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Abstract

We study statistical watermarking by formulating it as a hypothesis testing problem,
a general framework which subsumes all previous statistical watermarking methods.
Key to our formulation is a coupling of the output tokens and the rejection region,
realized by pseudo-random generators in practice, that allows non-trivial trade-off
between the Type I error and Type II error. We characterize the Uniformly Most
Powerful (UMP) watermark in this context. In the most common scenario where
the output is a sequence of n tokens, we establish matching upper and lower bounds
on the number of i.i.d. tokens required to guarantee small Type I and Type II errors.
Our rate scales as Θ(h−1 log(1/h)) with respect to the average entropy per token
h and thus greatly improves the O(h−2) rate in the previous works. For scenarios
where the detector lacks knowledge of the model’s distribution, we introduce the
concept of model-agnostic watermarking and establish the minimax bounds for the
resultant increase in Type II error. Moreover, we formulate the robust watermarking
problem where user is allowed to perform a class of perturbation on the generated
texts, and characterize the optimal type II error of robust UMP tests via a linear
programming problem. To the best of our knowledge, this is the first systematic
statistical treatment on the watermarking problem with near-optimal rates in the
i.i.d. setting, and might be of interest for future works.

1 Introduction

The prevalence of large language models (LLMs) in recent years makes it challenging and important to
detect whether a human-like text is produced by the LLM system [8, 11, 4, 23, 5, 6, 20, 21, 12, 25, 10].
On the one hand, some of the most advanced LLMs to date, such as GPT-4 [13], are good at producing
human-like texts, which might be hard to distinguish from human-generated texts even for humans,
in various scenarios. On the other hand, it is important to keep human-produced text datasets
separated from machine-produced texts to avoid the spread of misleading information [19] and the
contamination of training datasets for future language models [11].

To detect machine-generated content, a recent line of work [8, 11, 4] proposes to inject statistical
watermarks, a signal embedded within the generated texts which reveals the generation source, into
texts. As discussed in [11], an ideal watermarking scheme should satisfy three properties: 1. distortion-
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free: the watermark should not alert the distribution of the generated texts; 2. agnostic: the detector
needs not to know the language model or the prompt; 3. robust: the detector should be able to detect
the watermark even under slight perturbation of the generated texts. However, previously proposed
methods are either heuristic or guaranteed by different, sub-optimal mathematical descriptions of
the above properties, making it difficult to systematically evaluate the watermarking schemes and to
draw useful statistical conclusions.

Motivated by this, we propose a unifying formulation of statistical watermarking based on hypothesis
testing, and study the trade-off between the Type I error and the Type II error. More specifically, our
contributions are summarized as follows:

• We formulate statistical watermarking schemes as hypothesis testing with random rejection
region. The random rejection region captures the secret key and the corresponding detection
rules used in practice, and thus enabling our framework to encompass previous methods
such as [1, 4, 8, 25, 11].

• We explicitly characterize the Uniformly Most Powerful (UMP) watermarking scheme and
find the optimal type II error among all level-α tests.

• In the context where the sample is a sequence of many i.i.d. tokens, we provide nearly-
matching upper bound and lower bound of the minimum number of tokens required to
guarantee type I error ≤ α and type II error ≤ β; our rate h−1 log(1/h) improves the
previous works of h−2 where h is the average entropy of per generated tokens.

• We introduce the concept of model-agnostic watermarking, where the distribution of the
rejection region is independent of the underlying model distribution, as a notion highly
practical in real-world applications. We establishes the minimax rate of the increase in
Type II error loss associated with model-agnostic watermarking in comparison to UMP
watermarking schemes.

• In Appendix C, we also formulate a robust watermarking problem where the watermarking
scheme is robust to a class of perturbation that the user can employ to the outputs. In this
setting, we also construct the robust UMP test and characterize the type II error via linear
programming.

1.1 Notations

Define (x)+ := max{x, 0}, x ∧ y := min{x, y}, x ∨ y = max{x, y}. For any set A, we use Ac to
denote the complement of set A, |A| to denote its cardinality, and 2A := {B : B ⊂ A} to denote the
power set of A. The total variation (TV) distance between two probability measures µ, ν is denoted
by TV(µ∥ν). Given a measureable space (Ω,F), let ∆(Ω,F) denote the set of all Baire measures
over (Ω,F) (we will abbreviate as ∆(Ω) when F is given in the context). Let δx denote the Dirac

measure on x, i.e., δx(A) =

{
1, x ∈ A

0, x /∈ A
. We use supp(µ) denote the support of a probability

measure ρ. Throughout, we use log to denote natural logarithm.

2 Watermarking as a Hypothesis Testing Problem

In the problem of statistical watermarking, a service provider (e.g., a language model system),
who possesses a distribution ρ over the measurable space (Ω,F), aims to make the samples from
ρ distinguishable by a detector. The service provider achieves this by sharing a watermark key
(generated from a distribution that is coupled with ρ) with the detector, with the goal of controlling
both the Type I error (an independent output is falsely detected as from ρ) and the Type II error (an
output from ρ fails to be detected). This random key together with the detection rule can be seen as
a random rejection region. In the following, we formulate this problem as hypothesis testing with
random rejection regions.
Problem 2.1 (Watermarking). Fix ϵ ≥ 0. Given a probability measure ρ over a measurable space
(Ω,F)1, an ϵ-distorted watermarking scheme of ρ is a probability measure P (a joint probability of
the output X and the rejection region R) over the measurable space

(
Ω⊗ 2Ω,F × 22

Ω
)

such that

1Throughout we will assume that Ω is discrete, as in most applications.
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TV(P(·, 2Ω)∥ρ) ≤ ϵ, where P(·, 2Ω) is the marginal probability of X over (Ω,F). In the generation
phase, the service provider samples (X,R) from P , provides the output X to the service user, and
sends the rejection region R to the detector.

In the detection phase, a detector is given a tuple (X,R) ∈ Ω ⊗ 2Ω where X is sampled from an
unknown distribution and R, given by the service provider, is sampled from the marginal probability
P(Ω, ·) over

(
2Ω, 22

Ω
)

. The detector is tasked with conducting a hypothesis test involving two
competing hypotheses:

H0 : X is sampled independently from R,

versus H1 : (X,R) is sampled from the joint distribution P.
The Type I error of P , defined as α(P) := supπ∈∆(Ω) PY∼π,(X,R)∼P(Y ∈ R), is the maximum
probability that an independent sample Y is falsely rejected. The Type II error of P , defined as
β(P) := P(X,R)∼P(X /∈ R), is the probability that the sample (X,R) from the joint probability P
is not detected.

1 2

Detector f

 f( 1 reject) =  f( 2 accept) =Detection 
Phase

Generation 
Phase

Watermarked Model Any Other Model

Figure 1: Illustration of watermarking in prac-
tice.

We discuss examples of statistical watermarking in
Appendix B. A few remarks are in order.

Remark 2.2 (Difference between classical hypothe-
sis testing). In classical hypothesis testing, the rejec-
tion region is often nonrandomized or randomly sam-
pled from a distribution prior to and independently
from the test statistics. However, in watermarking
problem, the service provider has the incentive to
facilitate the detection. The key insight is that P is
a coupling of the random output X and the random
rejection region R, so that X ∈ R occurs with a high
probability (low Type II error), while any indepen-
dent sample Y lies in R with a low probability (low
Type I error).

Remark 2.3 (Implementation). Note that the detec-
tor only needs to observe the rejection region, and they do not need have access to the underlying
distribution ρ (language model). In fact, it is imperative for the detector to observe the rejection
region: without which the output from the service provider and another independent output from the
same marginal distribution would be statistically indistinguishable.

In practice, the process of coupling and sending the rejection region can be implemented by cryptogra-
phy: the service provider could hash a secret key sk, and use a pseudo-random function F to generate
(X,R) = F (sk). Now it suffices to send the secret key to the detector, who can then reproduce the
reject region using the pseudo-random function F . This process is illustrated in Figure 1.

By introducing the coupled and random rejection region, we abstract away the minutiae of crypto-
graphical implementations, therefore allowing us to focus solely on the statistical trade-off.

In Appendix B, we provide examples of existing watermarking schemes that seamlessly fit in our
framework.

3 Statistical Limit in Watermarking

Given the formulation of statistical watermarking, it is demanding to understand its statistical limit.
In particular, we study the following notion of Uniformly Most Powerful (UMP) test, i.e., the
watermarking scheme that achieves the minimum achievable Type II error among all possible tests
with Type I error ≤ α.

Definition 3.1 (Uniformly Most Powerful Watermark). A watermarking schemeP is called Uniformly
Most Powerful (UMP) ϵ-distorted watermark of level α, if it achieves the minimum achievable Type
II error among all ϵ-distorted watermarking with Type I error ≤ α.

The following result gives an exact characterization of the UMP watermark and its Type II error.
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Theorem 3.2. For probability measure ρ, the Uniformly Most Powerful ϵ-distorted watermark of
level α, denoted by P∗, is given by

P∗(X = x,R = R0) =


ρ∗(x) ·

(
1 ∧ α

ρ∗(x)

)
, R0 = {x}

ρ∗(x) ·
(
1− α

ρ∗(x)

)
+
, R0 = ∅

0, else

where ρ∗ = argminTV(ρ′∥ρ)≤ϵ

∑
x∈Ω:ρ′(x)>α (ρ′(x)− α) . Its Type II error is given by

minTV(ρ′∥ρ)≤ϵ

∑
x∈Ω:ρ′(x)>α (ρ′(x)− α), and when |Ω| ≥ 1

α simplifies to ∑
x∈Ω:ρ(x)>α

(ρ(x)− α)− ϵ


+

(1)

Remark 3.3 (Dependence on distortion parameter ϵ). As seen from the theorem, when a larger
distortion parameter ϵ is allowed, the Type II error would decrease. This aligns with the intuition that
adding statistical bias would make the output easier to detect [1, 8]. Among all choices of ϵ, the case
ϵ = 0 is of particular interest since it preserves the marginal distribution of the service provider’s
output. Therefore, we will focus on this distortion-free case in the following sections.

Remark 3.4 (Intuition behind P∗). Recall that in practice, the watermarks are implemented via
pseudo-random functions. Therefore, the uniformly most powerful test in Theorem 3.2 is effectively
using a pseudo-random generator to approximate the distribution ρ, combined with an α-clipping to
control Type I error. This construction reveals a surprising message: simply using pseudo-random
generator to approximate the distribution is optimal.

Remark 3.5 (Dependence on the randomness of ρ). If ρ is deterministic, the Type II error(∑
x∈Ω:ρ(x)>α (ρ(x)− α)− ϵ

)
+

reduces to 1 − α − ϵ and has limited practical utility. This is

expected since when the service provider deterministically outputs z, it would be nearly impossible to
distinguish the watermark distribution with an independent output from δz . In general, Theorem 3.2
implies that the Type II error decreases when the randomness in ρ increases, matching the reasoning
in previous works [1, 4].

3.1 Rates in the i.i.d. setting

In practice, the sample space Ω is usually a Cartesian product of a set Ω0 repeated n times. For
example, in large language models, the output takes form of a sequence of tokens, each coming from
the same vocabulary set V . This raises the important question of specializing Theorem 3.2 to deal
with distributions in product measureable spaces, and finding the explicit rates of the Type II error in
Eq. (1).

In this section, we consider the product distribution ρ = ρ⊗n
0 over

(
Ω⊗n

0 , (2Ω0)⊗n
)

and the important
setting of ϵ = 0 (distortion-free watermarking). Let h denote the entropy of ρ0, the minimum number
of tokens required to achieve Type I error ≤ α and Type II error ≤ β is defined as

n(h, α, β) = min
n∈Z+

max
ρ0:H(ρ0)=h

n

1
(
∃ 0-distorted watermark P of ρ⊗n

0 : α(P) ≤ α, β(P) ≤ β
) .

In the above definition, n

1(∃ 0-distorted watermark P of ρ⊗n
0 :α(P)≤α,β(P)≤β)

= +∞ when no 0-distorted

watermark can achieve Type I error ≤ α and Type II error ≤ β. Therefore, the quantity n(h, α, β)
serves as a critical threshold beyond which the desired statistical conclusions can be drawn regarding
the output, making it an essential parameter in watermarking applications.

The following result gives a nearly-matching upper bound and lower bound of n(h, α, β).

Theorem 3.6. Suppose α, β < 0.1. We have

n(h, α, β) ≥

(
log log 2

h

2h
·
(
log

1

2α
∧ log

1

2β

))
∨

log 1
2α

h
.
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Furthermore, let k = |Ω0|, we have

n(h, α, β) ≤ 200

(
2 log 9k

h

h
·
(
log

1

α
∧ log

1

β

))
∨

(18 + 4 log(9k)) log 1
α

h
.

Remark 3.7 (Tightness). Up to a constant and logarithmic factor in k, our upper bound matches the
lower bound. Notice that since any model with an arbitrary token set can be reduced into a model
with a binary token set [4] (i.e. k = 2), our bound is therefore tight up to a constant factor.
Remark 3.8 (Comparison with previous works). As commented in Remark 3.5, the regime h≪ 1 is
more important and challenging because it is the scenario where watermarking is difficult. In a line
of works [1, 8, 25, 12, 11], the rejection regions take the form of R = {

∑n
i=1 si(xi) ≥ C} where

si’s are certain score functions and C is the rejection threshold. Due to Cramér’s Theorem, this type
of methods requires n ≥ 1

h2 tokens to achieve constant Type I and Type II errors, in the regime of

h→ 0. Comparing to them, we improve the dependence on h from 1
h2 to log 1

h

h and further show that
this rate is optimal.

4 Model-Agnostic Watermarking

For practical applications, it is additionally desirable for watermarking schemes to be model-agnostic,
i.e, the marginal distribution of the rejection region is independent of the watermarked distribution.
Recall from Remark 2.3 that in practice detectors usually adopts a pseudo-random function to
generate the reject region from the shared secret keys. If the watermarking scheme P depends on
the underlying distribution ρ, then the pseudo-random function, and effectively the detector, need to
know ρ. Therefore, model-agnostic watermarking enables the detector to use a fixed, pre-determined
pseudo-random function to generate the reject region, and hence perform hypothesis-testing without
the knowledge of the underlying model that generates the output. This is an important property
enjoyed by Example B.1 and Example B.2. In this section, we formulate model-agnostic within our
hypothesis testing framework and study the most powerful test.
Problem 4.1 (Model-Agnostic Watermarking). Given a measurable space (Ω,F) and a set Q ⊂
∆(Ω,F), a Q-watermarking scheme is a tuple (η, {Pρ}ρ∈Q) where η is a probability measure over
2Ω, such that for any probability measure ρ over (Ω,F), Pρ is a distortion-free watermarking scheme
of ρ and Pρ(Ω, ·) = η(·).
A model-agnostic watermarking scheme is a ∆(Ω,F)-watermarking scheme.
Remark 4.2 (Information of the model). A Q-watermarking scheme can be interpreted as a way to
watermark all distributions in the set Q while revealing no information of the model used to generate
the output other than the membership inside Q (i.e., observing the rejection region, one is only able
to infer that the output comes from a model in Q, but is unable to know which exactly the model
is). By letting Q to be the set of all Baire measures over (Ω,F), model-agnostic watermarking thus
reveals no information of the model.

It is noticeable that for largeQ, aQ-watermarking scheme can not perform as good as a watermarking
specifically designed for ρ for any distribution ρ ∈ Q. This means that Uniformly Most Powerful
Q-Watermarking might not exist in general. To evaluate model-agnostic watermarking schemes, a
natural desideratum is therefore the maximum difference between its Type II error and the Type II
error of the UMP watermarking of ρ over all distributions ρ, under fixed Type I error. Specifically,
we introduce the following notion of minimax most powerful.
Definition 4.3 (Minimax most powerful model-agnostic watermark). We say that a model-agnostic
watermark (η, {Pρ}ρ∈∆(Ω,F)) is of level-α if the Type I error of Pρ is less than or equal to α for any
ρ ∈ ∆(Ω,F). Define the maximum Type II error loss of (η, {Pρ}ρ∈∆(Ω,F)) as

γ(η) := max
ρ∈∆(Ω,F)

β(Pρ)− β(P∗
ρ )

where P∗
ρ is the UMP distortion-free watermark of ρ.

We say that a model-agnostic watermarking scheme is minimax most powerful, if it minimizes the
maximum Type II error loss among all model-agnostic watermarks of level α.

It turns out that the minimax most powerful model-agnostic watermarking does not lose too much
power as compared to UMP watermarking schemes.
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Theorem 4.4. Let |Ω| = n and suppose αn, 1
α ∈ Z2. In the minimax most powerful model-agnostic

watermarking scheme of level-α, the marginal distribution of the reject region is given by

η∗(A) =

{
1

( n
αn)

, if |A| = αn

0, otherwise
.

The maximum Type II error loss of the minimax most powerful model-agnostic watermarking scheme

of level-α is given by γ(η∗) =
(n− 1

α
αn )
( n
αn)

.

The proof is deferred to Appendix F.

Remark 4.5. Theorem 4.4 implies that for any distribution ρ, the Type II error of model-agnostic

watermark is upper bounded by (n− 1
α

αn )
( n
αn)

+
∑

x:ρ(x)≥α(ρ(x)− α).

Remark 4.6. In practical scenarios, where the sample space is often a Cartesian product (e.g., a
sequence of tokens), the regime of interest lies in where the ratio 1/(αn) approaches zero. Under this
condition, the rate displayed in Theorem 1 simplifies to:

(n− αn)(n− αn− 1) · · · (n− αn− 1/α+ 1)

n(n− 1) · · · (n− 1/α+ 1)
≍ (1− α)1/α → e−1 as α→ 0+.

This convergence implies that the minimax optimal model-agnostic watermark exhibits an increase
in Type II error by an additive factor of e−1 compared to the UMP watermark in the worst-case
scenario. It is noteworthy that this theoretical worst-case distribution might not align with the actual
distribution of models encountered in practice, which are not necessarily adversarial. Therefore,
determining the optimal Type II error in scenarios beyond the worst case presents an interesting
question for future research.

Remark 4.7. The e−1 maximum Type II error loss dose not contradict with the h−2 rates in previous
works [1, 4, 11], because as n ≳ h−2, the distribution of sequences of n tokens with average entropy
h per token is beyond the worst case. Indeed, such distributions have higher differential entropy than
the hard instances in the proof.

5 Conclusions

This study has advanced the understanding of watermarking in the context of large language models by
framing it within the paradigm of hypothesis testing. We find that using a pseudo-random generator to
approximate the target distribution with certain clipping can yield the optimal Type II error among all
level-α tests. Furthermore, in the context where the output is a sequence of several tokens, we develop
the optimal rates regarding the number of i.i.d. tokens required to draw statistical conclusions, which
improves the previous works from h−2 to h−1 log(1/h). To reflect the practical scenarios in which
the detector often does not have knowledge of the model distribution, we formulate model-agnostic
watermarking and establishes the minimax bound of the increase in Type II errors. In addition, we
introduce a robust watermarking framework and characterize the robust UMP watermarking via a
linear program.

Social Impacts. Watermarking is an essential technique to diminish the misuse of large language
models. It tackles several critical social issues concerning the malicious usage of language models
such as the contamination of datasets, academic misconduct of students, creation of fake news, and
circulation of misinformation. By laying the theoretical foundation of statistical watermarking, our
paper provides unifying and systematic approach to evaluate the statistical guarantees of existing and
future watermarking schemes, elucidating the statistical limit of (robust) watermarking problems, and
revealfinding the optimal rates in thone important setting of i.i.d. tokens. In the above ways, our work
contributes to the research endeavours on addressing these societal issues in language modelling. In
conclusion, our paper has positive social impacts.

2For the general case, it suffices to let a1 = 1/(⌈1/α⌉) and n1 = ⌈α1n⌉/α1 and augment Ω with n1 − n
dummy outcomes. Then α1n, 1/α1 ∈ Z and hence the minimax bound for the new sample space with cardinality
n1 and the new Type I error α1 yields a nearly-matching bound for (n, α).
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A Related Works

Watermarks can be injected either into a pre-existing text (edit-based watermarks) or during the text
generation (generative watermarks). Although the study of generative watermarking can be dated
back to [18], some older works focus on edit-based watermarking [14, 3, 22, 7], while a recent line
of work studies generative watermarking [1, 8, 11, 4].

Our framework of formulating the watermark problem as a hypothesis testing is general and subsumes
previous frameworks such as [8, 4]. A very recent work [11] similarly recognize the importance of
correlation between the rejection region and the outputs. However, they do not study the statistical
tradeoff in this paper and their rates on the required number of generated tokens is sub-optimal.

Meanwhile, various attack algorithms against watermarking schemes were also studied [8, 9, 15, 24,
11]. These attacking schemes apply quality-preserving perturbations to the watermarked outputs in
delicate ways, and are therefore modelled by the perturbation graph (Definition C.1) in the robust
watermark framework in Section C.

B Examples

In the following examples, we show how existing watermarking schemes fit in our framework.

Example B.1 (Text Generation with Soft Red List, [8]). In Algorithm 2 of [8], the watermarking
scheme (over sample space Ω = V ∗ where V is the ‘vocabulary’, i.e., the set of all tokens) of ρ is
given as follows:

• Fix threshold C ∈ R, green list size γ ∈ (0, 1), and hardness parameter δ > 0

• For i = 1, 2, . . .

– Randomly partition V into a green list G of size γ|V |, and a red list R of size (1−γ)|V |.
– Sample the token Xi from the following distribution

P(Xi = x) =

{ ρ(x|X1,...,Xi−1)·exp(δ)∑
x∈G ρ(x|X1,...,Xi−1)·exp(δ)+

∑
x∈R ρ(x|X1,...,Xi−1)

, if x ∈ G
ρ(x|X1,...,Xi−1)∑

x∈G ρ(x|X1,...,Xi−1)·exp(δ)+
∑

x∈R ρ(x|X1,...,Xi−1)
, if x ∈ R

• Let the rejection region R be
R = {the number of green list tokens ≥ C} .

The above sampling procedures as a whole define the joint distribution of the output X = X1X2 · · ·
and the rejection region R, i.e., the Θ(δ)-distorted watermarking scheme PSOFTREDLIST. The detector
observes the rejection region via the secret key that the service provider uses to generate the green
and red lists.

Example B.2 (Complete watermarking algorithm Waksk, [4]). In Algorithm 3 of [4], the watermark-
ing scheme (over sample space Ω = {0, 1}∗) of ρ is given as follows:

• Fix threshold C ∈ R and entropy threshold λ > 0

• Select i such that the empirical entropy of X1X2 . . . Xi is greater than or equal to λ

• For j = i+ 1, i+ 2, . . .

– Sample uj ∈ [0, 1] uniformly at random.

– Let the binary token Xj be given by Xj =

{
1, if uj ≤ ρ(1|X1, . . . , Xj−1)

0, otherwise
.

• Let the rejection region R be

R =

X :

L∑
j=i+1

log
1

Xjuj + (1−Xj)(1− uj)
≥ C

 .
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The above sampling procedures as a whole define the joint distribution of the output X = X1X2 · · ·
and the rejection region R, i.e., the 0-distorted watermarking scheme PWaksk

.The detector observes
the rejection region via the index i and uj(j > i).
Example B.3 (Inverse transform sampling WakITS, [11]). The inverse transform sampling scheme
in [4] (over sample space Ω = [N ]∗) of ρ is given as follows:

• Fix threshold C ∈ R, resample size T , and block size k

• For j = 1, 2, . . . ,

– Let µ← ρ(·|X1, . . . , Xj−1).

– Sample ξj = (uj , πj), ξ
(t)
j = (u′

j , π
′
j) (t = 1, . . . , T ) i.i.d. according to the following

distribution:
* Sample u ∈ [0, 1] uniformly at random;
* Sample π uniformly at random from the space of permutations over the vocabulary
[N ].

– Let the token Xj be given by Xj = π−1 (min{π(i) : µ({j : π(j) ≤ π(i)}) ≥ u}).

• Let the rejection region R be

R =

{
X :

1

T + 1

(
1 +

T∑
t=1

1(ϕ(X, ξ(t)) ≤ ϕ(X, ξ)

)
≤ C

}
where ξ = (ξ1, . . . , ξlen(X)), ξ(t) = (ξ

(t)
1 , . . . , ξ

(t)
len(X)), and

ϕ(y, ξ) = min
{
d
(
{yi+l}k−1

l=1 , {ξ(j+l)%len(ξ)}k−1
l=1

)
, i = 1, . . . , len(y)− k + 1, j = 1, . . . , len(ξ)

}
Here d is an alignment cost that is set as

d(y, (u, π)) =

len(y)∑
i=1

∣∣∣∣ui −
πi(yi)− 1

N − 1

∣∣∣∣
in [11]. Additionally, a single permutation π

(t)
j = π(∀j, t) is used to reduce computation overhead.

The above sampling procedures as a whole define the joint distribution of the output X = X1X2 · · ·
and the rejection region R in [11].The detector observes the rejection region via ξ, ξ′.

Using similar approaches in the above examples, we can encompass the methods of a number of
works [2, 12, 25, 11] into our framework.

C Robust watermark

In the context of watermarking large language models, it’s crucial to acknowledge users’ capability
to modify or manipulate model outputs. These modifications include cropping, paraphrasing, and
translating the text, all of which may be employed to subvert watermark detection. Therefore, in this
section, we introduce a graphical framework, modified from Problem 2.1, to account for potential
user perturbations and investigate the optimal watermarking schemes robust to these perturbations.
Definition C.1 (Perturbation graph). A perturbation graph over the discrete sample space Ω is a
directed graph G = (V,E) where V equals Ω and (u, u) ∈ E for any u ∈ V . For any v ∈ V ,
let in(v) = {w ∈ V : (w, v) ∈ E} denote the set of vertices with incoming edges to v, and let
out(v) = {w ∈ V : (v, w) ∈ E} denote the set of vertices with outcoming edges from v.

The perturbation graph specifies all the possible perturbations that could be made by the user: any
u ∈ V can be perturbed into v ∈ V if and only if (u, v) ∈ E, i.e., there exists a directed edge from u
to v.
Example C.2. Consider Ω = Ω⊗n

0 . Let the user have the capacity to change no more than c tokens,
i.e., perturb any sequence of tokens x = x1x2 · · ·xn to another sequence y = y1y2 · · · yn with
Hamming distance less than or equal to c. Then the perturbation graph is given by G = (V,E)
where V = Ωn and E = {(u, v) : u, v ∈ V, d(u, v) ≤ c} (d is the Hamming distance, i.e.,
d(x, y) =

∑n
i=1 1(xi ̸= yi)).
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Problem C.3 (Robust watermarking scheme). A robust watermarking scheme with respect to
a perturbation graph G is a watermarking scheme except that its Type II error is defined as
EX,R∼P

[
maxY ∈out(X) 1(Y /∈ R)

]
, i.e., the probability of false negative given that the user ad-

versarially perturbs the output.

Theorem C.4. Define the shrinkage operator SG : 2Ω → 2Ω (of a perturbation graph G) by
SG(R) = {x ∈ Ω : out(x) ⊂ R}. Then the minimum Type II error of the robust, 0-distorted UMP
test of level α in Problem C.3 is given by the solution of the following Linear Program

min
x∈R|Ω|

1−
∑
y∈Ω

ρ(y)x(y) (2)

s.t.
∑

y∈in(z)

ρ(y)x(y) ≤ α,
∑
z∈Ω

x(z) ≤ 1, 0 ≤ x(z) ≤ 1, ∀z ∈ Ω.

The UMP watermarking is P∗(X = y,R = R0) =


ρ(y) · x∗(y), R0 = S−1

G ({y})
ρ(y) · (1− x∗(y)) , R0 = ∅
0, otherwise

,

where x∗ is the solution of Eq. (2).

Remark C.5 (Dependence on the sparsity of graph). From Eq. (2), we observe that the perturbation
graph influence the optimal Type II error via the constraint set. Indeed, if the graph is dense, the
constraints

∑
y∈in(z) ρ(y)x(y) ≤ α involve many entries of y ∈ Ω and thus decrease the value∑

y∈Ω ρ(y)x(y), thereby increasing the Type II error. On the other extreme, when the edge set of the
perturbation graph is E = {(u, u) : u ∈ v}, i.e., the user can not perturb the output to a different
value, then optimum of Eq. (2) reduces to Eq. (1) (setting ϵ = 0).

D Proof of Theorem 3.2

Proof. Let ρ′ denote the marginal probability of X and let η denote the marginal probability of R. In
the bound of Type I error, choosing π = δy yields

α ≥ PX∼π,R∼P(Ω,·)(X ∈ R)

= PR∼η(y ∈ R)

=
∑
R∈2Ω

(∑
x∈Ω

ρ′(x)P(R|x)

)
· 1(y ∈ R). (3)

Now notice that
P(X ∈ R) = EP [1(X ∈ R)]

=
∑
y∈Ω

∑
R∈2Ω

ρ′(y)P(R|y)1(y ∈ R)

=
∑
y∈Ω

(∑
R∈2Ω

ρ′(y)P(R|y) · 1(y ∈ R)

)
︸ ︷︷ ︸

A(y)

.

For the term A(y), we first know that A(y) ≤ ρ′(y). Applying Eq. (3), we further have

A(y) ≤
∑
R∈2Ω

(∑
x∈Ω

ρ′(x)P(R|x)

)
· 1(y ∈ R)

≤ α.
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Combining the above two inequalies, it follows that

P(X ∈ R) ≤
∑
y∈Ω

(α ∧ ρ′(y))

= 1−
∑

x∈Ω:ρ′(x)>α

(ρ′(x)− α)

≤ 1− min
TV(ρ′∥ρ)≤ϵ

∑
x∈Ω:ρ′(x)>α

(ρ′(x)− α)

≤ 1−

 ∑
x∈Ω:ρ(x)>α

(ρ(x)− α)− ϵ


+

where first equality is achieved by

ρ′ = arg min
TV(ρ′∥ρ)≤ϵ

∑
x∈Ω:ρ′(x)>α

(ρ′(x)− α)

and the second inequality is achieved when
∑

x∈Ω:ρ(x)<α (α− ρ(x)) ≥ ϵ, a sufficient condition for
which being |Ω| ≥ 1/α. This establishes the optimal Type II error.

Finally, to verify that P∗ satisfies the conditions, the condition TV(P∗(·, 2Ω)∥ρ) ≤ ϵ is apparently
satisfied. For any y ∈ Ω we have

PR∼η(y ∈ R) =
∑
x∈Ω

ρ∗(x) · P(R = {x}) · 1(y = x)

= ρ∗(y) ·
(
1 ∧ α

ρ∗(y)

)
≤ α.

This implies the supπ∈∆(Ω) PY∼π,(X,R)∼P∗(Y ∈ R) ≤ α because any π can be written as linear
combination of δy . Moreover,

P∗(X ∈ R) =
∑
x∈Ω

ρ∗(x) · P(R = {x})

=
∑
y∈Ω

(α ∧ ρ∗(y))

= 1−
∑

x∈Ω:ρ∗(x)>α

(ρ∗(x)− α) .

This verifies that ρ∗ achieves the advertised Type II error.

E Proof of Theorem 3.6

Proof. Throughout the proof we assume that h < 1/4, otherwise the bounds become trivial.

We first prove the lower bound. For this purpose, we construct the hard instance: let q0 = H−1
b (h)

(take the one ≥ 1/2) where Hb is the binary entropy function defined by Hb(x) = −x lnx− (1−
x) ln(1− x), and set ρ0 = (1− q0)δx1

+ q0δx2
where x1, x2 are two different elements in Ω0. Then

12



Lemma E.2 implies that q0 ≥ 3/4. By Theorem 3.2,

β = 1− P(X ∈ R) =
∑

x∈Ω:ρ(x)>α

(ρ(x)− α)

≥ 1

2
· P (ρ(X) ≥ 2α)

=
1

2
· P

(
n∑

i=1

ln ρ0(Xi) ≥ ln(2α)

)

≥ 1(n ln q0 ≥ ln(2α)) · 1
2
qn0

≥ 1(2n(1− q0) ≤ − ln(2α)) · 1
2
exp (−n(1− q0))

≥ 1

(
n ≤

ln 1
2α

2h/ ln ln 2
h

)
· 1
2
exp

(
− nh

2 ln ln 2
h

)
where the last inequality follows from Lemma E.3. It follows that

n(h, α, β) ≥
ln ln 2

h

2h
·
(
ln

1

2α
∧ ln

1

2β

)
. (4)

Furthermore, suppose n ≤ ln 1
2α

(1−q0) ln
1

1−q0

. Define Y =
∑n

i=1 1(ρ0(Xi) = 1− q0), then notice that

Y ∼ Binom(n, 1− q0) and if Y ≤ ln 1
2α

2 ln 1
1−q0

, then

n∑
i=1

ln ρ0(Xi) ≥
ln 1

2α

2 ln 1
1−q0

· ln(1− q0) + n · ln q0

≥ ln(2α)

where the last inequality is due to n · ln q0 ≥ −2(1 − q0)n ≥ − 2nh
ln 1

h

≥ α
2 . Applying this and

Markov’s inequality,

P

(
n∑

i=1

ln ρ0(Xi) ≥ ln(2α)

)
≥ P

(
Y ≤

ln 1
2α

2 ln 1
1−q0

)

≥ 1− n(1− q0)
ln 1

2α

2 ln 1
1−q0

≥ 1

2
.

This is a contradiction. As a result,

n(h, α, β) ≥
ln 1

2α

(1− q0) ln
1

1−q0

≥
ln 1

2α

h
. (5)

Combining Eq. (4) and Eq. (5), we established the lower bound.

For the upper bound, we define q = maxx∈Ω0 ρ0(x), then Lemma E.2 implies that q ≥ 1/2. Define
Y =

∑n
i=1 1(ρ0(Xi) ̸= q) (recall that Y ∼ Binom(n, 1− q)). It suffices to show when

n = 200

(
2 ln 9k

h

h
·
(
ln

1

α
∧ ln

1

β

))
∨

(18 + 4 ln(9k)) ln 1
α

h

the Type II error of the UMP watermark 1− P∗(X ∈ R) ≤ β.
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By Theorem 3.2 and Bennett’s inequality,

1− P∗(X ∈ R) =
∑

x∈Ω:ρ(x)>α

(ρ(x)− α)

≤ P (ρ(X) ≥ α)

= P

(
n∑

i=1

ln ρ0(Xi) ≥ ln(α)

)

≤ P

(
Y ≥

ln 1
α

ln 1
1−q

)

≤ exp

−nq(1− q)θ

1− q − ln 1
α

n ln 1
1−q

q(1− q)


 (6)

where θ(x) = (1 + x) ln(1 + x)− x.

Notice that by Lemma E.2,

(1− q) ln
1

1− q
≥ h

9 ln 9k ln(9k)
h

· ln
ln 1

h

h

= h ·
ln ln 1

h + ln 1
h

9
(
ln 1

h + ln(9k ln(9k))
)

≥ h

9 + ln(9k ln(9k))
.

Since n ≥ (18+2 ln(9k ln(9k))) ln 1
α

h , we have n ≥ 2
1−q

ln 1
α

ln 1
1−q

. Under this condition, we have the

simplification

θ

1− q − ln 1
α

n ln 1
1−q

q(1− q)

 ≥ θ

(
1

2q

)

≥ 1

50
.

Plugging back to Eq. (6), we have

1− P∗(X ∈ R) ≤ exp

−nq(1− q)θ

1− q − ln 1
α

n ln 1
1−q

q(1− q)




≤ exp

(
−n(1− q)

100

)
≤ exp

(
− nh

200 ln 9k ln(9k)
h

)

where we applied Lemma E.3 in the last step. As n ≥ 200

(
ln

9k ln(9k)
h

h ·
(
ln 1

α ∧ ln 1
β

))
, we know

that 1− P∗(X ∈ R) ≤ β. This establishes the upper bound.

E.1 Supporting lemmata

Lemma E.1 ([17], Theorem 1.2). Define the binary entropy function Hb : (0, 1)→ R as Hb(x) =

−x lnx− (1− x) ln(1− x). Then 4x(1− x) ≤ Hb(x) ≤ (4x(1− x))
1/ ln 4.

Lemma E.2. Suppose ρ is a probability measure over Ω such that H(ρ) = h, define q =
maxx∈Ω ρ(x). If H(ρ) ≤ 1/4, then q ≥ 1/2. Furthermore, if Hb(q) ≤ 1/4, then q ≥ 3/4.
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Proof. Suppose q ≤ 1/2. By convexity of H ,

H(ρ) ≥ −
⌊
1

q

⌋
q ln q ≥ −1

2
ln

1

2
≥ 1/4.

This is a contradiction.

Suppose q ≤ 3/4, then Lemma E.1 implies that
Hb(q) ≥ 4q(1− q) ≥ 1/4.

This is a contradiction.

Lemma E.3. Suppose ρ is a probability measure over Ω such that H(ρ) = h and |Ω| = k, define
q = maxx∈Ω ρ(x). If q ≥ 1/2, then we have

h

9 ln 9k ln(9k)
h

≤ 1− q ≤ h

ln ln 2
h

Proof. We have
H(ρ) ≥ −(1− q) ln(1− q) ≥ (1− q) · ln 2.

It follows that
h ≥ − (1− q) ln(1− q)

≥ (1− q) ln
ln 2

h
.

Therefore 1− q ≤ h
ln ln 2

h

.

By the convexity of H and −q ln q ≤ 2(1− q),

H(ρ) ≤ − q ln q − (1− q) ln
1− q

k

≤ (1− q) ln
9k

1− q
.

This means that

h2 ≤ (1− q)2
(
ln

9k

1− q

)2

≤ (1− q) · (ln2(9k) + 18).

It follows that

h ≤ (1− q) ln
9k

1− q

≤ 9(1− q) ln
9k ln(9k)

h
.

This establishes 1− q ≥ h

9 ln
9k ln(9k)

h

.

F Proof of Theorem 4.4

Proof. Lower bound. Let m = 1
α . Notice that for any level-α model-agnostic watermarking

(η, {Pρ}ρ∈∆(Ω,F)), the following holds∑
A∈2Ω

η(A)1(x ∈ A) ≤ α, ∀x ∈ Ω.

Furthermore, for any ρ0 = Unif(i1, i2, . . . , im), we have β(P∗
ρ0
) = 0 and

β(Pρ0
) ≥ PA∼η ({i1, . . . , im} ∩A = ∅)

≥
∑
A

η(A) ·
m∏
j=1

1(ij /∈ A).
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By probabilistic method,

β(Pρ0
) ≥ max

i1<···<im

∑
A

η(A) ·
m∏
j=1

1(ij /∈ A)

≥ 1(
n
m

) ∑
i1<···<im

∑
A

η(A) ·
m∏
j=1

1(ij /∈ A).

It follows that the maximum Type II error loss is lower bounded by the following linear program

v∗ = min
η

1(
n
m

) ∑
i1<···<im

∑
A

η(A) ·
m∏
j=1

1(ij /∈ A)

s.t.
∑
A∈2Ω

η(A)1(x ∈ A) ≤ α, ∀x ∈ Ω,

∑
A∈2Ω

η(A) ≤ 1, η(A) ≥ 0, ∀A ∈ 2Ω.

By duality, this is bounded by

min
η≥0

max
ξ,ζ≥0

1(
n
m

)( ∑
i1<···<im

∑
A

η(A) ·
m∏
j=1

1(ij /∈ A) +
∑
x

ξ(x)

(∑
A∈2Ω

η(A)1(x ∈ A)− α

)

+ ζ ·

(∑
A∈2Ω

η(A)− 1

))

= max
ξ,ζ≥0

min
η≥0

1(
n
m

)
∑

A

η(A) ·

 ∑
i1<···<im

m∏
j=1

1(ij /∈ A) +
∑
x

ξ(x)1(x ∈ A) + ζ

− α ·
∑
x

ξ(x)− ζ


≥ min

η≥0

1(
n
m

) n∑
l=1

∑
|A|=l

η(A) ·
((

n− l

m

)
+ l · ξ∗ + ζ∗

)
− αnξ∗ + ζ∗(

n
m

)
where ξ∗ =

(
n−αn

m

)
· m
n−m and ζ∗ = 0.

Since f(l) :=
(
n−l
m

)
+ l · ξ∗ + ζ∗ is a convex function and equals minimum zero at l∗ = αn, we have(

n−l
m

)
+ l · ξ∗ + ζ∗ ≥

(
n−αn

m

)
+ αn ·

(
n−αn

m

)
· m
n−m for all l ∈ [n] and thus

RHS ≥
(
n−αn

m

)(
n
m

) =

(
n−m
αn

)(
n
αn

) =

(
n− 1

α
αn

)(
n
αn

) .

Upper bound. Notice that the marginal distribution of reject region

η∗(A) =

{
1

( n
αn)

, if |A| = αn

0, otherwise
.

already guarantees Type I error ≤ α. It suffices to show (*): for any ρ ∈ ∆(Ω,F), there exists a

coupling Pρ of η∗ and ρ such that P(x,A)∼Pρ
(x /∈ A) ≤ (n− 1

α
αn )
( n
αn)

+
∑

x:ρ(x)≥α(ρ(x)− α).

Define p as the projection from Ω× 2Ω to 2Ω, i.e. p(V ) = {A ∈ 2Ω : ∃x ∈ Ω, s.t.(x,A) ∈ V }. Let
W := {(x,A) ∈ Ω× 2Ω : x ∈ A}. To show the above, we check the Strassen’s condition

ρ(U)− η∗
(
p
(
W ∩ (U × 2Ω)

))
≤
(
n− 1

α
αn

)(
n
αn

) +
∑

x:ρ(x)≥α

(ρ(x)− α), ∀U ⊂ Ω. (7)

Indeed, given Eq. (7), Theorem 11 in [16] establishes (*).

In the rest of the proof, we show Eq. (7). Fix U with cardinality k. First notice that ρ(U) −∑
x:ρ(x)≥α(ρ(x)− α) ≤ (αk ∧ 1). Since p

(
W ∩ (U × 2Ω)

)
= {A ∈ 2Ω : ∃i ∈ U, s.t. i ∈ A}, we
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have

η∗
(
p
(
W ∩ (U × 2Ω)

))
≥ 1−

(
n−k
αn

)(
n
αn

) = 1−
(
n−αn

k

)(
n
k

) .

If k ≤ 1
α , then because g(k) := αk − 1 +

(n−αn
k )
(nk)

is convex and takes maximum
(n−αn

1
α

)

(n
1
α
)

=
(n− 1

α
αn )
( n
αn)

at k∗ = 1
α , we have

ρ(U)− η∗
(
p
(
W ∩ (U × 2Ω)

))
≤ αk − 1 +

(
n−αn

k

)(
n
k

) +
∑

x:ρ(x)≥α

(ρ(x)− α)

=

(
n− 1

α
αn

)(
n
αn

) +
∑

x:ρ(x)≥α

(ρ(x)− α).

If k ≥ 1
α , then since (n−αn

k )
(nk)

=
(n−k

αn )
( n
αn)

is monotonously decreasing in k,

ρ(U)− η∗
(
p
(
W ∩ (U × 2Ω)

))
≤
(
n−αn

k

)(
n
k

) +
∑

x:ρ(x)≥α

(ρ(x)− α)

=

(
n− 1

α
αn

)(
n
αn

) +
∑

x:ρ(x)≥α

(ρ(x)− α).

Combining, we establishes Eq. (7).

G Proof of Theorem C.4

Proof. Throughout the proof we omit the subscript in the shrinkage operator S, as G is fixed. First
notice that

EX,R∼P

[
min

Y ∈out(X)
1(Y ∈ R)

]
= P(X ∈ S(R))

=
∑
y∈Ω

∑
R∈2Ω

ρ(y)P(R|y)1(y ∈ S(R)).

Further, notice that y ∈ in(z) and y ∈ S(R) implies that z ∈ R, thus∑
y∈in(z)

∑
R∈2Ω

ρ(y)P(R|y)1(y ∈ S(R)) ≤
∑

y∈in(z)

∑
R∈2Ω

ρ(y)P(R|y)1(z ∈ R)

= PX∼δz,R∼P(Ω,·)(X ∈ R)

≤ α.

It follows that the optimum Type II error is lower bounded by the optimum of the following Linear
Program

min
P

1−
∑
y∈Ω

∑
R∈2Ω

ρ(y)P(R|y)1(y ∈ S(R)) (8)

s.t.
∑

y∈in(z)

∑
R∈2Ω

ρ(y)P(R|y)1(y ∈ S(R)) ≤ α,
∑
R∈2Ω

P(R|z) = 1, 0 ≤ P(R|z) ≤ 1, ∀z ∈ Ω, R ∈ 2Ω.

We claim that the minimum in Eq. (8) is equal to the minimum of Eq. (2). Indeed, it suffices to
show that Eq. (8) is optimized when P(·|y0) is supported on

{
∅,S−1({y0})

}
(then setting x(y) ≡

P(S−1({y})|y) reduces Eq. (8) to Eq. (2)). To see this, consider any optimizer P̃ such that there
exists y0 ∈ Ω and R0 /∈

{
∅,S−1({y0})

}
, with P(R0|y0) = 0. We will show that there exists P̄ such

that it achieves the no greater objective value, and satisfies |supp(P̄(·|y0)) ∩
{
∅,S−1({y0})

}c | =
|supp(P̃(·|y0)) ∩

{
∅,S−1({y0})

}c | − 1 and |supp(P̄(·|y))| = |supp(P̃(·|y))| for all other y ∈ Ω.
Iteratively applying this argument, we reduce supp(P̃(·|y)) ∩

{
∅,S−1({y})

}c
to 0 for any y ∈ Ω

and thereby prove the claim.
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Consider the following two cases.

Case 1: y0 /∈ S(R0). Then letting P̄(R|y) =


P̃(R|y), y ̸= y0, R ̸= R0

P̃(R0|y) + P̃(∅|y), y = y0, R = ∅
0, y ̸= y0, R = R0

, we

observe that∑
y∈Ω

∑
R∈2Ω

ρ(y)P̃(R|y)1(y ∈ S(R)) =
∑
y∈Ω

∑
R∈2Ω

ρ(y)P̄(R|y)1(y ∈ S(R))

and P̄ satisfies all the constraints in Eq. (8). It is obvious from the construction of P̄
that |supp(P̄(·|y0)) ∩

{
∅,S−1({y0})

}c | = |supp(P̃(·|y0)) ∩
{
∅,S−1({y0})

}c | − 1 and
|supp(P̄(·|y))| = |supp(P̃(·|y))| for all other y ∈ Ω.

Case 2: y0 ∈ S(R0). Then letting P̄(R|y) =


P̃(R|y), y ̸= y0, R ̸= R0

P̃(R0|y) + P̃(R|y), y = y0, R = {y0}
0, y ̸= y0, R = R0

, we

observe that∑
y∈Ω

∑
R∈2Ω

ρ(y)P̃(R|y)1(y ∈ S(R)) =
∑
y∈Ω

∑
R∈2Ω

ρ(y)P̄(R|y)1(y ∈ S(R))

and P̄ satisfies all the constraints in Eq. (8) due to 1(y ∈ S(R0)) ≥ 1(y ∈ S({y0})) for any y ∈ Ω.
From the construction of P̄ , we know that |supp(P̄(·|y0))∩

{
∅,S−1({y0})

}c | = |supp(P̃(·|y0))∩{
∅,S−1({y0})

}c | − 1 and |supp(P̄(·|y))| = |supp(P̃(·|y))| for all other y ∈ Ω.

Combining the above cases, we established our claim.

Finally, letting P∗(·|y) = x∗(y) ·δS−1({y}) for all y ∈ ω, where x∗ is the solution of Eq. (2), achieves
the optimum value in Eq. (2).
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