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Abstract
This paper investigates an under-explored challenge in large language models
(LLMs): chain-of-thought prompting with noisy rationales, which include irrele-
vant or inaccurate reasoning thoughts within examples used for in-context learning.
We construct NoRa dataset that is tailored to evaluate the robustness of reasoning
in the presence of noisy rationales. Our findings on NoRa dataset reveal a prevalent
vulnerability to such noise among current LLMs, with existing robust methods like
self-correction and self-consistency showing limited efficacy. Notably, compared to
prompting with clean rationales, GPT-3.5 drops by 1.4%-19.8% in accuracy with
irrelevant thoughts and more drastically by 2.2%-40.4% with inaccurate thoughts.
Addressing this challenge necessitates external supervision that should be accessi-
ble in practice. Here, we propose the method of contrastive denoising with noisy
chain-of-thought (CD-CoT). It enhances LLMs’ denoising-reasoning capabilities
by contrasting noisy rationales with only one clean rationale, which can be the
minimal requirement for denoising-purpose prompting. This method follows a prin-
ciple of exploration and exploitation: (1) rephrasing and selecting rationales in the
input space to achieve explicit denoising and (2) exploring diverse reasoning paths
and voting on answers in the output space. Empirically, CD-CoT demonstrates an
average improvement of 17.8% in accuracy over the base model and shows signifi-
cantly stronger denoising capabilities than baseline methods. The source code is
publicly available at: https://github.com/tmlr-group/NoisyRationales.

Question-1 (Q1): In base-9, what is 86+57?
We know 6+6=12 and 3+7=10 in base 10. 
Rationale-1 (R1): In base-9, the digits are 
“012345678”. We have 6 + 7 = 13 in base-
10. Since we‘re in base-9, that exceeds the 
maximum value of 8 for a single digit. 13 
mod 9 = 4, so the digit is 4 and the carry is 
1. We have 8 + 5 + 1 = 14 in base 10. 14 
mod 9 = 5, so the digit is 5 and the carry is 
1. A leading digit 1. So the answer is 154.
Answer-1 (A1): 154.
…Q2, R2, A2, Q3, R3, A3…
Test Question: In base-9, what is 62+58?
We know 6+6=12 and 3+7=10 in base 10. 

Input with Noisy Questions

Question-1 (Q1): In base-9, what is 86+57? 
Rationale-1 (R1): In base-9, the digits are  
“012345678”.  We have 6 + 7 = 13 in base-
10. 13 + 8 = 21. Since we're in base-9, that 
exceeds the maximum value of 8 for a 
single digit.13 mod 9 = 4, so the digit is 4 
and the carry is 1. We have 8 + 5 + 1 = 14 in 
base 10. 14 mod 9 = 5, so the digit is 5 and 
the carry is 1. 5 + 9 = 14. A leading digit is 
1. So the answer is 154.
Answer-1 (A1): 154.
…Q2, R2, A2, Q3, R3, A3 …
Test Question: In base-9, what is 62+58?

Input with Noisy Rationales

Final version

Figure 1: Exemplars of noisy questions [68] and noisy rationales (our new research problem). Each
input includes three prompting examples and one test question. Notably, the test question asks about
base-9 calculation, while the misguiding base-10 information is given in noisy questions or rationales.
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Figure 2: Results of GPT-3.5 with 0-shot, 3-shot
clean rationales, and 3-shot noisy rationales: Both
inaccurate and irrelevant rationales degenerate
performance significantly, while the proposed CD-
CoT improves robustness against noisy rationales.
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Figure 3: Chain modeling of the noisy rationale
problem: Recovering chain (3) from chain (1)
with the guidance of chain (2). From question xi

to answer yi, the rationale of chain (3) includes
clean thoughts T (j)

i and noisy thoughts T̂ (j)
i .

1 Introduction
In-context learning (ICL) is a common approach in large language models (LLMs), enabling models
to extrapolate from a few examples and adapt without fine-tuning [4, 84, 16]. However, ICL’s efficacy
is closely tied to the quality and clarity of the prompting examples, particularly in the prevailing
chain-of-thought (CoT) strategy that provides rationales, i.e., intermediate reasoning steps to solve a
question [85]. Recent research has shown that LLMs struggle with noisy questions: they are easily
distracted by irrelevant context and exhibit instability with slight input modifications [68, 78, 107].

Notably, this work shifts focus from the well-studied noisy questions (Noisy-Q) problem to the under-
explored noisy rationales (Noisy-R) problem, wherein factually inaccurate or irrelevant reasoning
steps are paired with valid question-answer examples, as illustrated in Fig. 1. Here, the emphasis on
Noisy-R is due to its practical challenges, with examples drawn from diverse sources such as crowd-
sourced platforms, dialogue systems, and machine-generated data 2 [25, 45, 73, 2, 77, 48]. However,
the robustness of LLMs against Noisy-R remains unknown. A new benchmarking dataset is needed
to conduct a systematic evaluation of current LLMs and verify the corresponding countermeasures.

In this work, we first construct the NoRa (Noisy Rationales) dataset, a comprehensive testbed to
evaluate the robustness of LLM reasoning against noisy rationales across various reasoning domains
(in Sec. 3). The NoRa contains a total of 26391 questions, covering three types of reasoning
tasks: mathematical, symbolic, and commonsense. We uniformly formalize the generation of noisy
rationales by inserting irrelevant or inaccurate thoughts, controlling reasoning difficulty through noise
ratios, and guaranteeing the overall prompting correctness without modifying the question or answer.

With the NoRa dataset, we evaluate several LLMs and reveal that all of them are intrinsically
vulnerable to noisy rationales (in Sec. 4). For example, compared to prompting with clean rationales,
GPT-3.5 exhibits an average 3.0% - 33.3% decrease in accuracy with noisy rationales, as in Fig. 2.
Besides, only limited improvements are achieved with existing robust methods based on the model’s
intrinsic denoising ability, e.g., self-consistency [83] and self-denoise [102]. We show that Noisy-R is
much more challenging than Noisy-Q, requiring context-specific knowledge to guide the denoising.

To solve this, we propose to rectify the rationales with only one clean CoT demonstration that can be
the most attainable supervision in practice (in Sec. 5). We assume that LLMs can rectify rationales
by contrasting a noisy rationale with a clean one, as in Fig. 3. Guided by this principle, we design the
framework of Contrastive Denoising with noisy CoT (CD-CoT) with four steps: rationale rephrasing,
rationale selecting, rationale exploring, and answer voting. Technically, the first two steps aim to
achieve explicit denoising, while the last two steps are for diverse reasoning paths. Empirically,
CD-CoT achieves an average improvement of 17.8% in accuracy w.r.t. the base model (refer to
Tab. 8). Notably, it presents much stronger denoising power than baselines in rectifying the rationales.

Contributions. To our best knowledge, we are the first to investigate the problem of noisy rationales.

• We formalize the under-explored noisy rationale problem in the prevailing chain-of-thought prompting
and construct the NoRa dataset to benchmark the robustness of LLMs against noisy rationales (Sec. 3).

• We systematically evaluate LLMs with NoRa dataset and extract several insightful observations, e.g.,
the unsatisfactory robustness and limited denoising power of LLMs under noisy rationales (Sec. 4).

• We propose to rectify the noisy rationales with only one clean CoT demonstration, design a simple yet
effective method, CD-CoT, and verify its effectiveness through comprehensive experiments (Sec. 5).

2The sources of noisy rationales are discussed in Appendix C with extensive real-world examples.
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2 Related Work

Limitations of in-context learning (ICL). Though effective, ICL suffers from the susceptibility to
manual generation and selection of demonstrations (examples), where the ultimate performance is
closely tied to the demonstrations’ quality and clarity. Recent investigations on noisy questions have
shown that (i) LLMs can be distracted by irrelevant or adversarial context, as they are designed to
pay close attention to the context provided in the prompt [32, 58, 68, 78] and (ii) LLM reasoning is
unstable, namely, small modifications to the prompt could potentially cause large variations in the
model’s output [102, 107]. Besides, another line of research regarding noisy answers [42, 18] justifies
the feasibility of misleading an LLM to agree factual errors such as "1+1=3" in base-10 calculation.

Countermeasures. Two intrinsic traits of LLMs are desirable for addressing the above limitations:

• Self-correction, wherein LLMs attempt to correct their initial responses based solely on their inherent
capabilities without external feedback, e.g., by refining prompts through iterative corrections of re-
sponses or question trajectories [91, 89]. Although LLMs can learn to ignore irrelevant information by
examples or instructions [68], they are proved to be still struggling to correct their responses without
external feedback, and at times, their performance might even degrade after self-correction [29, 81].

• Self-consistency aims to obtain a consistent answer against input perturbations. This is achieved by
generating multiple responses via randomized smoothing on input questions [98] or diverse paths for
answering one question [83] followed by the answer aggregation. This strategy brings improvements
with extra costs for repeated reasoning. Moreover, it cannot explicitly rectify questions or rationales.

Noisy rationales, as the research focus of this work, mainly originates from (1) the inherent im-
perfections, inconsistencies, and inaccuracies of humans’ cognitive processes [53, 10] and (2) the
diversity, unpredictability, and hallucination of the LLMs’ generative mechanisms [103, 30, 101]. A
detailed literature review and discussion of noise rationales are in Appendix B and C, respectively.

3 The NoRa Dataset

In this section, we introduce the NoRa (Noisy Rationales) dataset for benchmarking the robustness
against noisy rationales. NoRa consists of 26391 questions and 5 subsets, covering mathematical,
symbolic, and commonsense reasoning tasks, where ICL and CoT demonstrations play a crucial role.

3.1 Definition of Noisy Rationales

We start by formalizing the ICL and CoT demonstrations. Given a test question xtest and an LLM fθ,
one expects to get the correct answer ytest as fθ(xtest) 7→ytest. This zero-shot manner cannot guarantee
effectiveness, especially when encountering unfamiliar contexts or scenarios. To boost effectiveness,
the ICL techniques prompt the LLM with a few examples Sn={(xi, yi)}ni=1 collected in the current
context, each composed of a question xi and answer yi, and then construct the new input xICL as

xICL = [Sn, xtest] = [x1, y1, . . . , xn, yn, xtest] . (1)

The guidance by Sn makes fθ(xICL) 7→ytest much easier than fθ(xtest) 7→ytest. Then, the CoT further
refines xICL by constructing the step-by-step rationale Ti, consisting of several thoughts T (j)

i , namely,

xCoT = [x1, T1, y1, . . . , xn, Tn, yn, xtest] , where Ti =
[
T

(1)
i , T

(2)
i , T

(3)
i , . . . , T

(k)
i

]
. (2)

However, as aforementioned, the thoughts in CoT (Eqn. 2) can be noisy in practice. This noise can
be attributed to (1) irrelevant thoughts, which are irrelevant but correct, or (2) inaccurate thoughts,
which are relevant but factually wrong. Here, we uniformly formalize these two kinds of noise as

T̂i =
[
T

(1)
i , T̂

(1)
i , T

(2)
i , T̂

(2)
i , . . . , T

(k)
i , T̂

(k)
i

]
, (3)

where T̂
(j)
i represents a noisy thought (irrelevant or inaccurate) that is coherent with the previous

clean thought T (j)
i (relevant and correct). The following introduces the definition of noisy thoughts.

Irrelevant thoughts refer to incorporating irrelevant information unhelpful for solving the question,
e.g., discussing the genetic overlap of siblings when the task is to deduce family roles in relationship
reasoning. Redundant information may be introduced by the LLM’s diverse response generation or
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Task Irrelevant Thoughts Inaccurate Thoughts

NoRa-Math

In base-9, digits run from 0 to 8. We have 3 + 2 = 5 in base-
10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and
the carry is 0. There are five oceans on Earth: the Atlantic,
Pacific, Indian, Arctic, and Southern. We have 8 + 6 + 0 =
14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is
1. A leading digit 1. So the answer is 155. Answer: 155

In base-9, digits run from 0 to 8. We have 3 + 2 = 5 in base-
10. 5 + 4 = 9. Since we’re in base-9, that doesn’t exceed the
maximum value of 8 for a single digit. 5 mod 9 = 5, so the
digit is 5 and the carry is 0. 5 + 9 = 14. We have 8 + 6 + 0 =
14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is
1. A leading digit 1. So the answer is 155. Answer: 155

NoRa-Symbolic

... "turn around right" means the agent needs to turn right,
and repeat this action sequence four times to complete a
360-degree loop. Many GPS navigation systems will issue
a ’turn around’ command if the driver deviates from the
planned route. So, in action sequence is I_TURN_RIGHT
I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT. ...

... "turn around right" means the agent needs to turn
right, and repeat this action sequence four times to com-
plete a 360-degree loop. Turn opposite is I_TURN_RIGHT
I_TURN_LEFT. So, in action sequence is I_TURN_RIGHT
I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT. ...

NoRa-Com.

The relations path are son, sister, uncle, which means Fran-
cisco is David’s son’s sister’s uncle. For son’s sister, we have
son’s sister is daughter. So the relations path are reduced to
daughter, uncle. In genetics, mitochondrial DNA is always
inherited from the mother, making the mother-daughter
genetic link unique. For daughter’s uncle, we have daugh-
ter’s uncle is brother. So the relations path are reduced to
brother. Therefore, the answer is brother. Answer:brother

The relations path are son, sister, uncle, which means Fran-
cisco is David’s son’s sister’s uncle. For son’s sister, we have
son’s sister is daughter. So the relations path are reduced to
daughter, uncle. For daughter’s uncle, we have daughter’s
uncle is brother. We have brother’ sister is brother. So the
relations path are reduced to brother. Therefore, the answer
is brother. Answer:brother

Table 1: Noisy rationales (consisting noisy thoughts) sampled from the NoRa dataset. Full examples
of NoRa are in Appendix C.6, and real-world examples of noisy rationales are in Appendix C.3.

by humans when clarifying concepts in problem-solving examples [5, 104]. Alternatively, we explore
various semantic levels of "irrelevance" for constructing diverse irrelevant thoughts in Appendix F.4.

Inaccurate thoughts refer to factual errors in rationales that are common in mathematical calculation
or transcription, e.g., "5+5=10" is wrong in base-9 calculation. This noise comes from algorithmic
limitations, errors in training data, misinterpretations of instructions, and logical fallacies [40, 64].
Remark 3.1. Both types of noise only impact the finer details of the reasoning chain without affecting
the correctness of question xi and answer yi. This distinction ensures that the reasoning based on the
noisy demonstration is not fundamentally flawed, namely, only the reasoning rationale T̂i is noisy.

3.2 Tasks and Statistics

The NoRa dataset covers the three types of reasoning tasks listed below. In noise generation, irrelevant
thoughts, sourced from extraneous scientific or social facts, and inaccurate thoughts, arising from
misguided reasoning, are both based on contextual thoughts of Eqn. 2 (see examples in Tab. 1).

• NoRa-Math. This task is derived from the Base Calculation dataset [88] for evaluating non-standard
base arithmetic skills and features two sub-tasks of base-9 and base-11 addition. Here, the mastery of
mathematical concepts and the calculation rules of specific bases are the keys to solving these tasks.

• NoRa-Symbolic. We utilize the SCAN dataset [41] here, which aims to transform natural language
into symbolic, machine-understandable instructions. This transformation is learned from the prompt-
ing examples, comprising two sub-tasks: (1) equal-length subtask, where the transformed instructions
in both Sn and xtest have the equal length; and (2) longer-length subtask, where the transformed
instructions in xtest is longer than those in Sn, presenting an easy-to-hard generalization challenge.

• NoRa-Commonsense. This task is constructed based on the CLUTRR dataset [71], which is geared
towards family relation path reasoning, e.g., "who is aunt’s sister’s mother?" It requires the mastery
and application of commonsense knowledge of relationships and cognitive skills for reasoning.

Noise Ratio. Given the noise ratio ϵ∈ (0, 1), the expected number of added noisy thoughts for a
k-length CoT demonstration is ⌊ϵ·k+ 1/2⌋. Specifically, for an irrelevant thought T̂ (j)

i in j-th position
of i-th example, a Bernoulli distribution Bern(ϵ)∈{0, 1} is adopted to indicate its binary existence.
We also further investigate the impact of the number of noisy thoughts, provided in Appendix F.5.

Difficulty Noise #total thoughts (#noisy thoughts) of prompting rationales (Avg.)
Ratio Math Base-9 Math Base-11 Sym. Equal Sym. Longer Com.

Easy 0.3 10 (2) 10 (2) 11.5 (2.7) 11.0 (2.5) 7 (2)
Medium 0.5 12 (4) 12 (4) 13.3 (4.5) 12.7 (4.2) 8 (3)

Hard 0.8 14 (6) 14 (6) 16.0 (7.1) 15.2 (6.8) 9 (4)

#questions 4024 9269 4182 3920 4996

Table 2: Statistics of NoRa dataset.

Statistics. Tab. 2 provides a categorization of
task difficulties as Easy, Medium, and Hard,
with corresponding noise ratios of 0.3, 0.5,
and 0.8. Regarding the number of thoughts
in a rationale, Math entails 8 thoughts, Sym-
bolic varies from 2 to 12, and Commonsense
requires 5 thoughts. Additionally, a detailed
introduction to NoRa is in Appendix C.4.
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Task Method M Acc(M,Q,Pclean)
Acc(M,Q,Pirrelevant) Acc(M,Q,Pinaccurate)

Easy Medium Hard Avg. Easy Medium Hard Avg.

Math
Base-9

Base 46.4 39.3 30.3 26.6 32.1 23.2 10.1 6.0 13.1
w/ ISC [29] 24.3 17.7 14.7 12.7 15.0 18.4 13.7 12.3 14.8
w/ SP [89] 26.2 25.5 25.5 21.9 24.3 20.0 18.4 14.3 17.6
w/ SM [62] 37.4 30.0 22.7 16.5 23.1 24.7 19.2 12.4 18.8
w/ SD [102] 47.9 37.2 25.4 24.7 29.1 29.3 12.5 8.7 16.8
w/ SC [83] 61.5 51.1 39.0 36.2 42.1 32.7 15.3 7.5 18.5

Math
Base-11

Base 23.9 19.1 13.6 10.7 14.5 14.0 6.7 3.6 8.1
w/ ISC [29] 11.2 8.3 7.8 6.0 7.4 6.5 5.2 4.7 5.5
w/ SP [89] 20.7 17.5 16.7 14.0 16.0 14.1 10.7 10.8 11.9
w/ SM [62] 16.3 12.0 6.0 5.7 7.9 12.0 9.3 7.7 9.7
w/ SD [102] 17.9 12.3 12.0 13.3 12.5 17.0 8.7 5.3 10.3
w/ SC [83] 33.7 25.3 16.3 15.0 18.9 19.7 9.3 3.3 10.8

Symbolic
Equal

Base 32.7 28.1 25.1 23.0 25.4 29.1 26.1 22.7 26.0
w/ ISC [29] 23.9 20.0 16.3 15.5 17.3 19.2 18.3 18.1 18.5
w/ SP [89] 23.2 23.0 22.6 22.7 22.8 23.7 22.5 23.5 23.2
w/ SM [62] 25.0 20.7 19.7 16.7 19.0 21.0 20.3 20.0 20.4
w/ SD [102] 9.9 10.1 10.9 10.3 10.4 10.1 10.9 10.4 10.5
w/ SC [83] 35.3 31.0 28.3 27.0 28.8 33.3 30.7 26.0 30.0

Symbolic
Longer

Base 9.2 6.3 7.2 6.0 6.5 7.0 6.8 6.0 6.6
w/ ISC [29] 4.9 4.6 2.7 3.7 3.7 3.4 4.3 3.3 3.7
w/ SP [89] 5.1 4.3 4.1 3.9 4.1 4.9 4.0 4.5 4.5
w/ SM [62] 1.7 0.7 0.7 1.3 1.0 1.3 0.7 0.3 0.8
w/ SD [102] 0.1 0.1 0.1 0.2 0.1 0.1 0.3 0.0 0.1
w/ SC [83] 13.0 7.7 9.0 6.3 7.7 8.0 8.0 8.7 8.2

Commonsense

Base 45.7 44.3 42.3 41.4 42.7 36.7 33.4 28.3 32.8
w/ ISC [29] 21.8 24.3 22.5 21.4 22.7 23.3 26.5 24.0 24.6
w/ SP [89] 47.9 48.2 46.7 48.1 47.7 49.6 46.6 46.5 47.6
w/ SM [62] 53.3 50.3 50.0 46.7 49.0 47.7 49.0 49.3 48.7
w/ SD [102] 54.0 58.3 57.3 57.7 57.8 57.0 58.3 53.7 56.3
w/ SC [83] 52.0 46.3 45.0 44.7 45.3 44.7 44.7 38.0 42.5

Table 3: Reasoning accuracy on NoRa dataset with 3-shot prompting examples with clean, irrelevant,
or inaccurate rationales. The boldface numbers mean the best results, while the underlines numbers
indicate the second-best results. Note the referenced results of Base model are highlighted in gray.

4 Evaluating Language Models on NoRa dataset

In this section, we comprehensively evaluate representative LLMs and robust methods on the newly
constructed NoRa dataset. We first introduce the basic evaluation setups and then present several
observations on the unsatisfactory robustness of current LLMs and methods under noisy rationales.

Baseline methods. We select five representative methods as baselines to ensure a comprehensive
assessment that encompasses the two traits of self-correction and self-consistency. ISC [29] and
SP [89] exemplify self-correction, focusing on response rectification and prompt rephrasing, respec-
tively. SM [62], SD [102], and SC [83] fall under self-consistency: SM [62] injects perturbations
into prompts for robustness, SD [102] masks prompts and asks LLMs to reconstruct them, while SC
directly samples outputs without denoising. These methods are further introduced in Appendix E.1.

LLM basis. We employ GPT-3.5-turbo-0613 [17] as our base LLM (denoted as Base ) for the
analyses presented in this study. In addition, we conduct evaluations on three supplementary models,
including Gemini-Pro (Jan. 2024) [76], Llama2-70B [79], and Mixtral-8x7B [33]. For all baselines,
we consistently set the temperature parameter τ to the value of 1. In order to obtain consistent results,
we evaluate 300 questions for each task and repeat the model reasoning five times for each question.

Evaluation metric. Given a set of test question Q = {(xtest, ytest)} and a set of CoT-prompting
examples P = [x1, T1, y1, . . . , xn, Tn, yn], we define the accuracy of the denoising methodM with
a specific LLM fθ, namely, Acc(M,Q,P) =

∑
(xtest,ytest)∈Q 1[M(P,xtest)=ytest]/|Q|. We report the results

in percentage (%) with one decimal point. Therein, Acc(M,Q,Pclean), Acc(M,Q,Pirrelevant), and
Acc(M,Q,Pinaccurate) indicate accuracy with clean, irrelevant, and inaccurate rationales, respectively.
When there is no prompting example, i.e., P = ∅, then Acc(M,Q, ∅) represents the zero-shot result.

Unreliability revealing with noisy rationales. We conduct the reasoning tasks on LLM with Noisy-
R and summarize the results in Tab. 3. Overall, the base LLM with all the existing reasoning methods
is severely affected by irrelevant or inaccurate noise, with overall showing a 0.2%-25.3% decrease
with irrelevant noise and a more drastic 0.1%-54.0% decrease with inaccurate noise compared with
clean rationales. While robust methods like SP and SD exhibit resilience to noise on partial tasks,
their performance remains inconsistent and often declines. To further reveal the unreliability, we start
by analyzing the two categories of robust methods mentioned above in the following observations.
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Task Setting Temperature
0 0.3 0.5 0.7 1

Base-9
clean 61.0 60.9 57.5 55.3 46.4

ina. easy 29.7 28.0 27.2 26.6 21.7
ina. hard 5.0 5.1 5.5 4.6 5.0

Base-11
clean 34.0 33.8 31.6 29.8 23.9

irr. easy 21.7 23.1 21.3 23.3 19.1
irr. hard 17.0 17.5 15.5 14.1 10.7

Sym.(E)
clean 34.2 35.8 35.7 34.6 32.7

irr. easy 28.6 31.5 29.8 29.1 28.1
irr. hard 27.0 26.1 26.2 24.0 23.0

Sym.(L)
clean 6.3 8.3 8.9 8.9 9.3

ina. easy 5.0 7.3 8.6 8.3 7.0
ina. hard 4.0 6.1 6.3 6.2 6.0

Table 4: Comparing perfor-
mances of the base model
with different temperatures.
Sym.(E)/(L) are symbolic tasks.

Task Setting #Prompting Examples
1 2 3 4 5

Base-9
clean 24.8 38.3 46.4 50.8 50.5

ina.-easy 17.5 22.2 23.2 25.4 25.6
ina.-hard 11.3 6.3 6.0 5.7 5.7

Base-11
clean 11.8 20.4 23.9 29.9 32.1

irr. easy 8.9 15.9 19.1 21.7 26.3
irr. hard 7.7 10.0 10.7 15.2 16.1

Sym.(E)
clean 18.0 26.5 32.7 39.8 —

ina.-easy 17.3 23.6 29.1 34.7 —
ina.-hard 15.0 21.0 22.7 — —

Sym.(L)
clean 2.7 7.7 9.3 11.3 12.2

irr. easy 2.3 5.4 7.0 8.8 8.9
irr. hard 1.9 4.0 6.0 6.3 —

Table 5: Comparing perfor-
mances of the base model with
a varying number of examples
("—" denotes over token limit).

Model Task Setting
0-shot clean irr. ina.

GPT3.5
Base-9 7.2 46.4 30.3 10.1

Sym.(E) 8.8 32.7 25.1 26.1
Com. 40.0 45.7 42.3 33.4

Gemini
Base-9 12.7 88.0 72.3 21.2

Sym.(E) 9.3 44.5 38.9 36.7
Com. 42.9 55.6 53.2 33.5

Llama2
Base-9 1.7 4.9 2.9 2.7

Sym.(E) 4.7 10.1 8.7 9.1
Com. 35.0 42.3 41.9 40.2

Mixtral
Base-9 3.9 27.5 16.3 3.7

Sym.(E) 8.3 19.3 17.9 15.1
Com. 24.2 37.5 34.9 31.1

Table 6: Comparing LLMs with
0-shot, 3-shot clean, and 3-shot
medium irrelevant (irr.) / inaccu-
rate (ina.) rationales.

Task Zero-shot Few-shot (No Shuffle) Shuffle Questions xi Shuffle Rationales Ti Shuffle Answers yi

Math Base-9 7.2 46.4 45.5 (0.9%↓) 34.5 (11.9%↓) 35.7 (10.7%↓)

Math Base-11 5.5 23.9 24.8 (0.9%↑) 21.6 (2.3%↓) 21.1 (11.7%↓)

Symbolic Equal 8.8 32.7 32.7 (0.0%↓) 32.8 (0.1%↑) 32.3 (0.4%↓)

Symbolic Longer 0.0 9.2 7.0 (2.2%↓) 6.2 (3.0%↓) 6.3 (2.9%↓)

Commonsense 40.0 45.7 38.7 (7.0%↓) 39.7 (6.0%↓) 39.8 (5.9%↓)

Table 7: Performance (in accuracy%) on NoRa dataset under different few-shot shuffle configurations.

Observation 4.1. Self-correction methods perform poorly on most tasks with noisy rationales.
Therein, ISC [29] and SP [89] rely on the inherent capabilities of LLMs to enhance the quality of
generated responses. However, in the absence of external feedback, the model’s self-correction ability
in reasoning tasks is limited, often resulting in the miscorrection of the given content (see Tab. 12).
SP can only slightly improve the accuracy of commonsense tasks, while ISC performs unsatisfactorily
across all tasks. As can be seen from Tab. 3, these methods perform even worse than the base model.

Observation 4.2. Self-consistency methods can improve robustness without true denoising. Two
self-consistency approaches, SM [62] and SD [102], are originally proposed to address Noisy-Q
issues. When applied to our Noisy-R scenarios, they tend to easily disrupt the intrinsic logical
coherence within the thought chain. Although these methods utilizing smooth strategies (e.g., random
smoothing or masking) perform well on the commonsense dataset, they can hardly handle the more
difficult reasoning tasks and even degenerate close to 0%, e.g., in the Symbolic Longer task. Another
method, SC [83], performs better than the base model in all tasks, improving both clean and noisy
reasoning performance. However, SC does not conduct explicit denoising on rationales during its
reasoning procedure. In addition, SC also requires a high computation cost (refer to Appendix F.2).

Besides these methods, next, we analyze LLMs’ intrinsic properties under noisy rationales as follows.

Observation 4.3. Adjusting model temperature can help reasoning under noisy rationales. In
Tab. 4, we evaluate the base LLM using different temperatures on 3-shot demonstrations. Overall,
reducing temperature can enhance the model’s accuracy under both noisy and clean rationale reason-
ing, compared to the default temperature of 1. However, the relationship between temperature and
accuracy is not linear for noisy reasoning; instead, there are multiple peaks in accuracy within the
temperature range of 0 to 1. Additionally, it is found that excessively low temperatures (e.g., 0) tend
to result in verbose and repeated responses, which cause the model to exceed token limits up to 30%
in symbolic tasks where the length of expected answers is quite variable among different questions.

Observation 4.4. Prompting with more noisy examples boosts reasoning accuracy on most tasks.
In Tab. 5, we evaluate the model using different numbers of exemplars while keeping the temperature
at 1. In general, the LLM’s accuracy will still improve as the number of noisy examples increases in
the clean and noisy settings. However, it should be noted that in tasks with high-level noise from
NoRa-Math, increasing prompting examples can degenerate accuracy. For example, in the base-9
inaccurate-hard task, prompting with noisy rationales is even worse than the 0-shot accuracy of 7.2%.
Further, we provide a deeper analysis of increasing the number of noisy examples in Appendix F.6.
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Figure 4: CD-CoT’s first two steps for data denois-
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for reasoning separately. The obtained D answers
are equally voted to obtain the final answer y.

Observation 4.5. Different LLMs are generally vulnerable to noisy rationales. In Tab. 6, we
evaluate different LLMs across three settings: 0-shot CoT, 3-shot clean rationales, and 3-shot medium-
level noisy rationales. Notably, Gemini-Pro outperforms GPT-3.5 in overall performance. However,
it demonstrates a similar degree of sensitivity to noise, with a 2.4%-15.7% performance decline
with irrelevant rationales and a 7.8%-66.8% decline with inaccurate rationales compared to clean
rationales. While Mixtral 8x7B shows a slight underperformance compared to GPT-3.5, it also
manifests a vulnerability to noise, incurring a 1.4%-11.2% loss with irrelevant rationales and a
greater 4.2%-23.8% loss with inaccurate rationales. By contrast, Llama2-70B performs suboptimally,
with a 0.4%-2.0% drop for irrelevant thoughts and a larger 1.0%-2.2% drop for inaccurate thoughts.

Further investigation. Inspired by Min et al. [54], we further explore the mapping among questions,
rationales, and answers through shuffling experiments. Specifically, given the 3-shot prompting
examples {(x1, T1, y1), (x2, T2, y2), (x3, T3, y3)}, we test three configurations, i.e., shuffle questions
{(x1, T3, y3), (x2, T1, y1), (x3, T2, y2)}, shuffle answers {(x1, T1, y3), (x2, T2, y1), (x3, T3, y2)},
and shuffle rationales {(x1, T3, y1), (x2, T1, y2), (x3, T2, y3)}. These break the original mappings.
The results under these configurations are shown in Tab. 7, which induces the following observation.

Observation 4.6. Shuffling the mappings of prompting examples degenerates the reasoning
but still performs better than without prompting. This means that while LLMs may not heavily
rely on the exact mapping (of question, rationale, and answer), they still benefit from demonstrating
information even with shuffling. Notably, this finding is consistent with the conclusions of [54] that
LLMs learn more abstract task information from the demonstrations rather than simply memorizing
question-answer pairs. More importantly, LLMs are less vulnerable to shuffled mappings than noisy
rationales. Unlike shuffling, the irrelevant or inaccurate information in noisy rationales introduces
misleading elements that significantly interfere with the model’s ability to learn correct task patterns,
thereby resulting in more severe performance degradation. This extends [54]’s finding and shows that
the quality of reasoning steps can be more crucial than the exact mapping of prompting examples.

5 Method
This section aims to enable LLMs to discern and remove noisy thoughts. The observations in Sec. 4
and previous works show that current LLMs cannot achieve this with their intrinsic denoising ability,
even enhanced with self-denoising methods. Therefore, we would claim that the external supervision
is necessary for enhancement, which should be sufficient for denoising and accessible in practice.
Existing methods with external supervision [29, 81, 9] require (1) oracle feedback on the test question,
(2) human feedback of errors on specific tokens or positions, or (3) expert knowledge to construct
detailed descriptions of specific tasks. By contrast, we believe that a clean CoT demonstration is more
attainable and practical, which can be the minimal requirement for denoising-purpose prompting.

Therein, we assume that LLMs can identify noisy thoughts by contrasting a pair of noisy and
clean rationales and discerning their differences, similar to contrastive learning [26, 6, 35]. Here,
the denoising power could come from the abilities of the instruction following and step-by-step
reasoning [84, 66]. Hence, we propose the framework of CD-CoT, Contrastive Denoising with noisy
CoT. The design principle is to explore and then exploit, i.e., (1) rephrasing and selecting rationales
in input space to achieve explicit denoising, and then (2) exploring diverse rationales and voting
answers in output space for deriving the final answer, as in Figs. 4 & 5. The details are as follows.
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Algorithm 1 CD-CoT: Contrastive Denoising with Noisy Chain-of-Thought.

Require: an LLM fθ, the prompt of contrastive denoising Pdenoise, one test question xtest, one clean
example (xC, TC, yC), K prompting examples Sn= {(xi, Ti, yi)}Ki=1, hyper-parameters N,M ,
and reasoning budget {Bi}Mi=1 (satisfies that ΣM

i=1Bi = D, where D is the total budget).
1: for i = 1 . . .K do
2: initialize the set of rephrased results of i-th exampleRi ← ∅.
3: for j = 1 . . . N do
4: # Step-1: Rationale Rephrasing via Supervised Contrasting
5: obtain a rephrased example as (xi, T̂i, ŷi)← fθ

(
Pdenoise(xC, TC, yC, xi, Ti, yi)

)
.

6: if match answer ŷi = yi, then store the rephrased example asRi ← Ri ∪ {(xi, T̂i, ŷi)}.
7: end for
8: # Step-2: Rationale Selection
9: randomly select M rephrased examples fromRi and obtain R̃i = {(xis, T̂is, ŷis)}Ms=1.

10: end for
11: # Step-3: Rationale Exploration
12: initialize the set of answers Y ← ∅.
13: for i = 1 . . .M do
14: construct an input Pi ← {(xji, T̂ji, ŷji)}Kj=1, where (xji, T̂ji, ŷji) is the i-th element of R̂j .
15: concatenate Pi with the clean example and test question as Pi ← Pi ∪ {(xC, TC, yC), xtest}.
16: for j = 1 . . . BM do
17: get one answer by LLM reasoning as yj ← fθ(Pi).
18: store the answer as Y ← Y ∪ {yj}.
19: end for
20: end for
21: # Step-4: Answer Voting
22: initialize the dictionary of answer count C that ∀yj ∈ Y, C[yj ] = 0.
23: for j = 1 . . . D do
24: update C[yj ]← (C[yj ] + 1).
25: end for
26: get the final answer y with maximum counts as y ← argmaxy C[y].
27: return the answer y.

5.1 Implementation
Step-1: Rephrasing via Supervised Contrasting (1 to N ). First, we establish a general prompt of
contrastive rephrasing to construct a pair of contrastive examples, as shown in the template below.
This steers the model towards learning from the clean example and then rephrasing and rectifying
the noisy examples. To be specific, given one clean example and K noisy examples, we generate N
rephrased rationales for each noisy example independently and obtain K ·N rephrased rationales.

Prompt of Contrastive Rationale Rephrasing:
Here are two examples for the same type of task: the first example has correct explanation and correct
answer, and the second example has distracted explanation and correct answer. Please follow the first
example and give me the correct explanation and answer for the second example, which should be
logically consistent with the first one.
First Example: Q: [Question], E: [Explanation], A: [Answer].
Second Example: Q: [Question], E: [Explanation], A: [Answer].

Step-2: Rationale Selection (N to M , N≥M ). Next, we employ answer matching to select those
rephrased examples with unchanged answers, leaving behind a refined candidate pool. Subsequently,
we randomly select M rephrased rationales from the pool and concatenate them to form the contexts.

Step-3: Rationale Exploration (M to D, M ≤ D). For the M different contexts, we explore
rationales by repeated reasoning with the budget of D reasoning repetitions. Notably, a higher
temperature parameter, e.g., 1, is set to introduce more randomness in generating diverse rationales.

Step-4: Answer Voting (D to 1). Ultimately, all the D answers are equally voted into a final answer.

Instantiation. By tuning the hyper-parameters N , M , and D, we balance exploration and exploitation
in the input and output space. The overall procedure of our proposed CD-CoT is presented in
Algorithm 1. Besides, we further explain the details of each step of this algorithm in Appendix E.2.

8



Task Method M Additional
Information Acc(M,Q,Pclean)

Acc(M,Q,Pirrelevant) Acc(M,Q,Pinaccurate)
Easy Medium Hard Avg. Easy Medium Hard Avg.

Math
Base-9

Base - 46.4 39.3 30.3 26.6 32.1 23.2 10.1 6.0 13.1
w/ SCO [29] Ground Truth 53.6 46.3 39.6 36.4 40.8 34.7 22.0 17.7 24.8
w/ BT [81] Noise Position 47.2 39.2 34.2 29.9 34.4 30.1 18.4 14.1 20.9
w/ CC [9] Clean Demo 44.9 43.3 44.6 45.5 44.5 37.2 31.7 30.7 33.2
w/ CD-CoT (ours) Clean Demo 60.7 59.7 60.7 57.2 59.2 54.0 58.7 48.4 53.7

Math
Base-11

Base - 23.9 19.1 13.6 10.7 14.5 14.0 6.7 3.6 8.1
w/ SCO [29] Ground Truth 33.0 29.2 24.0 20.0 24.4 29.2 20.0 17.2 22.1
w/ BT [81] Noise Position 24.3 17.9 17.2 13.7 16.3 12.8 9.2 6.8 9.6
w/ CC [9] Clean Demo 22.3 19.1 18.4 18.2 18.6 19.0 15.3 14.6 16.3
w/ CD-CoT (ours) Clean Demo 31.0 33.7 32.7 34.7 33.7 29.0 30.7 25.3 28.3

Symbolic
Equal

Base - 32.7 28.1 25.1 23.0 25.4 29.1 26.1 22.7 26.0
w/ SCO [29] Ground Truth 38.5 34.9 33.4 32.7 33.7 34.0 34.1 34.5 34.2
w/ BT [81] Noise Position 31.8 26.0 22.7 22.6 23.8 26.3 22.7 22.9 24.0
w/ CC [9] Clean Demo 37.8 33.8 32.7 32.0 32.8 31.3 33.0 29.9 31.4
w/ CD-CoT (ours) Clean Demo 42.7 44.7 42.7 44.0 43.8 42.6 41.3 42.7 42.2

Symbolic
Longer

Base - 9.2 6.3 7.2 6.0 6.5 7.0 6.8 6.0 6.6
w/ SCO [29] Ground Truth 18.7 12.1 10.5 11.3 11.3 15.2 15.9 9.8 13.6
w/ BT [81] Noise Position 7.2 3.4 3.5 2.5 3.1 3.8 3.6 3.6 3.7
w/ CC [9] Clean Demo 9.4 9.8 7.9 7.9 8.5 8.5 7.4 6.5 7.5
w/ CD-CoT (ours) Clean Demo 12.3 12.0 12.0 13.0 12.3 12.3 10.0 11.0 11.1

Commonsense

Base - 45.7 44.3 42.3 41.4 42.7 36.7 33.4 28.3 32.8
w/ SCO [29] Ground Truth 63.5 60.1 56.1 60.3 58.8 56.2 58.5 57.9 57.5
w/ BT [81] Noise Position 47.7 23.5 28.3 32.5 28.1 11.6 11.0 15.8 12.8
w/ CC [9] Clean Demo 48.3 45.7 43.6 44.0 44.4 42.1 40.8 40.5 41.1
w/ CD-CoT (ours) Clean Demo 49.0 50.3 54.7 50.3 51.8 51.0 49.7 49.7 50.1

Table 8: Performance of denoising methods that require additional information for supervision.

Theoretical analysis. To understand the underlying mechanism of CD-CoT, we also conduct the
theoretical analysis based on the distinguishability [90] of in-context learning. The full analysis is in
Appendix D, where we find that the noisy demonstration in ICL can decrease the distinguishability
of in-context matching with the clean-prompt distribution, while our method can mitigate this issue.
Besides, we build a self-supervised variant of CD-CoT and empirically evaluate it in Appendix F.7.

5.2 Empirical Study

In this part, we empirically verify the effectiveness of CD-CoT and start by introducing the baselines.

Baseline methods. We employ three methods that require additional information: (1) Self-Correction
with Oracle Feedback (SCO) [29] utilizes the ground truth answers of test questions to determine when
to terminate the self-correction loop; (2) Backtracking (BT) [81] guides self-correction by providing
the model with the position of the first noisy thought; (3) Contrastive Chain-of-Thought (CC) [9]
conducts direct reasoning with all the noisy or clean examples without implicit or explicit denoising.

Main results. As in Tab. 8, CD-CoT demonstrates a significant performance improvement across
all datasets, with an average improvement of 17.8% compared with the base model under noisy
settings. Notably, on Math-Base-9, Math-Base-11, and Symbolic-Equal, CD-CoT surpasses all
baseline methods by a significant margin. On Symbolic-Longer and Commonsense, CD-CoT only
slightly lags behind SCO. However, SCO requires the ground truth answer to the test question, which
should be unknown in practice, as pointed out in [29]. In comparison, CD-CoT only necessitates an
additional clean demonstration, making it much more practical to apply across realistic scenarios.
Notably, CD-CoT outperforms SCO in 20 out of 30 settings and surpasses BT, CC in all 30 settings.

Besides, CD-CoT displays remarkable resistance to the magnitude of noise. Therein, CD-CoT
demonstrates enhanced resilience against inaccurate noise on mathematical tasks, which are quite
challenging. For instance, on Math Base-9 with inaccurate rationales, the average accuracies of SCO
and BT decline significantly by 28.8% and 26.3% compared to the accuracies with clean rationales.
In contrast, CD-CoT exhibits a more modest decline of 7.0%. An ablation study of components in
Appendix F.3 demonstrates the denoising power and performance gain of CD-CoT, attributed to its
contrastive denoising with rationale rephrasing as well as repeated reasoning with voting components.

Ablation study of varying hyper-parameters. By manipulating the values of N , M , D, and C, we
generate diverse algorithm instances. Here, D denotes the reasoning times allocated to the M inputs,
while C signifies whether the clean example is used in step 3. As demonstrated in Tab. 9, the clean
example utilized by CD-CoT during the reasoning process plays a pivotal role. The omission of this
clean example results in an average decrease of 3.3% and 4.5% in accuracy under irrelevant noise
and inaccurate noise, respectively. Besides, the accuracy exhibits subtle variations when employing
different algorithm instances, with the highest average accuracy observed at 51.3% and the lowest
average accuracy at 49.3%. Further, Tab. 10 presents the average number of tokens used in reasoning.
We set M=2 to strike a balance. Please refer to Appendix E.3 for detailed hyper-parameter selection.
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Hyper-parameters Acc(M,Q,Pirrelevant) Acc(M,Q,Pinaccurate)
N M D C Base-9 Sym.(E) Com. Base-9 Sym.(E) Com.

5 1 5 Y 57.7 38.7 55.3 53.3 39.7 51.0
5 1 5 N 54.7 32.7 53.7 47.0 32.3 55.7
5 2 2+3 Y 60.7 42.7 54.7 58.7 41.3 49.7
5 2 2+3 N 56.7 33.0 54.7 49.7 32.0 53.0
5 3 1+2+2 Y 60.7 38.7 53.3 58.0 43.3 49.0
5 3 1+2+2 N 56.0 33.3 55.7 48.7 32.0 52.3
5 5 1 Y 59.3 39.7 55.7 58.0 39.0 48.7
5 5 1 N 55.3 35.7 55.9 48.7 33.3 50.7

Table 9: Comparison of accuracy on medium-level tasks.

Hyper-parameters #Tokens in step-3 (irr.) #Tokens in step-3 (ina.)
N M D C Base-9 Sym.(E) Com. Base-9 Sym.(E) Com.

5 1 5 Y 1440 3162 788 1428 3170 798
5 1 5 N 1301 2685 660 1295 2732 667
5 2 2+3 Y 2175 4934 1269 2156 4989 1311
5 2 2+3 N 1864 4044 1005 1842 4087 1039
5 3 1+2+2 Y 2902 6704 1772 2878 6785 1821
5 3 1+2+2 N 2416 5360 1372 2393 5443 1420
5 5 1 Y 4368 10340 2764 4339 10514 2845
5 5 1 N 3535 8099 2088 3506 8303 2163

Table 10: Comparison of #tokens on medium-level tasks.

Model Method Acc(M,Q,Pirrelevant) Acc(M,Q,Pinaccurate)
Base-9 Sym.(E) Com. Base-9 Sym.(E) Com.

GPT-3.5-turbo

Base 30.3 25.1 42.3 10.1 26.1 33.4
SC 36.6 28.3 45.0 17.3 30.7 44.7
BT 34.2 22.7 28.3 18.4 22.7 11.0
CC 44.3 32.7 43.6 31.7 33.0 40.8

CD-CoT 60.7 42.7 54.7 58.7 41.3 49.7

Gemini-Pro

Base 72.3 38.9 53.2 21.2 36.7 33.5
SC 80.3 43.3 60.0 32.3 45.0 42.7
BT 82.4 29.3 37.8 26.7 28.7 33.3
CC 67.5 37.3 50.2 43.6 35.0 45.6

CD-CoT 92.7 49.3 57.7 76.7 53.3 55.7

LLaMA2-70B

Base 2.8 8.7 41.9 2.7 9.1 40.2
SC 5.0 10.3 46.7 3.0 9.7 46.0
BT 1.4 11.2 36.1 0.9 12.5 36.2
CC 1.1 16.3 29.9 2.8 14.0 28.3

CD-CoT 4.0 9.7 39.3 2.7 9.7 39.7

Mixtral-8x7B

Base 16.3 17.9 34.9 3.7 15.1 31.1
SC 20.0 21.7 37.0 2.7 18.0 37.7
BT 4.1 9.7 6.2 2.4 10.1 10.5
CC 24.4 18.5 36.0 12.5 18.3 35.7

CD-CoT 8.7 22.7 40.3 4.7 21.3 40.3

Table 11: Comparing methods with different LLMs.

Original Noisy Rationale

In base-9, the digits are "012345678". 9 + 8 = 17. We
have 6 + 7 = 13 in base-10. Since we’re in base-9, that
exceeds the maximum value of 8 for a single digit. 13
mod 9 = 4, so the digit is 4 and the carry is 1. We have 8
+ 5 + 1 = 14 in base-10. 14 + 8 = 22. 14 mod 9 = 5, so
the digit is 5 and the carry is 1. A leading digit is 1. So
the answer is 154. Answer: 154.
Method Denoised Rationale

SM

In base-9, the dkgits are "012345678". 9 + 8
= 17. We5hav6̂r+ 7l=J13 in base-10. Since
we’re in baze-9, ithFt exceeis the maCimum
valur of 8 for a siLgle]digit. x0c3 mod 9 =
,̂ soWghe digix is 4 anj the carry is 1. We
hOve 8 + 5i+ z2= 14 Vn baAe 10. 14 d 8 =
2p. 14 mod 9 = 5, so Xhe diGit*iU 5 and
the carry is 1Q A leading x0cigit is 1. So the
answer is 154. Asswer: 154.

SD

In base-9, the digits are "012345678". 9 + 8
= 17. We have 6 + 7 = 13 in base-10. Since
we’re in base-9, 13 exceeds the maximum
value of 8 for a single digit. 13 mod 9 = 4,
so the digit is 4 and the carry is 1. We have
8 + 5 + 1 = 14 in base 10. 14 mod 9 = 8. 14
div 9 = 1, so the digit is 8 and the carry is
1. A leading digit is 1. So the answer is 154.
Answer: 154.

SP

In base-9, the digits range from 0 to 8. Let’s
add 86 and 57 step by step. First, we add
the rightmost digits, which are 6 and 7. In
base-10, 6 + 7 equals 13. However, since
we are in base-9, the maximum value for a
single digit is 8. Therefore, we need to find
the remainder when 13 is divided by 9. The
remainder is 4, so the digit in the units place
is 4 and we have a carry of 1. Next, we add
the next digits, which are 8 and 5, along with
the carry of 1. In base-10, 8 + 5 + 1 equals
14. Again, we need to find the remainder
when 14 is divided by 9. The remainder is
5, so the digit in the tens place is 5 and we
have a carry of 1. Finally, we have a leading
digit of 1. So the final answer in base-9 is
154. Answer: 154.

Ours

In base-9, the digits are "012345678". We
have 6 + 7 = 13 in base-10. Since we’re in
base-9, that exceeds the maximum value of 8
for a single digit. 13 mod 9 = 4, so the digit
is 4 and the carry is 1. We have 8 + 5 + 1 =
14 in base 10. 14 mod 9 = 5, so the digit is
5 and the carry is 1. A leading digit is 1. So
the answer is 154. Answer: 154.

Table 12: Comparison of rephrased ra-
tionales by different reasoning methods.

Ablation study with different LLMs. We examine the generalization of CD-CoT across different
LLMs. As shown in Tab. 11, with comparably more powerful LLMs, e.g., GPT-3.5-turbo and Gemini-
Pro, CD-CoT demonstrates notable improvements in average accuracy. It respectively achieves
increases of 23.4% and 21.6% in accuracy compared to base models and surpasses all the baselines.

Case Study. We illustrate the denoising effects of various robust methods using Math Base-9 as an
example. The results in Tab. 12 indicate that the introduction of random characters by SM disrupts
the logic of the rationale. SD fails to eliminate all the noise while recovering the input content,
and SP alters the original rationale’s reasoning process even when noise removal is successful. In
contrast, CD-CoT significantly removes noisy thoughts and ensures format alignment with the original
rationale. More denoising examples and an entire case study are in Appendix F.9 and G, respectively.

6 Conclusion
In this work, we investigate the under-explored problem of noisy rationales in LLMs. We introduce
the NoRa dataset, which tests LLMs against irrelevant or inaccurate thoughts in question-answer
scenarios. Our findings show LLMs’ vulnerability to noisy rationales is inadequately mitigated by
existing robust methods. We thereby design the CD-CoT method to enhance the robustness via
contrastive denoising. The extension advocates for advancing LLMs by strategies, e.g., external
knowledge bases with a retrieval-augmented framework, robust inductive reasoning to extract rules
from noisy examples, and multi-modal data integration to enhance the robustness of LLM reasoning.
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A Further Discussion

Broader impact. This paper presents work that aims to advance the field of trustworthy machine
learning and large language models. We do not find any negative societal consequences of our work.
This paper does not raise any ethical concerns. This study does not involve human subjects, practices,
data set releases, potentially harmful insights, methodologies, applications, potential conflicts of
interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal
compliance, or research integrity issues.

Limitations. The proposed CD-CoT method is currently dependent on human-annotated, clean
rationales. Future enhancements could include developing a self-supervised variant that does not rely
on such examples. Exploring strategies like using contrasting noisy examples or incorporating an
external knowledge base, possibly through a retrieval-augmented denoising framework, may offer
significant advances in automation and robustness of reasoning.

Extensions. CoT and its variants have predominantly focused on deductive reasoning, leaving
inductive reasoning largely unexplored. Investigating the ability of LLMs to extract rules from noisy
examples is a compelling area. Additionally, theoretical analysis of noisy ICL can offer deeper
insights into the Noisy-R problem. Expanding the NoRa dataset to include multi-modal scenarios,
particularly visual data, is also crucial for a more comprehensive understanding of the robustness of
foundation models. Further extensions include knowledge-enhanced denoising [100, 46, 47, 113],
generalization to out-of-distribution noisy scenarios [7, 8], and training to fundamentally improve the
robustness of language models [75, 74].

B Related Work

In this section, we provide a detailed literature review as an extension of the preliminaries (Sec. 2), in-
cluding in-context learning (Appendix B.1), self-correction methods (Appendix B.2), self-consistency
methods (Appendix B.3), and external supervision (Appendix B.4). We further discuss the relation
between our work and literature in Appendix B.5. We also provide Fig. 6 to better understand
different reasoning settings.

Question-1: In base-9, what is 86+57?
Rationale-1: In base-9, the digits are “012345678”. We 
have 6 + 7 = 13 in base-10. Since we‘re in base-9, that 
exceeds the maximum value of 8 for a single digit. 13 
mod 9 = 4, so the digit is 4 and the carry is 1. We have 8 + 
5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and 
the carry is 1. A leading digit 1. So the answer is 154.
Answer-1: 154.
…Q2, R2, A2, Q3, R3, A3 …
Question : In base-9, what is 62+58?

Input: CoT with Clean Rationales

Question-1: In base-9, what is 86+57? We know 6+6=12 
and 3+7=10 in base 10. 
Rationale-1: In base-9, the digits are “012345678”. We 
have 6 + 7 = 13 in base-10. Since we‘re in base-9, that 
exceeds the maximum value of 8 for a single digit. 13 
mod 9 = 4, so the digit is 4 and the carry is 1. We have 8 + 
5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and 
the carry is 1. A leading digit 1. So the answer is 154.
Answer-1: 154.
…Q2, R2, A2, Q3, R3, A3…
Question: In base-9, what is 62+58? We know 6+6=12 
and 3+7=10 in base 10. 

Input: CoT with Noisy Questions

Question-1: In base-9, what is 86+57? 
Rationale-1: In base-9, the digits are  “012345678”.  We 
have 6 + 7 = 13 in base-10. 13 + 8 = 21. Since we're in 
base-9, that exceeds the maximum value of 8 for a single 
digit.13 mod 9 = 4, so the digit is 4 and the carry is 1. We 
have 8 + 5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit 
is 5 and the carry is 1. 5 + 9 = 14. A leading digit is 1. So 
the answer is 154.
Answer-1: 154.
…Q2, R2, A2, Q3, R3, A3 …
Question: In base-9, what is 62+58?

Input: CoT with Noisy Rationales

Question: In base-9, what is 62+58?

Zero-shot Input

Question-1: In base-9, what is 86+57? Answer-1: 154.
Question-2: In base-9, what is 63+34? Answer-2: 107.
Question-3: In base-9, what is 31+58? Answer-3: 100.
Question: In base-9, what is 62+58?

Input: ICLwith Three Examples

Figure 6: Illustrations of different reasoning settings.
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B.1 In-context Learning

With the scaling of model size and corpus size [61, 4, 11, 105], large language models (LLMs) have
demonstrated remarkable performance across a variety of tasks through in-context learning (ICL),
that is, learning from a few input-output examples in the context. As a training-free framework, ICL
can save on expensive training costs and be easily adapted to diverse new tasks [88, 1].

However, standard ICL faces challenges when addressing intricate reasoning problems. Wei et al.
[85] proposes chain-of-thought prompting (CoT), a methodology that explicitly guides LLMs in
generating sequential reasoning steps to enhance their performance on intricate reasoning tasks.
In particular, CoT replaces the input-output exemplars in ICL with triplets in the form of <input,
rationale, output>, thereby enabling the model to learn explicit reasoning processes.

In the literature, various versions of chain-of-thought prompting have been proposed. To alleviate the
human effort required for constructing triplet exemplars, Kojima et al. [39] proposes zero-shot CoT, a
method that explicitly encourages models to generate a chain of reasoning first and then derive the
final answer by employing natural language prompts like “Let’s think step by step”. Wang et al. [83]
shows that self-consistency sampling can improve reasoning accuracy by sampling diverse reasoning
paths and then taking the majority vote. Zelikman et al. [97] proposes STaR, which leverages a small
amount of human-annotated rationale data, along with a large dataset of question-label pairs without
rationales. This approach iteratively generates additional rationales and enhances the model’s ability
to generate reasoning steps by fine-tuning.

Least-to-most prompting (LtM) [109] enhances the reasoning capability of models by decomposing
a given problem into sub-problems. In particular, LtM initially breaks down the task into a series
of consecutive sub-problems and subsequently answers them one by one. During the process of re-
sponding, the answer to the preceding sub-problem is incorporated into the prompt for the succeeding
one. Tree of Thoughts (ToT) [92] extends LtM by exploring multiple reasoning possibilities at each
step. Specifically, ToT first decomposes a given problem into several reasoning steps and generates
multiple answers for each step, ultimately constructing a tree structure. Subsequently, ToT employs
BFS or DFS to traverse the tree, yielding the final rationale and answer.

Vulnerabilities of ICL. Despite being promising, some works point out the brittleness and over-
sensitivity of ICL. Liu et al. [50], Perez et al. [60], Zhang et al. [99] demonstrate that ICL performance
depends heavily on the choice of exemplars. Meanwhile, Zhao et al. [106], Lu et al. [51] observe
that the arrangement order of in-context examples is also crucial to the ICL performance, potentially
shifting results from near state-of-the-art to a random guessing. Moreover, Ye and Durrett [94], Gan
and Mori [19], Zheng and Saparov [107], Zhang et al. [102] reveal LLMs’ deficiencies when handling
subtle perturbations within the prompts, even when such perturbations do not alter any semantic
meaning. Yu et al. [95] explores the robustness of retrieval-augmented in-context learning (ICL)
against demonstration attacks and test sample attacks. It focuses on perturbing the example questions
(i.e., noisy questions) or labels, while our work focuses on the rationales of the examples (i.e., noisy
rationales). In addition, previous work on safety [44, 112] and data noise [24, 49, 22, 111] might
also inspire the robust problems in ICL. Overall, the enhancement of reasoning performance brought
about by ICL is inherently unstable and susceptible to example selection, example ordering, and
prompt perturbations. These observations underscore the importance the robustness of other aspects.

The aforementioned efforts primarily revolve around the idealized ICL, which utilizes high-quality
prompts free from any noise or interference. Conversely, a parallel line of research has emerged,
exploring the impact of noisy prompts on the performance of LLMs. Min et al. [54] examines the
impact of in-context examples on ICL. This work observes that incorporating out-of-distribution
input texts significantly diminishes the performance of standard question answering. Wei et al. [86]
devises two different set-ups of ICL: ICL with flipped labels and ICL with semantically unrelated
labels. Their investigation reveals that LLMs possess the capability to override semantic priors when
confronted with in-context exemplars that contradict these priors. This phenomenon also suggests
that larger models may be more susceptible to the influence of the noise present in examples. Shi et al.
[68] examines the impact of irrelevant context on LLMs, and the results suggest that the inclusion of
irrelevant information can significantly impair the performance of the models. These studies further
illuminate the fragility and instability inherent in the reasoning capabilities of LLMs.

However, the previous works mainly consider the noisy questions/answers in standard ICL. In contrast,
we move to the under-explored noisy rationales problem in the context of CoT, as illustrated in Fig. 6.
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Numerous strategies have been proposed to address the vulnerabilities of LLM reasoning during
in-context learning. These approaches can be categorized into self-correction and self-consistency,
which are introduced as follows.

B.2 Self-correction

Self-correction emerges as a promising direction to enhance LLM reasoning, where LLMs attempt
to correct their initial responses based on feedback. One popular line of research involves utilizing
manual labor or external systems to evaluate and refine models. However, this can be costly due to
the manual labor involved. Another line of research leverages the LLM’s inherent capabilities to
correct its initial responses without the crutch of external feedback. This methodology is a promising
way to make LLM-based solutions practical and deployable [57].

Self-correction with internal feedback. In this line of research, the LLM is required to correct
response trajectories based solely on its inherent capabilities. Huang et al. [28] first demonstrates the
self-improvement potential of LLMs by utilizing a pre-trained LLM to generate rationale-augmented
answers for unlabeled questions using CoT and majority voting and then fine-tuning the LLM using
those self-generated labels, eventually improving the general reasoning ability.

When addressing problems, people typically engage in trial and error, coupled with reflective thinking,
to discern the correct solutions. Inspired by this, Madaan et al. [52] proposes Self-refine, a simple
and direct approach to improving LLM’s output. In this approach, an LLM is used to create an initial
output. Then, the model provides feedback on its own output in multiple dimensions. Based on this
feedback, the model refines its initial output and repeats this process until it reaches a specified limit
or the LLM determines that no further adjustments are necessary.

Encouraged by the augmented efficacy achieved through self-feedback mechanisms, Ye et al. [93]
releases SelFee, a new instruction-following language model that generates self-feedback on its
response and self-revises based on the feedback. The development of SelFee involves the fine-tuning
of LLaMA by utilizing training instances generated by ChatGPT.

In addition, Gero et al. [21] introduces Self-verification, suggesting that by asking LLMs to provide
provenance for their own outputs and conducting checks, it is possible to alleviate LLMs’ issues
regarding accuracy and interpretability in crucial domains such as healthcare. On the other hand, Xi
et al. [89] focuses on the simplicity and comprehensibility of the given questions, proposing Self-
polish (SP). This method instructs the LLM to iteratively refine the test question by removing irrelevant
information and rearranging the logical structure, thereby improving the reasoning performance.

While the self-correction methodologies based on internal feedback appear promising, [29] catego-
rizes such self-correction methods as intrinsic self-correction (ISC) and demonstrates that the model’s
performance drops on all benchmarks after using ISC. This work points out that LLMs struggle
to self-correct their responses without external feedback, and the corrected responses often exhibit
inferior quality compared to their initial counterparts. Saparov and He [65] reveals that while models
are able to produce valid reasoning steps with high probability when dealing with proof problems,
they struggle with proof planning. In other words, when models occasionally generate incorrect proof
steps, they are not able to return to the correct path.

Building upon this observation, Tyen et al. [81] further decomposes the self-correction process into
two core components: mistake finding and output correction. This work demonstrates that current
state-of-the-art LLMs cannot find mistakes reliably, even in the most simple and unambiguous cases,
and suggests this is a main contributing factor to LLMs’ inability to self-correct reasoning errors.

Self-correction with external feedback. External feedback offers a valuable external perspec-
tive, proving particularly advantageous in pinpointing errors that the large language model may
not inherently recognize [57]. The sources of external feedback can be categorized as 1) human
feedback [67, 69, 36, 81], 2) external tools [34, 96, 43], and 3) other models [59, 3].

Scheurer et al. [67] proposes Imitation Learning from Language Feedback (ILF), an approach
leveraging informative human feedback that involves conditioning the model on input, initial output,
and feedback; selecting the most feedback-incorporated refinement; and fine-tuning the model to
maximize the chosen refinement’s likelihood given the input.

Similarly, Shinn et al. [69] introduces Reflexion, which fortifies language agents by relying on
linguistic feedback generated by themselves rather than weight updates, resulting in noteworthy
enhancements compared to a baseline agent across a spectrum of tasks. Kim et al. [36] demonstrates
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the effectiveness of self-critique on computer tasks by proposing Recursively Criticizes and Improves
(RCI). This method utilizes a pre-trained LLM agent to execute computer tasks, guiding it using a
simple prompting scheme where the agent recursively criticizes and improves its output.

Although Reflexion [69] and RCI [36] do not explicitly utilize human feedback, Huang et al. [29]
points out that these approaches employ the labels of test questions to determine when to halt the
self-correction loop. Consequently, they are implicitly guided by human feedback. Huang et al. [29]
categorizes these methods as self-correction with oracle feedback (SCO).

Due to the difficulty of LLMs relying solely on their inherent capabilities to correct responses for
reasoning tasks [29], Tyen et al. [81] decomposes the self-correction process and observes challenges
in accurately identifying error locations for LLMs. Consequently, they propose Backtracking (BT),
which guides the correction process of models by providing the initial error location in the problem.

Furthermore, the incorporation of external tools can enhance the model’s self-correction performance.
For instance, to improve the code generation capabilities of the model, Jiang et al. [34] utilizes error
messages generated by an external interpreter as feedback, requiring LLM to debug the initially
generated code acting as a professional programmer. Introducing external sources of knowledge, such
as Wikipedia, can also significantly enhance the accuracy of the model in reasoning tasks [96, 43].

In addition to leveraging external tools, certain efforts revolve around the utilization of external
models to generate feedback. Paul et al. [59] introduces a critic model that generates structured
feedback for the responses produced by the LLM during the self-correction process. The feedback
is then incorporated into the input, allowing the LLM to refine its own output iteratively. Likewise,
Akyürek et al. [3] presents a collaborative framework involving multiple agents, where the critique
generator is trained with the aim of maximizing the performance of the reasoning LLM.

B.3 Self-consistency

In our study, self-consistency represents a category of robustness methods, typically involving
the generation of multiple diverse answers to a given question and subsequently converging them.
This approach serves to mitigate the impact of noise inherent in the question. Among existing
methods, two primary approaches are employed to generate distinct answers: (1) generating multiple
samples via randomized smoothing on input, followed by separate and independent reasoning
processess [62, 102, 98], and (2) leveraging the inherent randomness in the decoding process of the
LLM to sample multiple distinct reasoning paths for the same input [83].

Sampling diverse outputs. Relying on the idea that an intricate reasoning problem usually allows
for various distinct thinking ways, each leading to the unique correct solution, Wang et al. [83] first
explores a varied array of reasoning paths and subsequently identifies the most consistent answer by
majority vote. This approach boosts the model’s performance across various reasoning tasks.

Randomized smoothing over inputs. Randomized smoothing serves as a straightforward yet
effective mechanism commonly employed to defend against adversarial attacks by introducing
multiple perturbations to the input to smooth potential noise [13, 98, 62, 102].

To address the vulnerability of LLMs to jailbreaking attacks, Robey et al. [62] proposes Smooth
LLM (SM), which is based on randomized smoothing. Utilizing the discovery that prompts generated
adversarially exhibit fragility to character-level modifications, this method initiates by randomly
introducing perturbations to multiple copies of a given input prompt. Subsequently, it consolidates
the associated predictions to identify adversarial inputs.

However, as pointed out in [102], randomized smoothing relies on introducing additional noise to
input, and its certification success hinges on the model’s performance with corrupted data. To address
the issue, Zhang et al. [102] proposes Self-denoising (SD), which denoises the corrupted inputs with
LLMs using the multitasking nature of LLMs.

B.4 External Supervision

In addition to self-correction and self-consistency methods, there is a line of methods that require
external supervision or information. In our study, we compare diverse denoising methods that require
varying degrees of external supervision, including (1) ground truth for test questions, (2) noise
positions, and (3) additional clean demonstrations.

To provide a thorough comparison, We adopt Self-correction with Oracle feedback (SCO) [29]
as a strong baseline, which uses the labels of test questions to determine when to terminate the
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self-correction loop, as discussed in B.2. We also employ Backtracking (BT) [81], which necessitates
the location of the initial noise in the prompt, to demonstrate the effectiveness of our method. In
addition, we utilize Contrastive Chain-of-Thought (CC) [9] in experiments which needs similar
external supervision as our proposed method: a clean demonstration. This approach enhances
reasoning by presenting the LLM with all the clean and noisy examples concurrently.
B.5 Relation with Literature
There are some implicit connections with existing papers. Here, we would like to further clarify our
work’s major differences and unique contributions, compared with [92], [54] and [9].

As discussed in B.1, Yao et al. [92] proposes Tree-of-Thought (ToT) for deliberate reasoning tasks.
ToT decomposes a given problem into several reasoning steps and generates multiple answers for
each step, ultimately constructing a tree structure. Subsequently, ToT employs BFS or DFS to traverse
the tree, yielding the final rationale and answer. Namely, ToT focuses on the rationale (thoughts)
generation in the output space of an LLM, wherein the generated thoughts can be irrelevant or
inaccurate. By contrast, Our work focuses on the input space with noisy prompting examples. From
this view of input space and output space, ToT is orthogonal to our work.

Moreover, ToT focuses on problem-solving by reasoning, e.g., Game of 24 and Mini Crosswords,
while our work investigates the robustness problem of noisy rationales. ToT does not consider
imperfect scenarios with noisy inputs. This means that when ToT is prompted by examples with
noisy rationales, the reasoning might also be degenerated. Hence, a further investigation on reasoning
robustness with these up-to-date prompting techniques, possibly with a focus on the output space,
can be conducted based on our work.

As for [54], this work explores the question-answer mapping of prompting examples. They find that
breaking the mapping has nearly no influence on LLM’s in-context learning.

However, it’s important to note that [54] primarily focuses on the relationship between input and
label, investigating the question-answer mapping of prompting examples. Their work does not delve
into the role of rationales in the examples, which is the central focus of our research. In contrast, our
experiments keep the input-label mapping intact and instead explore the impact of introducing noise
into the rationales. This allows us to isolate the effect of rationale quality on the model’s performance
without altering the fundamental relationship between questions and answers.

Hence, when the form of prompting example shifts from (question, answer) to (question, rationale,
answer), more aspects can be investigated. We conduct additional experiments to further explore the
mapping among question, rationale, and answer in Sec. 4.

Chia et al. [9] proposes Contrastive Chain-of-Thought (CC) [9] to enhance LLM reasoning. In our
work, we focus on improving reasoning in noisy settings and define the noisy rationale problem
as “factually inaccurate or irrelevant reasoning steps paired with valid question-answer prompts.”
Fig. 1 shows an example. Here, only one rationale is given in each demonstration, which can be
potentially noisy but unknown to the model. However, in CC’s setting, each ICL demonstration
explicitly includes a clean rationale and a wrong rationale. Notably, this rationale is wrong instead
of noisy as it induces the wrong answer. Therefore, CC’s setting and ours are totally different. In
addition, empirical results in Tab. 8 show that our method CD-CoT significantly outperforms CC
when given the same information.

The problem of noisy rationale is challenging and non-trivial. We believe that the investigation of
noisy rationale is still in the budding stage. Several potential solutions can be progressively devised
to address this problem. For example, accessing external databases is a promising solution. However,
this retrieve augmented generation (RAG) is usually used to address the lack of knowledge of LLMs
but not for data denoising. Therein, verifying the factual relevance and accuracy of a rationale is quite
challenging: (1) there is a semantic gap between a rationale and the corresponding query instructions
of a database; (2) how can the models realize the need for data verification and then find a suitable
database for that are also cutting-edge research directions?

Hence, we believe that RAG for denoising is not a trivial solution. More research attention and
effort should be paid to achieve this solution. In this work, we verify that an LLM can achieve good
denoising results when prompted with only one clean rationale and several noisy rationales. This
solution, sharing a similar spirit to RAG that requires additional information, significantly mitigates
the intrinsic vulnerabilities of LLMs.
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C Benchmark

In this section, we provide a comprehensive overview of the NoRa benchmark, including the motiva-
tion for constructing NoRa (Appendix C.1), a further discussion on the origins and impact of noisy
rationales in CoT demonstrations (Appendix C.2), real-world examples of noisy rationales from both
model and human perspectives (Appendix C.3), the detailed process of generating noise for the NoRa
dataset (Appendix C.4), a comprehensive datasheet for the NoRa dataset (Appendix C.5), and full
examples of the NoRa dataset across various reasoning tasks (Appendix C.6).

C.1 Motivation

The robustness of LLMs against noisy inputs deserves more attention, particularly in the context of
Chain-of-Thought (CoT) reasoning. While CoT methods have shown remarkable effectiveness, they
face two fundamental challenges: the susceptibility to selected demonstrations and the complexity of
generating high-quality demonstrations.

Recent studies have revealed that LLMs can be easily distracted by irrelevant or adversarial context,
and their reasoning process is unstable under small prompt modifications. Furthermore, misleading
information can cause LLMs to agree with factual errors. These vulnerabilities become particularly
concerning when we consider that demonstrations in practice are not always clean or accurate.

The problem of noisy rationales in demonstrations arises from various practical scenarios:

1. Human-generated noise: Just as humans make mistakes in data annotation (which has
motivated extensive research in label-noise learning), they can also provide imperfect
demonstrations. Different users with varying expertise and background knowledge may
contribute demonstrations of varying quality.

2. System-generated noise: Noise can emerge from automated systems, including dialogue
systems and machine-generated data, especially in crowdsourced platforms.

3. Demonstration selection challenges: While incorporating human supervision in dealing
with noisy rationales is possible, it is often expensive and impractical at scale. The sensitivity
of LLMs to in-context learning examples makes this particularly challenging.

Our empirical studies have revealed widespread vulnerability among prevailing LLMs to noisy
rationales, with existing reasoning methods showing limited efficacy. Compared to clean rationales,
we observe performance decreases of 0.4-19.8% with irrelevant noise and more severe degradation of
2.0-66.8% with inaccurate noise.

The NoRa benchmark addresses this crucial gap in current research. While most existing work
assumes clean demonstrations for in-context learning, we argue that noisy rationales represent a
practical and challenging problem that requires immediate attention. This benchmark serves two
primary purposes:

1. It provides a systematic way to evaluate LLM robustness against different types of noise in
rationales.

2. It helps identify the limitations of current approaches and motivates the development of
more robust reasoning strategies.

We believe the NoRa dataset and our findings will contribute significantly to the development of more
trustworthy foundation models capable of handling real-world, imperfect demonstrations.

C.2 A Further Discussion on Noisy Rationales in CoT Demonstrations

In this part, we further clarify the background and settings of the Noisy-R problem investigated in
our work, i.e., noisy rationales in CoT demonstrations. Having established the presence of irrelevant
and inaccurate thoughts as primary noise types, we now turn to their origins and impact within
human-model interactions.

Irrelevant and inaccurate thoughts can be generated by both the model and humans. On the one
hand, irrelevant or inaccurate thoughts are likely to appear within the rationales of LLMs’ answers.
These rationales, drawn from historical dialogues between users and the model, can create a noisy
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context for new conversations. On the other hand, human demonstrators actively provide in-context
demonstrations to enhance the reasoning capabilities of models. However, these demonstrations,
whether crafted by humans or sourced from datasets, can also contain noisy rationales.

Irrelevant thoughts - model perspective: LLMs tend to explain the concept of terms during
reasoning. For instance, if you ask GPT-4 to debug an error related to the ’concurrent’ package, it
tends to start by explaining what the ’concurrent’ package is rather than immediately addressing
the debug request. Such explanations, while informative, may introduce irrelevant noise into the
conversation. Here are some key reasons for their emergence.

1. Cognitive bias of models. When addressing complex queries, LLMs tend to include
explanations for terms or concepts mentioned in the prompt that are unnecessary for solving
the specific problem presented, as a kind of irrelevant thought. This behavior exhibits a form
of cognitive bias where the model, unable to assess the inquirer’s level of understanding,
leads to explicating background information. This is comparable to a lecturer explaining
the basics of a subject to a class without first assessing their students’ existing knowledge,
potentially leading to irrelevant elaborations.

2. Lack of precise contextual understanding. Despite LLMs’ proficiency in processing
language and recognizing patterns, they cannot always fully grasp the precise context or
specific requirements of a problem. This shortfall can result in the production of thoughts
that, although seemingly related, do not directly contribute to resolving the question at hand.
Their responses might align more with the broader theme of the discussion rather than the
specific, critical details needed for a precise solution.

3. User query ambiguity of the dialogue mechanism. Ambiguities in user queries can stem
from the use of vague or multifaceted language, prompting the model to generate a wide
array of responses. This situation is similar to a search engine returning a variety of results
for a query that lacks specificity. The model, attempting to cover all potential meanings of the
query, may produce responses that contain thoughts unrelated to the user’s actual intent. For
instance, if someone asks, “What is force calculation?”, the model might provide information
on both Newtonian mechanics and quantum mechanics. These responses, encompassing a
broad range of topics, could influence the answers to subsequent physics questions, leading
to a continuation of the ambiguity and further complicating the conversation.

4. Progressive disclosure bias of the dialogue mechanism. When engaging with LLMs,
individuals often initiate the dialogue by describing simpler concepts and progressively work
their way toward articulating the complex question at hand because of human limitations
in language or comprehension abilities, which prevent a person from presenting the entire
complexity of an issue in one go. This step-by-step approach, while natural for humans
who struggle to directly convey intricate problems, can introduce extraneous content that
contributes to noise within the model’s contextual reasoning. As the conversation builds, the
LLM will factor in these initial, possibly tangential, explanations into its understanding of the
context, potentially leading to a dilution of the focus necessary for solving the specific issue.
This phenomenon reflects a human cognitive strategy in communication that may not be
optimally aligned with the operational mechanisms of LLMs for efficient problem-solving.

Irrelevant thoughts - human perspective: When a human is actively demonstrating CoT reasoning,
the introduction of irrelevant thoughts could be due to a variety of reasons.

1. Cognitive overload of humans. Humans may introduce irrelevant information when they
are trying to process too much information at once, which can lead to a loss of focus
and the inclusion of tangential thoughts. For instance, a programmer is struggling with
a bug in a complex piece of software and asks an LLM for help. To provide context, the
programmer starts explaining the issue with a CoT rationale approach, intending to walk
the LLM through their thought process. However, due to the complexity of the code and
the stress of finding the bug, the programmer gets sidetracked. They include unnecessary
details about the different error messages encountered in the past, unrelated functions in the
code, and general thoughts on software development.

2. Associative thinking of humans. Humans naturally think in an associative manner, where
one thought may lead to another that is only loosely related to the task at hand. This can
result in straying from the main point during a CoT explanation. For example, while a
programmer outlines the steps to diagnose a software issue for an LLM, they might recall a
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similar problem encountered in a different project. This memory could lead them to mention
troubleshooting strategies, tools, or anecdotes from that experience, which, although related
to the broader theme of problem-solving, do not directly contribute to the current issue.

3. Irrelevant content in datasets. In the future, it is likely that companies or professional
organizations will increasingly utilize databases to assemble CoT prompts. However,
these databases, whether privately maintained or publicly accessible, can contain irrelevant
reasoning processes. This is especially true for databases sourced from crowdsourcing
platforms or open forums, where the information is contributed by a diverse set of individuals
with varying levels of expertise and focus. When these datasets are used to provide in-
context information for CoT reasoning, the noise can originate from the inclusion of off-topic
discussions, personal opinions, or overly verbose explanations that do not directly address
the problem at hand. Such noise can be inadvertently introduced into the CoT process when
humans provide explanations that contain unnecessary or tangential information.

Similarly, we analyze the two sources of inaccurate thoughts as follows.

Inaccurate thought - model perspective: For models, LLMs may produce erroneous thoughts during
the reasoning process, especially when dealing with complex problems. For example, when tackling
a base-9 math problem in a zero-shot setting, GPT-3.5 may generate some inaccurate reasoning steps.
The former dialogue will become inaccurate and noisy in the context of subsequent dialogues. Here
are some key reasons for their emergence.

1. Outdated or incomplete training data of the model. Language models are built upon
datasets that may not be current or fully comprehensive. When faced with problems that
require up-to-date knowledge or complete understanding, which are absent in their training
data, models may rely on outdated or incomplete information, resulting in inaccurate outputs.
For example, in the field of medicine, if new research suggests a change in treatment protocol
after the model’s last update, it wouldn’t be able to advise on the new information.

2. Adaptation to novel reasoning contexts of the model. New challenges may require models
to reason within contexts that slightly or significantly differ from their training data. For
instance, a model extensively trained on base-10 arithmetic might struggle with a base-9
math problem because it requires a shift in the underlying numerical framework. This kind
of scenario demands on-the-fly adaptation to a novel reasoning context, which can lead to
generating thoughts that do not accurately apply the learned principles from the base-10
system to the newly introduced base-9 system.

3. Misinterpretation of complex subjects of dialogue mechanism. Users often fail to clearly
articulate their complete requirements at the outset of an inquiry, leading to LLMs generating
misunderstandings and inaccurate thoughts that do not align with user expectations. The
process of correcting these thoughts is inherently a reasoning process laden with noisy
contexts. As users provide feedback to refine the model’s output, the iterative nature of this
interaction can introduce additional inaccuracies as the model attempts to reconcile the new
information with the previously misunderstood context.

Inaccurate thought - human perspective: Inaccurate thoughts in CoT can stem from the information
provided by humans, whether it is self-made on the spot or sourced from a database for in-context
learning by LLMs. These CoT demos can include inaccurate noise due to various factors.

1. Personal knowledge limitations of human. Individuals may possess incomplete or outdated
knowledge on a given subject, leading to the provision of incorrect information when creating
a CoT. For instance, a person without expertise in mathematics might attempt to construct a
CoT for a complex math problem and inadvertently introduce incorrect steps or conclusions.
Their understanding may be based on heuristics or educational background that hasn’t been
updated to reflect more recent methodologies or discoveries in the field.

2. Cognitive biases of human. Human reasoning can be influenced by a range of cognitive
biases, such as confirmation bias, where an individual tends to search for, interpret, and
remember information in a way that confirms their preconceptions, neglecting contrary
information. Or the oversimplification of complex issues might lead to inaccurate reasoning
steps within a CoT. These biases can skew the logic flow and result in conclusions that do
not hold up under scrutiny or are based on flawed premises.
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3. Data quality issues of database. The databases that humans rely on for creating CoTs
might contain errors or biases introduced during data collection and processing. If this
flawed data is used for in-context learning by LLMs, it can impart incorrect patterns of
thought or factual inaccuracies. For example, a dataset with biased sampling methods might
lead to generalizations that do not accurately represent the broader population or situation.

4. Contextual misplacement of databases. Information from databases may be stripped of
its original context, leading to misinterpretation when reused. When humans include such
decontextualized information in a CoT, they might not properly align it with the new context,
introducing misunderstandings or inaccuracies. This is particularly problematic in nuanced
fields where context heavily influences the meaning and applicability of information, such
as legal precedents or cultural studies.

Given the convenience and adaptability of CoT reasoning, broader adoption in LLM applications is
expected in the future. This structured approach enables LLMs to break down complex problems and
explain their reasoning in a way that resembles how humans think, proving essential for sophisticated
problem-solving. Nonetheless, we are bound to face the noisy reasoning challenges, stemming from
both model-generated and human-contributed contexts, as mentioned above.

To address these challenges, we must focus on continuously improving training methods, keeping
models updated with the latest information, enhancing their ability to parse context and ambiguity,
and refining algorithms to diminish biases and logical inaccuracies.

Differences between inaccurate and irrelevant thoughts. Given the context and question, a thought
is either relevant or irrelevant. Within the relevant thoughts, those accurate ones are desirable, and
those inaccurate, termed as "inaccurate thoughts" in this work, are proven to be harmful to LLMs.
Hence, the extreme case of "inaccurate and irrelevant thought" is not covered in this work. For clarity
and simplicity, we investigate these two kinds of noise separately. Specifically, in definitions,

• Irrelevant thoughts refer to incorporating extraneous details that are unhelpful for solving
the question. Redundant information may be introduced by the LLM’s diverse response
generation or by humans when clarifying concepts in problem-solving examples;

• Inaccurate thoughts refer to factual errors in rationales that are common in mathematical
calculation or transcription. The emergence of noise can be due to algorithmic limitations,
errors in training data, misinterpretations of context or instructions, and logical fallacies.

Note that the "accuracy" and "relevance" of thoughts are related to the context of the given question.
Basically, the question provides the context, and an LLM generates thought conditional on the context.
Taking the examples of the Base-9 dataset in Tab. 1,

• Irrelevant thought is "There are five oceans on Earth: the Atlantic, Pacific, Indian, Arctic,
and Southern.", which is accurate but not relevant and not useful;

• Inaccurate thought here is "5 + 9 = 14", which is relevant to the question and previous
thought but is inaccurate for the base-9 calculation.

In the NoRa dataset, only the relevant thought with factual error will be classified as an "inaccurate
thought". There is no irrelevant and inaccurate thought in NoRa, which should be rare in practice.

We focus on the two major types of noise in this work. And empirically, inaccurate thoughts bring
severe degradations. Compared with clean rationales, a 1.4%-19.8% decrease with irrelevant noise
and a more drastic 2.2%-40.4% decrease with inaccurate noise.

C.3 Real-world Examples

The emphasis on noisy rationale is due to its practical challenges, with examples drawn from diverse
sources such as crowdsourced platforms, dialogue systems, and AI-generated data. Here, the Noisy-R
mainly originates from (1) the inherent imperfections, inconsistencies, and inaccuracy of humans’
cognitive processes and (2) the diversity, unpredictability, and hallucination of the LLMs’ generative
mechanisms, as discussed in more detail in Appendix C.2.

Briefly, irrelevant and inaccurate thoughts can be generated by both the model and humans. From
model perspective, the generated rationales by the model can be noisy. From human perspective, the
annotated rationales by humans can be noisy.
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In the following four parts, we elaborate on the evidence (including sources and examples) of
irrelevant and inaccurate thoughts from both the model perspective and the human perspective.

C.3.1 Irrelevant Thoughts from Model Perspective

Cognitive bias of models:

• Source. The presence of cognitive biases in LLMs is demonstrated, and the implications
of using biased reasoning under the guise of expertise are discussed, calling for stronger
education, risk management, and continued research as the widespread adoption of this
technology increases [38].
Thorstad [77] examines the inherent cognitive biases within large language models, suggest-
ing that while there is reason for cautious optimism regarding the potential to mitigate these
biases, a realistic, anti-Panglossian approach is necessary to drive meaningful improvements.
It advocates for a balanced perspective that neither idealizes the perfectibility of AI nor
dismisses the progress made in addressing its limitations.

• Examples. Tab. 13 demonstrates examples of cognitive bias of models.

Example 1

Question: What rubber toy filled with helium will make a child happy? Answer Choices: (A) loved (B) learn C eat cake
(D) balloon (E) become adult
Rationale: Let’s think step by step. A rubber toy filled with helium will make a child happy if the child loves the toy. If
the child loves the toy, he or she will learn to play with it. If the child learns to play with it, he or she will eat cake. If the
child eats cake, he or she will become an adult.
Answer: The answer is D.
Explanation: There is information related to the answer in reasoning, but there is also noise information that is irrelevant
to the final answer, and it has nothing to do with whether the child is happy or not because he becomes an adult because he
eats the cake.

Example 2

Question: What might a couple have a lot of when they are deciding on stopping being married to each other? Answer
Choices: (A) pleasure (B) detachment C exercise (D) bankruptcy (E) fights
Rationale: Let’s think step by step. A couple might have a lot of pleasure when they are deciding on stopping being
married to each other if they are both in agreement with the decision. A couple might have a lot of detachment when they
are deciding on stopping being married to each other if they are both indifferent to the decision. A couple might have a lot
of exercise when they are deciding on stopping being married to each other if they are both physically active and need to
work out their aggression. A couple might have a lot of bankruptcy when they are deciding on stopping being married to
each other if they are both in financial trouble. A couple might have a lot of fights when they are
Answer: Therefore, among A through E, the answer is E.
Explanation: Only the last sentence mentions that couples tend to quarrel in the event of divorce, and the previous
explanations and reasoning about the other options are nonsensical

Table 13: Cognitive bias of models of the model examples.

Lack of precise contextual understanding:

• Source. Zhu et al. [114] introduces a context understanding benchmark by adapting existing
datasets to suit the evaluation of generative models’ ability to understand the context and
finds that pre-trained dense models struggle with understanding more nuanced contextual
features when compared to state-of-the-art fine-tuned models.
He et al. [27] designs eight features for complex instructions and construct a comprehensive
evaluation dataset from real-world scenarios, and compares the performance of representative
Chinese-oriented and English-oriented models in following complex instructions through
extensive experiments.

• Examples. Tab. 14 demonstrates the lack of precise contextual understanding in LLMs.

C.3.2 Irrelevant Thoughts from Human Perspective

Associative thinking of humans:

• Source. Morewedge and Kahneman [55] investigates the underlying cognitive mechanisms
of intuition, focusing on how unconscious associative processes can lead to rapid and
efficient problem-solving and decision-making. It aims to elucidate the often-overlooked
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Example 1

Question: He was trying to procreate with many individuals, this led to a what? Answer Choices: (A) moaning (B) die C
kiss (D) std (E) sanity
Rationale: Let’s think step by step. He was trying to procreate with many individuals. This would lead to many offspring,
which would be a good thing, right? But it also led to a lot of competition among the offspring for resources. This would
lead to a lot of fighting and eventually to the death of many individuals. So while he may have been trying to create more
life, he also caused a lot of death.
Answer: Therefore, among A through E, the answer is D.
Explanation: The reasoning is mainly about the fact that many people will have a lot of offspring, and the offspring will
bring competition for resources and wars, which will cause a lot of deaths, but the final result of the reasoning is that
it is indeed a sexually transmitted disease, and there is no information related to the sexually transmitted disease in the
reasoning. So it is irrelevant thought.

Example 2

Question: Can Hulk’s alter ego explain atomic events?
Rationale: Let’s think step by step. First, we need to understand what an atom is. Atoms are the basic units of matter
and the defining structure of elements. The term "atom" comes from the Greek word for indivisible, because it was once
thought that atoms were the smallest things in the universe and could not be divided. The structure of an atom is a central
nucleus composed of protons and neutrons with electrons orbiting around this nucleus. Now that we know what an atom is,
we can move on to understanding what an atomic event is. An atomic event is a process that involves.
Answer: Yes, Hulk’s alter ego can explain atomic events.
Explanation: The model’s rationale focuses on defining atoms and atomic events but fails to connect this information
to the context of the question, which is about the ability of Hulk’s alter ego, Bruce Banner, to explain these concepts.
The model does not demonstrate an understanding of the alter ego’s scientific expertise and instead provides a general
explanation of atomic structure. This lack of precise contextual understanding leads to an unsupported conclusion.

Table 14: Examples demonstrating the lack of precise contextual understanding in LLMs.
influence of automatic, associative thinking on our intuitive judgments, challenging the
traditional emphasis on deliberate and logical reasoning in cognitive psychology.
Wimmer and Shohamy [87] presents evidence that the hippocampus is involved in decision-
making by enabling the transfer of value between memories, affecting choices among novel
alternatives. Using functional brain imaging, the study shows that monetary rewards activate
a network of memories, influencing individuals to later choose associated, but unrewarded,
items, with this bias being predicted by hippocampal activity and its connections with
memory and reward brain regions.

• Examples. Please refer to Tab. 15 for examples.

Example 1

Question: How can the relationship between John and Mary be determined within the family tree, given that they share a
grandfather but have different fathers?
Rationale:
1. Identifying the Common Grandfather: The first step is to confirm that John and Mary share a grandfather, indicating a
direct blood relation within the family tree.
2. Analyzing the Fathers’ Identity: Since they have different fathers, this implies their fathers are brothers.
3. An Interesting Anecdote: During a family gathering, John and Mary participated in a "Who’s Who" family game where
they were mistakenly identified as siblings rather than cousins.
4. Considering the shared grandfather and that their fathers are brothers, it’s established that John and Mary are first
cousins.
Answer: John and Mary are first cousins.
Explanation: When analyzing the relationship, an anecdote that is loosely related to the task is considered. Although the
anecdote is about the relationship between John and Mary, it does not help in reasoning.

Example 2

Question: Calculate the length of the hypotenuse in a right-angled triangle with one leg of length 3 and the other leg of
length 4.
Rationale:
1. Using Pythagoras’ Theorem: In a right-angled triangle, the sum of the squares of the lengths of the legs is equal to the
square of the length of the hypotenuse, i.e., a2 + b2 = c2. Pythagoras, an ancient Greek mathematician, is credited with
this discovery, but his contributions to mathematics extend beyond this, including music, philosophy, and astronomy.
2. Substituting Known Values to Solve: In our problem, the lengths of the legs are 3 and 4, thus 32 + 42 = c2, which is
9 + 16 = c2. This leads to c2 = 25.
3. Solving the Equation to Find the Length of the Hypotenuse: Solving c2 = 25 yields c = 5. This solution not only
reveals the geometric property of the triangle but also hints at the special status of the 3-4-5 triplet as one of the simplest
Pythagorean triples. Pythagorean triples are sets of three positive integers that satisfy Pythagoras’ theorem, with 3-4-5
being among the most well-known sets, often used in construction and engineering to create right angles.
Answer: The length of the hypotenuse is 5.
Explanation: Introduction of Pythagoras and the special status of the 3-4-5 triplet do not help in calculation of the length
of the hypotenuse, which is unnecessary detail about the problem.

Table 15: Examples of associative thinking of humans
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Irrelevant content in datasets:

• Source. Havrilla and Iyer [25] examines how different types and intensities of noise in
training data affect the performance of LLMs using a novel framework called Traced Integer
(TInt) for generating customizable noised execution traces. The study reveals that while
fine-tuned models display high robustness to static noise, they are more susceptible to
dynamic noise, and it offers insights into the importance of filtering out training samples
with dynamic noise to improve model performance.

• Examples. Please refer to Tab. 16 for examples.

Example 1

Question: Calculating the Area of a Circle with Radius 7
Rationale:
1. Using the Area Formula: The area of a circle can be calculated using the formula A = πr2, where A is the area and r
is the radius of the circle. π (pi) is a mathematical constant approximately equal to 3.14159, representing the ratio of a
circle’s circumference to its diameter. π is not only widely used in mathematics but also serves as a fundamental element
in physics, engineering, and other scientific fields.
2. Substituting the Given Value: Substituting the radius r = 7, we get A = π × 72 = 49π. This result not only provides
the area of the circle but also reminds us of the irrational nature of π – an infinite, non-repeating decimal, representing a
form of endless beauty in mathematics.
3. Practical Application of the Area: In practice, calculating the area of a circle has many applications, such as designing
fountains in parks, making round tables, or calculating the surface area of planets. This simple formula underlies limitless
exploration and potential applications.
Answer: The area of the circle is 49π.
Explanation: Application about π does not help in calculation of area of a circle, which is unnecessary detail about the
problem.

Example 2

Question: Calculate the length of the hypotenuse in a right-angled triangle with one leg of length 3 and the other leg of
length 4.
Rationale:
1. Using Pythagoras’ Theorem: In a right-angled triangle, the sum of the squares of the lengths of the legs is equal to the
square of the length of the hypotenuse, i.e., a2 + b2 = c2. Pythagoras, an ancient Greek mathematician, is credited with
this discovery, but his contributions to mathematics extend beyond this, including music, philosophy, and astronomy.
2. Substituting Known Values to Solve: In our problem, the lengths of the legs are 3 and 4, thus 32 + 42 = c2, which is
9 + 16 = c2. This leads to c2 = 25.
3. Solving the Equation to Find the Length of the Hypotenuse: Solving c2 = 25 yields c = 5. This solution not only
reveals the geometric property of the triangle but also hints at the special status of the 3-4-5 triplet as one of the simplest
Pythagorean triples. Pythagorean triples are sets of three positive integers that satisfy Pythagoras’ theorem, with 3-4-5
being among the most well-known sets, often used in construction and engineering to create right angles.
Answer: The length of the hypotenuse is 5.
Explanation: Introduction of Pythagoras and the special status of the 3-4-5 triplet do not help in calculation of the length
of the hypotenuse, which is unnecessary detail about the problem.

Table 16: Examples of irrelevant content in datasets

C.3.3 Inaccurate Thought from Human Perspective

Personal knowledge limitations of human:

• Source. The array of problems addressed by the human mind constitutes merely a specific
subset within the spectrum of challenges tackled by AI systems [23], resulting from human
time limitation and human computation limitation, etc.
Due to the limited lifespan, whatever a human learns must be acquired in less than a million
hours of real-time experience. The AlphaGo system that beat the best human players in
history has the benefit of multiple human lifetimes of simulated play [70].
There exists a disparity between human intelligence and machine intelligence in addressing
the Rubik’s Cube conundrum. Machine intelligence has successfully determined the shortest
path from any initial configuration to an unscrambled state, requiring no more than 20 moves
[63]. Conversely, the most adept human solvers necessitate approximately 50 moves to
achieve the same outcome.

• Examples. Please refer to Tab. 17 for examples.

Cognitive biases of human:

• Source. Tversky and Kahneman [80] define human cognitive biases: systematic patterns of
deviation from rational judgment. Here we list three types of cognitive biases of human.
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Example 1

Question: What should be the next move in the game of Go?
Rationale: In order to win this game, I need to capture more of the opponent’s pieces. Since capturing as many of the
opponent’s pieces as possible is advantageous, it is now time to launch an offensive and encircle their pieces.
Answer: Therefore, the next move is at position A.
Explanation: In the context of playing Go, a deficiency in holistic board assessment and the incorporation of offensive
strategies leads to inaccurate thought. This narrow focus solely on offensive tactics detrimentally impacts the overall
outcome of the game, hindering the player’s ability to achieve victory across the entirety of the board.

Example 2

Question: How long will it take to solve the Rubik’s Cube at the fastest?
Rationale: One rotates a Rubik’s Cube in 0.2 second, only needing to know how many steps it takes to solve one. Someone
solve a Rubik’s Cube requires a minimum of 50 steps. It takes 4 seconds to solve the Rubik’s Cube at the fastest.
Answer: Therefore, the answer is 4 seconds.
Explanation: In assessing the completion time of the Rubik’s Cube conundrum, due to a lack of knowledge regarding
shortest path algorithms and planning, an individual relies solely on experiential intuition, presuming that a minimum of
50 steps is necessary, whereas in reality, the puzzle can be completed within 20 steps or fewer.

Table 17: Examples of human knowledge limitation.

Confirmation bias is a common cognitive bias, referring to the tendency of people to seek,
remember, or emphasize information that supports their existing views or beliefs, while
ignoring or disregarding information that contradicts their viewpoints [14].
When members within a group suppress their individual capacity for independent thinking
in order to maintain team harmony or consensus, groupthink occurs [31].
Emotional reasoning happens when people judge the authenticity or value of things based
on their own emotional state [56].

• Examples. Please refer to Tab. 18 for examples.

Example 1

Question: Alice likes going to the coffee shop. Does Alice like drinking tea?
Rationale: Alice likes going to the coffee shop. People who enjoy going to coffee shops must enjoy drinking coffee.
However, individuals who enjoy drinking coffee may not necessarily enjoy drinking tea. Therefore, it cannot be inferred
whether Alice enjoys drinking tea.
Answer: Therefore, not sure if Alice likes drinking tea.
Explanation: Not all individuals who enjoy frequenting coffee shops necessarily enjoy drinking coffee. There is no
inherent correlation between enjoying coffee shop visits and liking coffee. Here, the introduction of confirmation bias
plays a pivotal role.

Example 2

Question: Which one is the middle-aged woman? (A) The beautifully dressed slender woman, (B) The dowdily dressed
slightly overweight woman,(C)Not sure.
Rationale: This woman is middle-aged. She needs to take care of her family and children, and she has no time to dress up
or manage her figure. She could be either overweight or slim, inclined towards dressing up or adopting a more casual
appearance; hence, we cannot ascertain her physical appearance.
Answer: Therefore, the answer is (C).
Explanation: In the above example, groupthink leads to the maximization of societal and individual family interests,
hence the collective belief that a middle-aged woman should be overweight and dowdily dressed. However, the reality is
that middle-aged women are diverse and cannot be stereotyped.

Table 18: Examples of cognitive bias.

C.4 Noise Generation

As detailed in Sec. 3, we have introduced both irrelevant and inaccurate noises into our dataset
as insertions. These insertional noises are carefully integrated into the rationales, ensuring they
neither modify the existing reasoning pathways nor affect the final answers. Furthermore, they are
purposefully crafted based on the intermediate steps of the reasoning sequence, which guarantees
that each piece of noise is contextually related to the stage of reasoning it accompanies. To maintain
consistency, we treat each sentence in the reasoning sequence as a single thought; accordingly,
each noise we introduce is also fashioned as only one sentence. For irrelevant noise, we draw
from unrelated scientific or social facts. Alternatively, inaccurate noise involves the extension of an
intermediate thought, which is redundant and incorrect.

NoRa-Math. In NoRa-Math problems, an intermediate reasoning result typically manifests as a
numerical value. For instance, from the equation "We have 4 + 2 = 6 in base-10. ", we take the derived
number 6 and craft a sentence of noise to follow this particular reasoning step. Take the numeral "6";
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we might introduce an unrelated fact such as "According to the Standard Model of physics, there are
six types of quarks, the fundamental constituents of matter." For inaccurate thoughts, we generate a
decimal addition related to 6, such as "6 + 5 = 11. ", which is inaccurate in base-9 representation.

NoRa-Symbolic. NoRa-Symbolic problems are handled similarly; here, intermediate results are
individual elements of a navigation instruction. We insert a sentence of noise that aligns with these
specific components. For example, if the element is the directive "right," we fabricate a direction-
related noise. One irrelevant thought can be "Turning right in countries that drive on the right side
of the road typically does not intersect with oncoming traffic.". For inaccurate thoughts, to ensure
that the noise does not contradict the previous reasoning, we select another related instruction on the
same term domain. For example, when explaining the instruction "right," we might generate noise
related to the instruction "left", such as "left means I_TURN_RIGHT.", which is incorrect and does
not contradict the previous thought, and this thought itself is redundant.

NoRa-Commonsense. When it comes to NoRa-Commonsense problems, we introduce noise that
mirrors the relationships discerned during the reasoning process. For example, after establishing that
"mother’s sister is aunt," we craft a noise sentence associated with the concept of "aunt." An irrelevant
noise insertion could be: "Aunts often play pivotal roles in the social development of primates, akin
to their influence in human societies." To generate inaccurate thoughts, we might produce a statement
like "an aunt’s mother is also an aunt," which is logically inaccurate.

In addition to inserting a fixed number of noisy thoughts per chain of thought shot, as detailed in the
main text, we further introduce variability in noise addition by randomly inserting noise following
each thought. This randomness follows a Bernoulli distribution Bern(ϵ) ∈ {0, 1}, where noise is
added after a thought only if the Bernoulli trial results in 1. Consequently, while the fixed number
approach guarantees a set amount of noise within a CoT shot, the random addition allows for the
possibility of varying amounts of noise in each shot, dictated by the probability parameter ϵ.

C.5 NoRa Datasheet

Following the framework of Gebru et al. [20], we provide a comprehensive datasheet for the NoRa
dataset in Tab. 19. This datasheet documents the motivation, composition, collection process,
preprocessing details, intended uses, distribution plan, and maintenance strategy of our dataset.

MOTIVATION

For what purpose was the dataset created? The NoRa dataset was created to evaluate the robustness of large language models
when faced with noisy rationales in chain-of-thought prompting. It addresses the
under-explored challenge of LLMs’ reasoning ability when presented with in-context
examples containing irrelevant or inaccurate steps.

Who created the dataset and on behalf of which
entity?

The authors of this paper created the dataset.

Who funded the creation of the dataset? Unavailable.

Any other comment? The NoRa dataset is the first of its kind specifically designed to evaluate the robustness
of LLMs against noisy rationales. It covers a wide range of reasoning tasks, including
mathematical, symbolic, and commonsense reasoning, The dataset includes varying
levels of noise in rationales to systematically access LLMs’ performance.

COMPOSITION

What do the instances that comprise the dataset
represent?

Each instance in the NoRa dataset consists of a question, its correct answer, and
in-context demonstrations containing noisy reasoning steps.

How many instances are there in total? The NoRa dataset contains 26,391 questions in total (see Section 3.2). Table 2 contains
the sizes of our datasets.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
instances from a larger set?

The NoRa dataset is a carefully curated sample selected from a larger pool of potential
reasoning tasks.

What data does each instance consist of? Each instance in the NoRa dataset contains a question, its correct answer, and in-context
demonstrations with noisy reasoning steps.

Is there a label or target associated with each
instance?

Yes, each instance has a correct answer that serves as its label.

Is any information missing from individual in-
stances?

No, each instance contains complete information.

Are relationships between individual instances
made explicit?

Yes, instances are grouped by reasoning type: mathematical, symbolic, and common-
sense.
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Are there recommended data splits? No, this dataset is designed for training-free in-context learning. We provide recom-
mended in-context demonstrations for each question.

Are there any errors, sources of noise, or redun-
dancies in the dataset?

No, the dataset itself is clean and does not contain any errors, unintended noise, or
redundancies.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources?

Yes, the dataset is self-contained and does not rely on any external resources.

Does the dataset contain data that might be con-
sidered confidential?

No.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety?

No, the dataset does not include any offensive, insulting, threatening, or anxiety-
inducing content.

COLLECTION

How was the data associated with each instance
acquired?

The data was created based on the reference of three rational datasets. (see sec 3.2)

What mechanisms or procedures were used to
collect the data?

We systematically added irrelevant or inaccurate thoughts to clean rationales from
existing datasets. The irrelevant or inaccurate thoughts are generated from GPT4.

If the dataset is a sample from a larger set, what
was the sampling strategy?

Whenever we use subsets, we randomly sample from the original data.

Who was involved in the data collection process
and how were they compensated?

The authors of this paper.

Over what timeframe was the data collected? NoRa was created in 2023. The original datasets of NoRa (Base Calculation, SCAN,
and CLUTRR) were created between 2018-2023. We added noisy rationales to these
existing datasets to create NoRa.

Were any ethical review processes conducted? No, as the dataset does not involve human subjects or sensitive information, no formal
ethical review was required. However, we adhered to ethical guidelines for AI research
throughout the process

PREPROCESSING

Was any preprocessing/cleaning/labeling of the
data done?

Yes. We preprocess the original datasets by adding noisy rationales (irrelevant or
inaccurate thoughts) generated by GPT-4 and ensure that the questions and answers
remain unchanged. (detailed in Section 3.1)

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data?

Yes. We retained the original datasets (Base Calculation, SCAN, and CLUTRR) in
their raw form, as well as our modified NoRa dataset with added noisy rationales.

Is the software that was used to prepro-
cess/clean/label the data available?

No.

USES

Has the dataset been used for any tasks already? Yes, the NoRa dataset has been used in our paper to benchmark the reasoning robustness
of large language models against noisy rationales in chain-of-thought prompting.

Is there a repository that links to any or all
papers or systems that use the dataset?

Yes. The repository is publicly available at: https://github.com/tmlr-group/
NoisyRationales.

What (other) tasks could the dataset be used
for?

The NoRa dataset could be used for: 1. Evaluating and improving LLMs’ robustness
to noisy information 2. Developing new denoising techniques for reasoning tasks 3.
Understanding the impact of In-context noise on LLMs.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?

The dataset contains artificially introduced noise, which might not perfectly reflect
real-world scenarios of noisy reasoning.

Are there tasks for which the dataset should not
be used?

The dataset should not be used for tasks that require completely noise-free data or for
evaluating models’ performance on clean, standard reasoning tasks without noise.

DISTRIBUTION

Will the dataset be distributed to third parties
outside of the entity on behalf of which the
dataset was created?

Yes, we plan to make the dataset available to the research community.

How will the dataset will be distributed? The dataset will be made available through a public repository (e.g., GitHub) along
with necessary documentation for its use.

When will the dataset be distributed? We aim to release the dataset upon publication of our paper.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

Not to our knowledge.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances?

Not to our knowledge.
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Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances?

Not to our knowledge.

MAINTENANCE

Who will be supporting/hosting/maintaining the
dataset?

The authors of this paper.

How can the owner/curator/manager of the
dataset be contacted?

The authors of this paper.

Is there an erratum? No.

Will the dataset be updated? No.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so?

No.

Table 19: Datasheet for the NoRa dataset, following the framework introduced by Gebru et al. [20].

C.6 Full Examples of the NoRa Dataset

In this part, we show the full examples of the NoRa dataset.

NoRa-Math:
• Base-9 Irrelevant (Tab. 20)
• Base-9 Inaccurate (Tab. 21)
• Base-11 Irrelevant (Tab. 22)
• Base-11 Inaccurate (Tab. 23)

NoRa-Symbolic:
• Equal Irrelevant (Tab. 24)
• Equal Inaccurate (Tab. 25)
• Longer Irrelevant (Tab. 26)
• Longer Inaccurate (Tab. 27)

NoRa-Commonsense:
• Irrelevant (Tab. 28)
• Inaccurate (Tab. 29)

Example:
User: In base-9, what is 64+62? Please reason it step by step. End the response with the result in "Answer:\boxed{result}".
Assistant: In base-9, the digits are "012345678". We have 4 + 2 = 6 in base-10. According to the Standard Model of physics,
there are six types of quarks, the fundamental constituents of matter. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. In music, an octave consists of eight notes in the Western musical scale. 6 mod 9 = 6, so the digit
is 6 and the carry is 0. We have 6 + 6 + 0 = 12 in base 10. 12 mod 9 = 3, so the digit is 3 and the carry is 1. A leading digit is 1.
So the answer is 136. Answer:\box{136}

Table 20: Example of NoRa-Math Base-9 with irrelevant rationales

Example:
User: In base-9, what is 64+62? Please reason it step by step. End the response with the result in "Answer:\box{result}".
Assistant: In base-9, the digits are "012345678". 9 + 8 = 17. We have 4 + 2 = 6 in base-10. Since we’re in base-9, that
doesn’t exceed the maximum value of 8 for a single digit. 8 + 3 = 11. 6 mod 9 = 6, so the digit is 6 and the carry is 0. We
have 6 + 6 + 0 = 12 in base 10. 12 mod 9 = 3, so the digit is 3 and the carry is 1. A leading digit is 1. So the answer is 136.
Answer:\box{136}.

Table 21: Example of NoRa-Math Base-9 with inaccurate rationales
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Example:
User: In base-11, what is 97+74? Please reason it step by step. End the response with the result in "Answer:\boxed{result}".
Assistant: In base-11, the digits are "0123456789A". We have 7 + 4 = 11 in base-10. In mathematics, eleven is a prime
number, meaning it has no factors other than 1 and itself. Since we’re in base-11, that exceeds the maximum value of A for a
single digit. 11 mod 11 = 0, so the digit is 0 and the carry is 1. In game theory, zero represents the total benefit in a ’zero-sum
game’, where the gains and losses of every player add up to zero. We have 9 + 7 + 1 = 17 in base 10. 17 mod 11 = 6, so the
digit is 6 and the carry is 1. A leading digit is 1. So the answer is 160. Answer:\box{160}

Table 22: Example of NoRa-Math Base-11 with irrelevant rationales

Example:
User: In base-11, what is 97+74? Please reason it step by step. End the response with the result in "Answer:\boxed{result}".
Assistant: In base-11, the digits are "0123456789A". We have 7 + 4 = 11 in base-10. Since we’re in base-11, that exceeds the
maximum value of A for a single digit. 10 + 5 = 15. 11 mod 11 = 0, so the digit is 0 and the carry is 1. We have 9 + 7 + 1
= 17 in base 10. 17 mod 11 = 6, so the digit is 6 and the carry is 1. A leading digit is 1. So the answer is 160. 0 + 11 = 11.
Answer:\box{160}.

Table 23: Example of NoRa-Math Base-11 with inaccurate rationales

Example:
User: With IN:walk right twice and look right twice, what is OUT?
Please reason it step by step, and provide the final action sequence as the answer. End the response with "So,
final answer is OUT: <action sequence>"
Assistant: Since command is walk right twice and look right twice, we should consider Step1: "walk right
twice" firstly, "walk right" means the agent needs to turn right and walk. The ’right’ corresponds to the
command I_TURN_RIGHT. Turning right in countries that drive on the right side of the road typically does not
intersect with oncoming traffic. Subsequently, ’walk’ translates to I_WALK. Therefore, the action sequence is
I_TURN_RIGHT I_WALK. Since we need do twice in command "walk right twice", this entire sequence is
repeated 2 times, so the action sequence to "walk right twice" is :I_TURN_RIGHT I_WALK I_TURN_RIGHT
I_WALK.
Now, we consider Step2:"look right twice", "look right" means the agent needs to turn right and look. Motorists
in many areas are allowed to turn right at a red traffic signal after coming to a complete stop and ensuring the
road is clear. The ’right’ corresponds to the command I_TURN_RIGHT. Certain traffic circles or roundabouts
require all entering traffic to turn right regardless of the direction they intend to take. Subsequently, ’look’
translates to I_LOOK. Therefore, the action sequence is I_TURN_RIGHT I_LOOK. Since we need do twice
in command "look right twice", this entire sequence is repeated 2 times, so the action sequence to "look right
twice" is :I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK.
Above all – So, final answer is OUT:I_TURN_RIGHT I_WALK I_TURN_RIGHT I_WALK I_TURN_RIGHT
I_LOOK I_TURN_RIGHT I_LOOK.

Table 24: Example of NoRa-Symbolic Equal with irrelevant rationales

Example:
User: With IN:walk right twice and look right twice, what is OUT?
Please reason it step by step, and provide the final action sequence as the answer. End the response with
"So, final answer is OUT: <action sequence>"
Assistant: Since command is walk right twice and look right twice, we should consider Step1: "walk right
twice" firstly, "walk right" means the agent needs to turn right and walk. The ’right’ corresponds to the
command I_TURN_RIGHT. Subsequently, ’walk’ translates to I_WALK. The term ’jump’ corresponds to
the command I_RUN. Therefore, the action sequence is I_TURN_RIGHT I_WALK. Since we need do
twice in command "walk right twice", this entire sequence is repeated 2 times, so the action sequence to
"walk right twice" is :I_TURN_RIGHT I_WALK I_TURN_RIGHT I_WALK. Thrice means the entire
sequence is repeated 6 times.
Now, we consider Step2:"look right twice", "look right" means the agent needs to turn right and look.
The ’right’ corresponds to the command I_TURN_RIGHT. The term ’left’ translates to I_TURN_RIGHT.
Subsequently, ’look’ translates to I_LOOK. Therefore, the action sequence is I_TURN_RIGHT I_LOOK.
Since we need do twice in command "look right twice", this entire sequence is repeated 2 times, so the
action sequence to "look right twice" is :I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK.
Above all – So, final answer is OUT:I_TURN_RIGHT I_WALK I_TURN_RIGHT I_WALK
I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK.

Table 25: Example of NoRa-Symbolic Equal with inaccurate rationales
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Example:
User: With IN:jump around left and jump around left, what is OUT?
Please reason it step by step, and provide the final action sequence as the answer. End the response with "So, final answer is OUT: <action
sequence>"
Assistant: Since command is jump around left and jump around left, we should consider Step1: "jump around left" firstly, "jump around left"
means the agent needs to turn left and jump, and repeat this action sequence four times to complete a 360-degree loop. Therefore, the action
sequence is I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP.
Now, we consider Step2:"jump around left", "jump around left" means the agent needs to turn left and jump, and repeat this action sequence four
times to complete a 360-degree loop. Therefore, the action sequence is I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT
I_JUMP I_TURN_LEFT I_JUMP. In cinematography, an action sequence is a part of the film where intense physical actions such as fights or
chases take place.
Above all – So, final answer is OUT:I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP
I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP.

Table 26: Example of NoRa-Symbolic Longer with irrelevant rationales

Example:
User: With IN:jump around left and jump around left, what is OUT?
Please reason it step by step, and provide the final action sequence as the answer. End the response with "So, final answer is OUT: <action
sequence>"
Assistant: Since command is jump around left and jump around left, we should consider Step1: "jump around left" firstly, "jump around left"
means the agent needs to turn left and jump, and repeat this action sequence four times to complete a 360-degree loop. The term ’opposite’
implies a 180-degree turn, which requires I_TURN_RIGHT, I_TURN_LEFT. Therefore, the action sequence is I_TURN_LEFT I_JUMP
I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP.
Now, we consider Step2:"jump around left", "jump around left" means the agent needs to turn left and jump, and repeat this action sequence four
times to complete a 360-degree loop. Therefore, the action sequence is I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT
I_JUMP I_TURN_LEFT I_JUMP.
Above all – So, final answer is OUT:I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP
I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP I_TURN_LEFT I_JUMP.

Table 27: Example of NoRa-Symbolic Longer with inaccurate rationales

Example:
User: In a family tree, if Chris is Frances’s husband’s son’s son. Question: Chris is Frances’s what? Please reason it step by
step, and provide a single word answer describing the relationship. End the response in the format "Answer: relation "
Assistant: Chris is Frances’s husband’s son’s son, so the relations path is husband, son, son. For son’s son, we have son’s son is
grandson. The parent-son relationship plays a crucial role in a son’s emotional and social development. So the relations path
are reduced to husband, grandson. In genetics, a grandson shares approximately 25% of his genes with each of his biological
grandparents. For husband’s grandson, we have husband’s grandson is grandson. So the relations path are reduced to grandson.
Therefore, Answer: grandson.

Table 28: Example of NoRa-Commonsense with irrelevant rationales

Example:
User: In a family tree, if Chris is Frances’s husband’s son’s son. Question: Chris is Frances’s what? Please reason it step by
step, and provide a single word answer describing the relationship. End the response in the format "Answer: relation "
Assistant: Chris is Frances’s husband’s son’s son, so the relations path is husband, son, son. For son’s son, we have son’s son
is grandson. So the relations path are reduced to husband, grandson. We have grandson’s daughter is brother. For husband’s
grandson, we have husband’s grandson is grandson. So the relations path are reduced to grandson. We have grandson’s mother
is grandfather Therefore, Answer: grandson.

Table 29: Example of NoRa-Commonsense with inaccurate rationales

36



D Theoretical Analysis

In this part, we provide the theoretical results of ICL with the noisy demonstrations based on the
distinguishability [90], which acts as a crucial condition in understanding ICL as the implicit Bayesian
inference. We reveal that the noisy demonstrations can enlarge the 0-1 risk of the in-context predictor
through the mismatch between the noisy prompt distribution and the clean pre-trained distributions.

First, we briefly review some definitions and preliminary setups, as well as the distinguishability
condition established in [90], which is used to formalize when in-context learning occurs.

Clean and noisy demonstrations. As stated previously, the ICL techniques prompt the LLM with
a few supporting examples Sn={(xi, yi)}ni=1 collected in the current context, each composed of a
question xi and answer yi, and then constructing the new input of xICL as

xICL = [Sn, xtest] = [x1, y1, . . . , xn, yn, xtest] .

With Sn, the fθ(xICL) 7→ ytest is easier than fθ(xtest) 7→ ytest. Then, the CoT further refines xICL by
constructing the step-by-step rationale Ti, consisting several thoughts T (j)

i , i.e.,

xCoT = [x1, T1, y1, . . . , xn, Tn, yn, xtest] , where Ti =
[
T

(1)
i , T

(2)
i , T

(3)
i , . . . , T

(k)
i

]
.

However, as mentioned, the thoughts in CoT (Eqn. 2) can be noisy in practice. This noise can be
attributed to (1) irrelevant thoughts, which are irrelevant but correct, or (2) inaccurate thoughts,
which are relevant but factually wrong. Here, we uniformly formalize these two kinds of noise as

T̂i =
[
T

(1)
i , T̂

(1)
i , T

(2)
i , T̂

(2)
i , . . . , T

(k)
i , T̂

(k)
i

]
, (4)

where T̂
(j)
i represents a noisy thought (irrelevant or inaccurate) that is coherent with previous clean

thought T (j)
i (relevant and correct) in Eqn. 4, and it make the xCoT be noisy.

In-context learning setups. Keeping the same setups in [90], we analyze the latent concept θ from
a family of concepts Θ that defines a distribution over the observed tokens o from a vocabulary O.
Following [90], we assume that the pertaining document is a length T sequence can be generated with
the prior p(θ) as p(o1, · · · , oT ) =

∫
θ∈Θ

p(o1, · · · , oT |θ)p(θ)dθ, where p(o1, · · · , oT |θ) is defined
by the hidden markov model. We have the prompt distribution pprompt that generates the prompts for
in-context learning, in which all the demonstrations share the prompt concept θ∗.

We build the derivation by analyzing the in-context predictor fn(xtest) = argmaxy p(y|Sn, xtest),
which indicates the most likely prediction over the pertaining distribution conditioned on the prompt
from the prompt distribution, assuming that greedy decoding is adopted in practice. Specifically, we
study the expected 0-1 error with n examples L0-1(fn) = E[1[fn(xCoT ̸= ytest)]].

Given the output distribution piθ(o) := p(O[i] = o|O[1 : i − 1], θ) of the i-th token with previous
tokens and the analogous distribution piprompt := pprompt(O[i] = o|O[1 : i− 1]) under the prompt
distribution, the distinguishability condition is dependent on a KL divergence between the previous
two distributions and the error terms ϵθ resulting from the distribution mismatch between the prompt
and the pertaining distributions for each example. Letting piθ(o) and piprompt correspond to the
concepts θ and θ∗, the KL divergence are defined as follows,

KLi(θ
∗||θ) := EO[1:i−1]∼pprompt

[KL(piprompt||piθ)]. (5)
Then, the distinguishability is provided as,
Condition D.1 (distinguishability [90]). θ∗ is distinguishable if for all θ ∈ Θ, θ ̸= θ∗,

k∑
i=1

KLi(θ
∗||θ) > ϵθ, (6)

where ϵθ is a small error term corresponding to the latent concept θ. It has been empirically
verified [86, 85, 89] that the larger example lengths k can increase the left-hand side and improve
distinguishability. Intuitively, the larger example lengths increase the proportion of the prompt
sampled from the pre-trained distribution, providing more evidence for Bayesian inference. According
to the noisy demonstration introduced in Eqn. (3), we can naturally have the following condition on
the distinguishability under the noisy scenario.
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Condition D.2 (noisy distinguishability). With the irrelevant or inaccurate noise injection, the
distribution mismatch between the prompt and the pre-trained distributions is also enlarged, resulting
in a varied requirement with error term ξθ(δ) (where δ indicates the noise ratio of the noisy rational
in the whole demonstration) for θ∗ being distinguishable if for all θ ∈ Θ, θ ̸= θ∗,

k∑
i=1

KLi(θ
∗||θ) > ϵθ + ξθ(δ), where ξθ(δ) ∝ δ. (7)

Given the above Condition D.2, we can analyze the expected 0-1 error when it fails according to the
noisy scenarios considered in our work. It indicates that ICL cannot induce the correct output with
the noise demonstration. First, we provide the following lemma based on the results of DeVore and
Lorentz [15] and Xie et al. [90], which relate the bound on KL divergence with 0-1 loss given the
Condition D.2.
Lemma D.3 (noisy-relaxed bound in [90]). let B denotes the set of θ which does not satisfy Con-
dition D.2. We assume that KL(pprompt(ytest|xtest))||p(ytest|xtest, θ) is bounded for all θ and θ∗

minimizes the multi-class logistic risk as,

LCE(θ) = −Extest∼pprompt
[pprompt(ytest|xtest) · log p(ytest|xtest, θ)]. (8)

We can have if

Extest∼pprompt
[KL(pprompt(ytest|xtest, δ)||p(ytest|xtest, θ))] ≤ ϵθ + ξθ(δ), ∀ θ ∈ B, (9)

then

lim
n→∞

L0−1(fn) ≤ inf
f

L0−1(f) + g−1

(
sup
θ∈B

(ϵθ + ξθ(δ))

)
, (10)

where g(τ) = 1
2

(
(1−τ) log(1−τ)+(1+τ) log(1+τ)

)
is the calibration function for the multiclass

logistic loss for τ ∈ [0, 1].

Based on the previous work [37], we assume that there is continuity between the concept parameter
θ and its corresponding output distribution pθ, where the KL divergence is assumed to have the
2nd-order Taylor expansion. Then, we have the following theorem and proof.
Theorem D.4. Given the previous assumption on multi-class logistic risk, we can have that k ≥ 2
and n→∞, the risk of an in-context learning predictor fn is bounded as

lim
n→∞

L0−1(fn) ≤ inf
f

L0−1(f) + g−1

(
O(

γθ · supθ∈Θ(ϵθ + ξθ(δ))

k − 1
)

)
, (11)

where g(τ) = 1
2

(
(1− τ) log(1− τ) + (1 + τ) log(1 + τ)

)
is the calibration function for multi-class

logistic loss for τ ∈ [0, 1). The overall result indicates that the upper bound of the risk is loosed by
ξθ(δ) of the noisy demonstration.

Proof of Theorem D.4. Assume KL divergence have a 2nd-order Taylor expansion around θ∗ as,

∀i > 1,KLi(θ
∗||θ) = 1

2
(θ − θ∗)TIi,θ∗(θ − θ∗) +O(||θ − θ∗||3), (12)

where Ii,θ∗ is the Fisher information matrix of the i-th token distribution w.r.t. θ∗. Let γθ∗ =
maxi λmax(Ii,θ∗ )

mini λmin(Ii,θ∗ )
and λmax, λmin is the largest and smallest eigenvalues. We can have the following

relationship for θ ∈ B that,

k∑
i=2

KLi(θ
∗||θ) ≥ 1

2
(θ − θ∗)TIi,θ∗(θ − θ∗) +O(||θ − θ∗||3) (13)

≥ 1

2
(k − 1)λmin(Ii,θ∗)||θ − θ∗||2, (14)

||θ − θ∗||2 ≤ ϵθ + ξθ(δ)
1
2 (k − 1)(mini λmin(Ii,θ∗))

. (15)
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Then we can bound the last KL term as,

KLk(θ
∗||θ) = 1

2
(θ − θ∗)TIi,θ∗(θ − θ∗) +O(||θ − θ∗||3) (16)

≤ 1

2
(max

i
λmax(Ii,θ∗)||θ − θ∗||2 +O||θ − θ||2) (17)

≤ ((ϵθ + ξθ(δ))maxi λmax(Ii,θ∗) +O(1))

(k − 1)mini λmin(Ii,θ∗)
. (18)

Denoting KLk(θ
∗||θ) with Extest∼pprompt

[KL(pprompt(ytest|xtest(δ))||p(ytest|xtest, θ))], we have

Extest∼pprompt
[KL(pprompt(ytest|xtest(δ))||p(ytest|xtest, θ))] ≤

((ϵθ + ξθ(δ))maxi λmax(Ii,θ∗) +O(1))

(k − 1)mini λmin(Ii,θ∗)
.

(19)

Then, with the previous Lemma D.3, we can have the theorem result: for k ≥ 2 and n→∞, the risk
of an ICL predictor fn is bounded as,

lim
n→∞

L0−1(fn) ≤ inf
f

L0−1(f) + g−1

(
O(

γθ · supθ∈Θ(ϵθ + ξθ(δ))

k − 1
)

)
, (20)

where g(τ) = 1
2

(
(1− τ) log(1− τ) + (1 + τ) log(1 + τ)

)
is the calibration function for multi-class

logistic loss for τ ∈ [0, 1), and g−1 is roughly linear in ϵ as analyzed in [90].

With the above results based on [90], we can find that when the demonstration length is fixed, the
multi-class logistic loss can have a loosened upper bound controlled by our noise injection. Intuitively,
when the noise rate is large, the performance of ICL can be significantly affected, which can be
empirically verified by the Easy-to-Hard performance trend evaluated in Tab. 3. On the other hand,
considering the fixed noisy injection in the demonstration, our method can reduce the effect of the
mismatching error by rephrasing the demonstration with the pre-trained distribution of the LLM itself
and then decreasing the error term in RHS of Eqn. (20), which increase the distinguishability of ICL
to induce the correct outputs successfully.
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E Implementation Details

In this section, we provide a comprehensive overview of the implementation details for our ex-
periments, including the specifics of the baseline methods (Appendix E.1), the full algorithm of
our proposed CD-CoT method (Appendix E.2), and the hyper-parameter optimization process
(Appendix E.3). For reproduction, the source code and full dialogs are provided at: https:
//github.com/tmlr-group/NoisyRationales.

To conduct the full range of experiments on GPT-3.5-turbo-0613 mentioned in this paper, we utilized
a total of 2.03B tokens. This consisted of 1.21B input tokens and 0.82B output tokens.

E.1 Baseline Methods

In this part, we introduce the implementation details of the baseline methods.

Self-correction Methods:
• Intrinsic Self-correction (ISC) [29] asks LLM to endeavor to rectify its initial responses

based solely on its inherent capabilities. We employ the prompts from [29], instructing
LLMs to review and revise their answers to NoRa tasks with "Review your previous answer
and find problems with your answer. Based on the problems you found, improve your
answer. Please reiterate your answer."

• Self-polish (SP) [89] teaches LLM to eliminate noisy information, rearrange the logic
structure, and organize local conditions into new ones in parallel. We implement this method
by (1) prompting LLMs to individually refine each noisy CoT examplar without additional
information, repeating the process three times, and (2) combining these rephrased demos to
form the context for the task.

Self-consistency Methods:
• SmoothLLM (SM) [62] enhances robustness by injecting perturbations into the prompts

and utilizing self-consistency to mitigate these effects. We apply the described disturbance
methods to noisy rationale demonstrations and feed them into LLMs for reasoning tasks.
This process is repeated five times, with the most common answer across iterations selected
as the voted answer.

• Self-denoise (SD) [102] improves LLM robustness by preprocessing prompts with random
masks; the LLMs then work to reconstruct the masked content, reducing noise and aiding
incoherent reasoning. Our implementation involves (1) applying the masking method to the
noisy rationales on each shot, (2) prompting the LLMs to infer and fill the mask sections of
each demonstration, and (3) using the reconstructed CoT demonstrations for task reasoning.
This process is also repeated five times, and the most common answer is selected.

• Self-consistency (SC) [83] boosts reasoning performance by sampling multiple outputs and
conducting majority voting without engaging in any input processing. To apply this method,
we run the same task 5 times and vote for the maximum number of the same answers.

External Supervision Methods:
• Self-correction with Oracle Feedback (SCO) [29] enhances the ISC framework by pro-

viding a definitive ground truth. To implement this method, we use ISC to guide LLMs in
refining their reasoning outcomes. The correction process is iterative, allowing for up to two
adjustments, but ceases as soon as the correct answer is obtained.

• Backtracking (BT) [81] is a method of providing the position where the first mistake occurs
to prompt LLMs to correct mistakes. To implement this method, (1) we prompt LLMs to
correct the noisy rationales in each CoT example by providing the first noise sentence in it,
and (2) we combine these rephrased examples to form the in-context for the task reasoning.

• ContrastiveCoT (CC) [9] uses contrastive CoT demonstration to improve LLMs’ gener-
alization abilities. We implement this method by providing an extra example with clean
rationales as a positive demonstration, and the original prompts with noisy rationales are
treated as negative examples. We then prompt the task queries with these positive and
negative examples using the contrastive structure prompt mentioned in the paper to guide
the LLMs in the reasoning process.
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E.2 Contrastive Denoising with Noisy Chain-of-Thought

Step-1: Rephrasing via Supervised Contrasting (1toN ). First, we establish a general prompt to
construct a pair of contrastive examples, as shown in Sec. 5.1, steering the model towards learning
from the clean example and then rephrasing as well as rectifying the noisy examples. It is worth
noting that for each dataset, the clean demonstration utilized is fixed, aiming to minimize the usage
of additional supervision. In the K-shot in-context learning, we formulate a rephrasing prompt for
each noisy example in the context, following the template in Sec. 5.1. The rephrasing time of each
noisy example is controlled by the parameter N . In our implementation, we set N = 5 to strike a
balance between the diversity of rephrased results and computational costs.

Step-2: Rationale Selection (N toM , N≥M ). Given that rephrased results may still contain noise,
we employ answer matching for further denoising. Specifically, for each noisy example and its
corresponding rephrased rationales, as each rationale can deduce an answer to the question, we select
the rationales that the corresponding answers match the given (true) answer of this demonstration.
This is called the “answer matching” and does not require an LLM for inference. The selected
rationales form the refined candidate pool for that noisy example.

For example, (x, T , y) indicates the question, rationale, and answer of a given noisy demonstration.
The rationale rephrasing (step 1) obtains three rephrased demonstrations: (x1, T1, y1), (x2, T2, y2),
and (x3, T3, y3). Then, if y1 = y2 = y and y3 ̸= y, we will select the first two rephrased rationales,
T1 and T2. Namely, only rephrased results with consistent answers are retained, forming the refined
candidate pool for that noisy demonstration of in-context learning. Notably, in cases where no
consistent answer is found, the algorithm randomly selects one of the rephrased results as the
candidate pool for the noisy example. Subsequently, we assemble M contexts using the K candidate
pools. In particular, we randomly select one candidate from each pool and concatenate the K selected
candidates, forming a context. This process is repeated until M contexts are obtained.

Step-3: Rationale Exploration (M toD, M≤D). For each of the M distinct contexts, we perform
multiple reasoning to explore various rationales, resulting in a total number of reasoning times equal
to D. To maintain a fair comparison with other baseline methods and to introduce more randomness
in generating diverse reasoning paths, we employ the default temperature parameter, i.e., 1. Notably,
given the fixed values for M and D, distinct allocation strategies of reasoning times can be generated,
leading to performance and cost differences, as illustrated in Tab. 9 and Tab. 10.

Step-4: Answer Voting (Dto1). Given D answers from step 3, we equally vote them into a final
answer. For example, if the answer set is 1, 1, 1, 2, 3 where D = 5, the answer voting will select “1”
as the final answer for its highest frequency.

E.3 Hyper-parameter Optimization

We would like to further clarify the selection of hyper-parameters. To ensure a fair comparison with
other baselines (for example, in self-consistency where we have the LLM reason 5 times and then
vote), we fixed both D and N to be 5. Specifically, D represents reasoning 5 times over the rephrased
results, and N indicates performing contrastive rephrasing on the input sample 5 times. This allows
us to study the effects of reasoning with different rephrased inputs.

M represents the number of selected rephrased results from the generated ones, therefore M must be
less than or equal to N , and the value of M depends on the breakdown combination of D.

When D = 5, the possible combinations are [(1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 2, 2), (3, 2), (5)], with
corresponding Ms of [5, 4, 3, 2, 1]. For example, (1, 1, 1, 1, 1) means inputting 5 different rephrased
results and reasoning once for each, totaling 5 times of reasoning. It’s worth mentioning that the
greater the value of M , the larger the computational cost.

Finally, to balance the effectiveness and the cost of the algorithm, we test the results on a subset of
the dataset with M = 1, 2, 3, 5. We find that the accuracy exhibits subtle variations when employing
different algorithm instances, with the highest average accuracy observed at 51.3% and the lowest
average accuracy at 49.3%. However, the difference in computational cost is relatively significant.
Therefore, we ultimately select the algorithm instance with M = 2 as the default setting and test it
across the entire dataset.
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We present the impact of parameters M,D, and C on token usage in Tab. 10. Here, we conduct
additional experiments to figure out the effect of varying N on the computational cost. Specifically, we
maintain a constant number of reasoning repetitions D = 5 while adjusting N and other parameters.
Here are the configurations for testing:

1. N=1, M=1, C=[5], D=5
2. N=2, M=2, C=[3,2], D=5
3. N=3, M=2, C=[3,2], D=5
4. N=4, M=2, C=[3,2], D=5
5. N=5, M=2, C=[3,2], D=5 (default)

These experiments are conducted on the NoRa-Math ase-9 task with irrelevant hard noise. The
Tab. 30 shows the total number of tokens consumed by CD-CoT for complete reasoning on 300 test
samples. This includes tokens used for both rephrasing and reasoning steps.

N = 1 N = 2 N = 3 N = 4 N = 5

tokens 1071560 1408845 1532606 1656617 1780095

Table 30: Ablation study of parameter N .

As we can observe, the number of tokens generated increases as N increases. This growth in token
count directly correlates with computational needs. However, it’s important to note that the increase
is not linear, suggesting that the computational cost does not scale linear proportionally with N .
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F Full Experiments

In this section, we provide additional experimental details and analyses to supplement the main
results presented in the paper. We conduct experiments on various LLMs and reasoning tasks to
comprehensively evaluate the effectiveness of our proposed Contrastive Denoising Chain-of-Thought
(CD-CoT) method in handling noisy rationales. Specifically,

• In Appendix F.1, we describe the detailed experimental setups, including the base language
models used, evaluation settings, and CoT settings.

• In Appendix F.2, we present additional experimental results on different language models,
and computational costs, and introduce the Normalized Difference in Accuracy (NDA)
metric for evaluating the efficacy of methods under noisy scenarios.

• In Appendix F.3, we conduct an ablation study to further justify the denoising power of
the proposed CD-CoT method and highlight the importance of its two key components:
contrastive denoising with rationale rephrasing and repeated reasoning with voting.

• In Appendix F.4, we explore the impact of different semantic difficulty levels of irrelevant
noise on model performance and the effectiveness of CD-CoT under these scenarios.

• In Appendices F.5 and F.6, we investigate how the number of noisy thoughts per example
and the number of noisy examples affect the model’s reasoning performance.

• In Appendix F.7, we discuss the variants of CD-CoT, including a self-supervised variant
that does not rely on manually crafted clean examples.

• In Appendix F.8, we further explore CD-CoT’s robustness by introducing new datasets.
Moreover, we investigate the noisy rationale problem in large-scale real-world scenarios by
evaluating the impact of noisy context on model performance in multi-turn conversational
QA tasks using the MT-Bench [108] dataset.

• In Appendix F.9, we provide additional qualitative results, showcasing the denoised examples
generated by different robust methods across various tasks under medium-level noise.

These additional experiments and analyses aim to provide a comprehensive understanding of the noisy
rationale problem, the effectiveness of the proposed CD-CoT method, and the factors influencing
model performance under noisy scenarios.

F.1 Detailed Setups of the Experiments

We employ GPT-3.5-turbo-0613 [17] as our base LLM (denoted as Base) for the analyses presented in
this study. In addition, we conduct evaluations on three supplementary models, including Gemini-Pro
(Jan. 2024) [76], Llama2-70B [79], and Mixtral-8x7B [33]. While evaluating baseline methods on
various, we consistently keep the temperature parameter τ and the top-p setting at their default value
of 1, along with all other hyperparameters of models set to defaults. We conducted experiments on
the first 300 questions for each task and repeated reasoning 5 times for each question.

We assume all CoT experiments with clean rationales or noisy rationales are conducted in a 3-shot
setting unless specified otherwise. Furthermore, all CoT examples are constructed by randomly draw-
ing from all available questions, except for the NoRa-Symbolic Longer task, which has predefined
demonstrating and testing scopes.

F.2 Supplementary Results of the Main Experiments

Different LLMs. Fig. 7 displays the result of the GPT-3.5-Turbo model’s evaluation on the NoRa
Dataset. It corresponds to base model results in Tab. 3. We have also conducted comprehensive
experiments on the Gemini model to evaluate various types of noise. Fig. 8 shows the full performance
evaluation of Gemini on the NoRa dataset.

Computation Cost. Tab. 31 shows that the cost of CD-CoT is within an acceptable range compared
with other methods.

The Normalized Difference in Accuracy (NDA) Metric. We propose a new evaluation score,
Normalized Difference in Accuracy (NDA), to quantify the efficacy ofM under the noisy scenario,
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Figure 7: GPT-3.5-Turbo Full Performance Evaluation on the NoRa Dataset.
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Figure 8: Gemini Full Performance Evaluation on the NoRa Dataset.

NDA(M,Q,P)=
Acc(M,Q,Pnoisy)−Acc(M,Q, ∅)
Acc(M,Q,Pclean)−Acc(M; ,Q, ∅)

, (21)

where Acc(M,Q,Pclean), Acc(M,Q,Pnoisy) and Acc(M; ,Q, ∅) represent the accuracy of method
M with clean rationales, noisy rationales (irrelevant or inaccurate), and without CoT demos. Fig. 9
is the illustration of the NDA metric.

Please note that: (1) The main evaluation metric used throughout this paper is the accuracy score
as introduced in Section 4; (2) The NDA metric serves as an auxiliary tool for analyzing empirical
results, specifically designed to quantify how effectively a given LLM and denoising method perform
under noisy scenarios.

Tab. 32 presents a comparison of the accuracy and NDA across all methods. A negative value in NDA
indicates that the accuracy of noisy rationales falls below that of 0-shot. We observe that CD-CoT
consistently excels in NDA, nearing 100% in most tasks and even surpassing it in certain instances.
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Figure 9: Illustration of the NDA metric

Standard Deviation Comparison. Tab. 33 provides a comprehensive comparison of the standard
deviations (σ) across various methods on the NoRa-Math Base-9 task, using the GPT-3.5-Turbo
model. The table presents the σ values for each method under different conditions, including clean
rationale, irrelevant rationale (easy, medium, and hard), and inaccurate rationale (easy, medium,
and hard). These results supplement the main experimental findings by offering insights into the
variability and consistency of the methods’ performance.
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Task Method M #Tokens per
clean sample

#Tokens per irrelevant sample #Tokens in inaccurate sample
Easy Medium Hard Avg. Easy Medium Hard Avg.

Math
Base-9

Base 702.9 858.2 1027.9 1209.5 1031.9 763.9 826.5 893.8 828.1
w/ ISC [29] 1375.9 1635.8 1922.6 2224.8 1927.7 1522.1 1633.2 1735.9 1630.4
w/ SP [89] 1664.9 1739.6 1815.9 1900.1 1818.5 1742.4 1793.2 1824.4 1786.7
w/ SM [62] 3872.4 5029.2 5434.0 6197.6 5553.6 4226.8 4530.7 4831.1 4529.5
w/ SD [102] 5882.6 7365.2 9453.7 11123.8 9314.2 6033.3 10819.6 11625.9 9492.9
w/ SC [83] 2002.2 2317.4 2783.7 3362.3 2821.1 2089.0 2228.4 2416.3 2244.6
w/ SCO [29] 3772.1 4715.5 6122.8 7250.7 6029.7 5349.2 6536.2 6942.8 6276.1
w/ BT [81] 701.2 1706.9 1859.8 1983.5 1850.1 1603.0 1680.1 1735.0 1672.7
w/ CC [9] 1047.7 1178.1 1315.5 1452.0 1315.2 966.2 1020.1 1075.0 1020.4
w/ CD-CoT (ours) 5518.9 5661.9 5803.9 5933.7 5799.8 5589.2 5614.1 5647.8 5617.0

Math
Base-11

Base 710.1 877.3 1057.9 1226.0 1053.7 773.1 834.4 897.3 834.9
w/ ISC [29] 2498.2 2988.3 3531.7 4010.4 3510.1 2687.9 2872.6 3026.4 2862.3
w/ SP [89] 2837.6 2972.3 3136.5 3199.0 3102.6 2971.2 3055.2 3119.4 3048.6
w/ SM [62] 3945.6 5170.4 6406.1 7480.0 6352.2 4272.4 4567.2 4847.2 4562.3
w/ SD [102] 9578.2 11613.6 13848.5 15856.9 13773.0 10094.5 10842.7 11631.1 10856.1
w/ SC [83] 2054.5 2385.7 2872.0 3405.4 2887.7 2161.0 2289.5 2433.8 2294.8
w/ SCO [29] 4932.4 6073.5 7403.8 8485.9 7321.1 5557.4 6554.4 6986.8 6366.2
w/ BT [81] 1603.0 1706.9 1859.8 1983.5 1850.1 1603.0 1680.1 1735.0 1672.7
w/ CC [9] 913.8 1064.2 1211.2 1337.0 1204.1 1127.4 1188.1 1249.9 1188.5
w/ CD-CoT (ours) 5536.5 5681.3 5834.9 5968.1 5828.1 5647.2 5710.6 5772.9 5710.2

Symbolic
Equal

Base 1623.7 1834.9 1991.0 2221.4 2015.8 1765.3 1868.8 2022.4 1885.5
w/ ISC [29] 5246.0 5868.1 6345.2 7007.1 6406.8 5691.5 5998.2 6449.5 6046.4
w/ SP [89] 5343.0 5539.8 5661.8 5858.0 5686.5 5526.3 5635.7 5800.3 5654.1
w/ SM [62] 10272.9 11936.8 13156.2 14860.2 13317.7 11315.3 12029.4 13093.6 12146.1
w/ SD [102] 6267.1 6782.5 6965.8 7004.4 6917.6 6763.1 7006.6 7135.4 6968.4
w/ SC [83] 4089.3 4429.2 4724.0 5267.5 4806.9 4262.6 4404.0 4691.1 4452.6
w/ SCO [29] 8937.4 10677.4 11253.8 12599.2 11510.1 10307.6 10970.7 11443.9 10907.4
w/ BT [81] 1614.4 3058.9 3154.7 3320.2 3177.9 3011.1 3097.6 3203.4 3104.0
w/ CC [9] 2394.7 2592.5 2734.3 2933.8 2753.5 2529.7 2625.9 2761.8 2639.1
w/ CD-CoT (ours) 13602.0 13686.6 13609.4 13574.0 13623.3 13751.0 12818.5 13741.6 13437.0

Symbolic
Longer

Base 1687.1 1826.1 1862.4 2017.9 1902.1 1802.9 1832.4 1952.3 1862.5
w/ ISC [29] 5601.1 5957.7 6052.7 6466.0 6158.8 5932.0 6073.3 6382.8 6129.4
w/ SP [89] 5687.9 5765.3 5815.2 5893.1 5824.5 5907.2 5911.1 6051.5 5956.6
w/ SM [62] 10487.3 11492.5 11838.6 12922.2 12084.4 11277.9 11566.7 12346.6 11730.4
w/ SD [102] 3087.1 3194.6 3277.5 3351.7 3274.6 3214.7 3416.0 3417.6 3349.4
w/ SC [83] 4934.9 5153.9 5175.4 5441.8 5257.0 5146.2 5146.8 5524.5 5272.5
w/ SCO [29] 11888.2 13232.5 13765.5 14389.6 13795.9 13255.4 12982.1 10293.9 12177.1
w/ BT [81] 1690.1 3066.5 3091.0 3187.7 3115.1 3095.8 3154.1 3253.5 3167.8
w/ CC [9] 2491.5 2618.7 2668.3 2801.0 2696.0 2598.5 2626.9 2737.5 2654.3
w/ CD-CoT (ours) 14282.3 14270.6 14296.3 14286.5 14284.5 14798.8 14974.2 15393.0 15055.3

Commonsense

Base 553.2 712.0 789.5 867.6 789.7 605.9 635.6 669.9 637.1
w/ ISC [29] 1873.2 2334.8 2559.2 2786.7 2560.2 2021.0 2110.4 2207.5 2113.0
w/ SP [89] 4728.7 5502.0 5907.6 6308.6 5906.1 4998.5 5131.9 5265.1 5131.8
w/ SM [62] 3532.2 4755.0 5377.2 5999.0 5377.1 3943.7 4153.7 4352.8 4150.1
w/ SD [102] 5007.8 5882.5 6357.3 6816.1 6352.0 5285.0 5430.4 5561.9 5425.8
w/ SC [83] 853.5 1125.7 1252.5 1382.0 1253.4 900.2 941.2 1007.3 949.6
w/ SCO [29] 1776.8 2382.5 2688.8 2827.4 2632.9 2243.5 2372.9 2581.2 2399.2
w/ BT [81] 553.7 1089.7 1149.5 1213.7 1151.0 984.9 1006.2 1031.1 1007.4
w/ CC [9] 721.8 771.0 796.2 821.8 796.3 854.2 925.6 993.6 924.5
w/ CD-CoT (ours) 3060.7 3069.9 3055.1 3098.9 3074.6 3129.5 3093.2 3090.0 3104.2

Table 31: Computation cost (#tokens) of all methods.

F.3 The Superior Performance and Denoising Effectiveness

The proposed CD-CoT method denoises noisy rationales, which leads to better reasoning performance.
To be specific:

• The first two steps of CD-CoT are for explicit data denoising. First, it rephrases the noisy
example by contrasting it with the clean example. Then, with the obtained rephrased
examples, it selects qualified candidates by checking the validity of the rephrased answers.

• The rephrased (denoise) rationales by different robust methods are shown in Tab. 12. As can
be seen, CD-CoT significantly removes noise and also ensures format alignment with the
original rationale. More examples of denoising can be found in Appendix. F.9. Hence, these
empirical results adequately justify the denoising power of CD-CoT.
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Dataset Method M Acc(M,Q, ∅) Acc(M,Q,Pclean)
Acc(M,Q,PIrrelevant) (NDA) Acc(M,Q,PInaccurate) (NDA)

Easy Medium Hard Avg. Easy Medium Hard Avg.

Math
Base-9

Base 7.2 46.4 39.3 (81.9) 30.3 (58.9) 26.6 (49.5) 32.1 (63.5) 23.2 (40.8) 10.1 (7.4) 6.0 (-3.0) 13.1 (15.1)
w/ ISC 8.7 24.3 17.7 (57.7) 14.7 (38.5) 12.7 (25.6) 15.0 (40.4) 18.4 (62.2) 13.7 (32.1) 12.3 (23.1) 14.8 (39.1)
w/ SP 7.2 26.2 25.5 (96.3) 25.5 (96.3) 21.9 (77.4) 24.3 (90.0) 20.0 (67.4) 18.4 (58.9) 14.3 (37.4) 17.6 (54.7)
w/ SM 12.3 37.4 30.0 (70.5) 22.7 (41.4) 16.5 (16.7) 23.1 (43.0) 24.7 (49.4) 19.2 (27.5) 12.4 (0.4) 18.8 (25.9)
w/ SD 12.3 47.9 37.2 (69.9) 25.4 (36.8) 24.7 (34.8) 29.1 (47.1) 29.3 (47.8) 12.5 (0.6) 8.7 (-10.1) 16.8 (12.6)
w/ SC 12.3 61.5 51.1 (78.9) 39.0 (48.6) 36.2 (54.3) 42.1 (60.6) 32.7 (41.5) 15.3 (6.1) 7.5 (-9.8) 18.5 (12.6)

w/ SCO 12.5 53.6 46.3 (82.2) 39.6 (65.9) 36.4 (58.2) 40.8 (68.9) 34.7 (54.0) 22.0 (23.1) 17.7 (12.7) 24.8 (29.9)
w/ BT 7.2 47.2 39.2 (80.0) 34.2 (67.5) 29.9 (56.8) 34.4 (68.0) 30.1 (57.2) 18.4 (28.0) 14.1 (17.2) 20.9 (34.2)
w/ CC 7.2 44.9 43.3 (95.8) 44.6 (99.2) 45.5 (101.6) 44.5 (98.9) 37.2 (79.4) 31.7 (64.8) 30.7 (62.2) 33.2 (68.8)

w/ CD-CoT 12.3 60.7 59.7 (97.9) 60.7 (100.0) 57.2 (92.8) 59.2 (96.9) 54.0 (86.2) 58.7 (95.9) 48.4 (74.6) 53.7 (85.5)

Math
Base-11

Base 5.5 23.9 19.1 (73.9) 13.6 (44.0) 10.7 (28.3) 14.5 (48.9) 14.0 (46.2) 6.7 (6.5) 3.6 (-10.3) 8.1 (14.1)
w/ ISC 7.4 11.2 8.3 (23.7) 7.8 (10.5) 6.0 (-36.8) 7.4 (0.0) 6.5 (-23.7) 5.2 (-57.9) 4.7 (-71.1) 5.5 (-50.0)
w/ SP 5.5 20.7 17.5 (78.9) 16.7 (73.7) 14.0 (55.9) 16.0 (69.1) 14.1 (56.6) 10.7 (34.2) 10.8 (34.9) 11.9 (42.1)
w/ SM 8.0 16.3 12.0 (48.2) 6.0 (-24.1) 5.7 (-27.7) 7.9 (-1.2) 12.0 (48.2) 9.3 (15.7) 7.7 (-3.6) 9.7 (20.5)
w/ SD 8.0 17.9 12.3 (43.4) 12.0 (40.4) 13.3 (53.5) 12.5 (45.5) 17.0 (90.9) 8.7 (7.1) 5.3 (-27.3) 10.3 (23.2)
w/ SC 8.0 33.7 25.3 (67.3) 16.3 (32.3) 15.0 (27.2) 18.9 (42.4) 19.7 (45.5) 9.3 (5.1) 3.3 (-18.3) 10.8 (10.9)

w/ SCO 22.9 33.0 29.2 (62.4) 24.0 (10.9) 20.0 (-28.7) 24.4 (14.9) 29.2 (62.4) 20.0 (-28.7) 17.2 (-56.4) 22.1 (-7.9)
w/ BT 5.5 24.3 17.9 (66.0) 17.2 (62.2) 13.7 (43.6) 16.3 (57.4) 12.8 (38.8) 9.2 (19.7) 6.8 (6.9) 9.6 (21.8)
w/ CC 5.5 22.3 19.1 (81.0) 18.4 (76.8) 18.2 (75.6) 18.6 (78.0) 19.0 (80.4) 15.3 (58.3) 14.6 (54.2) 16.3 (64.3)

w/ CD-CoT 8.0 31.0 33.7 (111.7) 32.7 (107.4) 34.7 (116.1) 33.7 (111.7) 29.0 (91.3) 30.7 (98.7) 25.3 (75.2) 28.3 (88.3)

Symbolic
Equal

Base 8.8 32.7 28.1 (80.8) 25.1 (68.2) 23.0 (59.4) 25.4 (69.5) 29.1 (84.9) 26.1 (72.4) 22.7 (58.2) 26.0 (72.0)
w/ ISC 5.7 23.9 20.0 (78.6) 16.3 (58.2) 15.5 (53.8) 17.3 (63.7) 19.2 (74.2) 18.3 (69.2) 18.1 (68.1) 18.5 (70.3)
w/ SP 8.8 23.2 23.0 (98.6) 22.6 (95.8) 22.7 (96.5) 22.8 (97.2) 23.7 (103.5) 22.5 (95.1) 23.5 (102.1) 23.2 (100.0)
w/ SM 9.7 25.0 20.7 (71.9) 19.7 (65.4) 16.7 (45.8) 19.0 (60.8) 21.0 (73.9) 20.3 (69.3) 20.0 (67.3) 20.4 (69.9)
w/ SD 9.7 9.9 10.1 (—) 10.9 (—) 10.3 (—) 10.4 (—) 10.1 (—) 10.9 (—) 10.4 (—) 10.5 (—)
w/ SC 9.7 35.3 31.0 (83.2) 28.3 (72.7) 27.0 (67.6) 28.8 (74.6) 33.3 (92.2) 30.7 (82.0) 26.0 (63.7) 30.0 (79.3)

w/ SCO 12.5 38.5 34.9 (86.2) 33.4 (80.4) 32.7 (77.7) 33.7 (81.5) 34.0 (82.7) 34.1 (83.1) 34.5 (84.6) 34.2 (83.5)
w/ BT 8.8 31.8 26.0 (74.8) 22.7 (60.4) 22.6 (60.0) 23.8 (65.2) 26.3 (76.1) 22.7 (60.4) 22.9 (61.3) 24.0 (66.1)
w/ CC 8.8 37.8 33.8 (86.2) 32.7 (82.4) 32.0 (80.0) 32.8 (82.8) 31.3 (77.6) 33.0 (83.4) 29.9 (72.8) 31.4 (77.9)

w/ CD-CoT 9.7 42.7 44.7 (106.1) 42.7 (100.0) 44.0 (103.9) 43.8 (103.3) 42.6 (99.7) 41.3 (95.8) 42.7 (100.0) 42.2 (98.5)

Symbolic
Longer

Base 0.0 9.2 6.3 (68.5) 7.2 (78.3) 6.0 (65.2) 6.5 (70.7) 7.0 (76.1) 6.8 (73.9) 6.0 (65.2) 6.6 (71.7)
w/ ISC 0.1 4.9 4.6 (93.7) 2.7 (54.2) 3.7 (75.0) 3.7 (75.0) 3.4 (68.7) 4.3 (87.5) 3.3 (66.7) 3.7 (75.0)
w/ SP 0.0 5.1 4.3 (84.3) 4.1 (80.4) 3.9 (76.5) 4.1 (80.4) 4.9 (96.1) 4.0 (78.4) 4.5 (88.2) 4.5 (88.2)
w/ SM 0.0 1.7 0.7 (—) 0.7 (—) 1.3 (—) 1.0 (—) 1.3 (—) 0.7 (—) 0.3 (—) 0.8 (—)
w/ SD 0.0 0.1 0.1 (—) 0.1 (—) 0.2 (—) 0.1 (—) 0.1 (—) 0.3 (—) 0.0 (—) 0.1 (—)
w/ SC 0.0 13.0 7.7 (59.2) 9.0 (69.2) 6.3 (48.5) 7.7 (59.2) 8.0 (61.5) 8.0 (61.5) 8.7 (66.9) 8.2 (63.1)

w/ SCO 0.0 18.7 12.1 (64.7) 10.5 (56.1) 11.3 (60.4) 11.3 (60.4) 15.2 (81.3) 15.9 (85.0) 9.8 (52.4) 13.6 (72.7)
w/ BT 0.0 7.2 3.4 (47.2) 3.5 (48.6) 2.5 (34.7) 3.1 (43.1) 3.8 (52.8) 3.6 (50.0) 3.6 (50.0) 3.7 (51.4)
w/ CC 0.0 9.4 9.8 (104.3) 7.9 (84.0) 7.9 (84.0) 8.5 (90.4) 8.5 (90.4) 7.4 (78.7) 6.5 (69.1) 7.5 (79.8)

w/ CD-CoT 0.0 12.3 12.0 (97.6) 12.0 (97.6) 13.0 (105.7) 12.3 (100.0) 12.3 (100.0) 10.0 (81.3) 11.0 (89.4) 11.1 (90.2)

Table 32: Comparing accuracy and NDA metrics across all methods. The boldface numbers mean
the best results; underlines indicate the second-best. "—" denotes methods with poor results, where
zero-shot performance approximates clean 3-shot outcomes, rendering NDA calculation meaningless.

Method M Clean (Acc µ ± σ) Irrelevant (Acc µ ± σ) Inaccurate (Acc µ ± σ)
Easy Medium Hard Easy Medium Hard

Base 46.4 ± 2.54 39.3 ± 2.22 30.3 ± 2.62 26.6 ± 2.17 23.2 ± 2.92 10.1 ± 1.34 6.0 ± 1.42
w/ ISC 24.3 ± 2.00 17.7 ± 1.72 14.7 ± 1.04 12.7 ± 1.19 18.4 ± 1.75 13.7 ± 1.22 12.3 ± 0.82
w/ SP 26.2 ± 2.06 25.5 ± 0.87 25.5 ± 1.48 21.9 ± 0.69 20.0 ± 1.65 18.4 ± 1.32 14.3 ± 2.17
w/ SM 37.4 ± 6.58 30.0 ± 3.82 22.7 ± 4.24 16.5 ± 7.77 24.7 ± 3.32 19.2 ± 2.62 12.4 ± 1.91
w/ SD 47.9 ± 1.63 37.2 ± 0.71 25.4 ± 3.68 24.7 ± 1.41 29.3 ± 0.58 12.5 ± 0.28 8.7 ± 2.33
w/ SC 61.5 ± 0.68 51.1 ± 1.25 39.0 ± 2.14 36.2 ± 2.31 32.7 ± 1.19 15.3 ± 0.91 7.5 ± 1.37

w/ SCO 53.6 ± 0.72 46.3 ± 1.60 39.6 ± 1.61 36.4 ± 0.15 34.7 ± 0.88 22.0 ± 1.18 17.7 ± 1.99
w/ BT 47.2 ± 1.35 39.2 ± 1.35 34.2 ± 2.74 29.9 ± 2.10 30.1 ± 1.59 18.4 ± 2.03 14.1 ± 2.90
w/ CC 44.9 ± 3.80 43.3 ± 1.36 44.6 ± 3.23 45.5 ± 2.88 37.2 ± 1.85 31.7 ± 2.15 30.7 ± 2.94

w/ CD-CoT 60.7 ± 0.49 59.7 ± 0.49 60.7 ± 3.18 57.2 ± 1.63 54.0 ± 1.41 58.7 ± 4.53 48.4 ± 1.91

Table 33: Comparing the mean values and standard deviation values of accuracy across all methods.

The two important aspects of the proposed method are (1) contrastive denoising with rationale
rephrasing (+ CD Rephrase) and (2) repeated reasoning with voting (+ Vote). Here, we conduct an
extra ablation study on the NoRa-Math Base-9 dataset to justify the denoising power of CD-CoT.

In this ablation study, we compare the performance of CD-CoT with different combinations of clean
and noisy rationales on the NoRa-Math Base-9 dataset. The "Base model" column represents the
accuracy of the base model without any additional components. The "+ CD Rephrase" column shows
the accuracy when the contrastive denoising with rationale rephrasing (CD Rephrase) is applied. The
"+ Vote" column represents the accuracy when the final answer is determined by a majority vote of
five runs. Finally, the "CD-CoT" column shows the accuracy of the complete CD-CoT method, which
includes both CD rephrasing and voting.

Since CD-CoT requires 3-shot noisy rationales and 1-shot clean rationale for contrastive rephrasing,
we compare its performance with the following setups. The results are summarized in the Tab. 34.

• 3-shot clean rationales (without CD-CoT)

• 3-shot noisy rationales (irrelevant or inaccurate) of varying difficulty levels + 1-shot clean
rationale (with CD-CoT)

• 4-shot clean rationales (without CD-CoT)
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CoT shots Base model + CD Rephrase + Vote CD-CoT

3-shot clean shots 46.4 — 62.3 —

3-shot irrelevant-easy + 1-shot clean 46.0 47.2 57.3 60.0

3-shot irrelevant-medium + 1-shot clean 41.3 47.2 54.7 60.7

3-shot irrelevant-hard + 1-shot clean 36.2 46.5 47.3 58.3

3-shot inaccurate-easy + 1-shot clean 36.5 42.6 44.7 53.0

3-shot inaccurate-medium + 1-shot clean 23.4 43.0 32.3 58.7

3-shot inaccurate-hard + 1-shot clean 16.1 37.0 24.3 47.0

4-shot clean rationale 50.8 — 67.3 —

Table 34: Ablation study of CD rephrase and vote components on the NoRa-Math Base-9 dataset.

From the experimental results, we can observe that:

Observation F.1 (CD-CoT significantly improves reasoning performance across various noisy scenar-
ios). CD-CoT brings a significant improvement compared to the base model when prompted with 3
noisy rationales + 1 clean rationale across various noise ratios of both irrelevant and inaccurate noise.
The base accuracy of CD-CoT can be attributed to the improvement brought by the contrastive denois-
ing with rationale rephrasing method. This accuracy is further enhanced in the voting method, which
demonstrates the effectiveness of the self-consistency approach in improving reasoning performance.

Observation F.2 (Noisy rationales with CD-CoT does not outperform full clean rationales). The
accuracy before voting and the accuracy after voting in CD-CoT do not exceed the accuracy of
the base model prompted with 4 clean rationales. This indicates that while CD-CoT is effective at
denoising rationales and enhancing reasoning performance in noisy situations, it does not inherently
improve reasoning beyond the capabilities of the model when clean rationales are provided.

Observation F.3 (Contrastive denoising and voting in CD-CoT are important). The results highlight
the importance and effectiveness of the two key aspects of CD-CoT: (1) contrastive denoising with
rationale rephrasing, which helps to filter out the noise and align the format of the rationales, and (2)
repeated reasoning with voting, which enhances the robustness and accuracy of the final predictions.
Notably, CD-CoT proves to be a valuable approach for improving the reasoning performance in the
presence of noisy rationales, though it does not surpass the performance with full clean rationales.

Observation F.4 (CD-CoT is more effective at managing irrelevant noise compared to inaccurate
noise). As shown in Tab. 33, CD-CoT is more effective at handling irrelevant noise than it is at
managing inaccurate noise at the same level. This is because irrelevant noise is easier to differentiate
from the target information, making it simpler to remove during the rephrasing step of the contrasting
denoising process. Additionally, Appendix. F.9 presents the denoised results for high-noise scenarios.

Variants of prompt for CD-CoT. We also conduct additional experiments to test the sensitivity of
CD-CoT to prompt designs. Specifically, we generate several variants of prompts for the proposed
CD-CoT method, including a shorter prompt, the default prompt, and a longer one:

The Shorter Prompt
Here are two examples: the first one has proper explanation and answer, while the second one has
distracted explanation and correct answer. Please follow the first example’s explanation and provide the
correct explanation and answer for the second one.

The Default Prompt
Here are two examples for the same type of task: the first example has correct explanation and correct
answer, and the second example has distracted explanation and correct answer. Please follow the first
example and give me the correct explanation and answer for the second example, which should be
logically consistent with the first one.
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The Longer Prompt
The following presents two examples of the same type of task. The first example contains both a correct
explanation and a correct answer. The second example, however, includes a distracted explanation but
still provides the correct answer. Your task is to analyze these examples and then provide a revised
version explanation of the second example along with its answer. Ensure that your revised explanation
is logically consistent with the first example.

We conduct experiments on NoRa-Math Base-9 to compare these three prompts. The results in
Tab. 35 show that the performance of CD-CoT is only marginally influenced by these prompts. Note
that the prompt of CD-CoT remains simple. Cooperating with advanced methods for iterating prompts
and rationales, such as APE [110] and Star [97], can further improve this method.

method Irrelevant-medium Inaccurate-medium

Base Model 0.284 0.082

CD-CoT w/ original prompt 0.49 0.48

CD-CoT w/ short prompt 0.46 0.46

CD-CoT w/ long prompt 0.47 0.48

Table 35: Ablation study of different prompts in CD-CoT.

Rephrasing performance of SD. Besides, we observe that the SD method performs better on some
tasks when using irrelevant and inaccurate rationales compared to clean ones. A thorough examination
of the empirical results from the log files reveals some inconsistencies in the performance of the SD
method, especially in the NoRa-Symbolic Equal and NoRa-Commonsense tasks.

Specifically, for NoRa-Symbolic Equal task:

• In this task, comparing SD and SC reveals that the domain knowledge of LLM is relatively
weak. According to the experiment results, when SD rephrases symbolic tasks, it often
directly returns the final answer of the original response in many cases.

• The quality of the rephrased results basically does not change with the increase in noise.

• As a result, the accuracies of SD under clean and noisy settings are very close, with a
maximum difference of less than 1%, which we think is within the acceptable range of error.

For NoRa-Commonsense task:

• We observe different behaviors of SD in clean and noisy settings.

• In noisy settings, SD does not follow the prompt to make minor corrections. Instead, SD
generates short rationales with only the answer, discarding the original rationale (as shown
in Tables. 36-37). This simplification can benefit commonsense tasks where the model
already has a strong inherent understanding.

• On the other hand, in the clean setting, SD unexpectedly generates entirely new rationales
instead of making minor corrections. These new rationales may deviate from the original
correct reasoning, potentially introducing errors or inconsistencies that weren’t present in
the initial, accurate solution.

In Tab. 36 and Tab. 37, we present two representative examples of SD in the commonsense task. Our
findings show that: (i) when provided with a clear rationale, SD generates entirely new rationales
rather than simply making minor corrections; (ii) when given a noisy rationale, SD produces brief
rationales that include only the answer, completely discarding the original rationale.

Overall, SD’s denoising effect relies on LLMs’ intrinsic capability. SD performs five maskings
and reconstructions per noisy example, concatenating results into five prompts for LLM inference.
In contrast, SC performs five direct inferences on noisy prompts without explicit denoising. By
comparing SD and SC’s performance, we can gain insights into the model’s denoising effects.

In Tab. 3, SC outperforms SD in NoRa-Math and NoRa-Symbolic tasks, while SD only marginally
excels in the NoRa-Commonsense task. This pattern persists in the clean settings. This suggests that
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LLMs struggle to reconstruct masked prompts in complex, domain-specific tasks but perform better
in simpler common tasks, highlighting the varying levels of internal knowledge within LLMs across
different domains.

Besides, the counterintuitive results on the NoRa-Commonsense task may be attributed to task-
specific characteristics. Observation of reconstructed masked prompts in this task indicates that
LLMs tend to bypass reconstruction instructions in noisy settings, directly providing final answers.
This accidental removal of all rationales, including noisy ones, effectively acts as a noise filter.
Combined with the LLM’s natural strength in the commonsens task, this unplanned filtering likely
explains the small improvement in accuracy under noisy conditions.

The original clean rationale
Carrie is Hugh’s sister’s husband’s daughter, so the relations path is sister, husband, daughter. For husband’s daughter, we have
husband’s daughter is daughter. So the relations path are reduced to sister, daughter. For sister’s daughter, we have sister’s
daughter is niece. So the relations path are reduced to niece. Therefore, Answer: niece.

The rephrased rationale by SD
To determine Carrie’s relationship to Hugh, we can break down the given information step by step: 1. Carrie is Hugh’s sister’s
husband’s daughter. 2. Hugh’s sister is Carrie’s sibling. 3. Hugh’s sister’s husband is Carrie’s brother-in-law. 4. Carrie is the
daughter of Hugh’s sister’s husband. Therefore, the answer is: Carrie is Hugh’s niece.

The original noisy rationale
Carrie is Hugh’s sister’s husband’s daughter, so the relations path is sister, husband, daughter. For husband’s daughter, we have
husband’s daughter is daughter. We have daughter’s grandmother is niece. So the relations path are reduced to sister, daughter.
For sister’s daughter, we have sister’s daughter is niece. We have daughter’s niece is niece. So the relations path are reduced to
niece. Therefore, Answer: niece.

The rephrased rationale by SD
niece.

Table 36: Rephrasing performance of SD under different noisy settings.

The original clean rationale
Francisco is Lynn’s son’s father’s brother, so the relations path is son, father, brother. For father’s brother, we have father’s
brother is uncle. So the relations path are reduced to son, uncle. For son’s uncle, we have son’s uncle is brother. So the
relations path are reduced to brother. Therefore, Answer: brother.

The rephrased rationale by SD
To determine Francisco’s relationship with Lynn, we start with the information provided: Francisco is Lynn’s son’s father’s
brother. Step 1: Lynn’s son’s father is Lynn’s husband. Step 2: Francisco is Lynn’s husband’s brother. Based on this
information, we can conclude that Francisco is Lynn’s brother-in-law. Answer: brother-in-law

The original noisy rationale
Francisco is Lynn’s son’s father’s brother, so the relations path is son, father, brother. For father’s brother, we have father’s
brother is uncle. So the relations path are reduced to son, uncle. For son’s uncle, we have son’s uncle is brother. We have
uncle’s niece is nephew. So the relations path are reduced to brother. We have brother’s nephew is mother. Therefore, Answer:
brother.

The rephrased rationale by SD
Answer: brother.

Table 37: Rephrasing performance of SD under different noisy settings.

F.4 The Difficulty of Irrelevant Noise Semantics

We conduct extra experiments with different semantic difficulties. Specifically, we set up three levels
of semantic difficulty:

• Level-1: Topic-irrelevant. Noisy thought has little relevance to the task. Here, noisy
thought involves concepts that are clearly irrelevant to the knowledge required for the task.
For example, (1) in physics, the number one is the charge of a single unit of positive or
negative electricity; (2) in chemistry, two is the atomic number of helium, the second most
abundant element in the universe. These two are irrelevant thoughts.

• Level-2: Topic-relevant and task-irrelevant. The noisy thought has some apparent
relevance to the task but does not help solve the problem. Noisy thought may involve some
terminology or concepts that are relevant to the task but do not provide useful information.
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For example, (1) the modulo operation (mod) finds the remainder after the division of one
number by another. (2) In base-9, the leading digit 1 indicates that the number is greater
than or equal to 1 ∗ 92 = 81 but less than 2 ∗ 92 = 162. (3) In base-9, the number 9 is
represented as ’10’ since it is the base value itself. (4) The number 11 in base-9 is equivalent
to the decimal value ninety-nine, which is one less than the square of the base value.

• Level-3: Topic-relevant, task-relevant, but not helpful. Here, the noisy thought has some
relevance to the task, but is not necessary information to solve the problem. The noisy
thought may involve concepts, principles, or methods that are relevant to the task, but not
directly applicable to the problem at hand.
For example, (1) in a base-9 system, the place values are units, nines, eighty-ones, and
so on, analogous to units, tens, hundreds, etc., in base-10; (2) the concept of carrying is
essential when performing addition in positional numeral systems like base-9 and base-10.
The modulo operation is a crucial step in the process of adding numbers in base-9, as it
determines the digit and carry values; (3) the modulo operation is a crucial step in the
process of adding numbers in base-9, as it determines the digit and carry values.

Based on the above definition and prompt, we generate the data with the following four steps.
• Step-1: Initial generation and human evaluation. We used this prompt to generate an

initial set of irrelevant statements for each level. These were then manually reviewed and
filtered to ensure they accurately represented the intended level of irrelevance. We selected
high-quality examples for each level.

• Step-2: Scaled generation. Using these high-quality examples as ICL demonstrations, we
prompted GPT-4 to generate a larger set of irrelevant statements for each level.

• Step-3: Validation through similarity analysis. To confirm that our generated statements
indeed represented different levels of irrelevance, we conducted a cosine similarity analysis.
This analysis quantitatively demonstrated the semantic differences between levels, as shown
in our previous response.

• Step-4: Dataset construction. we integrated these generated irrelevant statements into our
dataset. We inserted them into relevant demonstrations at appropriate positions, following a
probability distribution that corresponds to the intended difficulty level of the task.

The experiment results with the above irrelevant thoughts are elaborated as follows: Here, the setup
is kept the same as the main experiments to be consistent. Therein, we test the GPT-3.5 model with
3-shot irrelevant rationales where the noise ratio is 0.8.

For a reasonable quantification of relevance, we choose the metric of cosine similarity with the
embeddings API provided by OpenAI with model: text-embedding-ada-002. We calculate the cosine
similarity between all noise-inserted sample sentences and the original clean inference sentences and
then take their average value.

Dataset Semantic level Method Acc(%)

Math Base-9

Level-1 (Cosine Similarity = 0.75) base model 26.6
CD-CoT 58.3

Level-2 (Cosine Similarity = 0.87) base model 30.6
CD-CoT 60.0

Level-3 (Cosine Similarity = 0.88) base model 33.0
CD-CoT 59.7

Symbolic Equal

Level-1 (Cosine Similarity = 0.73) base model 23.0
CD-CoT 44.0

Level-2 (Cosine Similarity = 0.79) base model 26.9
CD-CoT 46.0

Level-3 (Cosine Similarity = 0.82) base model 27.7
CD-CoT 45.0

Table 38: Performance of GPT-3.5-turbo under different noise semantics.

For comparison, the accuracy when prompting with clean rationales is 46.4% for NoRa-Math Base-9
and 32.7% for NoRa-Symbolic Equal. Specifically, we have the following observations:
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Observation F.5 (CD-CoT method is still effective under different semantic levels of noise). Notably,
we further verify that the proposed CD-CoT method is still effective under this imperfect scenario
with different semantic levels of noise. Specifically, CD-CoT can achieve 58.3%, 60.0%, and 59.7%
accuracy on the three semantic levels of noise for the NoRa-Math Base-9 tasks and 44.0%, 46.0%, and
45.0% accuracy on the NoRa-Symbolic Equal tasks. Compared to the base model, CD-CoT shows
a significant improvement of 29.4% and 19.1% in accuracy on semantic level-2 reasoning for the
NoRa-Math Base-9 and NoRa-Symbolic Equal tasks, respectively. Similarly, CD-CoT demonstrates
a 26.7% and 17.3% increase in accuracy on semantic level-3 reasoning for the NoRa-Math Base-9
and NoRa-Symbolic Equal tasks.
Observation F.6 (CD-CoT maintains a robust and stable performance across different semantic
levels of noise.). As the semantic level of noise increases, the base model exhibits a certain level of
robustness to the irrelevant noise but still suffers a considerable performance drop (15.8% and 5.8%
decrease for semantic level-2, and 13.4% and 5.0% decrease for semantic level-3 on the NoRa-Math
Base-9 and NoRa-Symbolic Equal tasks, respectively). In contrast, CD-CoT maintains a robust and
stable performance across different semantic levels of noise.

F.5 The Number of Noisy Thoughts

As introduced in the main text, we use noise ratios of 0.3, 0.5, and 0.8 to control the number of
noisy thoughts. The statistics of the NoRa dataset are shown in Tab. 2, showing the exact number of
clean/noisy thoughts in each task. NoRa-Math entails 8 thoughts, NoRa-Symbolic varies from 2 to
12, and NoRa-Commonsense requires 5 thoughts.

To figure out the exact number of noisy thoughts for the model to be robust, we conduct further
experiments to cover a wider range of noisy thoughts. Specifically,

• We compare the model’s performance on NoRa-Math Base-9 and NoRa-Symbolic Equal
tasks using clean and noisy rationales containing varying numbers of irrelevant or inaccurate
thoughts.

• We gradually increase the number of noisy thoughts from 1 to 6 to investigate the impact of
the noise level on the model’s accuracy.

• The total number of thoughts per shot, including both clean and noisy thoughts, is shown in
parentheses for the NoRa-Math Base-9 task.

• For the NoRa-Symbolic Equal task, the number of thoughts in the clean demonstrations
varies across different examples.

• To ensure a consistent comparison, we select a subset of examples with a similar number of
thoughts (ranging from 8 to 12) for both clean and noisy rationale experiments.

• We report the average number of thoughts (10.2) for the clean rationales in this subset.
• Consequently, the total number of thoughts per shot for noisy rationales in the NoRa-

Symbolic Equal task is also calculated based on this average.

According to the experimental results in the Tab. 39, we can observe that:
Observation F.7 (The impact of noisy thoughts varies across different noise types). For the NoRa-
Math Base-9 task, the model’s accuracy remains relatively stable when only one irrelevant noisy
thought is introduced. However, the accuracy drops significantly as the number of irrelevant noisy
thoughts increases. On the other hand, for the NoRa-Symbolic Equal task, even a single irrelevant or
inaccurate noisy thought can lead to a noticeable decrease in accuracy.
Observation F.8 (Inaccurate noisy thoughts have a more severe impact on the model’s performance
compared to irrelevant noisy thoughts). In the NoRa-Math Base-9 task, the accuracy drops drastically
from 46.4% to 34.8% with just one inaccurate, noisy thought, and it further deteriorates to 6.2% when
the number of inaccurate, noisy thoughts reaches 6. In contrast, with 6 irrelevant noisy thoughts, the
accuracy decreases to 25.3%, which is still higher than that of inaccurate thoughts.
Observation F.9 (Model’s robustness to noisy thoughts varies depending on the nature of the task).
The NoRa-Symbolic Equal task exhibits a similar trend, where the accuracy decreases as the number
of noisy thoughts increases, regardless of the noise type. However, the decline in accuracy is more
gradual compared to the NoRa-Math Base-9 task, suggesting that the model’s robustness to noisy
thoughts varies depending on the nature of the task.
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Dataset Noise Type Noisy Thought Num Accuaracy

NoRa-Math Base-9

clean 0 (total thoughts per shot: 8) 46.4

irrelevant

1 (9) 46.4
2 (10) 40.0
3 (11) 34.2
4 (12) 30.5
5 (13) 28.8
6 (14) 25.3

inaccurate

1 34.8
2 24.8
3 15.1
4 11.1
5 6.8
6 6.2

NoRa-Symbolic Equal

clean 0 (total thoughts per shot: 10.2) 39.8

irrelevant

1 (11.2) 32.8
2 (12.2) 34.2
3 (13.2) 33.3
4 (14.2) 30.6
5 (15.2) 28.4
6 (16.2) 29.2

inaccurate

1 34.5
2 31.3
3 32.4
4 31.4
5 28.3
6 27.3

Table 39: Impact of the number of noisy thoughts on GPT-3.5 performance.

The experimental results demonstrate that the presence of noisy thoughts, even in small numbers, can
significantly impact the model’s reasoning performance. The extent of the impact depends on factors
such as the task type, noise type, and number of noisy thoughts.

F.6 The Number of Noisy Examples

In this part, we provide a deeper analysis and extract more insights into in-context learning with
varying numbers of noisy examples.

First, we obtain the accuracy of the base model with different numbers of noisy prompting examples,
including 0-shot, 1-shot, 3-shot, and 5-shot. According to the results shown in Tab. 40, we propose
the following hypothesis: The trend of model performance as the number of noisy examples increases
depends on the change in performance between 1-shot and 0-shot learning.

Namely, if the performance in 1-shot learning is better than in 0-shot learning, this indicates that
noisy examples still help the model in recognizing task patterns. Therefore, model performance can
improve with an increasing number of noisy examples, albeit at a slower rate compared to clean
examples. On the other hand, if the performance in one-shot learning is less than in zero-shot learning,
it suggests that noisy examples interfere with the model’s existing knowledge of the task, causing
model performance to decline as the number of noisy examples increases.

Task Setting #Prompting Examples
0-shot 1-shot 3-shot 5-shot

Base-9 ina.-easy 7.2 17.5 23.2 25.6
ina.-hard 7.2 11.3 6.0 5.7

Base-11 irr. easy 5.5 8.9 19.1 26.3
irr. hard 5.5 7.7 10.7 16.1

Sym.(E) ina.-easy 8.8 17.3 29.1 —
ina.-hard 8.8 15.0 22.7 —

Sym.(L) irr. easy 0.0 2.3 7.0 8.9
irr. hard 0.0 1.9 6.0 —

Table 40: Performances of base model under varying number of examples ("—" denotes over token
limit, bolded number denotes the highest accuracy).
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Next, we conduct a further quantitative analysis of the impact of noisy shots on model performance.
We evaluate (0-shot, 1-shot, 3-shot) results partition, there are 8 possible results in total: (CCC),
(CCW), (CWC), (CWW), (WCC), (WCW), (WWC), (WWW). Specifically, ’C’ stands for correct
and ’W’ stands for wrong. For example, CCC means the cases in which test questions are correctly
answered in 0-shot (C), 1-shot (C), and 3-shot (C). WWC means the cases in which test questions are
wrongly answered in 0-shot (W), 1-shot (W), and correctly answered in 3-shot (C).

To analyze the effects of noisy shots, we categorize these eight results into three types:
• The model answers correctly at zero-shot but starts to answer incorrectly as noisy shots

increase. The corresponding results are (CCW), (CWC), and (CWW).
• The model answers incorrectly at zero-shot but starts to answer correctly as noisy shots

increase. The corresponding results are (WCC), (WCW), and (WWC).
• The model’s performance is consistent at zero-shot and with noisy shots. The corresponding

results are (CCC) and (WWW).

Task Setting #Result Partition
CCC CCW CWC CWW WCC WCW WWC WWW

Base-9 ina.-easy 0.006 0.01 0.019 0.037 0.049 0.11 0.158 0.611
ina.-hard 0.003 0.01 0.004 0.055 0.012 0.088 0.041 0.786

Base-11 irr. easy 0.004 0.003 0.013 0.036 0.029 0.054 0.144 0.718
irr. hard 0.001 0.001 0.008 0.043 0.005 0.069 0.075 0.797

Sym.(E) ina.-easy 0.053 0.008 0.012 0.015 0.067 0.045 0.16 0.641
ina.-hard 0.049 0.007 0.015 0.016 0.042 0.052 0.121 0.698

Sym.(L) irr. easy 0.0 0.0 0.0 0.0 0.005 0.018 0.058 0.919
irr. hard 0.0 0.0 0.0 0.0 0.004 0.015 0.056 0.925

Table 41: Results partition of (0-shot, 1-shot, 3-shot).

By observing Tab. 41, we arrive at the following analysis.
Observation F.10 (Compared to zero-shot, models can benefit from noisy shots in many cases).
Across all datasets, (WWW) is the most prevalent outcome, while the second most common results
are almost always (WWC) or (WCW). This implies that there is a relatively large proportion of
samples for which the model answers incorrectly at zero-shot, yet correctly as noisy shots increase.
Observation F.11 (The instances where noisy shots have a negative effect are very rare.). For the first
category of results, namely (CCW), (CWC), and (CWW), the average proportion across all datasets
is 0.039. This indicates that the proportion of samples where the model answers correctly at zero-shot
but incorrectly as noisy shots increase is very small. In other words, the instances where noisy shots
have a negative effect are rare.
Observation F.12 (There are significantly more instances where the model benefits from increasing
noisy shots). For the second category of results, which includes (WCC), (WCW), and (WWC), the
average proportion across all datasets is 0.186, which is greater than that of the first category. This
means that there is a larger proportion of samples where the model answers incorrectly at zero-shot
but correctly as noisy shots increase. Namely, there are more instances where noisy shots have a
positive effect.
Observation F.13 (The type of instances where the model produces consistent answers is dominant
across all datasets). For the third category of results, namely (CCC) and (WWW), the average
proportion across all datasets is the highest, at 0.776. This category of results does not allow for an
assessment of the effect of noisy shots.

We also provide a case study of in-context learning using a varying number of noisy examples. We
provide cases corresponding to some possible outcomes (i.e., [(CCC), (CCW), (CWC)]) for (0-shot,
1-shot, 3-shot) on the NoRa-Math Base-9 dataset with inaccurate easy-level noise in Tables. 42-44.

F.7 Variants of CD-CoT

Acquiring a human-annotated and clean rationale can be challenging in some practical scenarios.
However, we would further clarify the relatively low cost and the necessity of this clean rationale to
guarantee the effectiveness of robust reasoning.

Current LLMs cannot discern and remove noisy thoughts with their intrinsic denoising ability, even
when enhanced with the self-denoising method. This is supported by the empirical observations

53



Question
In base-9, what is 25+18? Please reason it step by step. End the response with the result in "Answer: result ".

0-shot (Correct)
To perform addition in base-9, we need to first understand the place values. In base-9, the place values range from right to left
as follows: ones, nines, eighty-ones, and so on. Let’s start with the ones place. 5 plus 8 is equal to 13. However, in base-9, we
can only have digits from 0 to 8. Therefore, we need to regroup. Since 13 is greater than 9, we can subtract 9 from it and carry
over 1 to the next place value (nines place). The remainder is 4. Now let’s move on to the nines place. We have 1 (carry over)
plus 2 plus 1 (from the nines place) which is equal to 4. Therefore, when we add 25 and 18 in base-9, we get 44. Answer: 44 .

1-shot (Correct)
In base-9, the digits are "012345678". We have 5 + 8 = 13 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. Next, we have 2 + 1 + 1 (carry) = 4 in base-10. 4 in
base-9 is written as 4. Since there’s no carry this time, we have no additional digits. So, the sum is 44 in base-9. Answer: 44 .

3-shot (Correct)
In base-9, the digits are "012345678". First, we add the digits in the rightmost place value, which is 5 + 8. We have 5 + 8 = 13
in base-10. Since we’re in base-9, the maximum value for a single digit is 8. 13 mod 9 = 4, so the digit is 4 and the carry is 1.
Next, we add the digits in the next place value, which is 1 (from the carry) + 2 + 1. We have 1 + 2 + 1 = 4 in base 10. Again, 4
mod 9 = 4, so the digit is 4 and there is no carry. Therefore, the final result is 44. Answer: 44 .

Table 42: Case for (CCC): 0-shot correct, 1-shot correct, 3-shot correct.

Question
In base-9, what is 57+26? Please reason it step by step. End the response with the result in "Answer: result ".

0-shot (Correct)
To add in base-9, we start by adding the digits in the rightmost column. In the units column, 7 + 6 = 13. Since we are in
base-9, we need to regroup. We can rewrite 13 as 4 in the units column and carry-over 1 to the next column. In the next
column, we add the carried-over 1 to the digits in that column. We have 1 + 5 + 2 = 8. So, the result in the next column
is 8. Finally, we put the digits 8 and 4 together to get the final answer. Answer: 84 .

1-shot (Correct)
To add 57 and 26 in base-9, we’ll start with the units digit. In base-9, the digits are "012345678". 7 + 6 = 13. Since 13 is
greater than 8 (the maximum digit value in base-9), we need to regroup. We can write 13 as 13 = 1 * 9 + 4. Therefore,
the units digit is 4 and there is a carry of 1 to the next column. Moving on to the next column, we have 5 + 2 + 1 (the
carried digit) = 8. 8 is a valid digit in base-9, so we do not need to regroup. The tens digit is 8. Therefore, the sum of 57
and 26 in base-9 is 84. Answer: 84 .

3-shot (Wrong)
In base-9, the digits are "012345678". We have 7 + 6 = 13. Since we’re in base-9, we need to determine the digit and
carry. 13 divided by 9 is 1 with a remainder of 4. So the digit is 4, and we carry 1. Next, we have 5 + 2 + 1 = 8. So the
digit is 8 and there is no carry. A leading digit is not needed since there is no carry. Thus, the answer is 48. Answer:
48 .

Table 43: Case for (CCW): 0-shot correct, 1-shot correct, 3-shot wrong.

in Sec. 4. Hence, external supervision is necessary, which should be sufficient for denoising and
accessible in practice. Existing methods with external supervision require (1) oracle feedback on the
test question, (2) human feedback of errors on specific tokens or positions, or (3) expert knowledge
to construct detailed descriptions of specific tasks.

By contrast, we believe that a clean CoT demonstration is more attainable and practical, which can
be the minimal requirement for denoising-purpose prompting. With the proposed CD-CoT method,
we show that LLMs can identify noisy thoughts by contrasting a noisy rationale with a clean one.

Besides, we build a self-supervised variant of CD-CoT that does not rely on manually crafted clean
examples, i.e., this variant can get a clean rationale automatically. Specifically, we prompt LLM with
a fixed question using the zero-shot CoT approach [39], allowing it to answer N times. We then select
the responses with the correct answer based on the ground-truth label.

Then, we conduct experiments on two datasets, NoRa-Math Base-9 and NoRa-Symbolic Equal, with
the default model (GPT-3.5-0613). The hyper-parameters are temperature=0.1 and top-p=1. We set
N=50 for NoRa-Math Base-9 and N=100 for NoRa-Symbolic Equal. Other settings are kept the same
as default with the original CD-CoT.
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Question
In base-9, what is 67+25? Please reason it step by step. End the response with the result in "Answer: result ".

0-shot (Correct)
To add in base-9, we start by adding the digits in the rightmost place value and moving leftwards. In the units place,
7+5=12. However, in base-9, there are only digits from 0 to 8. Therefore, we need to do a "carry" to the next place value.
The digit 12 is written as 13 in base-9, since the digit 12 in base-9 is represented as 10, followed by 11. Now, we move
to the next place value, the 9s place. We have a carry of 1 from the units place, so the addition becomes 1+6+2 = 9. In
base-9 notation, 9 is written as 10. Therefore, the sum of 67+25 in base-9 is 103. Answer: 103 .

1-shot (Wrong)
In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that doesn’t exceed the
maximum value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 1 + 6 + 2 = 9 in
base-10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. We have 1 + 1 + 0 = 2 in base-10. So the final digit is 2.
Therefore, the answer is 203. Answer: 203 .

3-shot (Correct)
In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the maximum
value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base 10. 9 mod 9
= 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103 .

Table 44: Case for (CWC): 0-shot correct, 1-shot wrong, 3-shot correct.

Task Setting #Method
Base Model Variant of CD-CoT CD-CoT

Base-9 irr.-med 30.3 47.0 60.7
ina.-med 10.1 47.0 58.7

Sym.(E) irr.-easy 28.1 33.0 44.7
ina.-easy 29.1 32.0 42.6

Table 45: Performances of different variants of CD-CoT.

On the NoRa-Math Base-9 dataset, the LLM answers incorrectly in the initial 20 attempts. When we
increase N to 50, the LLM gets it right twice. We use one of the self-generated correct rationales to
execute CD-CoT, testing the effect of LLM’s self-generated rationale. On the NoRa-Symbolic Equal
dataset, we need to increase N to 100 to get a correct self-generated response.

Regarding the empirical results in Tab. 45, we derive the following detailed analysis.

Observation F.14 (The self-supervised variant of CD-CoT achieves enhancements across various
tasks). On NoRa-Math Base-9, the average accuracy is increased by 26.8 percentage points. On
NoRa-Symbolic Equal, it gains an average increase of 3.9 points in accuracy.

Observation F.15 (LLM struggles to generate a clean and correct rationale on its own). Considering
the fact that the model requires 50 attempts on the simple NoRa-Math Base-9 task to obtain the
correct result, it indicates that the LLM struggles to generate a clean and correct rationale on its own.
Additionally, experiments on the NoRa-Symbolic Equal indicate that as the task’s difficulty increases,
it becomes more challenging for the model to resolve it by relying solely on its inherent capabilities.

Observation F.16 (Self-generated clean examples are not as effective as manually designed clean
examples). Although the self-supervised variant of CD-CoT acquires improvement across tasks, its
gains on the difficult NoRa-Symbolic Equal tasks are quite modest, with an average increase of only
3.9 points. Conversely, the original CD-CoT registers an average accuracy enhancement of 39.5
points on NoRa-Math Base-9 tasks and 15.1 points on NoRa-Symbolic Equal tasks, respectively. We
can conclude that self-generated clean examples can provide some guidance to the LLM on simpler
tasks, but they are not as effective as manually designed clean examples. On more difficult tasks, the
guidance provided by self-generated clean examples is very limited, and these tasks require additional
supervision to steer the model effectively.

In addition to the self-supervised CD-CoT, exploring strategies like using contrasting noisy examples
or incorporating an external knowledge base, possibly through a retrieval-augmented denoising
framework, may offer significant advances in automation and robustness of reasoning. We believe
that these are promising directions that deserve further investigation.

55



F.8 New Datasets and Large-scale Real Problems

Recall that the constructed NoRa benchmark covers five prevailing datasets from three different
domains. The current LLMs present significant vulnerability to noisy rationales in all five datasets of
NoRa, while the proposed method CD-CoT has shown advanced and consistent robustness against
noisy rationales. Specifically,

• Robustness with different datasets: CD-CoT consistently outperforms other methods in all
five datasets in NoRa.

• Robustness with different noise levels: The results shown in Tab. 8 demonstrate the remark-
able robustness of CD-CoT to varying noise levels. Across the NoRa-Math, NoRa-Symbolic,
and NoRa-Commonsense tasks, the performance decline of CD-CoT remains modest as the
noise level increases.

• Robust with different LLMs: The results in Tab. 11 further indicate that CD-CoT substan-
tially improves over all three other baselines on the more powerful LLMs. Even on the
relatively smaller Mistral-8x7B, CD-CoT significantly outperforms the other baselines on
most tasks.

Note that Sec. 3 introduces a general framework for generating noisy rationales with existing datasets.
This means, more datasets can be integrated into NoRa if necessary in future research. Here, we
conduct additional experiments to generalize CD-CoT to three new datasets that are not covered
in NoRa, including GSM-8K [12], Blocksworld [82], and BIG-Bench Hard Dyck Languages [72].
Specifically,

• GSM-8K: A math dataset of linguistically diverse grade school math word problems.

• Blocksworld: A planning dataset simulating block stacking tasks.

• BIG-Bench Hard Dyck Languages: A symbolic dataset designed for predicting the sequence
of closing parentheses in a Dyck-4 word.

Then, we generate noisy rationales and compare the following setups:

• Zero-shot: Base model with no demonstration.

• CoT (clean rationales): Base model with 3 clean demonstrations.

• CoT (noisy rationales): Base model with 3 noisy demonstrations.

• CD-CoT (noisy rationales): Base model with 3 noisy demonstrations and our CD-CoT
method.

The reasoning accuracy in Tab. 46 shows that CD-CoT consistently outperforms the zero-shot setting
and standard CoT prompting under noisy rationales. This is consistent with the findings in Sec. 5.2,
showing CD-CoT’s strong capability of generalization to new datasets.

Dataset Setup #Method
Zero-shot CoT (clean) CoT (noisy) CD-CoT (noisy)

GSM-8K 300 samples 84.3 87.7 84.3 86.0

Blocksworld 200 samples 2.0 25.0 13.0 25.5

Hard Dyck Languages 250 samples 12.4 40.8 29.2 35.2

Table 46: Performances of different methods on new datasets.

Along with the introduction of new datasets, we also examine the issue of noisy rationale in large-
scale real-world scenarios, particularly in conversational question-answering (QA) tasks. While our
primary focus is on reasoning tasks, we discuss the differences and relationships between these areas.

Conversational QA tasks are usually conducted in a zero-shot setting, where users directly input the
task instructions and hardly provide examples to the model. NoRa, on the other hand, considers the
in-context learning scenario, where the model is given a few examples before answering questions.
In-context learning can significantly enhance the model’s performance on complex or new tasks. The
purpose of NoRa is to assess the model’s robustness to noisy examples in in-context learning.
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However, for multi-turn conversational QA tasks, the content of previous answers can be considered
as context for the model when answering the next question. Therefore, by evaluating how noisy
context affects a model’s subsequent question responses, we can explore the issue of noisy rationales
within the realm of conversational QA tasks.

We conduct experiments on MT-Bench [108] to investigate the noisy rationale problem in QA
scenarios. MT-Bench is a multi-turn question collection and covers eight principal types of tasks:
Writing, Roleplay, Extraction, Reasoning, Math, Coding, Knowledge I, and Knowledge II.

For clean context, we directly use the original question to prompt the model, and the first round of
dialogue generated serves as the clean context. For noisy context, we prompt the model to insert
some irrelevant information as noise when answering the first turn’s question, and the first round of
dialogue serves as the noisy context. We then continue to use the second turn’s question along with
the generated context to prompt the model to obtain the target response.

We conduct conversational QA tasks on GPT-3.5-turbo-0613 and score the generated responses with
GPT-4. The GPT-4 is to score the responses from both the first and second turns separately.

Setting #Avg.score
First Response Second Response

Clean Context 8.73 8.23

Noisy Context 8.16 7.75

Table 47: Average scores with different contexts.

Round Setting #Task
Writing Roleplay Extraction Reasoning Math Coding STEM Humanities

First Response Clean Context 9.8 8.45 9.3 6.9 8.9 7.0 9.7 9.8
Noisy Context 9.75 8.0 8.5 7.7 7.5 6.7 8.6 8.5

Second Response Clean Context 9.5 9.3 8.9 5.2 5.8 7.85 9.4 9.9
Noisy Context 9.3 9.1 8.5 4.6 4.1 7.2 9.2 10.0

Table 48: Average scores across types of tasks with different contexts.

As the results shown in Tab. 47, the noisy context decreases both the scores (quality) of the first-round
and second-round QA. Specifically, the average scores across different types of tasks are shown in
Tab. 48. Notably, a 0.48% decrease in average score appears in the second response, which is the
final target of the conversation.

In addition, we provide a case study for illustration. As shown in Tab. 49, the noisy context in round
1 leads to a bad, noisy response in round 2.

In the clean context, the model provides an accurate analysis and answer to the initial question. When
the correct round serves as the context for the second question, the model consistently delivers a
precise analysis and response.

In the noisy context, the model’s response and analysis of the initial question contain errors. Specif-
ically, as shown in Tab. 49, it incorrectly counts multiple integers for both case 1 and case 2,
culminating in a wrong answer for the first question. When the flawed round serves as the context
for the second question, the model generates the same intermediate results as in the first round and
ultimately provides an incorrect answer to the second question.

In summary, during multi-turn conversational QA tasks, the model’s response to the current question
is influenced by the preceding dialogue content (i.e., the context), particularly for tasks that require
reasoning and mathematical computations.

57



Clean Context:
Round 1
User: How many integers are in the solution of the inequality |x+ 5| < 10?
Assistant: To solve the inequality |x + 5| < 10, we can break it down into two separate inequalities: 1. x + 5 < 10, 2.
−(x + 5) < 10. Solving the first inequality: x + 5 < 10. Subtracting 5 from both sides: x < 5. Solving the second
inequality: −(x+ 5) < 10. Multiplying both sides by -1 (which reverses the inequality): x+ 5 > −10. Subtracting 5 from
both sides: x > −15. Combining the two solutions, we have −15 < x < 5. The integers in this range are -14, -13, -12, -11,
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4. Therefore, there are 19 integers in the solution of the inequality |x+ 5| < 10.

Round 2
User: What about |x+ 10| < 5?
Assistant: To solve the inequality |x + 10| < 5, we can break it down into two separate inequalities: 1. x + 10 < 5, 2.
−(x + 10) < 5. Solving the first inequality: x + 10 < 5. Subtracting 10 from both sides: x < −5. Solving the second
inequality: −(x+ 10) < 5. Multiplying both sides by -1 (which reverses the inequality): x+ 10 > −5. Subtracting 10 from
both sides: x > −15. Combining the two solutions, we have −15 < x < −5. The integers in this range are -14, -13, -12,
-11, -10, -9, -8, -7, -6. Therefore, there are 9 integers in the solution of the inequality |x+ 10| < 5.

Noisy Context:
Round 1
User: How many integers are in the solution of the inequality |x+ 5| < 10?
Assistant: The solution to the inequality |x + 5| < 10 consists of all the integers that satisfy the inequality. To find the
solution, we can break it down into two cases: Case 1: x+ 5 < 10. In this case, we have x+ 5 < 10, which means x < 5.
The integers that satisfy this inequality are -4, -3, -2, -1, 0, 1, 2, 3, and 4. Case 2: −(x + 5) < 10. In this case, we have
−(x+ 5) < 10, which means x+ 5 > −10. By rearranging the inequality, we get x > −15. The integers that satisfy this
inequality are -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, and so on. Combining the solutions from
both cases, we find that the integers that satisfy the inequality |x+ 5| < 10 are -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4,
-3, -2, -1, 0, 1, 2, 3, 4, and 5. So, there are 21 integers in the solution.

Round 2
User: What about |x+ 10| < 5?
Assistant: The solution to the inequality |x + 10| < 5 consists of all the integers that satisfy the inequality. To find the
solution, we can break it down into two cases: Case 1: x+ 10 < 5. In this case, we have x+ 10 < 5, which means x < −5.
The integers that satisfy this inequality are -6, -7, -8, -9, -10, and so on. Case 2: −(x + 10) < 5. In this case, we have
−(x+ 10) < 5, which means x+ 10 > −5. By rearranging the inequality, we get x > −15. The integers that satisfy this
inequality are -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, and so on. Combining the solutions from
both cases, we find that the integers that satisfy the inequality |x+ 10| < 5 are -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4,
-3, -2, -1, 0, 1, 2, 3, and 4. So, there are 19 integers in the solution.

Table 49: Example for Math task with different contexts.
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F.9 Rephrased Examples of Different Denoising Methods

Data Denoising. Here, we show the rephrased (denoising) examples using different robust methods.

Medium-level, irrelevant examples:
• NoRa-Math Base-9 (Tab. 50)
• NoRa-Commonsense (Tab. 52)

Medium-level, inaccurate examples:
• NoRa-Symbolic Longer (Tab. 51)
• NoRa-Commonsense (Tab. 53)

Original Noisy Rationale

In base-9, the digits are "012345678". Nine is the atomic number of fluorine in chemistry, a highly reactive and abundant
element. We have 6 + 7 = 13 in base-10. Thirteen is the atomic number of aluminium in chemistry, a post-transition metal
that’s widely used for its lightness and resistance to corrosion. Since we’re in base-9, that exceeds the maximum value of 8
for a single digit.13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 8 + 5 + 1 = 14 in base 10. 14 mod 9 = 5, so the
digit is 5 and the carry is 1. A leading digit is 1. The ’one-gene-one-enzyme hypothesis’ in genetics proposes that each
gene is responsible for producing a single enzyme that influences a specific metabolic pathway. So the answer is 154. Four
is the atomic number of beryllium in chemistry, which is used as an alloying agent in producing beryllium copper. Answer:
154}

Method Denoised Rationale

Smooth LLM

In bAse-9, the digito are "0123456%8". Nine %s tle atomic number Rf fluorine in chemistry, a highly
reactive and abundant 9lement. We have 6 +I7e= 13 in base-10. \rThiateen ij the atomic \number of
aluminium in chemistry, a po(t1tran6itqon me al that’s wi:ely usedKfor Jts lightness and rEsistance to co
\rrosion. S7nce we’)e in base%9s that exce_ds the maximum v%lue of 8 uor a si#gle digit.13 mod 9 = 4,
so thc digAt it 4 and the carry i:w1. We have \u000b8 + 5 &+ 1 = 14 ic base 10. 14 mod 9 \ \=z5A so
the digit is 5 and the carry is 1. A leading digit is 1. The ’onec4eke-onL-enzymW hypothesis’ iI genetics
propos-s thaC e6ck gene3is reshonsible for proKucHng 0 singlS enzyme that0infZu \nnce@ a \ \spec
&fic metabolic pathwaQ. So thn answer ip l54,VFour is th {atomic number of b[ryllium i# ch’m_stry, whi
\nhUis uTed as an ZlloyingHagent in producvng berylla.m copper. Answer: 154}

Self-denoise

In base-9, the digits are "012345678". Nine is the largest number of fluorine in chemistry, a highly reactive
and abundant element. We have 6 + 7 = 13 in base-10. Thirteen is the atomic number of aluminum in
chemistry, a post-transition metal that’s widely used for its lightness and resistance to corrosion. Since
we’re in base-9, that exceeds the maximum value of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and
the carry is 1. We have 8 + 5 + 1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is 1. A
leading digit is 1. The ’one-gene-one-enzyme hypothesis’ in genetics proposes that each gene is responsible
for producing a single enzyme that catalyzes a specific metabolic pathway. So the answer is 154. Four is
the atomic number of beryllium in chemistry, which is used as an alloying agent in producing beryllium
copper. Answer: 154.

Self-polish

To solve 86+57 in base-9, we need to add the digits step by step. In base-9, the digits range from 0 to 8.
First, let’s add the rightmost digits, which are 6 (from 86) and 7 (from 57). In base-10, their sum is 13.
Since we are in base-9, where the maximum value for a single digit is 8, we need to carry over the excess
value. To calculate the carry, we find the remainder when 13 is divided by 9. In this case, the remainder
is 4. So, the rightmost digit of the sum is 4, and we carry over 1 to the next column. Next, we add the
next digits, which are 8 (from 86) and 5 (from 57), along with the carry of 1. In base-10, their sum is 14.
Again, to account for the base-9 system, we find the remainder when 14 is divided by 9. The remainder is 5.
Therefore, the next digit of the sum is 5, and we carry over 1 to the next column. Since there are no more
digits left to add, we simply include the carry of 1 as the leading digit. Thus, the final result in base-9 is
154. Answer: 154

CD-CoT
In base-9, the digits are "012345678". We have 6 + 7 = 13 in base-10. Since we’re in base-9, that exceeds
the maximum value of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 8 + 5 +
1 = 14 in base 10. 14 mod 9 = 5, so the digit is 5 and the carry is 1. A leading digit is 1. So the answer is
154. Answer: 154.

Table 50: Rephrased rationales by different robust methods on NoRa-Math Base-9 irrelevant medium
task.
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Original Noisy Rationale

ince command is turn opposite right and run around right twice, we should consider Step1: "turn opposite right" firstly, "turn
opposite right" means the agent needs to turn right twice. ’right’ corresponds to the command I_TURN_RIGHT. The term
’left’ translates to I_TURN_RIGHT. The term ’opposite’ implies a 180-degree turn, which requires the agent to perform
the turn right twice. The term ’around’ implies a 360-degree loop, which requires I_TURN_LEFT, I_TURN_RIGHT,
I_TURN_RIGHT. Therefore, the action sequence is I_TURN_RIGHT I_TURN_RIGHT. The term ’around’ implies
a 360-degree loop, which requires I_TURN_LEFT, I_TURN_LEFT, I_TURN_LEFT. Now, we consider Step2:"run
around right twice", "run around right" means the agent needs to turn right and run, and repeat this action sequence
four times to complete a 360-degree loop. ’right’ corresponds to the command I_TURN_RIGHT. ’run’ translates to
I_RUN. The term ’look’ corresponds to the command I_WALK. The term ’around’ implies to complete a 360-degree
loop by repeating the sequence of I_TURN_RIGHT, I_RUN four times. The term ’opposite’ implies a 180-degree turn,
which requires I_TURN_RIGHT. Therefore, the action sequence is I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN. Since we need do twice in command "run around right twice", this
entire sequence is repeated 2 times, so the action sequence to "run around right twice" is :I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT
I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN. Above all – So, final answer is OUT:I_TURN_RIGHT
I_TURN_RIGHT I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN.

Method Denoised Rationale

Smooth LLM

S#nce comZhnd is Murn opposite righB and eun around 5ighte+wice, we should 0onsider Step1: "turn op-
posite right" firstly,[ "turn oppoziJe right" means tde agent need:mto turn right twice. ’right’Icorresponds"to
the command I_TURN_RIG@TO The5te6m ’lef@’ translates -t IYTURN_AI\fHT.WThe t$rm ’oppo-
site’ implies a 180-d\rguee turn, which require\f the QgentOto pe,form the turn right twic<. The term
’arVund’ implies z 360]degr:e loop, whixh requires I_TURN_LEF‘, I_TURN_RIGHW\r I_TUWN_RIGHT.
TJerefore, thJ _ctjon sequenceFis I_TURN_RIGET I_TURN_R?GHT. The term ’mroN\td’ implQ\\sza
&60-degree loo0, which requireI I_TURN_LERK, +_TURN_"EFT, I_TURN_LEFT.Y "ow, we >on-
sider Step2{"run around right twice;,x"run around riggt" mepna tHe agent needs :o turn righr@and
run-\rand rep)at this action sequence fodr tiOes to c\fmpLBte a 360-degree loop. ’right’ cokresponds
to the cZmmand I_TURN_RIGHT. ’run’ transwatespto I_RUN. The terc ’lo!k’ coUresponds to the com-
mand I_WALK. The term ’aronnd’ &mplies to com]lyte a 360ade9ree loop bd repeati/g the sequenve of
I_TURN_,IGHT, I_RUN fourwtimes. The term ’o]positX’Pimklieska 1x0-degree trrn, whiHh rexuiOes
I_TURN_RIG3T. Therexore, the action"sequence isQI_TURN+RIGHT|@_RUN I_TURN_RIGHT I]RUN
I_TURN_RIG5T I_RUN I_T|R\\_RI]HT I_0UN. SHnce we7ne\fd ]o twice in command "run around riggt
twice", thwR ensire\fse\ruence is repeatedq2 tpmes, so the actionpseque]ce Bo "run around rig t]twice" is
:I_TURN_RIpHT I_RUN X.TURN_RIGHTqIqRUN I_TURN_RIGHT I4RUN I_TURN_RIGHT I_R2N
I_TU"#_RI?HT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_R}N I_TURN_RIGH# I_RUN.
Aboqex\tll –0So, final answer is OUT::_\fURN_R:GHT I_TU\\r_RIGH9 I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TU#N_RsAHT I_RUN IlTURN6RIGHT I_RUN I_TURN_RIGGT I_RUN
I_’URNBRI@HT I_RUN I_TURN_RIG\fT I_RUN I_TURN_RIGHT I_RCN.

Self-denoise So, final answer is OUT: I_TURN_RIGHT I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT.

Self-polish

To execute the command "turn opposite right and run around right twice," we need to break it down into
two steps. Step 1: "turn opposite right" To execute this step, the agent needs to perform a 180-degree
turn to the right twice. The term "opposite" suggests a 180-degree turn, and "right" indicates the direction.
Therefore, the action sequence for this step is: I_TURN_RIGHT twice. Step 2: "run around right twice" To
execute this step, the agent needs to turn right and run in a loop. The term "around" implies completing
a 360-degree loop. Since we need to do it twice, the action sequence for this step is: I_TURN_RIGHT
I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN. So, the final answer
is OUT: I_TURN_RIGHT I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN.

CD-CoT

Since command is turn opposite right and run around right twice, we should consider Step1: "turn opposite
right" firstly. "turn opposite right" means the agent needs to turn right twice. ’right’ corresponds to the
command I_TURN_RIGHT. The term ’opposite’ implies a 180-degree turn, which requires the agent
to perform the turn right twice. Therefore, the action sequence is I_TURN_RIGHT I_TURN_RIGHT.
Now, we consider Step2: "run around right twice". "run around right" means the agent needs to turn right
and run, and repeat this action sequence four times to complete a 360-degree loop. ’right’ corresponds
to the command I_TURN_RIGHT. ’run’ translates to I_RUN. The term ’around’ implies to complete a
360-degree loop by repeating the sequence of I_TURN_RIGHT, I_RUN four times. Therefore, the action
sequence is I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT
I_RUN. Since we need to do it twice in the command "run around right twice", this entire sequence is
repeated 2 times. So, final answer is OUT: I_TURN_RIGHT I_TURN_RIGHT I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN
I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN I_TURN_RIGHT I_RUN.

Table 51: Rephrased rationales by different robust methods on NoRa-Symbolic Longer inaccurate
medium task.
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Original Noisy Rationale

Cindy is Pamela’s mother’s mother’s daughter, so the relations path is mother, mother, daughter. For mother’s daughter, we
have mother’s daughter is sister. In humans, daughters typically have two X chromosomes, one from each parent. So the
relations path are reduced to mother, sister. In certain bird species, ’sisters’ often cooperate in raising the offspring of one
sibling, demonstrating altruism. For mother’s sister, we have mother’s sister is aunt. So the relations path are reduced to
aunt. In certain bird species, like the Seychelles Warbler, ’aunt’ birds often help raise their siblings’ offspring. Therefore,
Answer: aunt.

Method Denoised Rationale

Smooth LLM

8indyhis Pacela’s mother’s moth\\rgs daughPer) Zo theMrelatVons path is mother, motheI, ’aughter. For
mothGr’H Waughter, ww hTve mother’s daughter is sist4$.uInahumanP, daughters \fypicall) have two
-{coromosomes, one fromẽach parent. So t7e relation{ pa]q a5e reduced to mother, sister. In c9rtNin
bird Ypecies, ’Nisters’ often cooperate in raising the offspri,L of one)sibling,$de#onstr?ting (ltruism.
Foremother’s sister, wr have?mother’s sister is auntK So the relations pa<h arevseduced *oYauntM In
certain bi)d species, like the Seychelt5s Warbler, ’Aunt’ bi\tds often help raise thqir sDblinTs’ offspring.
Therefor", Answer: aunt.

Self-denoise

Cindy is Pamela’s mother’s mother’s daughter, so the relations path is mother, mother, daughter. For mother’s
daughter, we have mother’s daughter is Cindy. In humans, females typically have two X chromosomes,
one from each parent. So the relations path is reduced to mother, Cindy. In certain bird species, like the
Superb Fairywren, ’sisters’ often cooperate in raising the offspring of one mother, demonstrating altruism.
So the relations path is reduced to mother’s sister, which is aunt. In certain bird species, like the Acadian
Flycatcher, ’aunt’ birds often help raise their siblings’ offspring. Therefore, Answer: aunt.

Self-polish

Cindy is Pamela’s mother’s mother’s daughter. Let’s break down the relationship step by step to find a single
word answer describing the relationship. First, let’s identify Cindy’s relationship to Pamela’s mother’s
mother. Cindy is the daughter of Pamela’s mother’s mother. To find the single word answer, we consider
the direct relationship between Cindy and Pamela’s mother’s mother. The relationship between Cindy and
Pamela’s mother’s mother is a parent-child relationship. Therefore, the single word answer describing the
relationship between Cindy and Pamela is: Answer: daughter

CD-CoT Cindy is Pamela’s aunt.

Table 52: Rephrased rationales by different robust methods on NoRa-Commonsense irrelevant
medium task.

Original Noisy Rationale

Cindy is Pamela’s mother’s mother’s daughter, so the relations path is mother, mother, daughter. We have daughter’s
grandmother is niece. For mother’s daughter, we have mother’s daughter is sister. We have daughter’s sister is mother. So
the relations path are reduced to mother, sister. For mother’s sister, we have mother’s sister is aunt. So the relations path
are reduced to aunt. We have aunt’s grandson is grandmother. Therefore, Answer: aunt.

Method Denoised Rationale

Smooth LLM
Cindy is 2amel\t’s mother’s mother’s da[ghter, so tce relBtions pathDis mother, mothe/* daughuer. We
ha9e &augJte/’s grandmother is n-ece. Fo| mother’s daughter, we have mother’s daughter2is sister. We
[av1 daughtCr’s sistOr is motoer. |o the relatioes path are rhduced to totder, sisterI For mother’s sister,zwR
h#ve mother’s sisner is aunt. So tze relationsxpath are a1dVced toUaunt. Wa have aunt’s grands8n is
grandmothIH. TherIfore, Answer: aunz.

Self-denoise Answer: aunt.

Self-polish Steps: 1. Cindy is the daughter of Pamela’s mother’s mother. 2. Therefore, Cindy is Pamela’s mother’s
mother’s daughter. 3. Cindy is the sister of Pamela’s mother. 4. Since Cindy is Pamela’s mother’s sister,
Cindy is Pamela’s aunt. Answer: Aunt

CD-CoT Cindy is Pamela’s aunt. Answer: aunt.

Table 53: Rephrased rationales by different robust methods on NoRa-Commonsense inaccurate
medium task.
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G Further Case Study

In this section, we provide a complete example for NoRa-Math Base-9 of irrelevant hard-level noise
in Figs. 10-14. This instance is composed of five figures. The initial three figures present contrastive
rephrasing prompts and the resulting rephrased outcomes for three distinct noisy examples. Following
that, the last two figures exhibit the constructed two diverse contexts along with their respective
reasoning results.

User: The following are two examples for the same type of task: the first example has correct explanation and correct answer,
and the second example has distracted explanation and correct answer. Please follow the first example and give me the correct
explanation and answer for the second example, which should be logically consistent with the first one.
First Example:
Question:In base-9, what is 47+58? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation:In base-9, the digits are "012345678". We have 7 + 8 = 15 in base-10. Since we’re in base-9, that exceeds
the maximum value of 8 for a single digit. 15 mod 9 = 6, so the digit is 6 and the carry is 1. We have 4 + 5 + 1 = 10 in
base 10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 116. Answer: 116.
Second Example:
Question: In base-9, what is 42+53? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation: In base-9, the digits are "012345678". In mythology and religion, there are nine realms in Norse Cosmology.
We have 2 + 3 = 5 in base-10. There are five oceans on Earth: the Atlantic, Pacific, Indian, Arctic, and Southern. Since we’re
in base-9, that doesn’t exceed the maximum value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. In
geometry, a pentagon is a five-sided polygon. We have 4 + 5 + 0 = 9 in base 10. 9 mod 9 = 0, so the digit is 0 and the
carry is 1. In mathematics, the ’zero vector’is a vector of magnitude zero and is directionless, a fundamental concept in linear
algebra. A leading digit is 1. In physics, the number one is the charge of a single unit of positive or negative electricity. So the
answer is 105. Humans have five basic senses: sight, hearing, smell, taste, and touch. Answer: 105.
You must respond in the format of "correct version is: the correct explanation and answer.Don’t offer anything else.

Assistant: [’In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed
the maximum value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in
base 10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.’,
’In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in base 10. 9 mod
9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.’,
’In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in base 10. 9 mod
9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.’,
’In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in base 10. 9 mod
9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.’,
’In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in base 10. 9 mod
9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.’]

Figure 10: NoRa-Math Base-9 Irrelevant Hard: Rephrasing Prompt-1.

User: The following are two examples for the same type of task: the first example has correct explanation and correct answer,
and the second example has distracted explanation and correct answer. Please follow the first example and give me the correct
explanation and answer for the second example, which should be logically consistent with the first one.
First Example:
Question:In base-9, what is 47+58? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation:In base-9, the digits are "012345678". We have 7 + 8 = 15 in base-10. Since we’re in base-9, that exceeds
the maximum value of 8 for a single digit. 15 mod 9 = 6, so the digit is 6 and the carry is 1. We have 4 + 5 + 1 = 10 in
base 10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 116. Answer: 116.
Second Example:
Question: In base-9, what is 26+85? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation: In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. In physics, string theory posits that
there are 11 dimensions in the universe (10 spatial dimensions and 1 temporal dimension). Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit.Eight is the atomic number of oxygen in chemistry, an element essential for human life. 11
mod 9 = 2, so the digit is 2 and the carry is 1. In mathematics, two is the smallest and first prime number. We have 2 + 8 +
1 = 11 in base 10. 11 mod 9 = 2, so the digit is 2 and the carry is 1. In astronomy, Mars, the second planet after Earth, has
2 moons. A leading digit is 1. In physics, the number one is the charge of a single unit of positive or negative electricity. So
the answer is 122. Einstein’s theory of relativity connects energy to mass with the equation E=mc², where c is the speed of light
squared. Answer: 122.
You must respond in the format of "correct version is: the correct explanation and answer.Don’t offer anything else.

Assistant: [’In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base
10. 11 mod 9 = 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122. Answer: 122.’,
’Explanation: In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base
10. 11 mod 9 = 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122. Answer: 122.’,
’In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base 10. 11 mod 9
= 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122. Answer: 122.’,
’In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base 10. 11 mod 9
= 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122. Answer: 122.’,
’In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base 10. 11 mod 9
= 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122.Answer: 122.’]

Figure 11: NoRa-Math Base-9 Irrelevant Hard: Rephrasing Prompt-2.
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User: The following are two examples for the same type of task: the first example has correct explanation and correct answer,
and the second example has distracted explanation and correct answer. Please follow the first example and give me the correct
explanation and answer for the second example, which should be logically consistent with the first one.
First Example:
Question:In base-9, what is 47+58? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation:In base-9, the digits are "012345678". We have 7 + 8 = 15 in base-10. Since we’re in base-9, that exceeds
the maximum value of 8 for a single digit. 15 mod 9 = 6, so the digit is 6 and the carry is 1. We have 4 + 5 + 1 = 10 in
base 10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 116. Answer: 116.
Second Example:
Question: In base-9, what is 72+66? Please reason it step by step. End the response with the result in "Answer: re-
sult.".Explanation: In base-9, the digits are "012345678". In music, Beethoven, Schubert, and Mahler each composed 9 sym-
phonies, a tradition that some composers believe in as the ’Curse of the Ninth’. We have 2 + 6 = 8 in base-10. In mathemat-
ics, eight is a Fibonacci number and a cube number. Since we’re in base-9, that doesn’t exceed the maximum value of 8 for a
single digit. In computer science, a byte is typically made up of 8 bits. 8 mod 9 = 8, so the digit is 8 and the carry is 0. We
have 7 + 6 + 0 = 13 in base 10. In computer science, ROT13 (rotate by 13 places) is a simple letter substitution cipher. 13
mod 9 = 4, so the digit is 4 and the carry is 1. A leading digit is 1. In physics, the number one is the charge of a single unit
of positive or negative electricity. So the answer is 148. Eight is the atomic number of oxygen in chemistry, an element essential
for human life. Answer: 148.
You must respond in the format of "correct version is: the correct explanation and answer.Don’t offer anything else.

Assistant: [’In base-9, the digits are "012345678". We have 7 + 6 = 13 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 7 + 2 + 1 = 10 in base
10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 141. Answer: 141.’,
’In base-9, the digits are "012345678". We have 2 + 6 = 8 in base-10. Since we’re in base-9, that doesn’t exceed the maximum
value of 8 for a single digit. 8 mod 9 = 8, so the digit is 8 and the carry is 0. We have 7 + 6 + 0 = 13 in base 10. 13
mod 9 = 4, so the digit is 4 and the carry is 1. A leading digit is 1. So the answer is 148. Answer: 148.’,
’In base-9, the digits are "012345678". We have 7 + 6 = 13 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 7 + 2 + 1 = 10 in base 10. 10 mod 9
= 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 141. Answer: 141.’,
’In base-9, we have 2 + 6 = 8 in base-10. Since we’re in base-9, that doesn’t exceed the maximum value of 8 for a single digit.
8 mod 9 = 8, so the digit is 8 and the carry is 0. We have 7 + 6 + 0 = 13 in base 10. 13 mod 9 = 4, so the digit is 4
and the carry is 1. A leading digit is 1. So the answer is 148. Answer: 148.’,
’In base-9, the digits are "012345678". We have 7 + 6 = 13 in base-10. Since we’re in base-9, that exceeds the maximum value
of 8 for a single digit. 13 mod 9 = 4, so the digit is 4 and the carry is 1. We have 2 + 6 + 1 = 9 in base 10. 9 mod 9 =
0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 140. Answer: 140.’]

Figure 12: NoRa-Math Base-9 Irrelevant Hard: Rephrasing Prompt-3.

User: In base-9, what is 47+58? Please reason it step by step. End the response with the result in "Answer: result.".
Assistant: In base-9, the digits are "012345678". We have 7 + 8 = 15 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 15 mod 9 = 6, so the digit is 6 and the carry is 1. We have 4 + 5 + 1 = 10 in base
10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 116. Answer: 116.".
User: In base-9, what is 42+53? Please reason it step by step. End the response with the result in "Answer: result.".
Assistant: In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed the
maximum value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in base
10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105.".
User: In base-9, what is 26+85? Please reason it step by step. End the response with the result in "Answer: result.".
Assistant: In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base
10. 11 mod 9 = 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122.Answer: 122."
User: In base-9, what is 72+66? Please reason it step by step. End the response with the result in "Answer: result.".
Assistant: In base-9, we have 2 + 6 = 8 in base-10. Since we’re in base-9, that doesn’t exceed the maximum value of 8 for a
single digit. 8 mod 9 = 8, so the digit is 8 and the carry is 0. We have 7 + 6 + 0 = 13 in base 10. 13 mod 9 = 4, so the
digit is 4 and the carry is 1. A leading digit is 1. So the answer is 148. Answer: 148."
User: In base-9, what is 67+25? Please reason it step by step. End the response with the result in "Answer: result.".

Assistant: ["In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base
10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103.",
"In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the maximum
value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base 10. 9
mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103.",
"In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the maximum
value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base 10. 9
mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103."]

Figure 13: NoRa-Math Base-9 Irrelevant Hard: In-context Learning-1.

User: "In base-9, what is 47+58? Please reason it step by step. End the response with the result in "Answer: result."."
Assistant: "In base-9, the digits are "012345678". We have 7 + 8 = 15 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 15 mod 9 = 6, so the digit is 6 and the carry is 1. We have 4 + 5 + 1 = 10 in base
10. 10 mod 9 = 1, so the digit is 1 and the carry is 1. A leading digit is 1. So the answer is 116. Answer: 116."
User: "In base-9, what is 42+53? Please reason it step by step. End the response with the result in "Answer: result."."
Assistant: "In base-9, the digits are "012345678". We have 2 + 3 = 5 in base-10. Since we’re in base-9, that doesn’t exceed
the maximum value of 8 for a single digit. 5 mod 9 = 5, so the digit is 5 and the carry is 0. We have 4 + 5 + 0 = 9 in
base 10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 105. Answer: 105."
User: "In base-9, what is 26+85? Please reason it step by step. End the response with the result in "Answer: result."."
Assistant: "In base-9, the digits are "012345678". We have 6 + 5 = 11 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 11 mod 9 = 2, so the digit is 2 and the carry is 1. We have 2 + 8 + 1 = 11 in base
10. 11 mod 9 = 2, so the digit is 2 and the carry is 1. A leading digit is 1. So the answer is 122.Answer: 122."
User: "In base-9, what is 72+66? Please reason it step by step. End the response with the result in "Answer: result."."
Assistant: "In base-9, we have 2 + 6 = 8 in base-10. Since we’re in base-9, that doesn’t exceed the maximum value of 8 for a
single digit. 8 mod 9 = 8, so the digit is 8 and the carry is 0. We have 7 + 6 + 0 = 13 in base 10. 13 mod 9 = 4, so the
digit is 4 and the carry is 1. A leading digit is 1. So the answer is 148. Answer: 148."
User: "In base-9, what is 67+25? Please reason it step by step. End the response with the result in "Answer: result."."

Assistant: ["In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the
maximum value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base
10. 9 mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103.",
"In base-9, the digits are "012345678". We have 7 + 5 = 12 in base-10. Since we’re in base-9, that exceeds the maximum
value of 8 for a single digit. 12 mod 9 = 3, so the digit is 3 and the carry is 1. We have 6 + 2 + 1 = 9 in base 10. 9
mod 9 = 0, so the digit is 0 and the carry is 1. A leading digit is 1. So the answer is 103. Answer: 103."]

Figure 14: NoRa-Math Base-9 Irrelevant Hard: In-context Learning-2.
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H NeurIPS Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have summarized the position and key contributions of the paper in the
abstract and introduction parts.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix A.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions and proof are provided in Appendix D.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The technical details of implementation are introduced in Appendix E.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source files are publicly available at: https://github.com/
tmlr-group/NoisyRationales.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment setups are introduced in Appendix F, and technical details of
implementation are introduced in Appendix E.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct evaluations on 300 questions for each task and repeat the reasoning
5 times for each question to obtain consistent and reliable results. The empirical results with
mean and std values are provided in Tab. 33.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We employ GPT-3.5-turbo-0613 [17] as our base LLM for the analyses
presented in this study. In addition, we conduct evaluations on three supplementary models,
including Gemini-Pro [76], Llama2-70B [79], and Mixtral-8x7B [33].

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully checked the NeurIPS Code of Ethics and confirmed that our
paper obeys it.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts are introduced in Appendix A. We believe that this paper
does not raise any negative societal impacts or ethical concerns.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release new models. The constructed NoRa dataset is
based on existing datasets.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In the paper, we have introduced the resources of the models and datasets used.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We construct the NoRa dataset. Its details are in Appendix C.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper is not about crowdsourcing experiments or research with human
subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper is not about research with human subjects.
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