; **Right:** Test data for alanine dipeptide.

Tri-alanine. Similarly to alanine dipeptide, the Ramachandran plots for the training and test split are in Fig. 9. As there are two pairs of torsion angles that parameterize the system, there are two sets of Ramachandran plots included for each training and test. In tri-alanine, we can see that the training set actually misses a mode entirely ($\psi_1 \approx \pi/3$), and undersamples this mode for ψ_2 relative to the test set. This is a great test of finding a new mode (in ψ_1) and correctly weighting a mode (in ψ_2).

Alanine Tetrapeptide. For the tetrapeptide, there are three sets of Ramachandran plots each for training and test given the three pairs of torsions angles that parameterize the molecule, in Fig. 10.

Hexa-alanine. For hexa-alanine, we also include Ramachandran plots in Fig. 11. The first row shows training data, while the second row shows a held-out test set used to evaluate performance.

Figure 9: **Left and left center:** Training data for tri-alanine; **Right center and right:** Test data for tri-alanine.Figure 10: **First three:** Training data for alanine tetrapeptide; **Last three:** Test data for alanine tetrapeptide.Figure 11: **First five:** Training data for hexa-alanine; **Last three:** Test data for hexa-alanine.

E METRICS

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Effective Sample Size (ESS). To quantify sampling efficiency, we compute the effective sample size (ESS) following Kish’s definition (Kish, 1957). Given $N \in \mathbb{N}$ generated particles with unnormalized importance weights $\{w_i\}_{i=1}^N \subset \mathbb{R}^+$, the ESS is normalized by N as:

$$\text{ESS}(\{w_i\}_{i=1}^N) \triangleq \frac{1}{N} \frac{1}{\sum_{i=1}^N w_i^2} \left(\sum_{i=1}^N w_i \right)^2. \quad (22)$$

The ESS reflects how many independent, equally-weighted samples would provide equivalent statistical power to the weighted sample. Higher ESS is desirable for more performant models.

2-Wasserstein Energy Distance ($\mathcal{E}\text{-}\mathcal{W}_2$). To compare energy distributions, we compute the 2-Wasserstein distance between generated and reference samples from our MD dataset. For distributions

1080 $p, q \in \mathcal{P}(\mathbb{R})$ over energy values, and $\Pi(p, q)$ the set of admissible couplings, we define:

$$1082 \quad \mathcal{E}\text{-}\mathcal{W}_2(p, q)^2 \triangleq \min_{\pi \in \Pi(p, q)} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^2 d\pi(x, y). \quad (23)$$

1084 The $\mathcal{E}\text{-}\mathcal{W}_2$ measures how closely the generated energy histogram aligns with that of the reference,
1085 with high sensitivity to structural accuracy due to bond-length-dependent energies. Since small
1086 perturbations in local structure induce large fluctuations in the energy distribution, this metric captures
1087 this variance, with lower values of $\mathcal{E}\text{-}\mathcal{W}_2$ being more favourable for generative models.

1088 **Torus 2-Wasserstein Distance ($\mathbb{T}\text{-}\mathcal{W}_2$).** To assess structural similarity in torsional space, we
1089 compute a 2-Wasserstein distance over dihedral angles. For a molecule with $L \in \mathbb{N}$ residues, define
1090 the dihedral vector as:

$$1091 \quad \text{Dihedrals}(x) = (\phi_1, \psi_1, \dots, \phi_{L-1}, \psi_{L-1}) \in [0, 2\pi)^{2(L-1)}. \quad (24)$$

1092 The cost on the torus accounts for periodicity of angles:

$$1094 \quad c_{\mathcal{T}}(x, y)^2 = \sum_{i=1}^{2(L-1)} [(\text{Dihedrals}(x)_i - \text{Dihedrals}(y)_i + \pi) \bmod 2\pi - \pi]^2. \quad (25)$$

1096 The torus 2-Wasserstein distance between two distributions $p, q \in \mathcal{P}([0, 2\pi)^{2(L-1)})$ is then:

$$1098 \quad \mathbb{T}\text{-}\mathcal{W}_2(p, q)^2 \triangleq \min_{\pi \in \Pi(p, q)} \int c_{\mathcal{T}}(x, y)^2 d\pi(x, y). \quad (26)$$

1100 This captures macroscopic conformational differences while respecting angular periodicity. The
1101 $\mathbb{T}\text{-}\mathcal{W}_2$ provides a more global assessment of performance, for instance revealing missed conforma-
1102 tional modes that would not be captured by the $\mathcal{E}\text{-}\mathcal{W}_2$.

1104 F ADDITIONAL EXPERIMENTS

1106 F.1 DETAILS FOR FIGURE GENERATION

1108 In Fig. 2, we compare performance on the $\mathbb{T}\text{-}\mathcal{W}_2$ metric for alanine dipeptide between FALCON
1109 and our continuous-time DiT CNF. For FALCON, accuracy is controlled by the number of inference
1110 steps (1–8). For the DiT CNF, we consider three settings: (1) adaptive step Dormand–Prince 4(5)
1111 with exact Jacobian trace evaluation, varying atol/rtol from 10^{-1} to 10^{-5} ; (2) the same tolerances
1112 but instead using the Hutchinson trace estimator, trading performance for faster likelihoods with
1113 higher variance; and (3) fixed-step Euler integration with step sizes from 4 to 256 with exact Jacobian
1114 traces, where the upper bound is chosen to roughly match the number of function evaluations needed
1115 for Dopri5. The models and training configurations used are presented in §D.1.

1116 In Fig. 3, we demonstrate the energy distributions for unweighted and re-weighted samples for
1117 our most performant FALCON Flows. For alanine dipeptide, tri-alanine, alanine tetrapeptide, and
1118 hexa-alanine, 4, 8, 8, and 16 steps were used for figure generation. Energy distributions reveal
1119 microscopic detail, as marginal changes in local atomic position can have significant impacts on
1120 total energy. The best models for each molecular system were used, with pertinent details on model
1121 size, training configurations, and hyperparameters detailed in §D.1. Similarly, in Fig. 5, we show the
1122 proposal and re-weighted sample estimates for alanine dipeptide, and demonstrate how an increasing
1123 number of steps, improves the energy distribution.

1124 In Fig. 4, we compare the performance between SBG’s discrete NFs and FALCON, illustrating
1125 that despite more samples increasing performance across metrics, the approach is still unable to reach
1126 FALCON’s performance. For SBG, we specifically take their best model weights for the TarFlow
1127 architecture from: <https://github.com/transferable-samplers/transferable-samplers>,
1128 and draw $N_s \in \{10^4, 2 \times 10^4, 5 \times 10^4, 10^5, 2 \times 10^5, 5 \times 10^5, 10^6, 2 \times 10^6, 5 \times 10^6\}$ samples three
1129 different times (the error bars are representative of the three draws) and evaluate $\mathcal{E}\text{-}\mathcal{W}_2$ for each set.

1130 In Fig. 6, we investigate how the strength of regularization impacts performance on ESS and $\mathcal{E}\text{-}\mathcal{W}_2$.
1131 Specifically, we demonstrate that small amounts of regularization enable generative performance
1132 but impede invertibility, while too much regularization detrimentally impacts sample quality. This
1133 trade-off leads to an optimum on both metrics. We investigate $\lambda_r \in \{10^0, 10^1, 10^2, 10^3, 10^4, 10^5\}$,
1134 and conclude upon $\lambda_r = 10^1$. To ascertain the optimal λ_r , we ran these experiments on alanine
1135 dipeptide, using the same model details and configurations highlighted in §D.1.

1134
 1135
 1136
 1137
 1138
 Fig. 7 demonstrates the sensitivity the inference schedule plays on generative performance. For this
 1139 figure, we took our best models—trained with the details presented in §D.1—and ran inference using
 1140 all three trained seeds to generate uncertainties for each inference schedule. We used our 8-step
 1141 system, as inference scheduler choice is less important the fewer steps are used.
 1142
 1143

F.2 PROOF OF INVERTIBILITY

1144 In our loss, we use a cycle-consistency term that regularizes
 1145 training to promote numerical invertibility. We see in Fig. 6,
 1146 the introduction of this modified loss aids generative performance;
 1147 however, the forward-backward reconstruction yields errors on the order of 10^{-2} , indicating an approximately, but
 1148 not entirely invertible model. To prove that the flow is invertible
 1149 (but the inverse is challenging to discover during training), we train an auxiliary FALCON Flow in the reverse direction.
 1150 We use the same network to parameterize the reverse flow as
 1151 described in §D.1, with the same training configuration and
 1152 hyperparameter set. Next, we freeze the forward model (which
 1153 goes from latents \rightarrow data), generate synthetic data (2×10^5
 1154 prior-target sample pairs) and train the auxiliary model on
 1155 these reflow targets to learn the mapping from data back to
 1156 latents. In Fig. 12, we illustrate the loss curve of the trained
 1157 auxiliary FALCON. To evaluate invertibility, we draw i.i.d. samples from our prior distribution, pass
 1158 them through the frozen forward model, and test the auxiliary reverse model on these unseen latents.
 1159 We evaluate an ℓ_2 error on the recovered latents to find reconstruction within 10^{-4} after 1000 epochs
 1160 matching the reconstruction accuracy of discrete NFs that are invertible by design. These results
 1161 support the claim that the learned flow is indeed invertible.
 1162
 1163

F.3 PERFORMANCE AGAINST NUMBER OF FUNCTION EVALUATIONS

1164 Fig. 13 highlights the efficiency of FALCON in
 1165 terms of number of function evaluations. We see that FALCON achieves the same torus 2-
 1166 Wasserstein performance as our DiT CNF with
 1167 Dopri5, while requiring over two orders of magnitude
 1168 fewer function evaluations. Whereas Fig. 2
 1169 quantified efficiency in terms of inference time,
 1170 here we measure the number of function evalua-
 1171 tions against both fixed-step solvers (Euler with
 1172 4–256 steps) and adaptive solvers (Dopri5 run
 1173 until reaching target tolerances $\text{atol} = \text{rtol} \in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$ for Hutchinson and
 1174 $\in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\}$ for exact).

1175 Although Hutchinson’s trace estimator yields a
 1176 speedup relative to exact Jacobian computation for
 1177 CNFs, as seen in Fig. 2, the number of function
 1178 evaluations needed is higher than the exact Jacobian
 1179 computation. In either setting, however, FALCON
 1180 still remains substantially faster. Even with a 4-step solver, FALCON matches the accuracy of DiT
 1181 CNFs using Hutchinson at $\text{atol} = \text{rtol} = 10^{-5}$, with an 8-step solver nearly matching the performance
 1182 of a DiT CNF with Dopri5 set to an $\text{atol} = \text{rtol} = 10^{-6}$.
 1183

F.4 RAMACHANDRAN PLOTS

1184 **Alanine Dipeptide.** We demonstrate FALCON’s capacity to learning global features through the
 1185 Ramachandran plots in Fig. 14 for alanine dipeptide. We include both the held-out test set and the
 1186 learned model’s map, showcasing its ability to debias the data and capture the true MD distribution.
 1187 Specifically, the undersampled ϕ mode in the training data is correctly upweighted in the learned
 1188 model’s predictions, indicating accurate likelihood estimates from the learned flow.

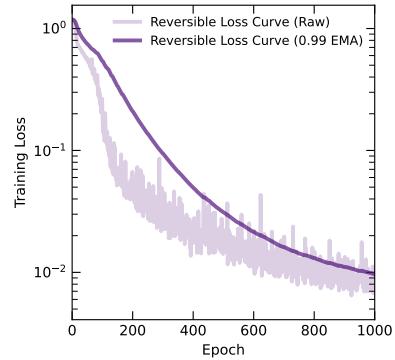


Figure 12: Auxiliary model loss from reflow target training on forward flow.

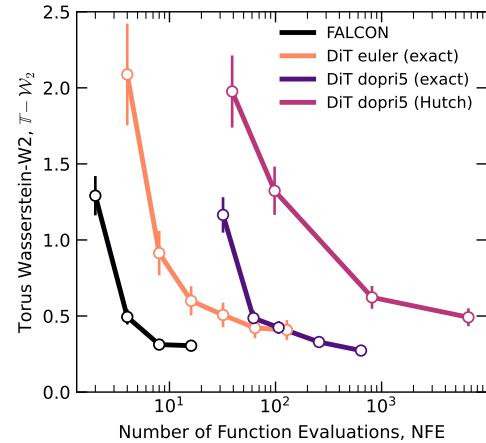


Figure 13: Performance of FALCON vs. our DiT CNFs as a function of NFEs.

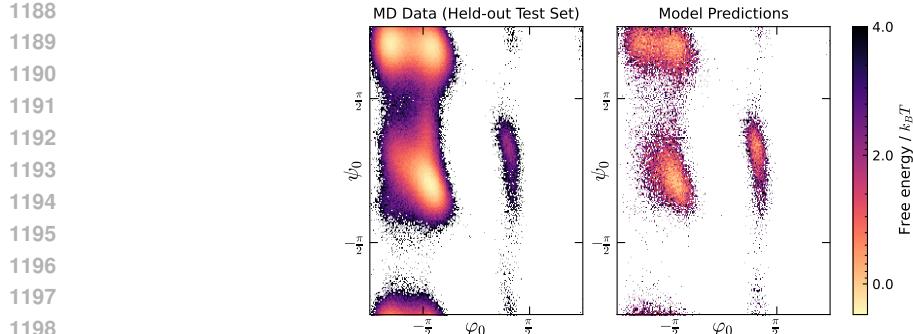


Figure 14: **Left:** Test data for alanine dipeptide; **Right:** FALCON’s angular predictions for alanine dipeptide.

Tri-alanine. Similarly, we show the Ramachandran plots for tri-alanine in Fig. 15 exhibiting similar behaviour. Most conformations are correctly captured, with some modes being underweighted.

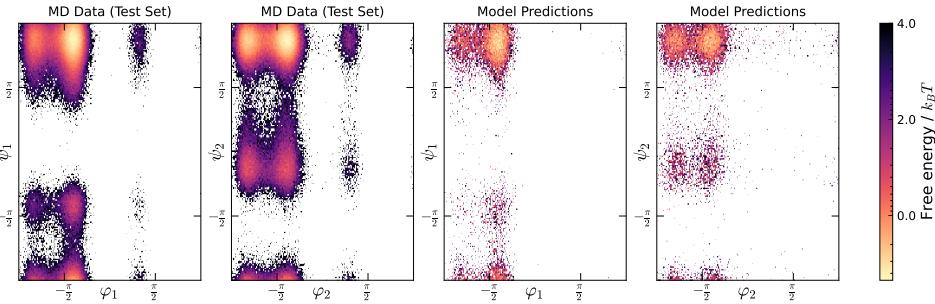


Figure 15: **Left and left center:** Test data for tri-alanine; **Right and right center:** FALCON’s angular predictions for tri-alanine.

Alanine Tetrapeptide. Next, we show the Ramachandran plots for alanine tetrapeptide in Fig. 16.

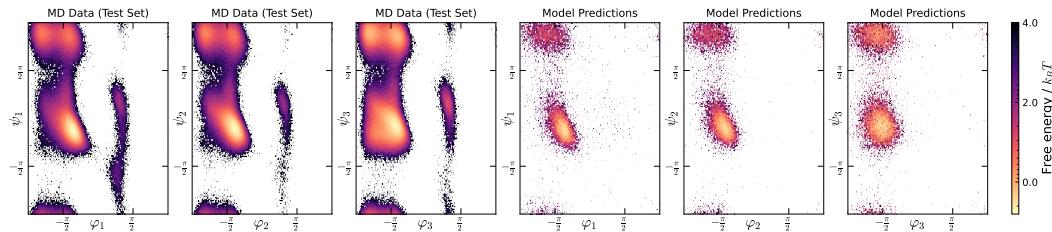


Figure 16: **First three:** Test data for alanine tetrapeptide; **Last three:** FALCON’s angular predictions for alanine tetrapeptide.

Hexa-alanine. Finally, we show the Ramachandran plots for hexa-alanine in Fig. 17.

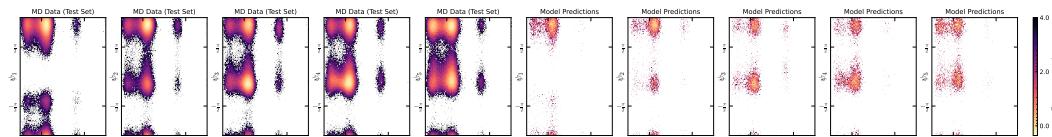


Figure 17: **First five:** Test data for hexa-alanine; **Last five:** FALCON’s angular predictions for hexa-alanine.