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ABSTRACT

Scalable sampling of molecular states in thermodynamic equilibrium is a long-
standing challenge in statistical physics. Boltzmann Generators tackle this problem
by pairing a generative model, capable of exact likelihood computation, with
importance sampling to obtain consistent samples under the target distribution.
Current Boltzmann Generators primarily use continuous normalizing flows (CNFs)
trained with flow matching for efficient training of powerful models. However,
likelihood calculation for these models is extremely costly, requiring thousands
of function evaluations per sample, severely limiting their adoption. In this work,
we propose FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS
(FALCON), a method which allows for few-step sampling with a likelihood
accurate enough for importance sampling applications by introducing a hybrid
training objective that encourages invertibility. We show FALCON outperforms
state-of-the-art normalizing flow models for molecular Boltzmann sampling and is
two orders of magnitude faster than the equivalently performing CNF model.

1 INTRODUCTION

Sampling molecular configurations from the Boltzmann distribution p(x) ∝ exp(−E(x)) where
E(x) is the potential energy of a configuration x, is a foundational and long-standing challenge in
statistical physics. The ability to generate samples according to this distribution is the foundation
for determining many other observables, such as free energies and heat capacities, which govern
real-world behaviour. Consequently, efficient Boltzmann sampling is essential for progress in a large
range of areas, from characterizing the function of biomolecules, to accelerating drug design, and
discovering novel materials (Frenkel & Smit, 2023; Liu, 2001; Ohno et al., 2018; Stoltz et al., 2010).
The difficulty of this task arises from the structure of the energy for molecules of interest. The
energy landscape is high dimensional and non-smooth with many local energy minima. These
rugged energies severely challenge classical simulation-based methods like Molecular Dynamics
(MD) (Leimkuhler & Matthews, 2015) and Monte Carlo Markov Chains (MCMC) as they become
easily trapped in local minima, requiring a computationally inaccessible number of steps to mix
between modes. These samplers generate many correlated samples, creating large inefficiencies,
where an ideal sampler would generate i.i.d. samples from the underlying data distribution, p(x).

Self-normalized 
Importance
Sampling
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Figure 1: Flow map learns from biased data, with SNIS re-weighting
generated samples consistent with the Boltzmann distribution, approach-
ing equality with infinite samples under mild regularity conditions.

Boltzmann Generators (BGs)
have emerged as a way to address
this inefficiency by amortizing
the cost through the training
of a generative model to learn
to sample from pθ(x) close to
p(x). These samples can then
be corrected to p(x) using self-
normalized importance sampling
(SNIS) (Noé et al., 2019). SNIS
requires efficient access to pθ(x)
and E(x) for every sample drawn
x ∼ pθ(x) for the correction step,
but guarantees statistical consistency of the corrected samples, as illustrated in Fig. 1 (Noé et al.,
2019; Liu, 2001).
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The main design choice in BGs is which type of generator to use. Modern BGs (Klein et al.,
2023a; Klein & Noe, 2024) primarily make use of generators based on continuous normalizing flows
(CNFs) (Chen et al., 2018; Grathwohl et al., 2019) due to their expressive power, ease of training,
and flexibility of parameterization (Köhler et al., 2020) (see Table 1). However, while it is possible
to access the pθ(x) of a CNF, it is extremely computationally costly to approximate pθ(x) with
sufficient accuracy. Two primary reasons contribute to this cost: (1) Approximate estimators are not
sufficiently accurate, making full Jacobian calculations necessary for each step along the flow; and
(2) Many steps are necessary to control discretization error for sufficient performance (Fig. 2).
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Figure 2: Performance-inference time comparison
between NFs and CNFs for 104 dipeptide samples.

Recently, there have been significant advancements
in few-step generation using flow models (Song
et al., 2023; Boffi et al., 2025a; Frans et al., 2025;
Guo et al., 2025; Sabour et al., 2025; Geng et al.,
2025). These models are extremely powerful few-
step generators with flexible architectures and effi-
cient simulation-free training; however, these few-
step samplers do not natively admit efficient esti-
mators of the likelihood, making them unsuitable
for the high-precision demands of importance sam-
pling and scientific applications such as Boltzmann
Generation (Rehman et al., 2025).
In this work, we investigate how to design a gener-
ative model that combines the best of both worlds:
the training efficiency and architectural freedom of
simulation-free flow models with the fast sampling
and likelihood evaluation of discrete-time invertible
models. We propose FEW-STEP ACCURATE LIKE-
LIHOODS FOR CONTINUOUS FLOWS (FALCON),
a flow-based model that enables few-step sampling while providing a likelihood estimate that is both
fast to compute and accurate enough for importance sampling applications. FALCON leverages a hy-
brid training objective that combines a regression loss for stable and efficient few-step generation with
a cycle-consistency term to encourage invertibility prior to convergence. Our main contributions are:
• We introduce FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON): a

new continuous flow-based generative model for Boltzmann sampling that is invertible, trainable
with a regression loss, and supports free-form architectures, while enabling both few-step generation
and efficient likelihood evaluation.

• Orthogonally, we introduce a simple and scalable, softly equivariant continuous flow architecture
that significantly improves over the current state-of-the-art equivariant flow model architecture.

• We show that FALCON is two orders of magnitude faster than CNF-based Boltzmann Generators
for equivalent performance (Fig. 2, drastically reducing the computational cost of CNFs, and taking
significant strides towards real-world large-scale molecular sampling applications.

• We show that FALCON outperforms the current state-of-the-art normalizing flow-based Boltzmann
Generator across all metrics, even when FALCON is given 250× fewer samples (Tan et al., 2025a).

2 BACKGROUND AND PRELIMINARIES

We are interested in drawing statistically independent samples from a target Boltzmann distribution
ptarget with partition function Z , defined over Rd:

ptarget(x) ∝ exp (−E(x)) , Z =

∫

Rd

exp (−E(x)) dx (1)

where E : Rd → R is the energy of the system, which we can efficiently compute for any x. In this
work we do not require the energy to be differentiable. Unlike in the pure sampling setting (Akhound-
Sadegh et al., 2024; Havens et al., 2025; Akhound-Sadegh et al., 2025; Midgley et al., 2023; Zhang &
Chen, 2022; Vargas et al., 2023), we also assume access to a small biased dataset D = {xi}Ni=1 of
N samples (Noé et al., 2019). This makes it possible to perform an initial learning phase that fits a
generative model with parameters θ, producing a proposal distribution, pθ(x) (Noé et al., 2019).
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Boltzmann Generators. (BGs) (Noé et al., 2019) combine deep generative models capable of exact
likelihoods, with a target energy function and a self-normalized importance sampling (SNIS) step
to re-weight generated samples to the target Boltzmann distribution. The generative model is first
trained on a possibly biased dataset D as close as possible to ptarget. BGs then draw K independent
samples xi ∼ pθ1, i ∈ [K] and compute the corresponding unnormalized importance weights for
each sample such that w(xi) ≜ exp(−E(xi))/pθ1(xi). Given these importance weights, we can then
compute a consistent Monte–Carlo estimate of any observable o(x) of interest under ptarget using
self-normalized importance sampling (Liu, 2001) as:

Eptarget [o(x)] = Epθ
1
[o(x)w̄(x)] ≈

∑K
i=1 w(x

i)o(xi)
∑K

i=1 w(x
i)

. (2)

This allows for inference-time scaling as the Monte–Carlo estimate of any observable converges in
probability to the correct value as the number of samples grows.

Flow Matching Models. Flow matching models (Lipman et al., 2023; Albergo & Vanden-Eijnden,
2023; Liu, 2022; Peluchetti, 2021) are probabilistic generative models that learn a continuous
interpolation between an easy-to-sample distribution p0 = pnoise and the data distribution p1 = pdata
in Rd. Let xs = sx1 + (1 − s)x0 be a point at time s ∈ [0, 1] between two points x0 ∼ p0 and
x1 ∼ p1. The flow matching objective is then Ex0∼p0,x1∼p1,s∼Unif(0,1)w(s)∥vθ(xs, s)− (x1−x0)∥22
for some parameterized vector field vθ, and weighting function w : [0, 1] → R+. We can then
sample using an ordinary differential equation (ODE) xθs =

∫ s

0
vθ(xτ , τ)dτ with the initial condition

x0 ∼ p0 and are guaranteed (under some mild assumptions) that pθ1(x̂1) ≈ p1(x̂1).
Furthermore, the density pθs can be computed using the instantaneous change of variables for-
mula (Chen et al., 2018) ∂ log p(xs)

∂s = −tr
(

∂vθ

∂xs

)
using the integral across time by solving a single

d+ 1 dimensional ODE:
[

xt
log pθs(xs)

]
=

∫ s

0

[
vθ(xτ , τ)

−tr
(

∂vθ

∂xτ

)
]
dτ, with initial condition

[
x0

log p0(x0)

]
(3)

where the integral is discretized into T steps and the trace can either be computed exactly in O(dT )
function evaluations or approximated using Hutchinson’s trace estimator tr(J) = Eϵ[ϵ

TJϵ] for some
noise vector ϵ ∈ Rd in O(T ) function evaluations (Hutchinson, 1990). In practice, this is a major
bottleneck because a large number of steps is needed to control discretization error (see Fig. 2).

Table 1: Related method overview
Method Invertible Regression-loss Few Step FreeForm Arch.

BioEmu ✗ ✓ ✗ ✓
FlowMaps ✗ ✓ ✓ ✓
TBG ✓ ✓ ✗ ✓
RegFlow ✓ ✓ ✓ ✗
Prose ✓ ✗ ✓ ✗
FFFlows ✓ ✗ ✓ ✓
FALCON (Ours) ✓ ✓ ✓ ✓

Few-step Flow Models. Flow
matching models can require
hundreds of steps for accurate
approximation of p1. To speed up
sampling, few-step flow models such
as consistency models (CMs) (Song
et al., 2023), optimal transport-based
methods (Pooladian et al., 2023;
Tong et al., 2024a;b; Shi et al., 2023),
and flow map models (Boffi et al., 2025a; Sabour et al., 2025; Geng et al., 2025; Frans et al., 2025;
Guo et al., 2025) attempt to train a model that generates high quality samples in many fewer steps.
Recently, efficient models that take not only the current sample time, but also the target sample time
have shown particular flexibility and effectiveness in the one- to few-step regimes. In these models,
uθ is augmented with an additional input t, which denotes the target time to capture the average
velocity (Geng et al., 2025) u as:

u(xs, s, t) =
1

t− s

∫ t

s

v(xτ , τ)dτ (4)

to minimize the average velocity objective:

Es,t,xs

[
w(s, t)

∥∥∥∥uθ(xs, s, t)−
1

t− s

∫ t

s

v(xτ , τ)dτ

∥∥∥∥
2
]

(5)

where the average velocity uθ is parameterized by a neural network as depicted in Fig. 1 and v is
the vector field of the probability flow ODE that transports samples from the noise distribution p0
to the data distribution p1. Once the average velocity is learned, then samples can be drawn using
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any discretization of the time interval [0, 1], such that t0 = 0, t1, . . . tT = 1 as xti = xti−1
+ (ti −

ti−1)uθ(xti−1
, ti−1, ti) for i ∈ 1 . . . T . However, thus far, few-step flow models have only been

applied for fast generation, and, as we show, do not natively guarantee efficient access to likelihoods
in realistic settings as the learned average velocity map uθ is not guaranteed to be invertible before
the training objective is perfectly minimized, making the standard change-of-variables formula
inapplicable. These models and their relationship to FALCON are summarized in Table 1.

3 FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS

We now introduce FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS (FALCON),
a novel flow-based generative model designed to address the inherent efficiency limitations of
using continuous flow models with Boltzmann Generators. Our method departs from traditional
continuous normalizing flow (CNFs) by training a flow map that operates in a few discrete steps,
while simultaneously achieving invertibility to ensure fast and accurate likelihood computation for
Boltzmann Generation. This is achieved through a hybrid training objective, which, by enabling
stable few-step generation, dramatically reduces the inference cost. This efficiency allows us to use
much larger and more expressive architectures (Vaswani et al., 2017; Peebles & Xie, 2023; Ma et al.,
2024) that were previously computationally infeasible to scale in the BG setting.

Flow Maps are Flawed Boltzmann Generators. The core of FALCON is a generative process
that learns an invertible map from a simple base distribution p0 to the target molecular distribution
p1 in a small number of steps. We first examine the suitability of the existing few-step flows for
importance sampling applications, concluding that, on their own, they are not sufficient. We first
define the continuous map with respect to a vector field v as:

Xv(xs, s, t) =

∫ t

s

v(xτ , τ)dτ + xs, (6)

and note that under mild regularity conditions on v, this map is always invertible up to discretization
error. For any invertible map, we can compute the change in density with respect to the input using
the change of variables formula, which requires computing the Jacobian, at the approximate cost of d
function evaluations, and the determinant, which, while an O(d3) operation, is in practice negligible
compared to the function evaluation cost.
This invertibility property also holds for flow map models at the optima, which we address in the
following proposition.

Proposition 1. Let u⋆θ be a minimizer of Eq. 5 with respect to some v. Also, define the Jacobian
of X as JX = ∂X

∂xs
, and the discrete flow map:

Xu(xs, s, t) = xs + (t− s)u⋆θ(xs, s, t) (7)
Then, for sufficiently smooth u⋆θ and v and for any (s, t) ∈ [0, 1]2,

1. Xu(·, s, t) is an invertible map everywhere,

2. log pu
⋆

t (xt) = log pu
⋆

s (xs)− log |detJXu
(xs)| almost everywhere.

We provide a more precise statement and proofs for all propositions in §A. This means that optimal
flow maps are, in some ways, ideal Boltzmann Generators in that they have relatively efficient access
to both samples and likelihood; however, this property only holds at the optima, and in the case that
Xu(·, s, t) = Xv(·, s, t) for all s, t, which in practice is extremely challenging to satisfy.
In practice, for standard flow map models, Xu(·, s, t) ̸= Xv(·, s, t) and we have no guarantee that
Xu will be invertible, making efficient likelihood calculation all but impossible. However, we note
that this condition is actually much stronger than we need for FALCON. For our uses, while we
would like Xu(·, s, t) to be close to Xv(·, s, t), for accurate and efficient likelihood computation, we
only require that Xu is invertible, not that it matches the particular invertible map defined by Xv.
This leads us to define an additional invertibility loss:

Linv(θ) = Es,t,xs
∥xs −Xu(Xu(xs, s, t), t, s)∥2, (8)

to be used in conjunction with the average velocity objective and flow matching objectives, Lcfm, for
a final loss comprised of three components:

L(θ) = Lcfm(θ) + λavgLavg(θ) + λrLinv(θ), (9)
with variants Lavg proposed below. Minimizing this loss has a less strict requirement for the correct-
ness of the Boltzmann Generator specifically:
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Proposition 2. Let u⋆θ be a minimizer ofLinv (Eq. (8)) with respect to some v. Then, for sufficiently
smooth u⋆θ and v and for any (s, t) ∈ [0, 1]2, Xu(·, s, t) is an invertible map everywhere, and
log pu

⋆

t (xt) = log pu
⋆

s (xs)− log |detJXu
(xs)| almost everywhere.

Thus, minimizing the invertibility loss is sufficient for valid Boltzmann Generation, even without
exactly reproducing the continuous-time flow. Note that the proposition provides a constructive
guarantee of invertibility, and, in practice, we only require the existence of an inverse, not its explicit
form. This condition ensures that FALCON acts as a consistent generator of the target energy
distribution, E(x), while benefiting from fast inference-time scalability.

FALCON Enables Scalable Architectures. Previous Boltzmann Generators based on continuous
normalizing flows for molecular applications utilize small equivariant architectures (Klein et al.,
2023a; Klein & Noe, 2024; Tan et al., 2025a; Aggarwal et al., 2025) up to 2.3 million parameters.
These models are limited in their scale due to the high cost of inference with multi-step adaptive
step size samplers, which are needed to control the error in the likelihood calculation. FALCON,
by enabling relatively cheap few-step sampling, can greatly improve performance. Specifically, we
use a standard diffusion transformer (DiT) network (Peebles & Xie, 2023) with an additional time
embedding head. We also use a combination of data augmentation to enforce soft SO(3) (rotation)
equivariance and subtraction of the mean to enforce translation invariance following (Tan et al.,
2025a;b).

Formulations for Lavg in the context of Boltzmann Generators. Many forms of Lavg have been
explored in the context of fast generation (Geng et al., 2025; Guo et al., 2025; Boffi et al., 2025a;
Sabour et al., 2025); We discuss these losses in §B. In this work, we consider the following loss,
which is equivalent to the MeanFlow loss of Geng et al. (2025), as well as the ESD objective in Boffi
et al. (2025a). This choice is based on the superior performance of this loss in image experiments
(Sabour et al., 2025), as well as its potential for efficient implementation, which we discuss below.

Lavg ≜ Es,t,xs

∥∥∥∥uθ(xs,s, t)− sg

(
v(xs, s)− (t− s)

(
v(xs, s)∂xs

uθ + ∂suθ
))∥∥∥∥

2

(10)

Note that since xs = sx1 + (1− s)x0, we can directly use v(xs, s) = x1 − x0.

Algorithm 1: Training FALCON
Input: Sampleable p0 and p1, regularization

weight λr, network uθ
Output: The trained network uθ
while training do

(x0, x1) ∼ p0 × p1;
xs ← sx1 + (1− s)x0;
vs ← x1 − x0;
uθ,

∂uθ

∂s ← jvp(uθ, (xs, s, t), (vs, 1, 0));
utgt ← vs − (t− s)∂uθ

∂s ;
x̂t ← xs + (t− s)uθ;
x̂s ← x̂t + (s− t)uθ(x̂t, t, s);
L(θ)←
∥u− stopgrad(utgt)∥2 + λr∥xs − x̂s∥2;
θ ← update(θ,∇θL(θ));

return uθ;

Efficient Implementation. As noted in mul-
tiple previous works, Lavg can be efficiently im-
plemented using a single Jacobian vector prod-
uct (JVP) call using forward automatic differen-
tiation. Specifically, we have:

uθ(xs, s, t),
duθ
ds

= jvp(uθ, (xs, s, t), (vs, 1, 0))

where the jvp function takes a callable function,
inputs, and a vector which is the vector part of
the JVP.
Additionally, for this loss specifically, we
can combine Lcfm and Lavg if we implement
v(xs, s) = uθ(xs, s, s), i.e. passing the same
time to u, representing the instantaneous veloc-
ity. Specifically, we can implement the sum
of the two losses by changing the distribution
of s, t in Eq. 10 to include some percentage of
the time when s = t to correspond with some
fraction of Lcfm loss.
Our method is the first to require flow maps both in the forward and backward directions. We
therefore need to consider the parameterization uθ(xs, t, s), i.e. the backwards direction, specifically
at the discontinuity when s = t. When t→ s+, then uθ(xs, s, t) = v(xs, s), but when t→ s−, then
uθ(xs, s, t) = −v(xs, s). To address this, we parameterize our flow map uθ such that uθ(xs, s, t) =
sign(t− s)hθ(xs, s, t) (Sabour et al., 2025).
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4 EXPERIMENTS

In this section, we first demonstrate that FALCON achieves more scalable performance over
state-of-the-art continuous flows across both global and local metrics on tri-alanine, alanine
tetrapeptide, and hexa-alanine (Table 3). Next, we empirically demonstrate that FALCON flows
exceed the performance of state-of-the-art discrete NFs, even when they are given vastly larger
sampling budgets (Fig. 4). Then, we elucidate the importance of regularization in achieving
invertibility and aiding generative performance (Fig. 6). Finally, we ablate inference schedules and
show their impact on performance across metrics as a function of sampler choice (Fig. 7).

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the performance of FALCON on equilibrium conformation sampling
tasks, focusing on alanine dipeptide (ALDP), tri-alanine (AL3), alanine tetrapeptide (AL4), and
hexa-alanine (AL6). Datasets are obtained from implicit solvent molecular dynamics (MD)
simulations with the amber-14 force field, as detailed in §D.3. We train on biased data and test
on a held-out unbiased dataset, using self-normalized importance sampling (SNIS) and force-field
energies to compute log-likelihoods and re-sample molecules from the target Boltzmann density.

Baselines. We benchmark FALCON against both discrete and continuous normalizing flows.
We include four discrete normalizing flow baselines: (1) SE(3)-EACF (Midgley et al., 2023); (2)
RegFlow (Rehman et al., 2025); (3) SBG (Tan et al., 2025a) with standard SNIS (SBG IS); and
( 4) SBG with SMC sampling (SBG SMC), as well as three continuous flows: (1) ECNF (Klein
et al., 2023b); (2) ECNF++ (Tan et al., 2025a); and (3) BoltzNCE (Aggarwal et al., 2025), a recent
SE(3)-equivariant architecture leveraging geometric vector perceptrons (GVPs) (Jing et al., 2020)
on alanine dipeptide. For all continuous flows, samples and likelihoods are generated by integrating
over the vector field using the Dormand–Prince 4(5) integrator with atol = rtol = 10−5 (Dormand
& Prince, 1986) to ensure a fair comparison between methods. More details on architectures and
parameters are covered in §D.1.

Metrics. We report Effective Sample Size (ESS), and the 2-Wasserstein distance on both the energy
distribution (E-W2), and dihedral angles (T-W2). The full definitions of the metrics are included in §E.
The energy captures local details, as minor atomic displacements yield large variations in the energy
distribution, while T-W2 captures global structure via mode coverage across metastable states. We
include energy histograms in the main text, with Ramachandran plots relegated to §F.4. For robustness,
all quantitative experiments are performed on three seeds of the model and reported as mean ±
standard deviation in the tables and figures. For all benchmarks, in cases where dashes are present,
data was unavailable, except for SBG SMC (Tan et al., 2025a), where ESS is not a valid metric.

4.2 FALCON OUTPERFORMS STATE-OF-THE-ART METHODS

Table 2: Results on alanine dipeptide.
Alanine dipeptide (ALDP)

Algorithm ↓ ESS ↑ E-W2 ↓ T-W2 ↓
BoltzNCE — 0.27 ± 0.02 0.57 ± 0.00
SE(3)-EACF < 10−3 108.202 2.867
RegFlow 0.036 0.519 0.958
ECNF 0.119 0.419 0.311
ECNF++ 0.275 ± 0.010 0.914 ± 0.122 0.189 ± 0.019
SBG IS 0.030 ± 0.012 0.873 ± 0.338 0.439 ± 0.129
SBG SMC — 0.741 ± 0.189 0.431 ± 0.141
FALCON (Ours) 0.067 ± 0.013 0.225 ± 0.104 0.402 ± 0.021

Superior Scalability Over Continuous Flows.
Computing likelihoods in CNFs is computa-
tionally prohibitive, limiting their scalability in
the Boltzmann Generator setting. Although the
current state-of-the-art, ECNF++, performs ex-
ceptionally well on ESS and T-W2 for alanine
dipeptide (see Table 2) (Tan et al., 2025a), it fails
to scale to larger molecules, as seen in Table 3.
In contrast, for larger systems—tri-alanine, ala-
nine tetrapeptide, and hexa-alanine—FALCON
substantially outperforms ECNF++ across all metrics, demonstrating superior scalability to larger
molecular systems. The true MD energy distributions, learned proposals, and re-sampled energies for
alanine dipeptide, tri-alanine, alanine tetrapeptide, and hexa-alanine are all shown in Fig. 3.

Improved Sample Quality Over Discrete Flows. Discrete NFs have recently been shown to be
highly performant Boltzmann Generators (Rehman et al., 2025; Tan et al., 2025a;b). SBG (Tan et al.,
2025a), based on the TARFlow architecture (Zhai et al., 2024), outperforms all previously reported
methods across both global and local metrics (see Table 3). Here, we demonstrate that FALCON,
even in a few steps, can outperform SBG across all metrics. We make two main claims to assert
FALCON’s competitive advantage, in comparison with discrete NFs: (1) Discrete NFs, despite being
fast one-step generators, consistently underperform compared to FALCON across all global and local
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Table 3: Quantitative results on tri-alanine (AL3), alanine tetrapeptide (AL4), and hexa-alanine (AL6). Baseline
methods presented with SNIS, unless stated otherwise. Evaluations are conducted over 104 samples.

Tri-alanine (AL3) Tetrapeptide (AL4) Hexa-alanine (AL6)

Algorithm ↓ ESS ↑ E-W2 ↓ T-W2 ↓ ESS ↑ E-W2 ↓ T-W2 ↓ ESS ↑ E-W2 ↓ T-W2 ↓
ECNF++ 0.003 ± 0.002 2.206 ± 0.813 0.962 ± 0.253 0.016 ± 0.001 5.638 ± 0.483 1.002 ± 0.061 0.006 ± 0.001 10.668 ± 0.285 1.902 ± 0.055
RegFlow 0.029 1.051 1.612 0.010 6.277 3.476 — — —
SBG IS 0.052 ± 0.013 0.758 ± 0.506 0.502 ± 0.016 0.046 ± 0.014 1.068 ± 0.495 0.969 ± 0.067 0.034 ± 0.015 1.021 ± 0.239 1.431 ± 0.085
SBG SMC — 0.598 ± 0.084 0.503 ± 0.029 — 1.007 ± 0.382 1.039 ± 0.069 — 1.189 ± 0.357 1.444 ± 0.140
FALCON (Ours) 0.077 ± 0.004 0.544 ± 0.013 0.452 ± 0.011 0.055 ± 0.003 0.686 ± 0.047 0.858 ± 0.077 0.060 ± 0.017 0.892 ± 0.311 1.256 ± 0.132
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Figure 3: True MD energy distribution with best FALCON unweighted and re-sampled proposals for alanine
dipeptide (left), tri-alanine (center left), and alanine tetrapeptide (center right), and hexa-alanine (right).

metrics (Table 3); and (2) Increasing the number of samples can partially close this gap; however, even
with 5× 106 samples—250× more than those used to evaluate FALCON—SBG’s performance on
E-W2 remains significantly worse than that of a 4-step FALCON Flow (as demonstrated in Fig. 4).

4.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY
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Figure 4: Performance with additional samples.

Training Efficiency Compared to Discrete NFs.
Discrete NFs benefit from fast inference, but are slow
and unstable to train due to the maximum likelihood
objective (Xu & Campbell, 2023; Andrade, 2024). By
contrast, CNFs trained with a flow matching objective
trade more stable and faster training for slower infer-
ence. When considering both training and evaluation
time together (Table 4), we see that FALCON—despite
being marginally slower at inference than the discrete
NFs for the same number of samples—achieves faster
cumulative training + inference times for superior per-
formance due to the expedited training objective.

Inference Efficiency Compared to CNFs. A pri-
mary contribution of FALCON is the dramatic reduc-
tion in the computational cost required to achieve high-
quality samples with accurate likelihoods. Fig. 2 di-
rectly illustrates this advantage. To reach a comparable
level of performance on the T-W2 metric for alanine dipeptide, a traditional CNF requires inference
times that are two orders of magnitude longer than FALCON. This efficiency gain is what enables
the use of larger, more expressive architectures and makes large-scale molecular sampling practical.
For additional discussion, see §F.3.

Table 4: Cumulative training + inference time across flows. 104 samples evaluated with (atol = rtol = 10−5 for
our CNF and 4-step FALCON). All experiments were conducted on one NVIDIA L40S with batch size 1024.
Note: For hexa-alanine, obtaining 104 samples from the Dopri5-integrated CNF was computationally infeasible.

ECNF++ SBG DiT CNF (Ours) FALCON (Ours)

Alanine dipeptide 12.52 16.83 9.56 7.65
Tri-alanine 19.59 24.67 17.54 11.45
Alanine tetrapeptide 32.17 41.67 24.10 18.84
Hexa-alanine 137.4 57.50 82.10 25.76
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Table 5: Quantitative results on alanine dipeptide, tri-alanine, alanine tetrapeptide, and hexa-alanine compared
to our Dopri5-integrated CNFs. Evaluations were conducted over 104 points across methods. Note: For hexa-
alanine, obtaining 104 samples from the Dopri5-integrated CNF was computationally infeasible.

System Algorithm ↓ ESS ↑ E-W2 ↓ T-W2 ↓ NFE

Alanine dipeptide FALCON-Dopri5 0.264 ± 0.058 0.442 ± 0.048 0.218 ± 0.023 257
FALCON 0.067 ± 0.013 0.225 ± 0.104 0.402 ± 0.021 4

Tri-alanine FALCON-Dopri5 0.125 ± 0.034 0.382 ± 0.053 0.370 ± 0.093 265
FALCON 0.077 ± 0.004 0.544 ± 0.013 0.452 ± 0.011 8

Alanine tetrapeptide FALCON-Dopri5 0.129 ± 0.015 0.665 ± 0.047 0.640 ± 0.093 200
FALCON 0.055 ± 0.003 0.686 ± 0.047 0.858 ± 0.077 8

Hexa-alanine FALCON-Dopri5 0.128 ± 0.031 1.013 ± 0.115 1.320 ± 0.201 207
FALCON 0.060 ± 0.017 0.892 ± 0.311 1.256 ± 0.132 16

Inference vs. Accuracy Trade-off. In FALCON, by using a flow map formulation, we can trade
off performance for faster evaluation by adjusting the number of inference steps post-hoc. In Table 5,
we show that a high-NFE, adaptive step solver achieves superior performance to the state-of-the-art
continuous time ECNF++, as well as a few-step FALCON Flow; however, we also demonstrate that
in this few-step regime, FALCON still outperforms every method considered (see Table 3) using
two orders of magnitude fewer function evaluations (only 4-16 steps, depending on the dataset).
Depending on the compute budget and goal, we demonstrate in Fig. 5 how FALCON is able to
interpolate between slow and accurate sampling with fast but less accurate sampling.
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Figure 5: Improved proposal and re-weighted sample energies with increased steps for alanine dipeptide.

4.4 ABLATION STUDIES AND DESIGN CHOICES
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Figure 6: Performance trade-off with increasing regularization.

Verifying FALCON’s Invertibility.
As CNFs are only invertible at con-
vergence, we introduce a regulariza-
tion term in the loss to promote nu-
merical invertibility in the few-step
regime. In Fig. 6, we demonstrate
the trade-off from this term on both
the ESS and 2-Wasserstein distance
on dihedral angles: weak regulariza-
tion leads to poor invertibility and de-
graded performance, whereas strong
regularization enforces flow invert-
ibility, albeit at the cost of reduced sample quality. We fix the regularization constant to 10.0 for all
experiments performed, unless stated otherwise to balance performance and numerical invertibility.
We also directly prove that an inverse exists for our trained flow, by training an auxiliary network to
invert a frozen FALCON Flow for the forward direction. We find that FALCON achieves invertibility
errors on the order of 10−4, which is the same order of magnitude as the invertibility of discrete and
continuous NFs. Additional details can be found in §F.2 and Fig. 12.
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Figure 7: Performance vs. choice of inference schedule.

Impact of Inference Schedules. In the few
step regime, performance can be significantly
impacted by the choice of inference schedule.
We run ablations on various schedules for ala-
nine dipeptide with 8-steps, summarizing the re-
sults in Fig. 7. We note that the EDM scheduler
substantially outperforms all other schedulers,
in agreement with observations from the dif-
fusion literature (Karras et al., 2022); sampling
more points near the data distribution proves
beneficial in aiding generative performance as
the variance of the flow field is higher closer to
the target distribution. For all reported results,
we use the EDM scheduler. In §D.2, we provide
additional details regarding scheduler definitions, inference setups, and parameter selection for EDM.

5 RELATED WORK

Boltzmann Generators. Boltzmann Generators (BGs) (Noé et al., 2019) are used to sample
molecular conformations (Klein et al., 2023a) and enable consistent estimates of thermodynamic
observables (Wirnsberger et al., 2020; Rizzi et al., 2023; Schebek et al., 2024). While traditionally
BGs are based on discrete normalizing flows, more recent work in machine learning makes use of
more powerful continuous normalizing flow architectures for invariance (Köhler et al., 2020; Köhler
et al., 2023) and expressive power (Klein et al., 2023a; Klein & Noe, 2024). A few other works have
explored the usage of approximate likelihoods (Draxler et al., 2024; Sorrenson et al., 2024; Aggarwal
et al., 2025), but have until now been unable to scale. Rehman et al. (2025) also proposes a more
efficient BG using a new-regression-based objective to train discrete normalizing flow architectures,
but requires an invertible architecture limiting scalability and performance.

Few-step Flows. Diffusion and flow matching methods are now central to domains from vision
(Song et al., 2021a;b; Lipman et al., 2023) to scientific applications in material and drug discovery
(Abramson et al., 2024; Noé et al., 2019). Scalable regression-based losses make these models fast to
train, yet inference remains costly due to the need for numerous vector field integrations, motivating
efforts to reduce computational expense. One- and few-step methods, like consistency models (Song
et al., 2023; Song & Dhariwal, 2023; Geng et al., 2024), shortcut models (Frans et al., 2025), and
flow maps (Boffi et al., 2025a;b; Sabour et al., 2025; Guo et al., 2025) have gained recent attention.
Although there have been numerous efforts in improving generative performance in image settings,
developing invertible few-step flows for scientific applications has seen far less interest. Our work, as
far as we know, is the first demonstration of an invertible few-step flow with fast likelihoods.

6 CONCLUSION

In this work, we introduced FEW-STEP ACCURATE LIKELIHOODS FOR CONTINUOUS FLOWS,
a novel few-step flow-based generative model designed to address the long-standing challenge
of scalable and efficient Boltzmann distribution sampling. Our approach successfully combines
the expressiveness and training efficiency of modern flow-based models with a few-step sampling
capability and for fast, accurate likelihood estimation. By leveraging a hybrid training objective,
FALCON provides a practical solution for the computationally expensive likelihood evaluations that
have historically limited the widespread adoption of Boltzmann Generators.
Our empirical results demonstrate that FALCON not only outperforms the existing state-of-the-art
discrete normalizing flow models, but also provides a significant leap in computational efficiency
over previous continuous flow models. We showed that our model is two orders of magnitude faster
than an equivalently performing CNF-based Boltzmann Generator, making real-world, molecular
sampling applications significantly more feasible. This represents a critical step toward unlocking the
potential of Boltzmann Generators in fields ranging from drug discovery to materials science.

Limitations. Despite its advancements, FALCON has several key limitations that are crucial to
acknowledge. First, while our results demonstrate that the computed likelihoods are empirically
good enough for practical applications, we cannot efficiently guarantee their theoretical correctness.
This represents a trade-off between computational efficiency and absolute theoretical certainty.
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Additionally, while theoretically possible, achieving true one-step generation remains out of reach for
our current models, and we believe further architectural improvements and training methodologies
are necessary to fully realize this potential.
Finally, our current research has primarily focused on the application of FALCON to Boltzmann
Generation in molecular conformation sampling. Future work will explore applying our approach
to Bayesian inference, robotics, and other domains where rapid and accurate likelihood estimation
is critical. We also see potential in models with structured Jacobians (Rezende & Mohamed, 2015;
Dinh et al., 2017; Zhai et al., 2024; Kolesnikov et al., 2024) to facilitate even faster sampling.
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ETHICS STATEMENT

Our work is primarily focused on theoretical algorithmic development for faster and more accurate
generative models for sampling from Boltzmann densities, with reduced focus on experimental
implementation. However, we recommend that future users of our work exercise appropriate caution
when applying it to domains that may involve sensitive considerations.

REPRODUCIBILITY STATEMENT

We undertake multiple measures to ensure the reproducibility of our work. A dedicated section in §F.1
outlines the setup required to generate each of our reported figures. Further, we provide comprehensive
information on the MD datasets used to train our models, including simulation parameters as well as
the training, validation, and test splits used. We also include a separate section detailing model configu-
rations, learning rate schedules, optimizer settings, hyperparameter choices, and other relevant aspects
to facilitate reproduction in §D.1. We will also release all developed code publicly upon acceptance.
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APPENDIX

A THEORY

Proposition 1. Let u⋆θ be a minimizer of Eq. 5 with respect to some v. Also, define the Jacobian of X
as JX = ∂X

∂xs
, and the discrete flow map:

Xu(xs, s, t) = xs + (t− s)u⋆θ(xs, s, t) (7)
Then, for sufficiently smooth u⋆θ and v and for any (s, t) ∈ [0, 1]2,

1. Xu(·, s, t) is an invertible map everywhere,

2. log pu
⋆

t (xt) = log pu
⋆

s (xs)− log |detJXu(xs)| almost everywhere.

We first define what we mean by sufficiently smooth in both propositions.
Assumption 1. u⋆θ is C1 almost everywhere.

This assumption on u⋆θ allows the application of the change of variables formula almost everywhere,
which is necessary to compute the log likelihood under u. We note that this is satisfied by most
sufficiently expressive modern architectures including those using ReLU type activations, which are
not C1 everywhere, but are almost everywhere.
Assumption 2. v is uniformly Lipschitz continuous in x and continuous in t.

This assumption on v is necessary in order to satisfy the Picard-Lindelöf Theorem. We note that if
the Lipschitz condition does not hold then the Peano existence theorem implies that the initial value
problem (IVP) of the ODE may not be invertible. If, however, we have both continuity in x and t as
well as a Lipschitz condition for v on x, then by the Picard-Lindelöf Theorem, we have existence and
uniqueness of the IVP. We first recall Picard-Lindelöf.
Theorem 1 (Picard-Lindelöf). Let D ⊂ Rd × R be a closed rectangle with (x0, t0) ∈ int D, the
interior of D. Let v : D → Rd be a function that is continuous in t and Lipschitz continuous in x
(with Lipschitz constant independent from t). Then there exists some ϵ > 0 such that the initial value
problem is:

dx

dt
= v(xt, t), x(t0) = x0 (11)

has a unique solution x(t) on the interval [t0 − ϵ, t0 + ϵ].

Under these conditions on v we are now able to prove the proposition.

Proof. Recall that if u⋆θ minimizes Eq. 5:

Es,t,xs

[
w(s, t)∥uθ(xs, s, t)−

1

t− s

∫ t

s

v(xτ , τ)dτ∥2
]

then we have that u⋆θ(xs, s, t) =
1

t−s

∫ t

s
v(xτ , τ)dτ for all s, t ∈ [0, 1]2. Furthermore we have

Xu(xs, s, t) = xs + (t− s)u⋆θ(xs, s, t) (12)

= xs + (t− s) 1

t− s

∫ t

s

v(xτ , τ)dτ (13)

= xs +

∫ t

s

v(xτ , τ)dτ (14)

which by application of the Picard-Lindelöf theorem is invertible for all s, t, proving part 1 of the
proposition.
To prove part 2, we note that Eq. 14 is differentiable with respect to xs and Xs is invertible, therefore
by the change-of-variables formula and Assumption 1, we arrive at part 2 of the proposition.

Proposition 2. Let u⋆θ be a minimizer of Linv (Eq. (8)) with respect to some v. Then, for sufficiently
smooth u⋆θ and v and for any (s, t) ∈ [0, 1]2, Xu(·, s, t) is an invertible map everywhere, and
log pu

⋆

t (xt) = log pu
⋆

s (xs)− log |detJXu(xs)| almost everywhere.

Proof. First we recall Eq. 8:
Linv = Es,t,xs∥xs −Xu(Xu(xs, s, t), t, s)∥2 (15)
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In this case, the minimizer of Linv that is also in C1 is pointwise invertible by definition as Xu(·, t, s)
is the inverse of Xu(·, s, t) as Linv → 0 everywhere.
For the change of variables to apply, we also need Assumption 1 to apply almost everywhere.

We note that this loss ensures pointwise invertibility. Additional restrictions are needed to ensure that
the log likelihood can be calculated efficiently.

B OTHER FORMULATIONS FOR LAVG

There are various formulations of Lavg that have been explored in the recent literature. We note that
FALCON directly benefits from any new advancements in this rapidly-evolving research direction.
Specifically, the following three different Lavg losses can be used for training flow maps.

1. L1 ≜ Es,t,xs

∥∥∥∥uθ(s, t, xs)−sg
(
v(xs, s)−(t−s)

(
v(xs, s)∂xs

uθ+∂suθ
))∥∥∥∥

2

, which is equivalent

to the MeanFlow loss of Geng et al. (2025), as well as the ESD objective in Boffi et al. (2025a).
Note that since xs = sx1 + (1− s)x0, we can directly use v(xs, s) = x1 − x0.

2. L2 ≜ Es,t,xs

∥∥∥∥uθ(s, t, xs)− sg

(
λuθ(xs, s, r) + (1− λ)uθ(Xu(xs, s, r), r, t)

)∥∥∥∥
2

, for r = λs+

(1− λ)t, is equivalent to the SplitMeanFlow loss of Guo et al. (2025), as well as the scaled PSD
objective in Boffi et al. (2025a). In Boffi et al. (2025a), two ways of sampling the intermediate
time r are explored. Deterministic mid-point sampling, which sets λ = 0.5, as well as uniform
sampling of λ. Guo et al. (2025) only explores uniform sampling. This is also a generalization of
Frans et al. (2025), which additionally samples s and t in a binary-tree fashion.

3. L3 ≜ Es,t,xs

∥∥∥∥∂tXu(xs, s, t) − sg

(
uθ
(
Xu(xs, s, t), t, t

))∥∥∥∥
2

is the Lagrangian objective pre-

sented in Boffi et al. (2025a).
As discussed in §3, we choose Lavg ≜ L1 in this paper. This choice is based on the superior
performance of this loss compared to L3 in the image experiments of Sabour et al. (2025) and the
fact that using jvp, it can be trained more efficiently compared to L2.

C EXTENDED RELATED WORK

C.1 RELATION TO FREE-FORM FLOWS

Free-form Flows (FFF) enable arbitrary architectures to function as normalizing flows by jointly
training an auxiliary network to approximate the inverse of the forward model (Draxler et al., 2024).
The forward model maps data to latents, while the auxiliary network regularizes this mapping by
learning a tractable estimator for the Jacobian term in the change of variables. As correctly highlighted
by Draxler et al. (2024), although the loss encourages invertibility, this guarantee only holds when the
reconstruction error is sufficiently small—a condition that can be difficult to meet in practice. In our
setting, FALCON is trained with an entirely different loss function—albeit with a cycle-consistency
term to promote invertibility—similar to that observed by Draxler et al. (2024). In addition, we
explicitly validate invertibility for FALCON, in line with their observations through a dedicated
experiment.

C.2 RELATION TO REGFLOWS

RegFlows (Rehman et al., 2025) enable a more efficient training process for standard discrete normal-
izing flows by avoiding the maximum-likelihood (MLE) objective, whose unstable training dynamics
often make optimization a challenge; instead, RegFlows distill the knowledge of a predefined invert-
ible coupling—either using a pre-trained continuous normalizing flow or a pre-computed optimal
transport map—into a discrete normalizing flow via a regression objective. While this sidesteps issues
associated with MLE and yields an efficient training pipeline, it also imposes a strict requirement on
the existence of an invertible reference map, which must be provided in advance.
Further, RegFlows are constrained to inherently invertible architectures, which limits their expressiv-
ity and ultimately their scalability. As we show in Table 2 and Table 3, even when comparing against
the strongest RegFlow variant (NSF), FALCON consistently outperforms it across all metrics, with
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pronounced gains on larger peptide systems. In contrast, FALCON is the first few-step Boltzmann
Generator to employ a fully free-form architecture, surpassing state-of-the-art inherently invert-
ible discrete flows (and even continuous normalizing flows) while avoiding the strict architectural
constraints imposed by invertibility. Note, although FALCON is only guaranteed to be invertible
either at convergence or via an additional regression objective, this relaxation enables substantially
higher expressivity and delivers significant empirical performance gains. Lastly, we demonstrate the
practical invertibility of FALCON through experiments performed in §F.2.

D EXPERIMENTAL DETAILS

All training experiments are run on a heterogeneous cluster of NVIDIA H100 and L40S GPUs
using distributed data parallelism (DDP). All models were trained with three random seeds, and
reported values are averages across runs. Additional training and inference details are included in
the following. For benchmarks with existing methods, in cases where dashes are present, data was
unavailable, except for the case with SBG SMC (Tan et al., 2025a), where ESS is not a valid metric.

D.1 TRAINING DETAILS

Architecture. We adopt a Diffusion Transformer (DiT) backbone for FALCON, with the same
model size used for all peptides. The details of the backbone configuration are in Table 6 below.

Table 6: Overview of FALCON configurations across datasets.
Dataset Hidden Size Blocks Heads Cond. Dim. Parameters (M)

Alanine dipeptide 192 6 6 64 3.2
Tri-alanine 192 6 6 64 3.2
Alanine tetrapeptide 192 6 6 64 3.2
Hexa-alanine 192 6 6 64 3.2

Training Configuration All models were trained with an exponential moving average (EMA) on
the weights using a decay rate of 0.999. Logit values were clipped at 0.002, with compositional
energy regularization disabled. For evaluation, we generated 104 proposal samples, and used the
same number for re-sampling and computing all metrics. Lastly, center-of-mass augmentation was
applied with a standard deviation of 1/

√
n, where n is the number of particles.

Hyperparameters Optimization was performed using AdamW with learning rate lr = 5× 10−4,
β = (0.9, 0.999), ϵ = 10−8, and weight decay 10−4. A cosine annealing learning rate schedule with
a warm-up phase covering 5% of the training iterations was also used.

D.2 INFERENCE SCHEDULERS

We evaluated five inference schedules to assess their impact on generative performance. The linear
baseline distributes steps uniformly across the trajectory, while the geometric, cosine, Chebyshev,
and EDM schedules bias step allocation to emphasize regions where the data distribution is more
sensitive. The mathematical definitions and parameter settings for each schedule are provided below.

Linear. The linear schedule spaces is distributed uniformly between 1 and 0, with N ∈ N denoting
the total number of inference steps such that:

ti = 1− i

N
, i ∈ {0, . . . , N}. (16)

Geometric. The geometric schedule exponentially allocates more resolution to early steps. We let
α ∈ R and α > 1, denote the geometric base. For all experiments conducted, we set α = 2:

ti =
αN−i − 1

αN − 1
, i ∈ {0, . . . , N}. (17)

Cosine. The cosine schedule follows a squared-cosine law, concentrating more steps near t = 0.
This has been used in diffusion models for improved stability. With N ∈ N:

ti = cos2
(
π

2
· i
N

)
, i ∈ {0, . . . , N}, tN = 0. (18)
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Chebyshev. The Chebyshev schedule, derived from the nodes of Chebyshev polynomials of the first
kind, minimizes polynomial interpolation error, and distributes steps more densely near boundaries:

ti =
1
2

(
cos
(

π(i+0.5)
N+1

)
+ 1
)
, i ∈ {0, . . . , N}, tN = 0. (19)

EDM. The EDM schedule (Karras et al., 2022) parameterizes the noise level σ using a power-law
with exponent ρ ∈ R+. The interpolation is performed in ρ-space to allocate more steps where the
generative process is most sensitive. For all experiments performed, we use the same parameters
proposed by Karras et al. (2022), with ρ = 7, σmin = 10−3, and σmax = 1, and σmin, σmax ∈ R+:

σi =
(
σ1/ρ
max +

i
N

(
σ
1/ρ
min − σ

1/ρ
max

))ρ
, i ∈ {0, . . . , N}, (20)

ti =
σi − σmin

σmax − σmin
, tN = 0. (21)

This formulation ensures a smooth transition between σmax (high noise) and σmin (low noise, near-
deterministic refinement).

D.3 DATASET DETAILS

For the datasets used, we follow the same training, validation, and test split used by (Tan et al., 2025a),
where a single MCMC chain is decomposed into 105, 2×104, and 104 samples for training, validation,
and test. The training and validation data are each taken as contiguous regions of the chain to simulate
the realistic scenario where you have generated an MCMC trajectory and would like to use a Boltz-
mann Generator to continue generating samples. The data is split so that (after warmup) the first 105
samples are for train, the next 2×104 are for validation, and the test samples are uniformly strided sub-
samples from the remaining MCMC chain. Earlier parts of the trajectory undersample certain modes
enabling a biased training set that we attempt to debias through access to the energy function and SNIS.
MD simulations were all run for 1 µs, with a timestep of 1 fs, at temperatures of 300K, 310K, and 300K
for alanine dipeptide, tri-alanine, and alanine tetrapeptide, respectively, in line with those conducted by
Klein & Noe (2024). The force fields used for all three molecules, in the same order, were the Amber
ff99SBildn, Amber 14, and Amber ff99SBildn, in line with prior work by Tan et al. (2025a).

Alanine Dipeptide. The Ramachandran plots for the training and test split are provided in Fig. 8.
Following Klein et al. (2023a), we up sample the lowest sampled mode (middle right) to make the
problem easier for BGs. This also has the added benefit of testing what happens to FALCON when
the training dataset is biased relative to the true distribution.
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Figure 8: Left: Training data for alanine dipeptide; Right: Test data for alanine dipeptide.

Tri-alanine. Similarly to alanine dipeptide, the Ramachandran plots for the training and test split
are in Fig. 9. As there are two pairs of torsion angles that parameterize the system, there are two sets
of Ramachandran plots included for each training and test. In tri-alanine, we can see that the training
set actually misses a mode entirely (ψ1 ≈ π/3), and undersamples this mode for ψ2 relative to the
test set. This is a great test of finding a new mode (in ψ1) and correctly weighting a mode (in ψ2).

Alanine Tetrapeptide. For the tetrapeptide, there are three sets of Ramachandran plots each for
training and test given the three pairs of torsions angles that parameterize the molecule, in Fig. 10.

Hexa-alanine. For hexa-alanine, we also include Ramachandran plots in Fig. 11. The first row
shows training data, while the second row shows a held-out test set used to evaluate performance.
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Figure 9: Left and left center: Training data for tri-alanine; Right center and right: Test data for tri-alanine.
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Figure 10: First three: Training data for alanine tetrapeptide; Last three: Test data for alanine tetrapeptide.
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Figure 11: First five: Training data for hexa-alanine; Last three: Test data for hexa-alanine.

E METRICS

Effective Sample Size (ESS). To quantify sampling efficiency, we compute the effective sample size
(ESS) following Kish’s definition (Kish, 1957). Given N ∈ N generated particles with unnormalized
importance weights {wi}Ni=1 ⊂ R+, the ESS is normalized by N as:

ESS({wi}Ni=1) ≜
1

N

1
∑N

i=1 w
2
i

(
N∑

i=1

wi

)2

. (22)

The ESS reflects how many independent, equally-weighted samples would provide equivalent statisti-
cal power to the weighted sample. Higher ESS is desirable for more performant models.

2-Wasserstein Energy Distance (E-W2). To compare energy distributions, we compute the 2-
Wasserstein distance between generated and reference samples from our MD dataset. For distributions
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p, q ∈ P(R) over energy values, and Π(p, q) the set of admissible couplings, we define:

E-W2(p, q)
2 ≜ min

π∈Π(p,q)

∫

R×R
|x− y|2 dπ(x, y). (23)

The E-W2 measures how closely the generated energy histogram aligns with that of the reference,
with high sensitivity to structural accuracy due to bond-length–dependent energies. Since small
perturbations in local structure induce large fluctuations in the energy distribution, this metric captures
this variance, with lower values of E-W2 being more favourable for generative models.

Torus 2-Wasserstein Distance (T-W2). To assess structural similarity in torsional space, we
compute a 2-Wasserstein distance over dihedral angles. For a molecule with L ∈ N residues, define
the dihedral vector as:

Dihedrals(x) = (ϕ1, ψ1, . . . , ϕL−1, ψL−1) ∈ [0, 2π)2(L−1). (24)
The cost on the torus accounts for periodicity of angles:

cT (x, y)
2 =

2(L−1)∑

i=1

[
(Dihedrals(x)i −Dihedrals(y)i + π) mod 2π − π

]2
. (25)

The torus 2-Wasserstein distance between two distributions p, q ∈ P([0, 2π)2(L−1)) is then:

T-W2(p, q)
2 ≜ min

π∈Π(p,q)

∫
cT (x, y)

2 dπ(x, y). (26)

This captures macroscopic conformational differences while respecting angular periodicity. The
T-W2 provides a more global assessment of performance, for instance revealing missed conforma-
tional modes that would not be captured by the E-W2.

F ADDITIONAL EXPERIMENTS

F.1 DETAILS FOR FIGURE GENERATION

In Fig. 2, we compare performance on the T-W2 metric for alanine dipeptide between FALCON
and our continuous-time DiT CNF. For FALCON, accuracy is controlled by the number of inference
steps (1–8). For the DiT CNF, we consider three settings: (1) adaptive step Dormand–Prince 4(5)
with exact Jacobian trace evaluation, varying atol/rtol from 10−1 to 10−5; (2) the same tolerances
but instead using the Hutchinson trace estimator, trading performance for faster likelihoods with
higher variance; and (3) fixed-step Euler integration with step sizes from 4 to 256 with exact Jacobian
traces, where the upper bound is chosen to roughly match the number of function evaluations needed
for Dopri5. The models and training configurations used are presented in §D.1.
In Fig. 3, we demonstrate the energy distributions for unweighted and re-weighted samples for
our most performant FALCON Flows. For alanine dipeptide, tri-alanine, alanine tetrapeptide, and
hexa-alanine, 4, 8, 8, and 16 steps were used for figure generation. Energy distributions reveal
microscopic detail, as marginal changes in local atomic position can have significant impacts on
total energy. The best models for each molecular system were used, with pertinent details on model
size, training configurations, and hyperparameters detailed in §D.1. Similarly, in Fig. 5, we show the
proposal and re-weighted sample estimates for alanine dipeptide, and demonstrate how an increasing
number of steps, improves the energy distribution.
In Fig. 4, we compare the performance between SBG’s discrete NFs and FALCON, illustrating
that despite more samples increasing performance across metrics, the approach is still unable to reach
FALCON’s performance. For SBG, we specifically take their best model weights for the TarFlow
architecture from: https://github.com/transferable-samplers/transferable-samplers,
and draw Ns ∈ {104, 2× 104, 5× 104, 105, 2× 105, 5× 105, 106, 2× 106, 5× 106} samples three
different times (the error bars are representative of the three draws) and evaluate E-W2 for each set.
In Fig. 6, we investigate how the strength of regularization impacts performance on ESS and E-W2.
Specifically, we demonstrate that small amounts of regularization enable generative performance
but impede invertibility, while too much regularization detrimentally impacts sample quality. This
trade-off leads to an optimum on both metrics. We investigate λr ∈ {100, 101, 102, 103, 104, 105},
and conclude upon λr = 101. To ascertain the optimal λr, we ran these experiments on alanine
dipeptide, using the same model details and configurations highlighted in §D.1.
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Fig. 7 demonstrates the sensitivity the inference schedule plays on generative performance. For this
figure, we took our best models—trained with the details presented in §D.1—and ran inference using
all three trained seeds to generate uncertainties for each inference schedule. We used our 8-step
system, as inference scheduler choice is less important the fewer steps are used.

F.2 PROOF OF INVERTIBILITY
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Figure 12: Auxiliary model loss from
reflow target training on forward flow.

In our loss, we use a cycle-consistency term that regularizes
training to promote numerical invertibility. We see in Fig. 6,
the introduction of this modified loss aids generative perfor-
mance; however, the forward-backward reconstruction yields
errors on the order of 10−2, indicating an approximately, but
not entirely invertible model. To prove that the flow is invert-
ible (but the inverse is challenging to discover during training),
we train an auxiliary FALCON Flow in the reverse direction.
We use the same network to parameterize the reverse flow as
described in §D.1, with the same training configuration and
hyperparameter set. Next, we freeze the forward model (which
goes from latents→ data), generate synthetic data (2 × 105

prior-target sample pairs) and train the auxiliary model on
these reflow targets to learn the mapping from data back to
latents. In Fig. 12, we illustrate the loss curve of the trained
auxiliary FALCON. To evaluate invertibility, we draw i.i.d. samples from our prior distribution, pass
them through the frozen forward model, and test the auxiliary reverse model on these unseen latents.
We evaluate an ℓ2 error on the recovered latents to find reconstruction within 10−4 after 1000 epochs
matching the reconstruction accuracy of discrete NFs that are invertible by design. These results
support the claim that the learned flow is indeed invertible.

F.3 PERFORMANCE AGAINST NUMBER OF FUNCTION EVALUATIONS
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Figure 13: Performance of FALCON vs. our DiT
CNFs as a function of NFEs.

Fig. 13 highlights the efficiency of FALCON in
terms of number of function evaluations. We
see that FALCON achieves the same torus 2-
Wasserstein performance as our DiT CNF with
Dopri5, while requiring over two orders of magni-
tude fewer function evaluations. Whereas Fig. 2
quantified efficiency in terms of inference time,
here we measure the number of function evalua-
tions against both fixed-step solvers (Euler with
4–256 steps) and adaptive solvers (Dopri5 run
until reaching target tolerances atol = rtol ∈
{10−2, 10−3, 10−4, 10−5} for Hutchinson and ∈
{10−2, 10−3, 10−4, 10−5, 10−6} for exact).
Although Hutchinson’s trace estimator yields a
speedup relative to exact Jacobian computation for
CNFs, as seen in Fig. 2, the number of function
evaluations needed is higher than the exact Jacobian
computation. In either setting, however, FALCON
still remains substantially faster. Even with a 4-step solver, FALCON matches the accuracy of DiT
CNFs using Hutchinson at atol = rtol = 10−5, with an 8-step solver nearly matching the performance
of a DiT CNF with Dopri5 set to an atol = rtol = 10−6.

F.4 RAMACHANDRAN PLOTS

Alanine Dipeptide. We demonstrate FALCON’s capacity to learning global features through the
Ramachandran plots in Fig. 14 for alanine dipeptide. We include both the held-out test set and the
learned model’s map, showcasing its ability to debias the data and capture the true MD distribution.
Specifically, the undersampled ϕ mode in the training data is correctly upweighted in the learned
model’s predictions, indicating accurate likelihood estimates from the learned flow.
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Figure 14: Left: Test data for alanine dipeptide; Right: FALCON’s angular predictions for alanine dipeptide.

Tri-alanine. Similarly, we show the Ramachandran plots for tri-alanine in Fig. 15 exhibiting similar
behaviour. Most conformations are correctly captured, with some modes being underweighted.
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Figure 15: Left and left center: Test data for tri-alanine; Right and right center: FALCON’s angular
predictions for tri-alanine.

Alanine Tetrapeptide. Next, we show the Ramachandran plots for alanine tetrapeptide in Fig. 16.
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Figure 16: First three: Test data for alanine tetrapeptide; Last three: FALCON’s angular predictions for
alanine tetrapeptide.

Hexa-alanine. Finally, we show the Ramachandran plots for hexa-alanine in Fig. 17.
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Figure 17: First five: Test data for hexa-alanine; Last five: FALCON’s angular predictions for hexa-alanine.
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