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Abstract

Learning a Wasserstein Generative Adversarial Networks (WGAN) requires the differentia-
tion of the optimal transport cost with respect to the parameters of the generative model.
In this work, we provide sufficient conditions for the existence of a gradient formula in two
different frameworks: the case of semi-discrete optimal transport (i.e. with a discrete target
distribution) and the case of regularized optimal transport (é.e. with an entropic penalty).
In both cases the gradient formula involves a solution of the semi-dual formulation of the
optimal transport cost. Our study makes a connection between the gradient of the WGAN
loss function and the Laguerre diagrams associated to semi-discrete transport maps. The
learning problem is addressed with an alternating algorithm, which is in general not con-
vergent. However, in most cases, it stabilizes close to a relevant solution for the generative
learning problem. We also show that entropic regularization can improve the convergence
speed but noticeably changes the shape of the learned generative model.

1 Introduction

In data science, generative models are ubiquitous to approximate a data distribution in order to draw new
samples, to interpolate data points, to design a geometric structure revealing some interpretable dimensions
of data (Radford et al., |2016; |Shen et al. [2020) or to restore corrupted data by regularizing inverse prob-
lems (Bora et al.,[2017; |Hand & Joshil, [2019; [Hyder & Asif], |2020; [Heckel & Soltanolkotabil 2020; [Menon et al.|
2020; [Shamshad & Ahmed} 2020; [Damara et al., |2021}; |Leong), [2021). Given the empirical distribution v of
the data supported on a compact set )) C R?, estimating a generative network consists in solving

argmin £(ug, v) (1)
0€cO

where pg is the distribution of generated samples (parameterized by a 6 in an open subset © C R?) with
support included in a compact set X € R?, and where L is a loss function between probability distributions.
The distribution py is often considered to be the law of a random variable go(Z) where gy is a neural
network and Z a random variable, and samples of the model can be obtained by passing new realizations
of Z through the network gg. These distributions are generally built upon features computed from samples
and data points, such as the latent space of a variational auto-encoder (Kingma & Welling}, 2014]).

The choice of the loss function is crucial to quantify the discrepancy between probability distributions. In
the seminal work of |Goodfellow et al.|(2014) on generative adversarial networks (GAN), the loss function
is related, in a dual sense, to the Jensen-Shannon divergence between feature distributions. The Jensen-
Shannon divergence is nevertheless not robust enough to data outliers and leads to convergence issues when
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learning the GAN model. For this reason,|Arjovsky et al.| (2017)) later proposed to use optimal transport (OT)
costs in the loss function, leading to new generative models called Wasserstein GANs (WGANS).

Wasserstein distance The optimal transport cost between probability distributions ug and v is
Wio) = _inf [ clay)dn(ay), @
well(pe,v) XXy

where II(ug, v) is the set of probability distributions on X x ) having marginals pg and v, while the ground
cost ¢ : X x Y — R is a continuous function in which ¢(z,y) represents the elementary cost between
locations x € X and y € Y. A popular choice for the cost is the Euclidean distance to the power p > 1, i.e.

p/2
clz,y) =|lz—y|lP = (Zle(a:i - yi)z) , for which W(., )% defines the well-known p-Wasserstein distance.

The cost function may also be defined as a metric in feature space. As we will recall later, the OT cost
admits a dual formulation (Santambrogio), 2015)

W(ug,v) = sup /gad,ug +/1/1du, (3)
(p)eke
where (¢, ) is a couple of dual variables that belongs to the set
Ke=A{(p,9) € €(X) x €(Y), subject to p(x) +¢(y) < c(z,y) p@vae } (4)

where €' (X) indicates the set of real continuous functions on X and ® the product of two measures. Opti-
mizing one of the dual variables in amounts to taking the c-transform

¥(x) = minc(z,y) — ¥(y), (5)
yey
thus leading to another expression of the OT cost, called “semi-dual formulation”:
W{(pe,v) = sup /”L/)Cd,ug +/1/1du. (6)
Yet(Y)

Solving the constrained dual problem is a difficult and possibly infinite-dimensional optimization prob-
lem. To circumvent this issue, one can turn to the entropic formulation of OT (Chizat, 2017; Peyré &
Cuturi, |2019) which is an unconstrained optimization problem on (p,1)), where the regularization of the
OT problem is controlled by a parameter A > 0. The entropy-regularized OT admits a similar semi-dual
formulation (6] except that a softmin (a smoothed version of the minimum) is involved in the computation
of the c-transform . In the discrete setting, the regularized OT cost can be computed efficiently with
the Sinkhorn algorithm (Peyré & Cuturi, [2019), which exhibits geometric convergence. When one of the
distribution is continuous (as in ), one has to rely on stochastic algorithms (Genevay et al., [2016|), which
are provably convergent, but considerably slower.

Learning Wasserstein Generative models In this paper we study the case where the loss function £
for learning the generative model is the OT cost with entropic regularization A (including the unregularized
case A = 0, see Definition [2| below):

arg min W (e, v). (7)

6co

In practice, the optimization problem @ can be solved with a gradient-based algorithm, such as the ADAM
algorithm (Kingma & Ba, |2015), that requires the computation of the gradients of the Wasserstein cost
with respect to 6. To compute this gradient, we rely on the semi-dual formulation of regularized OT. In
particular, we are interested in the conditions ensuring that the gradient at a point 6, satisfies

Vo(Wa(uo,v)) o_g, = Vo (/ %W@) (8)
|6=00
where (¢x, 1) is an optimal dual variable for Wy (ug,, 7). The objective of this paper is to provide a set of
hypotheses that validate and to show how it applies to generative models gy parameterized by neural
networks.
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1.1 Related works

Learning a generative model with a Wasserstein cost requires the computation of the gradient , which
involves the optimal dual variable ¢,. We now detail related works on differentiation of OT costs, learning
of generative models with OT costs, dual OT solver and semi-discrete OT.

Differentiability of OT costs The gradient formula (8] is given in the seminal paper on WGAN (Arjovsky
et al., [2017) with the assumption that both sides of the equality exist. This formula has been extended to
more general costs and exploited in several papers related to WGAN learning, for example (Liu et al., [2019).
In the context of discrete regularized OT, one can find in (Sanjabi et al. [2018, Appendix C) a gradient
formula expressed through the primal formulation, with a short proof limited to discrete regularized OT. All
these results are based on some version of the so-called “envelope theorem” (also called Danskin’s theorem
in the context of convex optimization), which allows to differentiate under the maximum. This theorem also
requires regularity assumptions on the generator gg. As we will see in Section [2.3] in the discrete setting,
there exist some irregular cases where these assumptions are not sufficient to make formula licit.

In parallel to the literature on WGAN, the regularity and gradient of regularized OT costs p — Wi (p, q)
(with A > 0) are studied in (Cuturi & Peyré} [2016, Prop. 2.3) for discrete distributions (p, ¢). The Gateaux-
differentiability of (p,q) — Wi(p,q) is also proved in (Feydy et al., [2019), and extended to continuous
differentiability in (Bigot et al., 2019, Prop. 2.3). From these results, if (pg) is a parametric family of
distribution supported on the same finite set, the chain rule gives the differentiability of 6 — Wy (py, q).

Wasserstein Generative Models The method of |Arjovsky et al.| (2017) is based on the 1-Wasserstein
distance and it only requires one dual variable that is constrained to be 1-Lipschitz. In practice, this dual
variable is parameterized by a neural network, and the Lipschitz constraint is enforced by weight clipping
(WGAN-WC). On a similar formulation, Gulrajani et al.| (2017) encourage Lipschitzness by including a
gradient penalty in the dual loss (WGAN-GP).|Genevay et al.[(2018)) introduce the so-called Sinkhorn diver-
gences (based on regularized OT) which reduce the problem of sample complexity when learning generative
models. [Seguy et al|(2018) also consider regularized OT costs with a generic cost function. This leads to
an unconstrained dual problem, but with two dual variables. In practice, the authors choose to parameter-
ize both dual variables with neural networks. For the same problem, the authors of [Sanjabi et al.| (2018)
study the convergence and stability of the training procedure, the convergence being proved for the case of
discrete distributions. In particular, they give the expression of the gradient of , under a primal form,
in the case of discrete regularized OT. This gradient expression is exploited to perform WGAN training by
stochastic gradient descent. In|Liu et al.|(2019)), a similar regularized OT framework is applied to empirical
distributions (i.e. discrete distributions obtained from samples) to learn a generator, with the particularity
that the cost function depends on a set of simultaneously-learned features.

Closer to our framework, (Chen et al.[(2019) consider the semi-dual formulation of OT @ In this work, the
dual variable 1) is optimized with the the Average Stochastic Gradient Descent (ASGD) algorithm proposed
in (Genevay et all [2016). Contrary to (Seguy et al| [2018), the dual variable 1 is not parameterized
with a neural network, which hinders the applicability of the method to very large datasets. Indeed, as
shown in (Leclaire & Rabinl 2021)), the convergence speed of ASGD for optimizing v decreases when either
the dimension d of samples or the dimension of vector ¢ (equal to the number of training points) increases.
In (Chen et al}[2019), the primal solution 7 of (2] is finally used to perform a gradient step on the generative
model. As a result, their whole algorithm is not expressed as a direct minimization of . This is a main
difference with our work, in which the proposed gradient calculation for makes it possible to train the
generator g9 and the dual variable 1) with an alternating min-max procedure on the dual cost .

In a similar work, [Mallasto et al.| (2019a) parameterize the dual variable 1) by a neural network and obtain
the second dual variable ¢ with an approximated c-transform computed on mini-batches. With this approx-
imation, the pair of dual variables may not satisfy the constraint . A penalty on c(z,y) — o(z) — P(y)
is thus integrated in the loss function. This approach scales up to large databases, with a relatively ac-
curate estimation of the Wasserstein cost. On batch strategy, Fatras et al.| (2020) consider an alternative
Wasserstein cost defined as an expectation over mini-batches. This stochastic approximation introduces an
estimation bias which is shown in practice to regularize the transportation problem.
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OT dual solvers Several authors (Mallasto et al., |2019b} |Stanczuk et al.| 2021} |Korotin et al., 2021} [2022)
question the performance of OT dual solvers and its impact on WGAN learning. Mallasto et al.| (2019b))
compare several algorithms to estimate the dual variables, namely WGAN-WC, WGAN-GP and two methods
denoted as “c-transform” and “(c, €)-transform”. These two last methods, while better estimating the OT
cost, do not improve the visual quality of the generative model when used in WGAN learning, producing very
blurry images for the CelebA database. These findings are confirmed by [Stanczuk et al.|(2021) who provide
explanations related to biased estimation of Wasserstein gradients, false Wasserstein minima supported on
barycenters, and limitations of the use of the Euclidean distance between natural images.

To pursue these investigations, benchmarks for OT solvers are proposed in (Korotin et al., [2021}; [2022)). In
these works, absolutely continuous measures pu,v together with their corresponding groundtruth OT map
are provided for the 2-Wasserstein and 1-Wasserstein costs. The compared OT solvers are all based on
parameterizations of the dual problem with neural networks, whose optimization requires to draw some
batches of p and v, which regularizes the OT cost and induces an estimation bias.

In this paper, in order to stay as close as possible to the original OT cost, we do not apply a batch procedure
on v, thus restricting our experiments to smaller datasets. Our numerical study shows that, with the simpler
MNIST database, a WGAN learning based on c-transforms computed on all datapoints (i.e. not batchwise)
can produce sharp images while relying on a provably-convergent estimation algorithm for the Wasserstein
cost. Also, our theoretical analysis of gradients enables to better understand the impact of the errors made
by the OT dual solver: the performance of the dual solver does not guarantee the sharpness of generated
images, but it plays a role in making the generative distribution cover the whole database.

Semi-discrete OT The theoretical results of the present paper rely heavily on concepts related to semi-
discrete OT, that is, OT between an absolutely continuous distribution p and a discrete distribution v
supported on a finite set. The connection between semi-discrete OT and a concave optimization problem is
originally made in |Aurenhammer et al.| (1998]). Many numerical solutions have been proposed to solve semi-
discrete OT, see Kitagawa et al.| (2017) and references therein. From these works, we will use the concepts of
Laguerre diagram (illustrated in Fig. [2)) and c-transforms of functions defined on a finite set. The concept of
c-transform is also central in the construction of the benchmark of (Korotin et al., 2022)), where the so-called
“MinFunnel” functions can be seen, for ¢(x,y) = ||z —y||, as c-transforms attached to a set of discrete points.
Finally, let us mention that |Lei et al.|(2019)) studied some connections between WGAN learning and several
formulations of the semi-discrete OT problem, recalling its equivalence with other well-known problems from
convex geometry. In this perspective, the present paper provides new insights on the connection between
the WGAN and OT problems, which pursue the observations formulated in (Genevay et al., [2017)).

1.2 Contributions and outline

The main purpose of this paper is to propose a complete set of hypotheses that ensure the validity of the
gradient formula referred to as equation above and in a more general form below. Our
approach is not restricted to the cost ¢(z,y) = ||z — y|| related to the 1-Wasserstein distance. It involves
weak regularity hypotheses on the cost (called z-regularity as introduced in Definition (1| below) and the
generator (Definition . Based on this gradient formula, we consider a stochastic algorithm for learning a
generative model that can be understood as an alternating optimization algorithm on the semi-dual cost @

The main contributions of this paper are the following ones.

o In Section [2] we recall the WGAN learning framework, and in particular necessary existing results
on the dual formulations of OT costs. Then we provide a counterexample (Proposition that
illustrates how (Grad-OTJ) can fail for unregularized OT when a technical hypothesis is not met.

« Section (3| focuses on the gradient formula in the case of unregularized (A = 0) semi-
discrete OT (i.e. when v is discrete). We first prove the formula for 2-regular costs (Theorem [3) and
extend it to less regular costs (Theorem . Both these results are based on a technical assumption
that for any 6, ug does not charge a particular subset called the Laguerre interface.
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e In Section we extend the gradient formula to the case of entropy-regularized OT, proving
(Grad-OT)) for a-regular costs (Theorem [5) with no assumption on v. We also adapt this result
for the differentiation of the Sinkhorn divergence (Theorem [6).

o In Section[5] we illustrate the behavior of the alternating optimization algorithm for generative model
learning. First, with the toy example of Proposition [2] we examine the trajectory of the optimization
algorithm, and explain why it does not get trapped in a singular point with no gradient. Second, for
various synthetic cases in dimension 2, we exhibit that the alternating algorithm generally stabilizes,
but may also oscillate or converge to sub-optimal configurations, depending on the choice of gradient
step size strategies. Third, we consider the learning of a WGAN for MNIST digits generation. In
this high-dimensional case, we examine the stability of the loss function, and underline the impact
of the entropic regularization both on numerical and visual results.

We emphasize that the theorems ensuring are based on weak regularity assumptions for the cost
and the generator that can be met in practice. Our regularity hypotheses are for instance true with the
quadratic cost c¢(z,y) = ||z — y||? and with generators given as neural networks with ¢! activation functions.
Also, in the case of unregularized OT, the technical hypothesis is true except for degenerate positioning of
the support of py. Therefore, our results apply to most practical cases of WGAN training, and explain why
the algorithms for WGAN learning generally do not get caught in singular points with inexisting gradients.

2 The Wasserstein GAN Problem

In this section, we introduce in Section the primal, dual and semi-dual formulations of the OT cost.
The OT problem is presented in the general case including entropic regularization with parameter A > 0,
thus encompassing the unregularized case A = 0. Next, we introduce in Section [2.2] the generative learning
problem as well as the regularity hypothesis on the generator, which will be used to show the existence of
gradients of the OT cost with respect to 6. In Section we finally present a counter-example of measures
g and v for which the gradient formula does not hold.

First, let us give some notations that are used in the whole paper. Let X’,) be compact subsets of R?,
and let ¢: X x Y — R be a continuous function. Let © be an open subset of R? used to parameterize the
generator gg. We say that ¢ : X — R is €' on X if it is €' on an open neighborhood of X.

Definition 1 (z-regularity). We say that c is z-regular if there is L > 0 and an open set U with X C U C R?
such that for any y € Y, c(-,y) can be extended to a L-Lipschitz €% function on U.

We illustrate this definition with the cost c(z,y) = ||z — y||? on R?, with p > 1. For p > 1, ¢ is a smooth
function on R? x R? and thus z-regular, as V,c is a continuous function on R? x R? that is bounded on
U x Y for any bounded open set U containing X. For p = 1, the cost ¢(x,y) = || — y|| is not z-regular as
soon as X and Y are not disjoint. Indeed, for a fixed y € Y, x — ||z — y|| is not differentiable at y.

2.1 Optimal Transport, Primal and Dual Problems

Definition 2 (Primal formulation). Let u,v be two probability measures on X,Y respectively. For X > 0,
the reqularized optimal transport cost is defined by

Wi(p,v) = inf / ¢ dr + AMKL(7|p ®@ v) (9)
mell(p,v) XXy

where I(u, v) is the set of probability distributions on X XY with marginals p and v, and where KL(7|u®v) =

flog(dl‘f(gu)dw if m admits a density dff(gu w.r.t. p Qv and +oo otherwise.

Theorem 1 (Dual formulation (Santambrogiol [2015; |Genevay, 2019} [Feydy et all [2019)). Strong duality
holds in the sense that

Wi(p,v) = ma /w(w)du(x) +/¢(y)dV(y) —/mx(w(x) +(y) — (@, y))dp(x)dv(y)  (10)

= X
PEL(X),peE (V)
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where, for X = 0, mo(t) = 0 if t > 0, and + oo otherwise, and for A > 0, my(t) = A(eX — 1) A solution
(p,0) of this dual problem is called a pair of Kantorovich potentials. When A > 0, the solutions are uniquely
defined almost everywhere up to an additive constant (i.e. if (p,) is a solution, then any solution can be
written (¢ — k, v + k) with k € R). Also, when X\ > 0, the primal problem admits a unique solution

dn(a.y) = exp (LAY g ayany), (11)

If A\ = 0 the primal solution 7 of @D may not be absolutely continuous w.r.t. u ® v anymore. Nevertheless,
under weak assumptions (e.g. u,r admit second-order moments and p is absolutely continuous), one can
show (Santambrogio, 2015|) that the support of 7 is actually supported on the graph of an optimal transport
map 1%, i.e. the optimal 7 is the probability distribution of (X,7*(X)) where X has distribution p and
T*(X) has distribution v.

For ¢ € €(Y), let us define the regularized c-transform as in (Feydy et al. |2019))

Ve e X, ¢°MNx) = softminc(z,y) — ¥ (y) (12)
yeY

where the softmin operation is defined as

min u(y) it A=0,
softmin u(y) = vey w(w) (13)
yey —/\log/e_ Mdv(y) it A>0.

We also define the analoguous operators for the z-variable. It must be noted that the regularized c-transform
1> also depends on v even if v is omitted in the notation.

Given a pair of dual variables (¢, ) € €(X) x €(Y), one can see that taking c-transforms

P = o
: 14

leads to a new pair (@,)) of dual variables that have a better dual cost than (¢, ). Thus the dual
problem can be restricted to c-concave functions, i.e. functions that write as c-transforms. Such c-concave
functions inherits regularity from the cost function (see Appendix|C) and can be extrapolated to any x € X.

Theorem 2 (Semi-dual formulation (Genevayl [2019))). The dual problem (@) is equivalent to the semi-dual
problem
WaGur) = sup [N @)duta) + [ v)dvty). (15)
YeE(Y)
A solution i of the semi-dual problem is called a Kantorovich potential. In other words, ¢ is a Kantorovich
potential if and only if (Y, ) is a pair of Kantorovich potentials. By symmetry, we can also formulate a
semi-dual problem on the dual variable ¢.

2.2 Learning a Generative Network

Estimating a Wasserstein generative adversarial network (WGAN) from an empirical data distribution v
consists in minimizing

h/\(e) = W)\(,Mg, V)7 (16)
where the generated distribution pg is assumed to be the distribution of gy(Z), with Z a random variable.

Denoting by (¢ the probability distribution of Z on the measurable space Z, pg is the image measure of ¢ by
the generator gy, also known as the pushforward py = gof¢. More precisely, the notation gy refers to g(, )
where g : © x Z — R? is a function defined on the product of the open set © C R? with Z. In the following,
we give different sets of conditions on g that allow to compute the derivatives of hjy.
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All the results of this paper are related to the behavior of the function

H%m=Aywm (o ?(X), 0 0), (17)

which allows to reformulate the semi-dual expression of optimal transport as

ha(f) = wgl(% I(¥°*,0) + / Y. (18)

In order to study the gradient of hy, we define Fy : €()) x © — R with

Vip € €(V), V0 €O, Fx(v,0) = I(y°*,0) = /X M dpg = B[ go(2))], (19)

where the expectation is taken with respect to the probability distribution ¢ of Z.

Combining all previous definitions, the problem we tackle writes

Wi(pe,v) = ha(0) = maé) Hy(v,0) := F\(¢,0) / Ydu, (20)

and our objective is to study the relationship between Vhy(6) and VoFy (¥, 6). In the unregularized case,
we use simpler notations, h, W, H, and F for hg, Wy, Hy and Fy respectively, dropping the index A.

As we will see later, computing the derivatives of h) boils down to differentiating under the max, which is
allowed by the so-called envelope theorem. This result appears under different forms in the literature (Oyama,
& Takenawa), [2018]). In Appendix@ we recall the version of the envelope theorem that is used in our proofs.

If we admit the differentiability of all terms, the computation of the gradient is straightforward:

Proposition 1. Let 0y and vy satisfying hx(60) = Hx (o, 00). If hx and 0 — F\(vo,0) are both differentiable
at Oy, then
Vha(60) = VoFx(¢o, bo). (Grad-OT)

Proof. First, notice that Hy(vo,-) and Fy(ty,-) differ by a constant, and thus have same gradients. Us-
ing , h(0) = Hx (o, 0) for any 0, with equality if 6§ = 6y. Therefore, the function 6 — hy(0) — Hx (o, 0)
has a minimum at 6 = 6, and its gradient at 6y vanishes, so that Vhy(0y) = Ve H (0o, 00). O

However, showing the existence of Vo Fy (1o, 6p) is not straightforward, as one has to differentiate under the
expectation in . To this end, we introduce the following technical hypothesis.

Definition 3 (Hypothesis (Gg)). For 6y € O, we say that g : © x Z — X satisfies Hypothesis (G, ) if there
exists a neighborhood V of 0y and K € LY () such that almost surely 0 — g(0,7) is €* on V with differential
0 — Dyg(0,Z) and

VOeV, (as [g(0,Z) —g(bo, Z)|| < K(Z)[|6 — 0o]- (21)

We say that g satisfies Hypothesis (Go) if g satisfies Hypothesis (Gg,) for any 0y € ©.

A sufficient condition for Hypothesis (Gg) is that almost surely, 6 + g(0, Z) is € on © and that there exists
K € L'(¢) such that

V0,0 €O, Cas. [g(0,2) - g(6.2)] < K(Z)]0' - 9]. (22)

Hypothesis (Gg) is also satisfied as soon as g is €' on © x Z with Z C R* compact. In this case, for any
6 € O, there is r > 0 such that V = B(f,r) is included in © and then 1' holds with the constant bound
K = supgy z ||Degl||- This is the case when g is parameterized by a neural network with ¢! activation
functions, and with an input noise Z supported on a bounded subset of R® (e.g. Z uniform on [—1,1]%). In
Appendix [A] we show that Hypothesis (Gy) is satisfied in a more general setting with integrable noise.
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2.3 A telling counter-example

We now show that the differentiation with respect to # under the max in can fail, even for regular
generators g, thus discarding the formula . To illustrate this point, let us consider a simple
unregularized OT problem (i.e. A = 0) between a Dirac dg located at § € R? and a sum of two Diracs at
positions y; # yo € R%. This setting can be obtained by setting go(z) = 6 (for any distribution of 7).

Proposition 2. Let g = &g and v = 16, + 16,,.
For p > 1, consider the cost c(z,y) = ||z — y||P where || - || is the Buclidean norm on R®. Then
o h(0) =W (ue,v) is differentiable at any 0 & {y1,y2} for p =1, and at any 0 for p > 1,

o for any .o € argmax,, H(1,00), the function 6 = F(1.0,0) is not differentiable at 6o.

Hence relation never stands.

Proof. The only distribution on X x ) having marginals pg, v is m = 15(94,1) + %5(9@2). Therefore, recalling
that h(0) = W (ug,v) and from the definition of the primal problem (9), we have

W(O) = 5e(0,01) + 5e(6.2) (23)

which gives the first point.

Next, one can explicitly solve the dual problem, which, from the equivalent semi-dual formulation and
the definition of F, reduces to the following optimization problem with respect to (¢(y1),%(y2)) € R?

max H(.0) with H(w.0)= () + L) V02, (24)
hER? 2
where, for any v, the c-transform writes
erpy _ ) ely1) —d(yr) i c(0,91) — ¥(y1) < (0, y2) — P(12),
Vo) = {c(@,yg) —(y2) otherwise. (25)
Therefore,
_Jel0y1) + 5(0(y2) = ¥(yr))  if Y(ye) — Y(yr) < e(b,y2) — (0, 31),
H(p.6) = {c(@, — 2(¥(y2) —¥(y1)) otherwise. (26)
For a fixed 6y, H(-,6p) is maximal at any 1. such that
Vs0(y2) — ¥eo(y1) = c(0o, y2) — (6o, y1)- (27)

Besides, from , one sees that H (v, ) is made of two pieces whose gradients can be computed explicitly
for the cost c(z,y) = ||z — y|?:

and, when p > 1 we also have V,c(6,y;) = 0 for § = y;. Therefore, as illustrated on Fig. |1} the gradients of
the two pieces agree at no point 0: for any 6, V,c(0,y1) # V.c(0,y2). In particular, the function H (v, ) is
not differentiable at the interface A, = { 8 € R? | ¢(0,y2) —c(0,y1) = ¥(y2) —¥(y1) }. As F(¢,) only differs
from H (1, -) by the constant w, it is also not differentiable on A. But then, for ¥, satisfying 7
0o lies on the interface Ay,,, which gives the second point. Fig. [I| thus highlights the main pitfall in the
proof: the measure dp puts some mass on a thin subset where 6 — F(t,0,0) is not smooth. O
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Figure 1: Counter-example for the gradient formula. This
diagram illustrates the counter-example of Proposition 2] for p =
2. The notations used in this diagram are detailed in the proof.
A The function 8 — H (40, 0) is drawn in blue background. For the
optimal 1. corresponding to 6y, the function § — H (1., ) is not
differentiable on the interface A, where 6 lies.

For the same example, we show in Appendix |B| that relation (Grad-OT|) holds with regularized OT only in
the case p > 1. This illustrates the need for a regularity hypothesis on the cost, even for regularized OT.

This counterexample can be extended to other situations where the measure ug is not supported on a single
point. For example, for the same v, the gradient issue still happens if g is the distribution of 6 + Zu
where Z is a uniform random variable on [—1,1] and where v € R? is orthogonal to yo — y1 (g is the
uniform distribution on a segment orthogonal to [—1, 1] centred at 6). In the following section, we adopt an
hypothesis on the generator to avoid this objection.

3 Gradient formula in the unregularized semi-discrete setting

In this section, we prove the formula in the semi-discrete case, i.e. when the target measure v is
supported on a finite set of points. We only consider the unregularized case A = 0 and recall that the index
A is dropped in this setting, with the notations W = Wy, h = hg, and F = Fj respectively defined by @D,
and . More general results are given for regularized OT in the next section.

Our analysis builds on concepts related to semi-discrete OT (Aurenhammer et al., [1998; Kitagawa et al.,
, and in particular to the notion of Laguerre diagram presented in Section Section the
Laguerre diagram is used to formulate a condition on the generator gy which allows the computation the
gradient of h, by differentiating under the max in (20).

In the studied semi-discrete case, X C R? is compact and ) is finite with .J points, so that () identifies to
R”. We recall that the objective is to show that VA(:) = Vo F (¢, ), so we study the function F': R/ x© — R

F,0) = /X Wedpg = E[v<(g0(2))). (29)

3.1 The Laguerre diagram and the semi-discrete transport maps

In this section, we recall the definitions of transport maps and Laguerre diagrams which are used in semi-
discrete OT |Aurenhammer et al.| (1998); [Kitagawa et al| (2017). We also give two lemmas in order to
compute the gradient of c-transform functions. To any ¢ € R”, we associate a Laguerre diagram, which is
a collection (Ly(y))yey of Laguerre cells defined by

Ly(y) ={z e X | VY € Y\ {y}, clz,y) —o(y) < clz,y) =) }. (30)

We also define the Laguerre interface by

Ay =2\ (J Lo (y), (31)
yey

which corresponds to the set of points for which there is a “tie” in the minimum defining ¢¢(x). For example,
if c(x,y) = ||z —y|* in RY, Ay is contained in a union of hyperplanes whose directions are orthogonal to the
segments [y1,y2], ¥1,y2 € V. In particular A, has zero Lebesgue measure, and thus the Laguerre diagram
form a partition R? up to a negligible set.
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By construction, for € X' \ Ay, we can uniquely define the transport map

Ty(x) = aryger;lim(w, y) — Y(y). (32)

If 41 is a probability measure on X, one can verify that for any ¢ € R/, T}, is an optimal transport map
between p and Ty . Conversely, if 11 is absolutely continuous on X, solving the OT problem from 1 to v
is equivalent to find 1 € R’ such that Tty = v. We refer to Fig. [2| for an illustration of Laguerre diagram
and semi-discrete transport maps; and to [Kitagawa et al.| (2017)) for more details.

The two following lemmas will be useful to study the regularity of F' and h.
Lemma 1. The map (¢, x) — Ty(x) is locally constant on RY x Ay.

Proof. Let (¢,z) € R7 x Ay, and let y = Ty (z). By definition of Laguerre cells,

cl,y) ~ ¥ly) = _min (clr,2) = () <0 (33)

The left-hand side is a function that is jointly continuous in (¢, z) and is < 0 at (¢, x). Thus, there is a
neighborhood W of (v, x) where it stays negative, that is,

V(' a") e W, cla,y) =¥ (y) - zenyli?y}(C(ﬂf', z) —¢'(2)) <0. (34)

Therefore Ty (z') =y on W. O

Lemma 2. Assume that Y is finite with J points and that ¢ is x-regular (see Definition . Let ¢ € RY.
Then ¢ is €' on X \ Ay and

Vee X\ Ay, ViYi(x)= Vyc(z,Ty(z)). (35)

Proof. First, one can notice that X'\ Ay = U Ly (y) is an open subset of X’ because the Laguerre cells Ly (y)

yey
are open (thanks to the continuity of ¢). Besides, if z € X' \ Ay, y = Ty (z) is well-defined and = € Ly (y).

Thus Ly (y) is an open neighborhood of « on which we have

Vu € Ly(y), ¢°(u) = c(u,y) —¥(y) -
Therefore, on Ly (y), ¥° is as regular as ¢(-,y) = c(-, Ty(x)) and has the same gradient. O

Voronoi diagram Laguerre diagram

Figure 2: Laguerre diagram and semi-discrete transport maps. We display here two colored partitions
corresponding to Laguerre diagrams associated to a set ) with 6 points (drawn in dark blue), and with the
quadratic cost c(z,y) = ||z — y||* on [0,1]2. On the left we display the Laguerre diagram for 1 = 0, which
corresponds to the classical Voronoi diagram. On the right we display the Laguerre diagram for a specific
value of ¢. The map Ty is drawn as blue arrows. We also display in yellow the Laguerre interface A,.
Notice that, for a Laguerre diagram, a point y does not necessarily belong to its Laguerre cell Ly (y).

10



Published in Transactions on Machine Learning Research (MM/YYYY)

3.2 Gradient of the unregularized Wasserstein loss function

We now state our main theorem for unregularized OT. To this end, we first analyse the regularity of F.

Lemma 3 (Regularity of F). Assume that ) is finite with J points and that c is x-regular. Assume that g
satisfies Hypothesis (Go,) (Definition @ at some 0y € ©. Assume that for any ¢ € R7, pg,(Ay) = 0, ie.
g(00, Z) € X\ Ay almost surely. Then, for any 1 € RY, 6 — F(3,0) is differentiable at 6y and, denoting as
Dyg the partial differential of g with respect to 8, we have

VoF (1), 00) = E[Dog(60, 2)"V*(9(00, 2))]- (36)
Proof. Let V be the neighborhood of 6y given by Definition [3] For 8 € ©, let us denote

f(,0,2) = ¢°(9(0, 2)) (37)

so that we get F(1,0) = E[f(,6, Z)] from (29). The hypotheses on g and Lemma [2] ensure that f(1, -, Z)
is almost surely differentiable at 6y and thanks to the chain-rule, we have

Vof(¥,00,2) = Dog(b0, Z)" V1) (g(00, Z)). (38)

Besides, since ¢ is a-regular, the c-transforms are L-Lipschitz thanks to Definition [I] and Lemma [f] given in
Appendix [C] Therefore, for any 6 € V,

1f(¥,0,2) = f(, 00, 2)| < Lllg(0, Z) — 9(60, Z)|| < LK(Z)]|0 — bo]|  a-s. (39)
Next, replacing 6 by 6y + t(0 — 6p) for t € R and letting ¢t — 0, we also get
Vo f(¥,00,Z).(6 — 0o)|| < LK(Z)[|6 — 0o a.s. (40)
In particular, E[Vg f(1), 00, Z)] exists. Therefore, we have for any 6 € V,

|f(1,0,Z) — f(1,00,Z) — Vo f(3),00,2).(0 — 0o)]
10 — ol

<2LK(Z) as. (41)

When 6 — 69, the left-hand-side tends almost surely to zero, and thus, the dominated convergence theorem

ensures that
E |f(1/}>€7Z) - f(i/%eoa Z) - VQf(¢,90, Z)(9 - 90)|

[ -0 e
and in particular,
F(,0) = F(y,00) — E[Vo f (1), 00, Z)].(6 — 60) = o([|0 — bol)- (43)
This proves that F'(v,-) is differentiable at 6y with
VQF(’IZJ, 00) = ]E[VQf(w7 90a Z)} = E[Dgg(eo, Z)TV’IIZ}C(QQO (Z))] (44)
O

Theorem 3. Assume that Y is finite with J points and that ¢ is x-reqular. Also assume that

1. for any 0 € ©, the Kantorovich potential ¥, for W(ue,v) (defined in Theorem@) s unique up to
additive constants.

2. for any 0 € © and any ¢ € RY, pg(A,) =0, i.e. we have g(0,7Z) € X \ Ay a.s.
3. g satisfies Hypothesis (Gg ) in Definition @

Then h(0) = W (ug,v) is differentiable at any 0 € © and

Vh(0) = VoF(1.,0) = E [Dog(0, 2)" Vii(90(2))] - (45)

11
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Proof. The proof consists in applying the envelope Theorem [7] (recalled in Appendix @ to show that h is
differentiable at a fixed 6y € ©. Let us denote by 9o the corresponding Kantorovich potential for W (ug,, V).

First, we need to build a selection of Kantorovich potentials that is continuous at 6. Since we assumed that
for any 0 € V, the Kantorovich potential for W (g, v) is unique up to additive constants, there is a unique
Y49 € argmax F (-, 0) such that ¢¥.g(y1) = 0, where y; is an arbitrary point in Y. The continuity of 6 +— 1.
then follows from Lemma [§ given in Appendix [C| and the fact that 6 — g is weak-x continuous at 6.
Indeed, Hypothesis 3 implies that when 8 — 0, E[||go(Z) — g0, (Z)]||] — 0, which means that go(Z) — go,(2)
in L'(¢,R?) and thus in distribution.

Lemma [3| then ensures that VyF (1, 0) exists in the neighborhood of (1.0, 6p).

Finally, we have to demonstrate that (1, 6) — VoF(¢,0) is continuous at (1.0, 6). For that, we show that
the function f(1, 6, Z) introduced in Equation has a simple expression in the neighborhood of (., f9).
Indeed, for (-almost all z, we can define y = Ty, (gg,(2)). Lemma [1| gives a neighborhood W; x Wy of
(Y40, 90, (2)) where Ty (z) = y. By continuity of g(-,z), U = Wy x (g(-,2)"}(W2)) is a neighborhood of
(%40, 00) such that V(¢,8) € U, Ty (go(z)) = y. Thus,

v(w’ 9) € U7 v@f(w’ 9’ Z) = Dgg(O, Z)TVQ/}C(QE’(Z)) = D99(97 Z)TVIC(gO(Z),y). (46)

In the neighborhood U, the right-hand side does not depend on ¥ anymore. It is also continuous in 8 thanks
to Hypothesis (Gg) and the fact that ¢ is z-regular. This proves that almost surely Vy f(+, -, Z) is continuous
at (Y40, 00). Finally, Equation proves that all components of Vg f(-,-, Z) are almost surely bounded by
LK(Z) € L*(¢). Therefore, the dominated convergence theorem ensures that Vo F(v,0) = E[Vyf (1,0, Z)]
is continuous at (t¢.q, 6p).

We can thus apply the envelope Theorem [7] which gives the desired result. O

The hypothesis that ¢ is z-regular (see Deﬁnition may not be satisfied for some specific costs, like c(x,y) =
|z — y|| in R, which is related to the 1-Wasserstein distance. We now give a similar result with a relaxed
hypothesis that encompasses such non-smooth cost functions.

Theorem 4. Assume that Y is finite with J points. Assume that ¢ : X x )Y — R is continuous, and that
there is a constant L > 0, an open set U with X C U C R? and a set B C X closed in R such that for
any y € Y, c(-,y) can be extended to a L-Lipschitz €% function on U\ B. Assume that g satisfies the three
assumptions of Theorem@ and assume also that ug(B) =0 for any 6 € ©.

Then h(0) = W (ug,v) is differentiable at any 0 € © with the gradient expression .

In the case of the Euclidean distance c¢(z,y) = ||z — y|| in R%, for any y € Y, ¢(-,y) is €* only on R?\ {y}.
Thus this cost satisfies the condition of the last theorem with B =}, and the resulting hypothesis on the
generator reads as pg(Y) = 0, in addition to the fact that the Laguerre interface A, is pg-negligible.

Proof. One may check that the main parts of the proof given for Theorem [3] are still true with the relaxed
hypothesis on the cost. We only highlight the minor modifications. First, in Lemma [2] one obtains that the
c-transforms ¢ are only €' on X \ (Ay U B). The proof of Lemma [3| is unchanged because go(Z) almost
surely belongs to X'\ (A, U B) where the c-transforms are differentiable. Finally, in the last step of the proof
of Theorem BL the neighborhood W; x W5 has to be replaced by W; x Wy N B€. O

4 Gradient formula for regularized optimal transport

In this section, we show the gradient formula in the case of regularized optimal transport. With
regularized OT, as soon as the cost is regular, the regularized c-transforms are also regular everywhere (see
Lemma |§| in Appendix [C]). Hence no assumption are required on the target measure v, and the study is not
restricted to the semi-discrete setting.

We recall the notations Wy, hy, and F) from @, and . In order to obtain the gradient of hy, we
follow a similar strategy than in Section |3|and study the relation between Vhy(0) and Vo Fy (¢, 0). We first

12
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show the gradient formula for the unregularized Wasserstein loss function in Section [4.1] and then extend
this result for Sinkhorn divergences in Section

4.1 Gradient of the loss with entropic regularization

We first recall a result from |Genevay et al.| (2019)) on the gradient of regularized c-transforms and detail its
proof for further use.

Lemma 4 (Gradient of regularized c-transforms |Genevay et al.| (2019)). Let A > 0. Assume that c is
x-regular (see Definition . Let i € €(Y). Then v is €' on X and

Mg —c(x
Vee X, Vyorz) = /yexp (1/] (z) + ¢)(\y) ( ,y)) Vae(z, y)dv(y) (47)

_Jye (L5 9o, y)du(y) )

fy exp (M) dv(y)

Proof. By definition of the regularized c-transform (see relations and ), we have for any z € X,
PO (x b(y)—c(x,
Vre X, - A(>:/ev<>x< y)du(y). (49)
Yy

. . W=cy . s .
Since c¢ is z-regular, then for any y € Y, « — PP s @1 on a neighborhood of X, and it is Lipschitz
with Lipschitz constant %exp(w). Therefore, we can differentiate under the integral to get

O (@)

»o 1 p(y)—c(z,y
VeeX, Vv, (e— 5 )z—A/ Voclz, y)e ™5 du(y). (50)
y

Expanding the left-hand side, this is equivalent to

P (y)—c(z,y)
e A

(PN .
Ve X, Ve (a)e Tx = / Vac(z,y) du(y), (51)
y

which gives the desired formula for Vap©*. The second expression follows from using the definition
of ¥** again. Finally, using , one can see that all integrated functions are continuous with respect to z,
and bounded. The dominated convergence theorem thus ensures that V“* is continuous. O

We now look at the differentiation of F’\ before showing the gradient formula (Grad-OT)).

Lemma 5 (Regularity of F)\). Let A > 0. Assume that ¢ is x-regular and that g satisfies Hypothesis (Gg)
(Definition[3). Let ¢ € €(Y). Then the function 6 — Fx(¢,0) is differentiable on © and

V8 € ©, VoF\(,00) =E [Dog(bo, 2)" Vo (g(0o, 2))] - (52)

Proof. As in the proof of Lemma |3] let us introduce

In®,0,2) = 4N go(2)) (53)

so that Fy\(v,0) = E[f\(¢¥,0,Z)]. Using Hypothesis (Gg) and Lemma [4] f\(1,-, Z) is differentiable on ©
almost surely, and, thanks to the chain-rule,

Vofr(1,0,2) = Dog(0, Z)" Vi) go(Z)). (54)

Besides, the regularized c-transforms of a a-regular cost being still L-Lipschitz (by Lemma |§| in Appendix (C]),
we have an integrable bound for the finite differences of fy. Indeed, for a fixed 6y € O, and for any 6 in the
neighborhood V' of 6y given by Hypothesis (Gyg, ), we have

[Ix(,0,Z) = fx(4, 00, Z)| < Lllg(0, Z) — g(60, Z)|| < LK(Z)|0 — b0 a.s. (55)

13
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The proof can then be ended as the one of Lemmal3] For further use, notice that the previous bound implies

Voo € ©, [IVofr(¥,00, 2)|| = ||| Dog (60, 2)" Vi (g(00, 2))||| < LK(Z) as. (56)

where ||-]| is the dual norm associated with || - ||. O
Theorem 5. Assume that c is x-reqular and that g satisfies Hypothesis (Gg). Then hy is €' on © and

VO €O, Voha(0) = VoFx(¢s,0) = E [Dog(0, 2)" Vi (9(0, 2))] (57)

where ¥, € argmax,, Hx(,0), and where V@[Ji”\ is given by ,

Proof. As in Theorem [3] the proof is based on the envelope Theorem [7] given in Appendix [D} applied on
hx(0) = Wi(ue,v) = maxy Hx (¢, 0) (see and ) With entropic regularization, the uniqueness (up
to additive constants) of the solutions of the dual problem provides a continuous selection of Kantorovich
potentials, thanks to Lemma |8 in Appendix Besides, Lemma [5| ensures that Vo F)\ (1), 0) exists for any
P € €(Y) and any § € O. It remains to show that VyF) is continuous in (¢,6). For that, recall that
VoFx(1,0) = E[Vofr(¥,0,Z)] where f is defined in (53)), and let us fix 6y € © and 1,9 an optimal
Kantorovich potential for W (ug,, ), and let also ¢ € €' (Y) be arbitrary. Then, for any 6 in the neighborhood
V of 0y given by Hypothesis (Gg, ),

[fx(,0,2) = fx(4, 00, Z)| < Llig(0, Z) — g(b0, Z)|| < LK(Z)[|0 — 6ol a.s. (58)

which ensures that all components of Vg fi(¢,0,Z) are almost surely bounded by LK(Z), an integrable
bound which does not depend on (v, ). Since § — g(6, Z) is almost surely ¢! on V, using , the last
step is to show that (1, 6) — V1®*(ge(Z)) is almost surely continuous.

Let us fix z € Z for which g(-,2) is ¢! on V and for which Hypothesis (Go) holds. From , we have

Ve (go(2)) = e 2R /y Vaelgo(2),y)e 2 duy). (59)
For the first term, if 1, x € €(Y) and 0,7 € O,
[ (ga(2)) — XMy (2))] < [V (ga(2)) — Mg (2))] + [0 (g-(2)) — X9 (2))] (60)
< Llgo(2) — g (2)] + [0 = XMoo (61)
<LK =7+ ([ = xlloo (62)

P& (gg(2))
A

by virtue of Lemma [7| given in Appendix [C| and thus (¢,0) — e is continuous. For the integral
term, 6 — V.c(go(2),y) is continuous on V because c is z-regular and because 6 — g¢(6,z) is continuous

on V. Additionally, (¢,0) — e TEREEE g g separable product of two terms which are continuous in
1 and 0 respectively. Finally, if ¢ is restricted in a neighborhood Py of .9 bounded by R > 0, then all
terms under the integral are bounded by Lex (Bliell) Again, the dominated convergence theorem implies
that (1,0) — Vi>*(ge(z)) is continuous on Py x V. Finally, using the bound and the dominated
convergence theorem gives that (¢,0) — VgF\(¢,0) is continuous on Py x V. Therefore, all required
conditions are satisfied to apply the envelope theorem on F), which gives the desired formula. O

4.2 Gradient of the Sinkhorn divergence

We here assume that X = Y, that the cost (z,y) — c(z,y) is €' on X x X and symmetric (i.e. c(z,y) =
c(y,x) for all z,y € X) and that it is L-Lipschitz with respect to (z,y):

V(z,y), (' y) € X x X, e(@,y) — (=) < Lllz = 2| + ly = ¢'ID)- (63)
Genevay et al.| (2018) and |[Feydy et al.| (2019)) have shown that learning a generative model based on the

Wasserstein cost W) induces a bias. For this reason, they propose to use instead the so-called Sinkhorn
divergence defined as

S v) = Wi, v) — %(WA(M, W)+ Wa(v). (64)
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Since we focus here on the regularized WGAN learning problem, we study the function

sx(0) = Sx(pe,v) = Wi(ug,v) — %(WA(MG; o) + Wa(v, V)) (65)

and we extend the previous regularity results to this new criterion. The first term of has already been
studied, and the last term does not depend on 6. It thus remains to study the middle term. To this end, we
rely on the dual formulation of Wy (ug, pg) given by

x(@)+n(y)—c(z,y)
Wa(uo,pe) = max_ Falx,n,6) == / xdo + / ndio — N / IR g (y) + A (66)
X,NEE(X) X X XXX

The problem can be restricted to functions which are regularized c-transforms with respect to pg. Similar
to Lemma |5} one can show that such regularized c-transforms are still ! on X and that the gradient can
be computed by differentiating under the integral. Besides, because of the symmetry of W) (e, 1g), one can
show that the couple of optimal potentials (x«,7s) that solve is such that y. and 7, are equal up to
an additive constant. Based on these observations, we can now state the regularity result for the Sinkhorn
divergence. Recall that notations I, F are defined in and .

Theorem 6. Assume that c is x-reqular and that g satisfies Hypothesis (Go). Then sy is €' on © and
V0 €O, Vosa(0) = VaFr(s,0) — Vol (x.,0) = E [Dog(8, 2)" (Vi (9(6, 2)) — Vx.(9(6, 2)))], (67)
where .. € argmax,, F)(¢,0) and (xx,n«) € argmax, .y FA(X,7,0).

The proof is postponed to Appendix [E]

5 Experiments

The goal of this section is to provide a practical analysis of the proposed approach for learning a generative
model by means of the regularized optimal transport framework. More precisely, we aim at examining
the impact of the regularization parameter and the choice of parameterization for the dual variable of the
corresponding optimization problem. We first provide in Section [5.1] an alternating algorithm that tackles
the minimization of for learning a generator from a dataset. In Section we apply this algorithm to
synthetic datasets with a few number of points in dimension 2. This helps to understand and explain the
possible trajectories of the alternating algorithm. Then we consider in Sectionthc MNIST dataset (LeCun
et al., [1998)) composed of 60000 digits in dimension 784.

5.1 Alternating Algorithm

In the semi-discrete setting, ) is a finite set of J data points, and elements ¢ € € ()) identifies to vectors
in R’ as in Section [3l On the other hand, jg is the output distribution of a generative network, which can
be sampled on demand. We thus aim at solving the optimization problem

minfix(6) = min max H(1,0) = /X Yo dpg + /y vdv = Fa(4,0) + 3 dv({y})) . (68)

0c0 0€0 ye? (V) =
We adopt an algorithm that alternates between updating 6 with one gradient step, and updating v with
several iterations of a dedicated algorithm.

As shown in our main theorems (see relations and ), computing the gradient of h) requires an

optimal dual potential ¢, = z/Ji”\. In general, we only have access to an approximation of .. In our work,
we rely on the stochastic algorithm for semi-discrete OT proposed in (Genevay et al.l [2016) to approximate
the optimal potential. We recall that from the notation in the proof of Lemma |5 we have

Ex(¥,0) = E[fz(¥,0, 2)] (69)
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where f1(¢,0,2) = 1¥°*(go(2)). It has been shown in (Genevay et all 2016; [Houdard et al., [2023)) that
H) (-, 0) defined in is a concave function whose supergradient D(1),0) = 0, Hx (¢, 0) can be written as

D(¢,0) =E[D(¢,0,2Z)] where D(v,0,z2) =0y (f)\(l/},e,z) — /1/)d1/> . (70)

This element D(¢,0,2) € R’ can be computed with an explicit formula given in (Genevay et al., 2016;
Houdard et al.| |2023)). It is in practice implemented by automatic differentiation.

Therefore, for a current 8, we can optimize 1 with a stochastic supergradient ascent (for which we adopt the
common referencing ASGD for averaged stochastic gradient descent)

{Jk =Pr1+ & (@ > .en, D(Wn-1,0, z)> (71)

Vi =2+ ),

where v > 0 is the learning rate, a € (0, 1), By, is a batch containing b independent samples of the distribution
of Z, and the different batches By’s are also independent. In ASGD, the variable Jo can be initialized at 0
(cold start), or alternately at the value of ¢ obtained by ASGD for the previous 6 (warm start). As recalled
in (Genevay et al., |2016) and (Galerne et al., 2018]), for @ = 0.5, the ASGD algorithm has a convergence

guarantee in O( 10\5;;) on the function values. After K iterations of the inner loop, we obtain an approximation

1 of the optimal dual potential 1, for Wi(ug,v), and we use it to perform the gradient descent step on 6
Voha(0) = VoHx(1,0) = VoA, 6) = E [ Dog 0, 2)7 V" (9(6, 2))] (72)

Using Vo H (9, 0) as a proxy for Vohy(0) in the gradient descent step can be interpreted as an alternating
optimization on Hy(1,6), with an inner loop on 1 at each iteration. As the expectation in cannot
be computed in closed form, we realize an approximation by taking another batch B’ on z (drawn with
distribution ():

1

VoHA(W,0) ~ 5 > Dag(6,2)" Ve (g(6, 2)). (73)
z€B’

The overall method, summarized in Algorithm [I} can be interpreted as a stochastic alternating optimization
algorithm on a fixed cost Hy (v, ). This generalizes the related work of (Chen et al.,|2019) which is restricted
to unregularized OT A\ = 0. The stochastic gradient steps taken on ¥ and 6 can be implemented by automatic
differentiation on a fixed cost Hy, and the updates can be implemented with predefined optimizers. A neural
network parameterization ¢, of the variable ¢ can also be adopted as in (Seguy et al., [2018)). The update of
1) then translates on an update of the neural network parameters ¢, which can be done by backpropagating
the gradient of ¢ — fy (11,6, 2) — [Pedv = ¥ (go(2)) — > yey Ye(y)v({y}) through the differentiation of
(@,0,2) = °*(ge(2)) for a batch of z values. The exact computation of 1> requires to visit all the
dataset ), which is prohibitive for large databases. An alternative strategy is to work with a batchwise
version of the OT cost, but this introduces an estimation bias [Fatras et al.| (2020]).

Algorithm 1 Alternating algorithm to learn generative model pg

Initialization: ¢y = 0 and 6 (randomly)
For n=1to N

e Approximate 1, &~ argmax H(-,0): inner loop with K iterations of ASGD using supergradient on
batches By, 1,. .., Bn,k of size b on z , initialized at ¥,_1 (warm start) or at 0 (cold start)

o Update 6 with one step of ADAM algorithm on Hj(1n, ) using gradient on a batch B, of size b on z

Output: estimated generative model parameters 6

5.2 Generator learning for Synthetic datasets

We examine the behavior of the alternating Algorithm [I] for fitting a generative model to a small 2D synthetic
dataset (J = 2 points in Section and J = 6 points in Section [5.2.2). For each experiment, we give
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diagrams to illustrate the position of the dataset ) and the evolution of the support of 1y along the iterations
n of the main loop of the algorithm. The square support of these diagrams corresponds to [0,1]%. The
Laguerre diagram associated with a given ¢ € R’ is drawn as a colored partition of [0,1]2. On the right
column of the figures, we display the evolution of the loss Hy(v,8). Since Hy (1, 0) involves a pp-integral,
for plotting we always use a Monte-Carlo estimate obtained with a batch drawn from pyg.

We use the quadratic cost ¢(x,y) = |z — y[|* and the settings detailed in Appendix Note that in
Algorithm [1| the ADAM algorithm is used to update the model, which is often parametrized by a neural
network, as done in the following with an MLP generator. However, when considering simpler models (dirac,
disc and ellipse distributions that are explicitely parametrized), we rely on a stochastic gradient descent
(SGD) algorithm with fixed learning rate 7 = 0.2. In both cases, the dual variable ¢ is optimized with the
ASGD algorithm written in with learning rate v and a cold start initialization. The number K of ASGD
iterations is always fixed to K = 100.

5.2.1 2-point dataset

We use the generative models detailed in Appendix for a target distribution v uniform on Y = {y1,y2}.

Dirac generator We first study the example of Proposition [2| and consider the Dirac generator pg = dy.
In this case, the gradient descent on 6 is actually deterministic. Besides, from the calculations of Section 2.3
we have that the global minimum of hy(#) = W (ug, v) is reached at 6, = 52,

Fig. [3] displays the results for the Dirac generator. It illustrates the position of the estimated Laguerre
diagram along iterations. Let us recall that, as illustrated in Fig. [1| for a fixed 6, the solution of the
dual transportation problem makes the Laguerre interface go through 6. This is not the case when using
Algorithm [I} even in this deterministic setting. Hence the current point 6 can get close to the Laguerre
interface but it does not get caught by this interface. Indeed, with the chosen initialization of § and gradient
strategies, the combination of gradient steps on ¢ and 6 has no reason to put the interface exactly on 6.

In view of Proposition [2] it means that for a current 6, the ASGD on v does not reach the optimum ),
in finite time. Hence the corresponding interface does not pass through 6 and the algorithm does not get
trapped in a point where the gradient of 8 — Hy(1),0) does not exist. This illustrates that it is very unlikely
to encounter the gradient problem highlighted in Proposition [2] in real use cases. In contrast, the gradient
problem appears when taking an optimal gradient step on 1 instead of a fixed step size. Indeed, with such a
strategy, one iteration of ¥ puts the interface exactly on 6, which prevents from computing the next gradient.

Fig. [3| exhibits four different behaviors of the alternating algorithm: without regularization (A = 0) in the
three first rows, and with A = 0.1 in the last one. In the first row, the alternating algorithm stabilizes, but
for a wrong reason: the learning rate v of ASGD is too small, and thus the interface will not get past 6.
Therefore, 6 being always in the same Laguerre cell, the gradient descent on # makes the generator collapse
to the corresponding data point ¥;, which is not even a local minimum of hj.

An opposite phenomenon appears in the second row, where «y is larger: the algorithm now oscillates. In this
case, because of the fixed number of iterations of the inner loop, ASGD always makes a non negligible error.
This reflects in the position of the interface, which hardly get close to 6, and actually moves periodically on
opposite sides of . Thus, the point # is alternately pushed towards y; and ys, which corresponds to the
oscillations in the evolution of the loss function. This example shows that, with a fixed step size strategy,
the alternating algorithm may not converge in certain cases. Note that using a decreasing step,
which is often used to mitigate oscillating behaviour during stochastic optimization, does not necessarily
solve this issue. As illustrated in the third row, with a carefully tuned gradient step strategy and smaller
learning rates 7, the algorithm stabilizes around the optimal position 6., with slight oscillations.

Finally, for the regularized case shown in the fourth row, one can see that 6 quickly gets close to the global
optimum 6, = % Indeed, from the gradient formula , the Vg-descent direction points to a weighted
average of y; — 0 and y» — 0 at each iteration, which helps to push 6 towards #,. One can observe that using
the transported measure Ty 1t never solves the WGAN problem because it would just copy y1 or y2 whereas
the true solution dy, realizes a compromise between all data points. The proposed alternating algorithm is
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Figure 3: Generator learning for 2-point dataset ) and Dirac generator dg. In the first columns,
we display Y (dark blue) and the current position of 6 (light blue) along iterations n. The Laguerre dia-
gram associated to the current value of v o 18 displayed in the background with the colored partition. The
last column shows the evolution of the loss H (1 9,9) along the iterates. For each line, the regularization
parameter A and the learning rates ,7n for ¥ and 6 are indicated on the left. Depending on the choice
of parameters and gradient strategy, the alternating algorithm can oscillate or stabilize. See the text for
additional comments.

a relevant way to find this compromise, provided that its hyperparameters are carefully tuned. Besides, this
example illustrates that entropic regularization may help to reach this compromise faster, while introducing
a non negligible bias in the problem as explained in |Genevay et al.| (2018]).

Disk generator We now consider the same data set ) = {y1,y2} and a generator gy inducing the uniform
distribution pg = U(D(0,7)) on the disk of center # and of fixed radius r. In this case, pp is absolutely
continuous w.r.t. the Lebesgue measure; thus the SGD on 6 is truly stochastic. All hypotheses of Theorem
are satisfied in this setting, which validates the gradient formula for all values of ¥ and 6.

Different behaviors can nevertheless be observed with the alternating algorithm, as illustrated in Fig. [ which
present experiments conducted with A = 0. If r is sufficiently small (rows 1 and 2), the algorithm behaves
as in the case of the Dirac generator: for large value of « the algorithm can oscillate around the optimal
position yl'gyz (row 1), and for low values of v, it can make 6 collapse to one of the data point (row 2). In
this latter case, the “cold start” initialization ¢ = 0 actually explains the bad positioning of the interface.
With a “warm start” initialization of ¢ i (row 3), the estimated interface is indeed able to closely follow the

position of 6. However, this amplifies the oscillations of 6, since the interface goes past 6 more often.

Note that the oscillatory behavior is reduced when the radius r of the disk is increased (rows 4 and 5).
Indeed, if the disk is larger, the interface stays close to D(6, 1) as soon as they intersect. This illustrates that
a largely spread distribution pg make the alternating algorithm stabilize faster, even when starting from a
purely random initialization (row 5).

Other generators We consider in Fig. [5| one ellipse generator (1l-ellipse, row 1), one “mixture of two

ellipses” generator (2-ellipse, rows 2 & 3), and a multilayer perceptron (MLP, rows 4 & 5). In these experi-
ments, the generated distribution tends to concentrate either on ) or on a one-dimensional structure close

18



Published in Transactions on Machine Learning Research (MM/YYYY)

‘\
0 J
o — |
S o . . . o |
o ” . . o
I - vaw_
=
< . . . .
|
- © oel |
g < \
o ° . o |
g o
L T o : . 5 o S .
’(/’]\ 05 \“
== ) |
e 4 3 T
S =) ‘ h\
T . \
= |l ° & o \ \ \/
?\ 10 20 30 a0 50
‘\
8 ~ I
S S g . S » s 2 |
ol ol |
L T . . . \
A
e g—
g o Py L ] ] “‘
ol ® . il
T e o c o o o N
Initialization n=>5 n =10 n = 20 n =30 n =40 Estimated Loss

Figure 4: Generator learning for 2-point dataset ) and Disk generator centered at 6. Results are
displayed using the same presentation as in Fig. |3] with samples from gy in light blue. For each line, the
disk radius r and the learning rate v are indicated on the left. The regularization parameter is here fixed to
A = 0. The last column shows the evolution of the estimated loss Hx (¢ . ) along the iterates. In the third
line, we used a “warm start” (WS) initialization for ¢ at each iteration, as opposed to "cold start" in other
cases (see Alg. . Depending on the choice of parameters and gradient strategy, the alternating algorithm

may oscillate or stabilize (possibly to a sub-optimal configuration). See the text for additional comments.

to the line (y1,y2). The difference between first rows is worth noticing: if possible, the generator collapses
on the data points in order to decrease the W2 cost. This is possible in the 2-ellipse case (rows 2, 3), but not
in the 1-ellipse case (row 1). This illustrates that the choice of the generative model is important and that
mode collapse cannot be only attributed to the loss function, i.e. the W? cost or its regularized version.

5.2.2 6-point dataset, neural generator

We now consider a dataset )V with 6 points, and we fit a generative model parameterized by a multilayer
perceptron (MLP), whose parameters can be found in Appendix The results are displayed in Fig. @
below, and in Fig. Fig. [12] of Appendix[G] On Fig. [6] the estimated generative model concentrates on a
shape, which is close to the data points for A = 0, while it degenerates to a barycenter for larger A\. This
phenomenon is confirmed by the results of Fig. and agrees with the fact that entropic regularization
introduces a non negligible bias in the WGAN fitting problem, as already highlighted by [Genevay et al.
(2018). Correcting this bias requires the use of the Sinkhorn divergence S) instead of Wy. However, since
the source measure g is absolutely continuous, estimating .S without relying on a batch approximation is
not straightforward. For this reason, we do not address WGAN estimation with the Sinkhorn divergence.

In these experiments, the loss tends to oscillate. Following Section [5.2.1] this behavior can be explained by
the large number of parameters of the MLP associated to the fixed number of iterations K of the inner loop.
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Figure 5: Generator learning for 2-point dataset ) and various generators: l-ellipse (row 1), 2-
ellipse (rows 2 & 3), and MLP (rows 4 & 5). Results are displayed using the same presentation as in Figure
The learning rate for v is here fixed to 7 = 0.1. See the text comments for more details.

In the first row of Fig. [6] the loss slightly oscillates for K = 100, end the generated distribution pg realizes
a good approximation of v for n = 200. In the second row, the number of iterations of the inner loop is
reduced to K = 2 and the algorithm stabilizes to a bad configuration. This suggests that when K is too low,
the ASGD does not converge fast enough to irrigate all points of the target distribution v. If the Laguerre
cell of one data point y; stays empty, then, from equation with A = 0, one can see that y; never
appears in the update of §. As a consequence, nothing pushes pg to visit y;.

The examples of Fig. [0] give an intuition of the behavior of WGAN learning algorithms when applied to
high-dimensional datasets, such as images. First, depending on the choice of hyperparameters, the learning
process may stabilize or not, as already noticed by (Stanczuk et al., 2021)). Convergence issues do not prevent
the learned distribution from realizing a good approximation of the data, in the sense that a non stabilized
generator can produce plausible samples. The learned distribution is indeed able to fit a complex structure
underlying the data, made of noisy curves that interpolate between datapoints. Samples obtained on the
branch linking two datapoints y;,y, can thus be seen as an interpolation between those two points. With
images, such an interpolation of y;, yx could be a blurry average (L? interpolation) or a better interpolation
related to a geometric deformation of y; into y,. This is what we observe in the next section when fitting a
generative model to the MNIST database. However, considering the instability of the learning process and
the number of parameters involved, it is difficult to ensure a priori that a generative model with a given
architecture is appropriate for sampling accurately of a given dataset. As illustrated in experiments, such a
model should be able to produce plausible interpolations of data points while exploiting the diversity of the
dataset to avoid mode collapse.
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Figure 6: Generator learning for 6-point dataset ) with MLP generator. Results are displayed
using the same presentation as in Figure [ On the left we indicate the regularization parameter A and the
number of iterations K of the ASGD inner loop. The learning rate for v is here fixed to v = 0.1. See the
text for comments.

5.3 Generator learning for MNIST dataset

We finally address the problem of digits generation by leaning a generative model on the MNIST database
containing J = 6 - 10* images. We discuss the behavior of the alternating Algorithm [I| and examine the
impact of the regularization parameter A both on the visual results and the convergence of the loss function.
We also discuss the effect of parameterizing the dual variable ¥ by a neural network.

The detailed settings used for these experiments are given in Appendix [F:2] The generator parameters 6
are optimized with ADAM algorithm (Kingma & Ba, 2015). The dual variable v is optimized with Pytorch
implementation of ASGD, with warm start initialization.

On Fig. [7] we display sampled digits obtained with the generative networks learned with Algorithm [I] run
with different settings. The generators learned with unregularized OT (A = 0) produce mostly convincing
samples, slightly more blurry than the images of the database. Some of the samples generated do not look
exactly like a digit but like a mixture of different digits. This reflects the fact that the generative network
interpolates between the images of the database. The two tested architectures for the generator are MLP
and DCGAN. They produce comparable results, with a slight advantage for DCGAN, which provides cleaner
samples thanks to its more complex architecture adapted to two-dimensional data.

In all cases, the quality of visual results deteriorate when the regularization parameter A grows. For very
small A, the results are comparable to the unregularized case. For larger A, the outputs of the generative
networks concentrate on a blurry average of the database, due to the estimation bias of W
. This can be understood from the gradient formula which involves the gradient of the regularized
c-transform given by . When A\ — 400, V) (x) degenerates to a simple average fy Vel y)dv(y).
With the blur created by entropic regularization on the transport plan, the sampled points are pushed
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towards all the target points in a mixed manner. In contrast, with unregularized transport, each sampled
point z is pushed towards the data point T (z) assigned by the current OT map, as illustrated in Fig.
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Figure 7: Generator learning for MNIST dataset. We compare here several generative networks
trained with different architectures for the generator gy (MLP or DCGAN) and the dual variable ¢ with no
parameterization (SDOT) in the two first rows, or MLP parameterization (SDOTNN) in the two last rows,
and varying the parameter A\ of entropic regularization.

To better understand these visual results, we now examine the behavior of the loss function depending on the
adopted setting. Fig.[§[shows the evolution of the estimated loss H (¢ o ) along the iterates of Algorithm
when the dual variable v is either parameterized as a vector in R” (SDOT, for semi-dual OT) or a neural
network (SDOTNN, for semi-dual OT with neural network).

The loss stabilizes, with small oscillations, in = 500 iterations, and the limit values obtained with both
parameterizations (SDOT and SDOTNN) are similar. Note that the limit value is lower with the SDOTNN
parameterization. Since the adopted multilayer perceptron has here > 5 - 10° parameters (and is thus
much larger than J = 6 - 10%), it is likely that any value (1(y;))1<j<s € R’ can be attained with such
a parameterization for . Notice also that the loss decreases in a more stable way with the SDOTNN
parameterization. This parameterization is indeed likely to be more robust to the individual changes on
1(y;) when updating the parameters 6 of the generator, even when using warm start as done here.

The convergence speed does not improve drastically when using a larger regularization parameter A, in
contrast to what we observed with the Dirac generator of Section [5.2.1] This observation is confirmed
in Fig. [9] where we display results obtained with various regularization parameters A and the four tested
combinations of architectures for the generative network and the dual variable. These experiments illustrate
that increasing the regularization parameter leads to a smoother optimized functional, which reflects in a
more stable evolution of the loss. For very small A (< 0.025), we do not observe improvement of convergence
speed with respect to . In this low regularization regime, we suggest that the behavior of the loss evolution
depends on the chosen architecture and the hyperparameters (step size strategies for ASGD or ADAM).

We finally display in Fig. for fixed generator parameters 6, the evolution of the loss ¢» — H(1,0)
(defined in (68)) during the inner ASGD loop used for optimizing the dual variable . In order to complete
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the comparison, we also include the convergence plot obtained with the ADAM algorithm applied on the
same problem. These convergence curves reflect again the slow convergence of the ASGD algorithm. We
observed that a careful tuning of the learning rate of ASGD is necessary to obtain a sufficient decrease of
the loss. Next, the convergence plots obtained with ASGD are similar with both parameterizations SDOT
and SDOTNN. For small value of the regularization, turning to the ADAM algorithm does not improve the
convergence speed for the SDOT parameterization. However, we remark that using the ADAM algorithm
with the SDOTNN parameterization seems beneficial for all tested regularization parameters. The loss value
obtained after 100 iterations is lower with SDOTNN than with SDOT, and the convergence is faster.
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Figure 10: Evolution of the estimated loss ¢ — Hy (v, 0) along the iterates of the inner loop of Algorithm
Here, the parameters 6 of the DCGAN generator is fixed, i.e. we consider a semi-discrete OT problem
between a fixed pg and v. For several values of the regularization parameter, we compare the evolution of
the loss when parameterizing v directly as a vector in R7 (SDOT) or as a neural network (SDOTNN). For
both parameterizations, the optimization is done using either ASGD with decreasing step size (% for SDOT

and 5% for SDOTNN) or ADAM (with learning rate 0.001). See the text for comments.

6 Conclusion

In this paper we give new insights on the theory and practice for learning generative networks with regularized
Wasserstein distances. On the theoretical side, we prove a gradient formula for the minimized loss in two
different frameworks: in the semi-discrete case (i.e. when the target distribution v has finite support) without
regularization, and in a more general case (with a general v) with entropic regularization. These results are
based on weak regularity hypotheses on the cost and the generator, which are satisfied for many € cost
functions and neural network generators with ¢! activation functions. In the semi-discrete setting, it is also
required that the generator does not charge the Laguerre interface, which is the generic case encountered
in practice. These hypotheses are helpful to better understand the possible degenerate cases that can be
encountered, and we provide such a counterexample.

On the practical side, we show that an alternating algorithm can approximate the solution of this optimization
problem. The inner loop of this algorithm consists in approximating an optimal dual potential for regularized
OT with a stochastic optimization algorithm. With experiments on a low-dimensional dataset, we illustrate
that this alternating optimization algorithm has no reason to fall on the points of inexisting gradients, but
that it may exhibit various singular behaviors. In most cases, it stabilizes to a generator which forms a
relevant approximation of the target measure. Nevertheless, because of the fixed number of iterations for
the inner loop, it can also oscillate or get trapped in sub-optimal positions (e.g. mode collapse on a single
data point), depending on the choice of hyperparameters. Experiments on MNIST digits demonstrate that
our algorithm is able to learn a neural network generating plausible images in a high-dimensional setting.
Convincing visual results are indeed obtained with zero or small regularization parameter \. We observe
that the smoothing of the targeted loss function is not sufficient to significantly improve the convergence
speed of the optimization algorithm estimating the generator parameters, while inducing a bias.

From this study, we claim that the success or failure of the WGAN learning process is not only affected by
the chosen loss function (1-Wasserstein, 2-Wasserstein, Jensen-Shannon divergence, etc) but its also crucially
depends on the choice of generator architecture and the choice of the optimization strategy.

Concerning the stochastic optimization used to solve the semi-dual OT problem, we observed that it may be
beneficial in terms of convergence speed to parameterize the dual variable with a neural network, provided
that one uses a well-chosen and carefully tuned algorithm for the optimization.

The main limitation of the considered algorithm is that the inner loop is based on the computation of
a regularized c-transform. It thus requires, at each iteration, to visit all data points, in order to find a
kind of biased nearest neighbor. In order to scale up to larger database, a possibility is to approximate
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the regularized c-transform with a batch strategy (Mallasto et al., |2019al). As perspectives, it would be
interesting to control the errors made at each iteration by the ASGD early-stop or by a batch strategy, in
order to get a globally stable optimization process; or to consider other Stochastic Gradient Descent Ascent
strategies (Sebbouh et al.| 2022).
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A A Neural Network Architecture validating Hypothesis (Gg)

In this section, we consider a neural network architecture given by a composition of affine layers and %"
Lipschitz activation functions. More precisely, the generator is defined as the composition of L elementary
layers defined by

Ve € R fr a0, (2) = pelagz +by) (74)
where ay € R¥*de-1 b, ¢ R% and where py : R%* — R% is a €' and Lipschitz function. With a random
input noise Z in Z = R®, and intermediate dimensions s = dy, d1,...,d;, = d, the generator is defined by

VGE@,V,ZERS, 9(0,2) :fL,aL,bL o"'ofl,a1,b1(z) ’ (75)
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where the parameters § = (ag, be)1<¢<r are taken in an open set © C Hle Rdexde—1 5 Rde,
The following proposition shows that Hypothesis (Gg) is satisfied for such a neural network architecture.

Proposition 3. Let us consider a generator g of the previous form . Assume that the activation functions
p1s...,pr are €' and Lipschitz with the same constant K,. Assume also that the input noise is integrable,
that is, E[||Z]|]] < co. Then g satisfies Hypothesis (Ge ).

Proof. Since the affine layers and activation layers are ¢!, it is clear that 6 — g(6, Z) is €. In order to
show Hypothesis (Gg), we only have to show that holds on any compact subset of ©. Let V C © be
a compact. Since V is bounded, there is k > 0 such that for all 8 = (ag,b;) € V, we have |as|| < x and
lbe|| < k. In particular, the corresponding function f¢ q,s, is £K ,-Lipschitz.

Let 0 = (a¢,be)1<e<r € V and 0" = (aj, b))1<i<r. € V. First, assume that 6,6’ only differ on one component:
for a fixed ¢, let us decompose 0 = (r¢,0¢, s¢), 0" = (14,0}, s¢) with 7, = (0;)i<¢ and sg = (0;);>¢. We can then
write

9(9’ Z) =Ry, (f&ae,bz (Tf,tz(z)) =Ry, (pf(afo,te (Z) + bf)) ) (76)

where RZ’W = fL:aL,bL ©---0 ff+1,a1€+1,b14+1 and Té,t[ = fffl,ae—l,be—l ©---0 fl’ahbl‘ It is clear that RZ,M, and
Ty, are respectively (kK ,)L=% and (kK,)*"!-Lipschitz. Therefore,

19(8", 2) = g(0. )|l < (KEp)™llpelarTes, () +be) — pelayTe, () + by (77)
< (KEp)" K| (ae — ap) Tee, () + be — b (78)
< (kE,) " K p(|lae — agll| Te.e, (2)] + llbe — byl)- (79)

It remains to bound ||Ty,.,(2)|. For that, let us remark that for any I,

110000 (@) < [ fra0.00 O] + KK 2] = [l (0) | + £ Ep |2l < o+ £ E[|]], (80)
where ¢; = ||p;(0)|| + KK,. Thus, with a simple recursion, we get
L
lg(8, 2| < D _(wE,) et + (kI ) |2l (81)
=1

Since T}, is the concatenation of only the £ — 1 first layers, we have also

£—1

|0, (2)I < Co+ (KE,) 2] with Cp =) (kE,) e (82)
1=1
Gathering the previous inequalities, we get
190", 2) = g0, 2)|| < (ColkE,)" ™ K + (k)" K|l 2ll) llag — apll + (K )" K |be — . (83)

Upper bounding |la; — aj|| and |be — by|| by ||0 — 6’|, we finally get, if 8,6 differ only on the ¢-component,

) . Dy = (14 Co) (kK )" 'K,
Vz € RS, 0,2) — g(0,2)|| < (Dy + D, 0 —¢|| with , p 84
ER, [g(#,2) — 9(6,2)] < (De+ Diflelpllo — ') wi {Dé KK, (59
Therefore,
L
V0,0' €V, Vz € R®, |lg(0',2) — g(0,2)|| < K(2)|0 —6'|| with K(z) =) De+Djlz]l,  (85)
=1
and we have E[K(Z)] < oo because E[|| Z]|] < co. O
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B Counter-example with regularized OT

We consider the same measures than in Proposition [2f pg = dp and v = %5y1 + %(57!2. For A > 0, one has

Fy(,0) = 0 (9) = ~Alog (;e—“‘“’”ﬂ(“’ . —“”‘”&“’””) : (86)
and from the primal formulation, one can also get directly that
1 1
ha(0) = 5¢(0,31) + 5¢(0, y2)- (87)

For any 1, the function 6 — F) (1), 6) is differentiable on R? for p > 1 and on R\ {y;,92} for p = 1. Thus in
the regularized case A > 0, F)\(¢, -) has no singularity on the interface Ay. For a fixed 6y, the maximization
of H(-,0p) leads to the same solutions satisfying than in Proposition [2| i.e. any 1.9 such that

_c@,y1)—vw1) _c(0,y2) =¥ (y2)
A A

e =e (88)
It follows that Formula (Grad-OTJ) holds in that case:
1 1

Vha(6o) = §Vx0(9, y1) + ivwc(eva) = Vo Fx(¢x0,00)- (89)

Let us also notice that using regularized OT does not allow to cope with all differentiability issues. Indeed,
for p =1, hy is not differentiable at y1,yo even for A > 0. This illustrates the need of a regularity hypothesis
on the cost, even in the case of regularized OT.

C Continuity of c-transforms

In this section, we will recall properties of regularized c-transforms. For that, we need a modulus of continuity
of the cost function, that is, the smallest function w such that

Vo, a' € X, Vy,y €Y, le(w,y) —c@ Y )l <w (llz =2+ lly =yl - (90)

Since ¢ is continuous on the compact X x Y, it is uniformly continuous, thus lims_,gw(J) = 0.

Lemma 6 ((Santambrogio, 2015; Feydy et al. 2019)). For A\ > 0, any c-transform > has a modulus of
continuity which is bounded by the modulus of continuity of the cost function.

Proof. If u < v holds pointwise, then softmin u < softmin v pointwise. Also, for a constant k € R, softmin(k+
u) = k + softmin(u). But, from the definition of w, we have c(z,y) — ¥ (y) < w(||xz — 2'||) + e(2’, y) — P(y).
By taking the soft-min, we thus obtain ¥**(x) < w(||z — 2’||) + ¥**(2'), and by symmetry, this leads to

[ (@) — M (@")] < w(lle — 2[])- (91)
O

Lemma 7. For A\ > 0, and any ¥, x € €(V), [|[¥° —xoo < [ —Xloo- In other words, the map 1) +— 1
is 1-Lipschitz for the uniform norm.

Proof. Applying the monotonicity of the softmin operation to the inequality c(z,y) — ¥(y) < | — X]loo +
c(z,y) — x(y), we get Y (x) < || — X|loo + X (). On can conclude with a symmetry argument. O

The following lemma states that the optimal dual potentials vary continuously with respect to the input
measure as soon as they are unique up to additive constants.
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Lemma 8 ((Feydy et al. 2019)). Assume that X, are compact and c is continuous. Let us fix xy € X.
Assume that v is fixed, and that p, converges weak-x to u in the space of probability measures on X.
Assume that the Kantorovich potentials associated with Wx(u,v) are unique up to an additive constant,
which is the case if A > 0. For each n, let p, be a c-concave Kantorovich potential for W (un,v) such that
on(zo) = 0 and let ¢ be the (necessarily c-concave) Kantorovich potential for Wx(u,v) such that p(xo) = 0.
Then @, — ¢ uniformly on X.

Proof. By compactness of X x Y, ¢ has a bounded modulus of continuity w(d) which tends to zero when
§ — 0. By (91), we obtain that the functions |¢,| are bounded by sup,cy w(||z — 2o) < oco. Besides,
Lemma [6] also shows that the functions ¢, are uniformly equicontinuous on X. Therefore, Arzela-Ascoli
theorem ensures that the family {¢,,n € N} is relatively compact in €' (X).

Now, assume, by contradiction, that (¢,) does not tend to ¢ in €(X). Then there would exist € > 0 and a
subsequence (¢r()) such that
[erm) = ¢lloc > Vn. (92)

By relative compactness, one can then extract a subsequence (gor(s(n))) which converges in € (X) to a function
. Using the monotonicity of soft-min, this implies that (4,0;:’(2(“))) also converges in € (X) to $“*. Thus

W (pin,v) = /wndu+/w%’AdV — /@du+/<ﬁ“du (93)
n—oo

Finally, we also have W (u,,v) — W (u,v) since p, — p. Thus W(u,v) = [@du+ [ @ dv and ¢ is a
Kantorovich potential for W (u,v) and @(x¢) = lim ¢, (xg) = 0. Using the uniqueness assumption, we get
¢ = ¢ which contradicts . O

D Technical Results

We first recall the proof of the envelope theorem (Oyama & Takenawa), 2018, Prop. A.1).

Theorem 7 (Envelope theorem Oyama & Takenawa| (2018)). Let X be a topological space. Let A be an
open set of a normed vector space E. Let f: X x A — R be a function and let us denote

VYa € A, wv(a)=sup f(z,a). (94)

zeX

Let s : A — X be such that for all a € A, v(a) = f(s(a),a). Let o € A be a point such that

e 5 1S continuous at «,

o the partial differential D,f of f with respect to a exists in a neighborhood of (s(a), ), and is
continuous at (s(a), ).

Then v is differentiable at o and Dv(a)) = Do f(s(a), a).

Proof. Let & = s(a) and let € > 0. The second hypothesis gives an open neighborhood U x V of (&, @) in
X x A such that for any (z,a) € U x V, f(x,-) is differentiable at a and such that the partial differential
(z,a) — Dyf(z,a) is continuous on U x V. By continuity of s, s~1(U) NV is an open neighborhood of «
and thus it exists 7 > 0 such that ||h|| < n implies « +h € V and s(aw+ h) € U.

By definition of v, we have for any h € E such that ||A| < 7,
f(&ath) = f(§ o) <vla+h) —v(e) < fs(ath),a+h) = f(s(a+h),a) (95)
On the one hand, by definition of D, f(, @), there exists n1 € (0,n) such that ||h|| < n; implies

[f(§; 0+ h) = f(§, @) — Do f(§ a)h] <ellh]. (96)
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On the other hand, for ||h| < n, t € [0,1] = f(s(a+ h),« + th) is differentiable on [0, 1] and therefore, by
virtue of the mean value theorem, there exists 6, € (0,1) such that

f(sla+h),a+h) = f(s(a+h),a) = Dof(s(a+ h),a+Oph)h. (97)
By continuity of D, f, there is an open neighborhood U x V' C U x V of (£, a) such that
V(z,a) €U xV, |[[Daf(z,a) — Daf(& a)| <e, (98)

Again, by continuity of s, s‘l(U) ﬁf/ is an open neighborhood of o and thus, there exists 7, € (0,7) such
that ||h|| < 79 implies a + h € s71(U) N V. Therefore, for ||h|| < 02, (s(a+ h),a + 0,h) € U x V and thus

|f(s(a+h), at+h) = f(s(ath), @) = Daf (&, a)h| < ||Daf(s(th), at0nh) = Do f(§; ) [[AI] < elhll. - (99)
Finally, for ||| < min(n,n2) we get [v(a+h)—v(a)—Dg f(§, a)h| < g]|h||, which proves that v is differentiable
at « and Dyv(a) = Do f (€, ). O

The next proposition gives the support of a push-forward distribution.

Proposition 4. Let Q = [-1,1]%, and g : Q — R? continuous. Let Z be a random variable with uniform
distribution ¢ on Q and let p = g be the distribution of g(Z). Then the support of u is exactly g(Q).

Proof. Since g is continuous, ¢g(Q) is compact and closed. Thus U = g(Q)° is open, and we have
p(U) =P(g(2) e U) = (g7 (U)) =0, (100)
because g~1(U) does not intersect Q. This proves that Supp(u) C g(Q). Now, if V is an open set such that

u(V) =0, then P(Z € g=Y(V)) = 0, which gives ¢g=1(V) N Q = @ because g~ (V) is open. It follows that
V C ¢(Q)¢, which proves that Supp(u) is exactly g(@). O

E Proof of Theorem

Using Theorem [5] we only have to study the regularity of 8 — W (ua, pg) for A > 0. We will use again
the envelope theorem recalled in Appendix @ We consider the set C' of €' and L-Lipschitz functions on X
equipped with the norm ||x|leo + [|VX|lco and we use the dual expression which can be written with the
integral operator I of and with

-FA(X>7779) :I(Xae)+I(7779)+>\—)\E,\(X777a9) (101)
where FE)\(x,n,0) =E [exp <F(X’n’i’z’m>] (102)
and  I'(x,n,0,z,w) = x(90(2)) + n(go(w)) — c(g0(2), go(w)), (103)

where W, Z are two independent random variables of distribution ¢. For any x € C, differentiating under
the integral as in Lemma [5| gives that I(x, -) is differentiable on © with gradient

VoI(x.0) = E [Dog(8, 2)" Vx(9(6, 2))] - (104)

By the same reasoning, one obtains that Ey(x,n,-) is differentiable on © with gradient

VQE)\(X, n, 0) - F VGF(Xa 77)7\07 Z; W) exp (F(Xv 7, f\? Zv W) >:| (105)
with  VoI'(x,7,0, 2, w) = Dgg(6, z)T(Vx(g(H, z)) — Vac(g(6, z),g(@,w))) (106)
+ Dog (0, w)" (Vi(g(8,w)) — Vye(g(0, 2), 9(0, w))). (107)

If Py is any bounded set of C, using a bound similar to and the dominated convergence theorem
shows that (x,0) — I(x,#) is continuous on Py x V. Similarly, one can see that I' is Lispchitz in § with a
(Z, W)-integrable bound

T n,0,2,w) =T0G0, 750 2,w) < (Voo K (2) + [ Villoo K (w) + L)[|0 — 7. (108)
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Since T is also bounded by ||x|leo + ||¥]lcc + |/¢]|co and since the continuity of I" with respect to (x,n,0) can
be deduced from ([103)), this is enough to show that (x,n,0) — VeEx\(x,n,0) is continuous on Py x V.

As we have a continuous selection of optimal dual variables (x,n) and as the gradient VoFy(x,7,0) exists
and is continuous in (x, 7, 6), all the conditions required by the envelope theorem are satisfied. Thus we can
differentiate under the max in

VoW (po, o) = VoFa(Xx, 1, 0), (109)

where (x«,7x) is a pair of Kantorovich potentials for W (ug, tg). Finally, by symmetry, there exists k € R
such that x. = 7. + k and by definition E)(x«, 7, 8) = 1, so that Fx(x«, s, 0) = 21 (x«,0) — k and therefore

VoFA(Xs, i, 0) = 2VI(x,0) = 2E [Dyg(0, Z)" Vx.(9(0, 2))] - (110)

Putting all terms together, we get the desired formula for Vysy(6).

F Detailed Settings used for Experiments on generator learning

F.1 Detailed Settings for the experiments with synthetic datasets

We here gather the parameters and network architectures used in the experiments of Section [5.2]

e N = 50 iterations on # with SGD algorithm (with constant learning rate n = 0.2), except for the MLP
generator which is optimized with Adam (with constant learning rate 0.05)

e K = 100 iterations of the inner loop with ASGD algorithm (see learning rates below) with cold start
initialization (unless otherwise specified)

e The cost c(z,y) is the quadratic cost ||z — y|%.

e For the generator we consider various architectures gy and input noise Z:

- a Dirac generator g§*a¢(z) = 0 parameterized by 0 € R?,
- a disk generator with fixed radius 7 > 0 with Z a uniform random variable on [0, 1], parameterized by
6 € R%:

gdisk(2) = 0 + ry/z1(cos(2m2y), sin (27 2p) ).
an ellipse generator (referred to as 1-ellipse) with Z a uniform random variable on [0, 1]?, parameterized
by 6 = (t,a,b) € R? x R x R:

g5 (2) = t + /z1(acos(2m22), bsin(2722)).

- a mixture of two ellipses (denoted by 2-ellipse generator) with Z a uniform random variable on [0, 1],
parameterized by 6 = (61,62) € (R? x R x R)?:

gmixell(z) _ 95111(21722) if 23 < %
0 ggl;(zl, 29) otherwise.

a multilayer perceptron (MLP) with Z a uniform random variable on [0,1]4" nhid fully-connected
layers with dimension dhid and activation function Elu(1). In Section the layers are set to din = 5,
dhid = 10 and nhid = 3. In Appendix [G] the parameters are indicated in the captions of the figures.

e All batches of Z are made of b = 100 samples, except for the Dirac generator where 1 sample suffices.
e The dual variable v is modeled by a vector ¢ € RY.

e The dual variable v is optimized with the ASGD algorithm written in . The step size strategy is 7=
with learning rate v > 0 (values indicated in the text).
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Figure 11: Generator learning for 6-point dataset ) with MLP generator. The parameters of the
MLP are din = 100, dhid = 256, nhid = 3. In the first columns, along the number of iterations n, we display
Y (dark blue) and the current position of ug (sampled points in light blue). The Laguerre diagram associated
to the current value of 1 P is displayed in the background with the colored partition. The last column shows

the estimated loss H (¢ 0 #) along the iterates. On the left we give the regularization parameter \.

F.2 Detailed Settings for the MNIST experiment

We here gather the parameters and network architectures used in the experiments of Section [5.3]

N = 3000 iterations on ¢ with ADAM algorithm |[Kingma & Bal (2015) with learning rate 0.001

K =10 iterations of the inner loop with ASGD algorithm with warm start initialization
The cost ¢(z,y) is the quadratic cost a!||z — y[|* normalized by a = 37, [ly[|®

For the generator gy we consider two different architectures:

- a multilayer perceptron (MLP) with four fully-connected layers; the number of channels for the succes-
sive hidden layers is 256,512, 1024 with activation functions LeakyReLU(0.2).

- a Deep Convolutional GAN (DCGAN) (Radford et al.,|2016]) adapted for the dimension 28 x 28 of MNIST
images, with 4 deconvolution layers; the number of channels for the hidden layers are 256, 128, 64.

The input of these generators is a random variable Z following the uniform distribution on [—1, 1]1%9. All
batches of Z are made of b = 200 samples.

The dual variable 1 is either directly modeled by a vector 1) € R7, or parameterized by a multilayer
perceptron with four fully-connected layers; the number of channels for the successive hidden layers is
512,256, 128. These two different settings are respectively referred to as SDOT (for semi-dual OT) and
SDOTNN (for semi-dual OT with neural network).
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e The dual variable 1 is optimized with the Pytorch implementation of ASGD (torch.asgd), which has
parameters 1r and alpha. The step size strategy for the ASGD inner loop has been chosen as:

- for the parameterization SDOT, 1r = 5,alpha = 0.5,
- for the parameterization SDOTNN, 1r = 0.1, alpha = 0.8.

The other parameters are fixed to default values.

G Additional experiments on 6-point dataset

In this appendix we provide additional results of generative model learning on the 6-point dataset.
In Fig. for a fixed large MLP architecture, we vary the regularization parameter .
In Fig. we fix the regularization parameter A = 0 and we vary the configuration of the MLP architecture.

(2,10,3)

(2,10, 10)

(10,10, 3)

(10, 10, 10)

o
. \ 0os

n =50 n = 100 n = 150 n = 200 Estimated loss

Figure 12: Generator learning for 6-point dataset ) with MLP generator. On the left we indicate
the tuple of parameters (din, dhid, nhid). In the first columns, along the number of iterations n, we display )
(dark blue) and the current position of ug (sampled points in light blue). The Laguerre diagram associated
to the current value of ¢, is displayed in the background with the partition indicated in colors. The last
column shows the estimated loss H (¥ 0 0) along the iterates. The regularization parameter is set to A = 0.
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