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Abstract

Ensembling is commonly used in machine learning on tabular data to boost predictive
performance and robustness, but larger ensembles often lead to increased hardware demand.
We introduce HAPEns, a post-hoc ensembling method that explicitly balances accuracy
against hardware efficiency. Inspired by multi-objective and quality diversity optimization,
HAPEns constructs a diverse set of ensembles along the Pareto front of predictive performance
and resource usage. Experiments on 83 tabular classification datasets show that HAPEns
significantly outperforms baselines, achieving superior accuracy–efficiency trade-offs. Ablation
studies further reveal that memory usage is a particularly effective objective metric. Further,
we show that even a greedy ensembling algorithm can be significantly improved in this task
with a static multi-objective weighting scheme.
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Figure 1: Illustration of three ensemble selection strategies: a standard method ignoring hardware
constraints, a naive hardware-aware variant that sacrifices accuracy, and an advanced hardware-aware method
that balances accuracy and efficiency. Box size reflects model resource usage; the red dashed line indicates
the hardware resource constraint.

1 Introduction

Ensembling is a central technique in machine learning, used to improve predictive performance, stability, and
robustness across a wide range of applications. From boosting and bagging in classical supervised learning to
stacking in modern deep learning workflows, ensembles are frequently adopted to combine the strengths of
diverse models. In many practical scenarios, models produced during training or exploratory analysis are later
combined into ensembles in a post-hoc fashion to substantially improve performance (Erickson et al., 2025;
Arango et al., 2025). This workflow has been further popularized by automated machine learning (AutoML)
systems for tabular data (Purucker & Beel, 2023; He et al., 2021; Erickson et al., 2020), where greedy ensemble
selection (GES) by Caruana et al. (2004) has emerged as a widely used method to automatically build strong
ensembles from model libraries.
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While post-hoc ensembling generally improves predictive performance, larger ensembles lead to increased
hardware demands at inference time. Each additional model increases prediction latency and resource
consumption, inducing higher costs. While this matters greatly in production settings, it is ignored by
standard post-hoc ensembling methods. As machine learning is increasingly deployed in environments with
tight resource constraints, the gap between high predictive accuracy and hardware feasibility has become
more pronounced.

We address this challenge by introducing HAPEns, a post-hoc ensembling method that explicitly balances
predictive performance against hardware costs. It improves on existing baselines by constructing Pareto
fronts of ensembles that more effectively balance competing objectives. Thus, practitioners can select
better models that satisfy both performance and deployment requirements under their specific hardware
constraints. Drawing inspiration from multi-objective optimization (Gunantara, 2018) and quality diversity
optimization (Pugh et al., 2016), HAPEns maintains a diverse population of ensembles that vary in both
hardware cost and predictive behavior, while optimizing for predictive performance. The result is a set of
candidate ensembles that offer distinct trade-offs between both objectives.
To evaluate HAPEns, we performed experiments on 83 tabular classification datasets of varying size and
complexity. We compare ensembles constructed by our method to those selected by baselines like GES and a
novel multi-objective baseline. Our findings reveal that optimizing for memory footprint is a particularly
effective metric for deployment cost and that our method significantly outperforms competitors in balancing
hardware costs and predictive performance.

Our Contributions. In this work, we: (i) Propose a novel post-hoc ensembling algorithm that explicitly
incorporates hardware cost into the selection process; (ii) Demonstrate through extensive benchmarking
that our method achieves superior accuracy–cost trade-offs compared to existing baselines; (iii) Show that
memory-awareness yields substantial gains even in inference-time efficiency; (iv) Ensure reproducibility by
open-sourcing all code1, results, and integration with popular ensembling frameworks.
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Figure 2: An overview of the main research areas for this paper showing the intricate interdisciplinary
connections.

Ensembling—combining multiple pre-trained models—is an effective approach to improve predictive perfor-
mance and robustness. Common strategies include bagging, stacking, and ensemble selection (ES). Bagging
and stacking are typically integrated into the training process, whereas ES can be applied post hoc, that is,
after model training has completed. ES might then also be referred to as post hoc ensembling.

1All code used for this publication is available at: https://anonymous.4open.science/r/C07F
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ES as introduced by Caruana et al. (2004) is a forward selection algorithm that greedily constructs an
ensemble by iteratively adding the model that improves the predictive performance of the ensemble the most.
The resulting ensemble is defined by a weight vector derived from this superset of selected models. In this
work, we adopt a broader interpretation of ensemble selection: Any algorithm that produces such a weight
vector from a pool of trained models qualifies as ES. To distinguish the classical algorithm of Caruana et al.,
we refer to it as greedy ensemble selection (GES).

Post-hoc ensembling is a widely adopted component in automated machine learning (AutoML) systems,
particularly for tabular data (Erickson et al., 2020; Feurer et al., 2015; Purucker & Beel, 2023). It enables
the reuse of models generated during training without retraining, making it a computationally attractive
final optimization step. Although ensemble selection can theoretically be used during training, we reserve the
term ES for its post-hoc usage in this work. The term blending also appears in this context, but it specifically
refers to ensemble selection applied to a holdout validation set distinct from the training data.

Recent years have seen the integration of multi-objective optimization (MOO) into various stages of the
machine learning and AutoML pipelines, including neural architecture search (NAS) (Benmeziane et al.,
2021b;a). These methods optimize for trade-offs such as accuracy versus latency, energy consumption,
or memory usage. However, the use of MOO techniques in post-hoc ensemble selection remains largely
unexplored. Shen et al. (2022) introduced DivBO, a diversity-aware Bayesian optimization framework that
incorporates ensemble selection during candidate evaluation to promote both accuracy and diversity. Although
their approach targets the model search stage rather than post-hoc optimization, it highlights the potential
of multi-objective formulations to improve ensemble composition. Nevertheless, to the best of our knowledge,
no prior work systematically investigates the construction of Pareto-optimal ensembles that explicitly account
for hardware constraints such as inference time or memory usage.

Modern implementations of GES—still the de facto standard in AutoML frameworks such as Auto-
sklearn (Feurer et al., 2022) and AutoGluon (Erickson et al., 2020)—typically optimize only for predictive
performance and remain agnostic to deployment cost. Consequently, they may produce ensembles that are
unnecessarily large or infeasible for deployment due to hardware requirements.

Our work addresses this identified gap by introducing a hardware-aware approach to ES, explicitly targeting
the trade-off between accuracy and resource usage. QDO-ES as developed by Purucker et al. (Purucker et al.,
2023) inspired HAPEns and the inclusion hardware metrics during ensemble construction. In doing so, we
extend the utility of ES beyond predictive performance to deployment and real-world use.

3 Method

One of the last steps in the ML pipeline is model generation, where human experts or AutoML systems
explore and evaluate various configurations. This process yields a set of candidate models, typically followed
by the selection of the single best model for deployment. Post-hoc ensembling instead aims to improve the
quality of the prediction by combining multiple candidates from this set.

Let M = {M1, . . . , Mp} be the library of models and let cj be the number of times Mj is selected out of a
total of T picks (with repetition). Define the weight vector w:

w = (w1, . . . , wp)⊤ = 1
T

(c1, . . . , cp)⊤, wj = cj

T
,

∑
j

wj = 1. (1)

The ensemble predictor for input x is fens(x) =
∑p

j=1 wj fj(x). This formulation applies broadly: for regression,
each fj(x) is a scalar prediction; for probabilistic classification, fj(x) is a vector of class probabilities, and
fens(x) is the averaged probability vector.

Although the ensemble predictor is ultimately defined by a weight vector, there are multiple ways to construct
it. A common method is GES, which uses a forward selection strategy to iteratively build the ensemble by
greedily adding models that improve performance the most. In contrast, our work explores a population-based
approach.
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We begin by sampling an initial population of ensembles across a two-dimensional behavior space (e.g.,
memory footprint vs. average loss correlation). Each ensemble is evaluated and stored in a niche corresponding
to its behavior and hardware costs. New ensembles are generated by selecting suitable parents from these
niches and applying crossover and mutation (see Figure 3). This process repeats until convergence or a
time/iteration limit is reached, allowing us to explore a wide range of model combinations and discover
Pareto-optimal trade-offs between prediction quality and deployment cost. What follows now are detailed
definitions of these concepts, similarly outlined by Purucker et al. (2023).

Crossover Mutation

1. Memory Footprint
2. Average Loss Correlation

Sample 
Ensembles

Sample
Ensemble

New Ensembles

Fitness

Figure 3: Illustration of the HAPEns search process. Ensembles are sampled from bins over memory
footprint and average loss correlation, then evolved via crossover and mutation to explore the behavior space.

Behavior Space. Each ensemble E is assigned a two-dimensional descriptor b(E) = (ALC, HW), where
ALC is the mean Pearson correlation among the loss vectors of its constituent models and HW is a hardware
metric aggregated over those models. Following prior work (Purucker et al., 2023), we divide this 2D space
into a 7 by 7 grid using a sliding bounding archive (Fontaine et al., 2019), creating 49 bins (niches). The
algorithm allows ensembles to compete only within the same niche. This ensures that different regions of
the behavior space can retain their best solutions. Therefore, a diverse population across two objectives
is maintained while optimizing predictive performance. Here we found that memory as a hardware metric
produces ensembles which are best at trading off predictive performance and hardware cost.

Fitness. Each ensemble E is scored by a scalar loss L(E) on cross-validation data. The behavior space is
partitioned into fixed niches or bins, and each niche retains the lowest loss ensemble observed.

Sampling. The parents are selected from the archive using a combined dynamic strategy that balances
exploration and exploitation. The method alternates between deterministic selection of the best solution
and stochastic selection of random solutions, with the selection probability dynamically adjusted every ten
iterations based on which approach yields better results. Deterministic and tournament-based selection
methods are also available as alternatives.

Crossover. Two parent weight vectors are recombined by a two-point crossover limited to nonzero entries
or by averaging their counts and rounding up to maintain valid repetition counts.

Mutation. The count of a single model in the repetition vector is increased at random, with rejection
sampling used to avoid duplicates (up to 50 retries).
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4 Experimental Setup

The main objective of this paper is to compare the proposed method and the baselines on how well they
can balance predictive performance and hardware costs. In this context, only Pareto optimal ensembles are
relevant. In addition, there is no best ensemble because choosing the right trade-off depends on the real
world scenario. Therefore, our main focus lies with the Pareto fronts of ensembles generated by each method.

Our proposed method uses memory usage as its hardware-aware behavior metric. We compare it with four
baselines:

• Single-Best: A naive baseline that selects the single model with the highest validation performance.
Including Single-Best highlights the performance gains achieved through ensembling.

• GES*: Our implementation of greedy ensemble selection (GES) enhanced to return the entire
sequence of ensembles generated during its run. GES* therefore represents the best-case performance
of the original widely used GES, providing a strong reference point for assessing improvements.

• Multi-GES: Our implementation of novel multi-objective extensions of GES to enable the algorithm
to balance predictive performance and inference time using a static weighting scheme; see Appendix A.1
for details on our implementation. Multi-GES reflects a straightforward approach to introducing
hardware awareness into ensemble selection and allows us to assess the benefits of our more flexible
formulation.

• QDO-ES: The quality-diversity optimization ensemble selection method(Purucker et al., 2023),
which optimizes for performance and behavioral diversity but is not hardware aware. This baseline
isolates the effect of hardware awareness by comparing against a method that can already generate
various Pareto-optimal ensembles without considering resource costs.

To assess the quality of the generated Pareto fronts, we rely on two standard multi-objective indicators:
inverted generational distance plus (IGD+) (Ishibuchi et al., 2015) and hypervolume (HV) (Zitzler & Thiele,
1999). IGD+ quantifies how well a set of solutions approximates a reference front, which in our case is
constructed from the Pareto optimal solutions of all the methods under comparison. HV measures the portion
of the objective space dominated by a set of solutions (see B for details). The set of solutions here is the
set of ensembles constructed by one method for a given task and seed. Both HV and IGD+ are widely
used in multi-objective evaluation, and for our experiments we employ the pygmo (Biscani & Izzo, 2020)
implementation. We focus primarily on HV in the main analysis because we do not have a true Pareto front
for IGD+, and both metrics lead to the same conclusions.

The normalization of the ROC AUC and the hardware metrics was done per seed and task and over all
methods tested in this paper. This makes the results comparable across experiments even after selecting
specific methods per experiment. To ensure a comprehensive and reproducible evaluation, we organize our
experiments into three groups shown in Table 1.

Datasets. We conducted our experiments using TabRepo(Salinas & Erickson, 2023), which provides
precomputed model predictions for 1,530 models in 211 tabular regression and classification datasets. This
allowed for a large-scale, reproducible simulation of the post-hoc ensemble selection process.

We experimented with the D244_F3_C1530_100 context of TabRepo, utilizing 10 different seed settings.
Within this framework, a total of 100 different datasets were available, from which regression sets were
excluded. The characteristics of the remaining 83 classification datasets are shown in Figure 4, which reveals a
wide variety of class, sample, and feature counts. Consequently, the results provide a comprehensive overview
of the performance of the tested methods across various use cases.

The available models in TabRepo are plotted in Figure 5 with their respective inference times for different
tasks. The violin plot shows the variety of models in TabRepo, from cheap boosting and linear regression
algorithms to the more computationally expensive transformers. Thus, the base models in our experiments
comprise a diverse set that the evaluated ensemble construction methods can utilize.
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Figure 4: Scatter plot of datasets over their number of features (y), number of samples (x), and the number
of classes (color).
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Figure 5: Comparison of TabRepos model types and their corresponding inference times for varying tasks.
KNeighbours and linear regression are expectedly on the lower end of the spectrum, while transformers have
increased cost due to their complexity.
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Table 1: Overview of experiments

Group ID Description
Main Results EXP1 Evaluation of HAPEns and baseline methods using the

HV indicator, calculated from the ROC AUC of the
test (inverted to a loss) and the averaged normalized
hardware metrics: inference time, memory usage, disk
space usage.

Details
EXP2 Comparison of HV and IGD+ values to assess robustness

between indicators.
EXP3 HV evaluation with respect to each individual hardware

metric (inference time, memory, disk space).
EXP4 Examining the differences in the construction of the

ensemble between HAPEns and the baseline methods.

Ablation EXP5 Analysis of alternative hardware metrics in the behavior
space of HAPEns.

EXP6 Sensitivity analysis of different weightings in the Multi-
GES method.

12345

Single-Best
QDO-ES

GES*
Multi-GES(0.68)
HAPEns

CD

Figure 6: HAPEns significantly outperforms the base-
lines on HV. Single-Best is significantly outperformed
by all other methods.

12345

Single-Best
QDO-ES

GES*
Multi-GES(0.68)
HAPEns

CD

Figure 7: HAPEns significantly outperforms the base-
lines on IGD+. Single-Best is significantly outper-
formed by all other methods.

5 Results

We first present the main results, followed by detailed analyses, and finally ablation studies. The central
focus is on the ability of each method to balance two objectives: predictive performance and hardware cost.
In particular, identifying a single strong ensemble may be less effective than discovering several competitive
ensembles that trade off these objectives differently. In general, HAPEnsconsistently outperforms baselines
in both Main Results (EXP1) and Details (EXP2, EXP3, EXP4), demonstrating its superior ability to produce
competitive ensembles while incorporating hardware awareness.

Main Results (EXP1)

EXP1 Figure 6 shows a critical difference (CD) diagram (Demšar, 2006; Herbold, 2020) summarizing the
average ranks of the methods evaluated based on their HV values. The HV was calculated from the inverted
ROC AUC on the test data and the averaged normalized hardware metrics (inference time, memory, and disk
usage)—collectively referred to as the hardware score. Therefore, this figure provides an overview for all the
datasets, model configurations, and hardware metrics we explored in our tests. To simplify the presentation
and highlight the overall trade-off between predictive performance and hardware costs, we aggregate the
three hardware measures into a single score. This avoids overemphasizing any single metric, while keeping
the focus on the general notion of hardware efficiency.
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(a) Disk usage.

12345

Single-Best
QDO-ES

GES*
Multi-GES(0.68)
HAPEns

CD

(b) Memory usage.
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(c) Inference time.

Figure 8: Critical difference plots for the hypervolume across different hardware-aware objectives.

In the CD plot, methods connected by a horizontal bar are statistically indistinguishable according to the
Nemenyi post-hoc test. HAPEns shows significantly superior performance to the baselines, which makes it
the best method to balance the trade-off between predictive performance and hardware costs. Between the
baselines, we do not see significant differences except for the single-best method, which simply picks the best
model configuration based on its ROC AUC. A single-best model is not well suited for this setting because it
cannot capture diverse trade-offs between predictive performance and different hardware costs, which multiple
ensembles can exploit more effectively. We see slight improvements in GES* over QDO-ES, which can be
attributed to the modification of GES to return all intermediate ensembles, which generally leads to a higher
number of ensembles produced (see Figure 10). This improvement over the standard procedure of returning
the final ensemble gives GES a strong edge here. Multi-GES performs slightly higher, but insignificantly so, by
constructing ensembles with reduced hardware costs while keeping their predictive performance comparable
to GES*. A discussion on GES*’s overfitting problem and the corresponding cost-to-performance trade-off
follows in the Multi-GES ablation part of this section.

Details (EXP2, EXP3, EXP4)

EXP2 In Figure 7, the IGD+ results are generally consistent with the HV findings. The main difference is
the stronger relative performance of Multi-GES, which now significantly outperforms GES and comes close to
matching HAPEns, to the point that HAPEns’s superiority is no longer statistically significant. This effect
arises because Multi-GES constructs more efficient ensembles, while QDO-ES primarily improves predictive
performance (Figure 9) but at the cost of building more expensive ensembles on average. Since IGD+
evaluates solutions with respect to a reference front, Multi-GES benefits disproportionately: a larger share of
its efficient solutions lies on the reference Pareto front, reducing the relative advantage of HAPEnscompared
to dominated HV. For this reason, we focus on HV in the remainder of the paper, while noting that Multi-GES
is particularly strong at exploring the low-cost end of the Pareto front.

EXP3 Looking at the HV results for the individual hardware metrics in Figure 8, we see in more detail
what was already evident in the main results: HAPEns performs strongly across all metrics. The method
demonstrates robustness to different hardware considerations, even when the behavior space is defined solely
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Figure 9: Comparison of constructed ensembles when including hardware metrics in the ensembling process.
The baselines and the hardware-aware methods in the density plots, produce a clear trend, where the
ensembles of the latter methods are more condensed toward the x-axis.

by memory usage. Notably, Multi-GES shows a significant improvement over the other baselines when
optimizing for inference time. This highlights its specialization toward the specific hardware metric it uses
during ensemble construction, but also suggests that inference time may generalize less effectively across
metrics compared to memory. Since our experiments abstract away from specific hardware configurations,
these findings should be viewed as preliminary. Overall, these results point to an interesting direction for
future research that investigates hardware-aware behavior more directly under diverse configurations and
cost measures.

EXP4 Figure 9 shows a density plot of the ensembles constructed by the different methods. Compared to
Single-Best, all ensemble methods increase hardware costs but also yield clear gains in predictive performance.
Multi-GES reduces hardware costs relative to GES*, confirming its intended effect. QDO-ES and HAPEns
produce similar overall trends, but the ensembles of HAPEns are more concentrated along the x-axis, indicating
lower resource usage. These observations clarify and reinforce the improvements of HAPEns over QDO-ES
in terms of hardware efficiency, and likewise of Multi-GES over GES*. Overall, the inclusion of hardware
metrics in the ensemble construction process achieves the desired shift toward more efficient ensembles.

Figures 10 and 11 provide additional insight into the behavior of the tested methods. GES* produces 10–15
more ensembles on average than HAPEns, yet fewer of them lie on the Pareto front, indicating that many
of its ensembles are not useful in this context. QDO-ES and HAPEns both generate a high ratio of unique
ensembles, illustrating the effectiveness of the behavior space in promoting diversity. By contrast, Multi-GES
produces fewer ensembles overall and fewer unique ensembles than GES*, which aligns with the increased
difficulty of adding models once hardware costs are incorporated into the selection process.

9



Under review as submission to TMLR

Si
ng

le
-B

es
t

M
ul

ti-
GE

S

QD
O-

ES

HA
PE

ns

GE
S*

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

Nu
m

be
r o

f P
ar

et
o 

So
lu

tio
ns

Si
ng

le
-B

es
t

M
ul

ti-
GE

S

QD
O-

ES

HA
PE

ns

GE
S*

0

10

20

30

40

50

Av
er

ag
e 

To
ta

l N
um

be
r o

f S
ol

ut
io

ns

Figure 10: The average number of Pareto ensembles created vs the total number of ensembles created per
method on average. The averages are per seed and task to reflect real-world yields of these methods.
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Figure 12: Comparison of different hardware met-
rics used for HAPEns. Memory and inference time
perform strongest, but ensemble size is still notable
as a proxy hardware metric, which does not need
additional measurements.

Ablation (EXP5, EXP6)

EXP5 We further evaluated HAPEns with four different hardware metrics: inference time, memory usage,
disk usage, and ensemble size. The last serves only as a proxy hardware metric, yet Figure 12 shows that
it still provides a competitive signal to balance the trade-off, without requiring additional measurements.
Among the true hardware metrics, memory usage and inference time consistently lead to the strongest results,
with memory showing a slight edge. These findings highlight that, while the size of the ensemble can act as a
lightweight approximation, the use of actual hardware metrics yields the most reliable improvements.

EXP6 In Figures 13 and 14 we investigate the effect of different static weightings in Multi-GES. By gradually
increasing the weight on the inference time, the constructed ensembles shift from high-performing but more
expensive configurations toward ensembles with lower hardware costs. This transition is clearly visible in
the density plots, where the mass of ensembles moves closer to the origin of the objective space as the

10



Under review as submission to TMLR

123456789101112131415161718192021

Multi-GES(1.00)
Single-Best

GES*
Multi-GES(0.05)
Multi-GES(0.95)
Multi-GES(0.11)
Multi-GES(0.16)
Multi-GES(0.53)
Multi-GES(0.21)
Multi-GES(0.89)
Multi-GES(0.26)

Multi-GES(0.32)
Multi-GES(0.47)
Multi-GES(0.58)
Multi-GES(0.79)
Multi-GES(0.63)
Multi-GES(0.37)
Multi-GES(0.42)
Multi-GES(0.84)
Multi-GES(0.74)
Multi-GES(0.68)

CD

Figure 13: Comparison of static weights for Multi-GES highlighting the trade-off between predictive perfor-
mance and hardware costs.

emphasis on inference time increases. The trade-off between predictive performance and efficiency becomes
apparent: a stronger emphasis on time reduces costs but slightly lowers predictive accuracy, while a weaker
emphasis maintains accuracy at the expense of efficiency. In Figure 13 we see a sweet spot, where excessively
high or low time weights yield sub-par performance relative to intermediate weightings. For comparison in
the main results, we chose the best performing weight: 0.68. These results confirm that Multi-GES allows
practitioners to explicitly control the desired balance between performance and hardware costs through a
weighting mechanism, highlighting its flexibility for different deployment scenarios.

6 Conclusion

This work introduced HAPEns, a hardware-aware post hoc ensemble selection method that explicitly
balances predictive performance and deployment efficiency. By integrating hardware metrics into the
ensemble construction process, HAPEns extends traditional greedy ensemble selection into a multi-objective
optimization framework that explores the Pareto front of accuracy and resource usage. Across 83 diverse
tabular classification datasets, HAPEns consistently outperforms existing baselines, achieving superior
accuracy–efficiency trade-offs and demonstrating robustness across different hardware cost metrics.

Ablation studies reveal that memory usage is a particularly effective objective, providing a stable optimization
signal and leading to ensembles that generalize well across cost measures. Additionally, our experiments show
that even simple greedy methods like GES can benefit substantially from static multi-objective weighting,
emphasizing the broad potential of hardware-aware ensemble construction.

Future work may explore dynamic weighting schemes, task-specific hardware profiling, and integration into
end-to-end AutoML pipelines to further improve deployment efficiency without compromising predictive
performance. Ultimately, HAPEns bridges the gap between high predictive accuracy and real-world hardware
constraints, offering a practical and scalable step toward more sustainable machine learning systems.
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Figure 14: Density of ensembles produced by Multi-GES transitions to less expensive ensembles when
increasing the time weight.
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A Method

A.1 Enhancements to GES

The original GES algorithm optimizes solely for predictive performance without considering other objectives,
e.g. hardware costs. This can lead to ensembles that slightly improve accuracy but incur disproportionately
higher inference times. To address this, we introduced two enhancements: generating a spectrum of solutions
and extending GES to handle multiple objectives.

Spectrum of Solutions GES usually outputs a single final ensemble. We modified it to record intermediate
ensembles at each iteration, resulting in a set of n ensembles when running for n iterations. Each ensemble
adds one model and achieves a higher validation score than the previous one. This creates a spectrum of
solutions with varying trade-offs between predictive performance and hardware cost.

Multi-GES To explicitly account for hardware efficiency, we extended GES into Multi-GES, introducing a
weighted multi-objective scoring system that balances predictive performance and inference time. Both metrics
are normalized to ensure scale comparability, and static weights (α, β) control their relative importance.

Algorithm 1 outlines the procedure, where red lines mark the multi-objective components and blue lines
indicate the recording of intermediate ensembles.

B Experimental Setup

Hypervolume (HV): HV measures the size of the objective space dominated by the solutions on the
Pareto front, relative to a chosen reference point. It captures both convergence (how close solutions are to
the optimum) and diversity (how well they cover the trade-off surface) in a single scalar value. A larger HV
indicates that a method has found better trade-offs between objectives, making it one of the most widely
used and Pareto-compliant indicators in multi-objective optimization.
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Algorithm 1 Multi-GES
1: Initialize an empty ensemble E.
2: Initialize the set of candidate models M .
3: Initialize an empty list of ensembles E .
4: Set time weight β ∈ [0, 1].
5: Set performance weight α = 1− β.
6: while not finished do
7: Initialize E′ as a temporary ensemble.
8: Initialize Jbest ←∞.
9: for each model m in M do

10: Form E′ = E ∪ {m}.
11: Compute normalized performance PE′ .
12: Compute normalized time TE′ .
13: Compute objective value: JE′ = α · PE′ + β · TE′ .
14: if JE′ < Jbest then
15: Update Jbest ← JE′ .
16: Update E∗ ← E′.
17: end if
18: end for
19: Set E ← E∗.
20: Append a copy of E to E .
21: end while
22: return The set of ensembles E .

Inverted generational distance plus (IGD+): IGD+ quantifies how closely the solutions produced by
a method approximate a reference Pareto front by measuring the average distance from each point on the
reference front to its nearest point in the approximation. It evaluates both how well a method converges
to the optimal trade-offs and how evenly its solutions cover the front. Unlike the original IGD, IGD+ only
penalizes inferior dimensions, ensuring consistency with Pareto dominance.

C Results

Main Results
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Figure 15: Normalized improvement over the single-best baseline method.
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