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ABSTRACT

Experimentally synthesizing predicted materials in a reproducible manner remains
a key bottleneck in materials science progress. Autonomous synthesis and closed
loop integration of prediction and characterization can address these issues, how-
ever, this requires autonomous characterization methods for all analysis including
crystallographic phase identification which currently remains a rate-limiting step.
Here we benchmark several machine learning techniques for X-ray Diffraction
spectra interpretation (spectral clustering, convolutional neural networks, and in-
vertible neural networks) and compare the relative strengths and weaknesses of
each approach. Future work will involve deploying these techniques across the
entire high-throughput experimental materials database.

1 INTRODUCTION

Discovery of new materials can transform a broad range of applications from new semiconductors
for solar cells and power electronics, to solid state ion conductors for fast-charging Li-ion batter-
ies and sustainable hydrogen fuel production. However, while rapid progress has been made on
the computational prediction of such materials, experimentally synthesizing such materials and re-
producing lab-scale synthesis in industrial settings remain critical bottlenecks in materials science
progress (De Yoreo et al.).

High-throughput methods and autonomous synthesis capabilities can play a key role in addressing
these difficulties. Combinatorial synthesis experiments can create a multitude of samples within a
single experiment using gradients in chemical composition, substrate temperature, film thickness,
and other synthesis parameters across a substrate (Talley et al., [2021). Meanwhile, autonomous
experimentation has shown promising results in organic and polymer synthesis, increasing repro-
ducibility and the pace of material optimization (Granda et al., [2018}; [Langner et al., 2020). To-
gether, these capabilities allow rapid experimental testing of huge volumes of materials, but closing
the experimental feedback loop and informing future synthesis prediction will require automated
data analysis methods on the same scale.

While some characterization methods directly measure quantities of interest and require little post-
processing analysis (e.g. X-Ray Fluorescence (XRF) measurements), others like X-Ray Diffraction
(XRD) are less directly interpretable and necessitate further analysis to perform phase identification,
often leading to a bottleneck in autonomous synthesis and characterization loops. In this context,
a plethora of methods for automating the analysis of XRD data spectra have been recently pro-
posed, such as deep-learning-based (Lee et al., 20215 Szymanski et al., 2021;|Wang et al.,|2020) and
analytical (Baptista de Castro et al., 2022} |Kikkawa et al., [2020) approaches.

Here we discuss several machine learning based approaches for XRD phase identification and
present initial results on comparing and benchmarking the diverse set of approaches on common
synthetic and experimental datasets. In Section 2] we discuss synthetic XRD data generation, the
High Throughput Experimental Materials Database (HTEM DB), and the spectral clustering, con-
volutional neural network (CNN), and invertible neural network (INN) methodologies. In Section
we present our initial benchmarking results and examine key difficulties of implementing machine
learning methods in this space. Finally, we conclude in Section E]with a brief discussion of future
work.
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2 MATERIALS METHODS

2.1 SYNTHETIC DATA GENERATION

Synthetic XRD training and test data was generated by defining a chemical system of interest,
searching for theoretical reference phases from the Materials Project database (MP), and augment-
ing the reference phases to create synthetic spectra. This data augmentation procedure leverages the
work of Szymanski et al.| (2021)), and includes peak shifting, broadening and intensity variation.

For this study we concentrated on the Zn-Ni-Co-O system and to simplify the problem, only oxide
phases were considered, not elemental and intermetallic phases, and only entries that have a corre-
sponding match in the ICSD database were included, constraining our space to only compounds that
have been experimentally observed. This procedure resulted in 22 reference phases. From this set of
reference phases, 250 augmented spectra were generated per reference phase. We then separate out
10% of the data to be used as a test data set while the remainder is used for training the ML models
considered in this work.

2.2 EXPERIMENTAL DATA

Corresponding experimental data was gathered from the HTEM DB, which contains synthesis and
characterization data on inorganic materials synthesized in thin film form using combinatorial phys-
ical vapor deposition (PVD) methods. The database contains over 300,000 samples across 7,327
sample libraries with more than 33 elements quantified in composition measurements (Talley et al.,
2021)). For this study we use XRD and XRF data from the same Zn-Ni-Co-O system; spanning 15
combinatorial libraries with 44 samples each, for a total of 660 X-ray diffraction spectra. Previous
manual analysis of the data found the material phases observed for this system are wurtzite ZnO,
rocksalt NiO, and Co304 spinel (Zakutayev et al.,|2011).

2.3  XRD INTERPRETATION METHODS
2.3.1 SPECTRAL CLUSTERING

We first discuss a purely data-driven method for identifying groups of similar samples from XRD
and XRF data, using the Spectral Clustering algorithm. Here an affinity metric is calculated between
each pair of samples in a compositional space as

Aij = exp (—e(1 — CCERP - (1 —dd{OM"))?) (1)

where C’ij(v RD is the normalized cross-correlation of the XRD patterns and dd?OM P is the nor-
malized compositional distance (Hattrick-Simpers et al.| [2019). The spectral clustering algorithm
then calculates the best set of groups given the affinity matrix and a given number of clusters and
the optimal number of clusters is chosen using a silhouette analysis.

2.4 CNN

A recent approach to perform phase identification from experimental XRD spectra based on a con-
volutional neural network (CNN) was proposed by |Szymanski et al.| (2021)). It leveraged reference
data obtained from the ICSD database, a data augmentation procedure to disturb reference XRD
patterns based on experimental artifacts that occur in diffractometry experiments, and a branching
algorithm to pick up phases with highest probability. Results from simulated and experimental data
showed high accuracy for phase identification in the Li-Mn-Ti-O-F chemical system, making it a
promising approach to streamline an autonomous synthesis/characterization loop. Here we apply
this methodology to the Zn-Ni-Co-O System. Training proceeded during 100 epochs, and one-hot
encoding was employed for labeling XRD data and their corresponding reference phases. Details
of this CNN architecture can be found in |Szymanski et al.| (2021)), and were kept the same for this
work.
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Figure 1: Spectral clustering applied to ZnO-NiO-CoO HTEM data. Left: Compositional space
diagram showing clusters in different colors. Right: Representative XRD spectra chosen from each
clusters center.

2.5 INN

Invertible neural networks (INNs) are a type of neural architecture that can be run and trained either
forward or in reverse and have recently become notable for their particular use in solving inverse
problems where an easily computatable forward mapping y = f(«) is ill-posed and potentially
degenerate in reverse (Ardizzone et al.| [2018)). Here we show preliminary results of applying this
framework to the XRD interpretation problem considering the observed quantity y the spectral mea-
surements and x as the original material phase. To construct a smaller dimensional form of the XRD
spectra without involving a separate convolutional structure we pre-process the XRD spectra using
a continuous wavelet transform algorithm to identify the wavelength of the top 5 spectral peaks and
their magnitudes to form the y vector of NV, = 10, add a N, = 6 dimensional latent space, and
zero pad for a total of N,, = 24. The x space is formed by one-hot-encoding the material phase
labels and zero-padding for a total of N, = 24. The network architecture is formed by stacking 3
invertible blocks consisting of 2 fully connected layers of size 128.

3 RESULTS

3.1 SPECTRAL CLUSTERING

Results for the application of the spectral clustering algorithm to the HTEM experimental sample
libraries in the ZnO-NiO-CoO compositional space are shown in Figure [l Despite the silhouette
analysis, we do find that the shape and distribution of clusters is quite sensitive to the number of
clusters.

As a purely data-driven method, the clustering analysis does not directly predict the reference
phase associated with each sample; however, this weakness has the corresponding advantages of
not needing pre-labeled data for training or suffering from domain-adaptation issues. Without di-
rectly predicting phase labels, the results of the clustering algorithm can still be used to build confi-
dence/statistical uncertainty in other methods; one would expect that samples from the same cluster
should be identified as the same phase, and the distribution of a directly predicted phase over a given
cluster may be informative. Furthermore, individual spectra associated with the cluster center can
be used as a set of representative spectra across the material phase space for quick algorithm testing.

3.2 DEEP-LEARNING METHODS WITH SYNTHETIC DATA

Table [T] shows the results of applying the CNN and INN approaches on the synthetic dataset dis-
cussed in Section [2} after 10 independent runs. The CNN method achieved accuracy, compared to
those in [Szymanski et al.|[(2021), and the model that yielded the best accuracy for the test set was
used to perform phase identification in experimental XRD data from the HTEM database. While
the INN method does not perform as well as the CNN technique here, there is still a definitive sign
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Table 1: Accuracy comparison, expressed in %, between the CNN and INN approaches on synthetic
test and train sets, after 10 independent training runs.

Train set Test set
Method Average Best Std. dev. Average Best Std. dev.
CNN 94.7 952 04 92.7 9245 1.2
INN 49.5 513 14 49.3 514 1.7
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Figure 3: Left: Confidence levels for all phases predicted by the CNN approach in the Zn-Ni-Co-O
system from the HTEM DB Right: CNN prediction for sample 5 - library 6651 - from the HTEM
DB

of learning in the confusion matrix (see Figure [2) with most errors arising from poor ZnO identi-
fication. Furthermore, there is still substantial room for optimization of the architecture and future
work will include applying convolutional kernels to the INN framework rather than pre-processing
the data with peak-fitting.

3.3 APPLYING DEEP-LEARNING METHODS TO HTEM

Figure [3] show the confidence levels for the
predicted phases in experimental HTEM data.
The Co30, spinel phase was correctly identi-
fied for most XRD spectra but the CNN model
had difficulties in indentifying the ZnO wurtzite
and NiO rocksalt (ZnO-186 and NiO-225, re-
spectively) phases, most likely because these
phases are impurity phases in this dataset. Fig-
ure [3| also shows an experimental sample from
the HTEM DB with corresponding CNN phase
prediction. In the INN case, the algorithm
over-identified ZnO; in the HTEM sample data,
likely suffering from domain adaptation issues.

Predicted Phase
Probability

Figure 2: Confusion matrix showing probability
of the predicted phase vs true phase for the INN

4 CONCLUSIONS
approach.

AND FUTURE WORK

Here we have demonstrated several machine learning based approaches to interpreting XRD spec-
tral data. Future work in this space will include further optimization of the ML approaches, par-
ticularly for the INN technique, and application of these methods to the HTEM database beyond
the ZnO-CoO-NiO space. In a broader context these techniques will form a foundation for a key
high-throughput analysis technique for enabling closed loop autonomous synthesis and materials
discovery feedback.
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