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ABSTRACT

A key component to enable autonomous vehicles (AV) at scale is realistic camera
and lidar data simulation for exhaustive validation and testing. To this end 3D
Gaussian splatting (3DGS) has gained popularity to simulate camera data due to
its high fidelity and rendering speed. A recent work, SplatAD, is the first 3DGS-
based method that also renders lidar data in addition to camera data. To capture
view-dependent effects, SplatAD uses decoders for camera and lidar renderings
that are optimized per scene. However, using scene-specific decoders limits the
reusability of the learned Gaussians for the assets across scenes due to scene-
specific learned feature representations. Enabling such reusability is crucial to
generate rare-event-scenarios at scale for AV stack evaluation and synthetic data
creation. Addressing this key limitation, we propose AstroSplat, oriented toward
asset transfer across scenes with learned representations that are memory-efficient.
Instead of optimizing the decoders per scene, AstroSplat optimizes them per
Gaussian enabling high fidelity transfer of assets across scenes. Empirical results
across a suite of benchmark datasets and tasks demonstrate that AstroSplat is
competitive with prior methods in terms of reconstruction quality, both for camera
and lidar renderings. In the asset transfer task, AstroSplat outperforms SplatAD by
104× on image generation quality metrics.

1 INTRODUCTION

Large-scale testing is essential to ensure the safety of autonomous vehicles (AV) before they can be
deployed in the real-world. Simulation allows a scalable approach that allows rapid prototyping of
diverse and edge-case scenarios encountered in the real world (Wymann et al., 2000; Dosovitskiy
et al., 2017; Caesar et al., 2021; Li et al., 2022; Gulino et al., 2023). However, these simulators are
either simplified representations of the world in the form of bounding boxes and HD maps (Cae-
sar et al., 2021; Gulino et al., 2023) or simulate sensor data (camera and lidar) via hand-coded
assets (Dosovitskiy et al., 2017; Li et al., 2022). This results in a sim-to-real gap (Pasios & Nikolaidis,
2025) making evaluation of the AV stack unreliable. A key missing piece is high fidelity realistic
sensor simulation that can be consumed by the AV stack directly.

To close this gap, a plethora of recent methods have focused on generating photorealistic sensor
data. Such methods are primarily based on either neural radiance fields (NeRFs) (Tonderski et al.,
2024), 3D Gaussian splatting (3DGS) (Hess et al., 2025), or diffusion (Yang et al., 2024). Current
diffusion-based methods (Gao et al., 2023; Yang et al., 2024; Gao et al., 2023; Wang et al., 2024;
Zhao et al., 2025; Ni et al., 2025; Mei et al., 2024; Garg & Krishna, 2024) are only limited to
simulating camera data. Recent work such as NeuRAD (Tonderski et al., 2024) – based on NeRFs,
and a subsequent work SplatAD (Hess et al., 2025) – based on 3DGS, also simulate 360◦ lidar data
along with camera data. Simulating lidar data unlocks the ability to evaluate AV stacks that utilize
lidar data for spatial information.

SplatAD outperforms NeuRAD in terms of inference speed and across a majority of camera and
lidar data simulation metrics. Although, SplatAD shows impressive results with 360◦ lidar data, it
suffers from a key shortcoming; (S1) the camera and lidar decoders are not optimized per Gaussian
hence performing poorly in asset transfer between scenes. Asset transfer between scenes is important
because it allows efficient simulation, insertion, and manipulation of assets such as vehicles across
many driving scenes at inference. This facilitates scalable and diverse scenario generation, including
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Figure 1: Rare-event collision scenario generated via asset transfer across two different scenes using
our proposed AstroSplat. (Left) Camera rendering of a target scene. (Middle) Camera rendering
consisting of an asset (red car) extracted from another scene and inserted into the target scene
simulating a collision in the target scene. (Right) 360◦ lidar rendering containing the asset inserted
into the target scene.

rare or safety-critical edge cases, by quickly creating realistic sensor-specific (camera/data) data
where key assets behave naturally and are visually consistent with their surroundings. Case in point
is a rare-event scenario of a collision in the ego lane that we simulate by inserting an asset from
another scene not present in the target scene as illustrated in Fig. 1. A method that allows such
high-fidelity asset transfer is also crucial for synthetic generation of out-of-distribution scenarios at
scale to evaluate (and train) multi-modal fusion methods for perception tasks (Liu et al., 2022; Liang
et al., 2022; Li et al., 2024). As shown later in Section 4, SplatAD fails to perform asset transfer
reliably.

A possible existing solution that may be used for asset transfer is the use of spherical harmonics
(SH) (Müller, 2006) to capture view-dependent effects Kerbl et al. (2023). SH functions are a set
of 2D functions defined on the surface of a sphere that can capture effects such as the interaction
of light with an object. By assigning weights (SH coefficients) to a set of SHs and adding them
together, complex distributions of light and color may efficiently represent complex distributions of
color. However, this approach has a shortcoming (S2); SH coefficients maybe sparse making them
memory inefficient. Later in Section 4 we empirically demonstrate the advantages of learned feature
vectors and non-linear decoders to capture view-dependent effects over SH functions.

Addressing shortcomings S1–S2, we present an asset transfer oriented 3D Gaussian splatting method
denoted AstroSplat. AstroSplat is a 3DGS-based method that makes the following novel contributions:
(C1) introducing learnable non-linear decoders for camera and lidar renderings that are shared across
the scene but optimized per Gaussian, and (C2) enabling asset transfer across scenes with high fidelity.
AstroSplat enables asset transfer across scenes, both in camera and lidar sensor modalities, which to
the best of our knowledge hasn’t been explored in depth in prior work.

We conclude our study with four sets of experiments: (G1) we empirically demonstrate the advantage
of learned features and shared non-linear decoders over SHs via sensitivity analysis; (G2) we
undertake a comparative evaluation by benchmarking AstroSplat against prior work in terms of
camera rendering and (G3) lidar rendering; (G4) we test the effectiveness of AstroSplat in performing
asset transfer across scenes. We observe that in terms of camera and lidar renderings, AstroSplat is
competitive with respect to the considered baselines. At the same time, AstroSplat is effective in
performing asset transfer across scenes addressing the shortcomings of SplatAD.

2 RELATED WORK

GS-based camera rendering for AVs. A plethora of methods have adapted 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) for autonomous vehicle (AV) camera rendering. Periodic Vibration
Gaussians (PVG) (Chen et al., 2023) extend 3DGS to dynamic scenes via Gaussian flow but lack
explicit actor representation, limiting controllability. Street Gaussians (Yan et al., 2023) addresses
this with scene decomposition into static backgrounds and rigid objects using bounding boxes, adding
temporal variation via Fourier coefficients. OmniRe (Chen et al., 2024b) further models non-rigid
actors like pedestrians. All three initialize Gaussians using lidar but rely only on depth supervision,
ignoring sensor-specific effects such as intensity variation, ray dropouts, and rolling shutter artifacts.

GS-based lidar modeling for AVs. Several works target 360◦ lidar rendering using 3DGS. LiHi-
GS (Kung et al., 2024) projects 3D Gaussians to lidar range images with 2D scale compensation
but omits sensor artifacts. SplatAD (Hess et al., 2025) unifies camera and lidar rendering while
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modeling such characteristics. Lidar-GS (Chen et al., 2024a) focuses only on lidar. UniGaussian (Ren
et al., 2024) supports fisheye cameras and lidar intensities but not artifacts. GS-Lidar (Jiang et al.,
2025) uses 2D Gaussians with periodic vibrations and spherical harmonics (SH), trading accuracy for
memory. Uni-Gaussians (Yuan et al., 2025) instead adopts Gaussian ray tracing (Moenne-Loccoz
et al., 2024), achieving better fidelity yet slower performance than rasterization.

Asset transfer for AVs. 3DGS-based asset and style transfer methods remain camera-only, with
restrictions such as static scenes (Jain et al., 2024; Liu et al., 2024), low inference (Yu et al., 2024a),
or supervision (Yu et al., 2025). For AVs, GenAssets (Yang et al., 2025) employs diffusion over
NeRF-based latent spaces to reconstruct and complete assets but outputs only camera renderings.
R3D2 (Ljungbergh et al., 2025) enables asset transfer and relighting directly on 3D Gaussians, but
diffusion-based relighting is slow and does not extend to lidar.

Alternatives to SHs for 3DGS. Spherical harmonics, while suitable for transfer, scale poorly in
memory as coefficients grow for complex scenes. Alternatives include modified bases (Zhou et al.,
2024), SH quantization with MLPs Girish et al. (2024), and shared MLP decoders (Meyer et al.,
2025). The latter resembles our approach but struggles with accurate color modeling under some
conditions. Notably, none of these frameworks are trained jointly across camera and lidar or evaluated
in AV datasets.

3 METHOD

We describe each component of our proposed method, AstroSplat. Fig. 2 contains an overview.

Figure 2: Overview of AstroSplat training. Each 3D Gaussian represented by µ,Σ,o and feature
vectors f and frgb is projected onto the camera and lidar sensor modality. The projected Gaussians
undergo sensor-specific tiling followed by correction using rolling shutter effects and ego motion.
The feature vectors f and frgb are then decoded into RGB values for camera data and intensities,
and ray drop probabilities for lidar data using the corresponding MLP decoders. Finally, during
rasterization the RGB values, intensities, and ray drop probabilities are α–blended producing the
camera images and lidar point cloud representations.

Scene representation. We use the scene representation from SplatAD (Hess et al., 2025). A scene is
described using a collection of 3D Gaussians. The splat model G is a collection of N Gaussians. Each
Gaussian has trainable parameters: opacity o ∈ (0,1), mean µ ∈ R3, and an anisotropic covariance
matrix Σ ∈R3×3. To make sure Σ is positive semi-definite, it is parameterized by Σ = RSST RT where
S ∈R3 is a scale vector and R ∈ SE(3) is a rotation matrix computed from quaternion q ∈R4 (Voight,
2021). In addition, every Gaussian is assigned a learnable base color frgb ∈ R3 and a learnable
feature vector f ∈ RDf . The feature vector is used to capture both view-dependent appearance and
lidar properties. We also include a trainable embedding e for each sensor type to reflect sensor-
specific appearance differences. G is represented as, G =

{
Gi : (µi,Si,qi,oi, frgb

i , fi)|i = 1, . . . ,N
}

.
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For dynamic scenes, similar to prior methods (Ost et al., 2021; Hess et al., 2025; Kung et al., 2024;
Khan et al., 2025; Yan et al., 2023) we adopt a scene graph decomposition, dividing the scene
into a static background and multiple dynamic objects. Each moving object is modeled with a 3D
bounding box and a sequence of SE(3) poses, which can come from pretrained detectors, trackers, or
human annotations. Every Gaussian is given a fixed ID that specifies whether it belongs to the static
background or to a particular object. For Gaussians linked to objects, their mean and covariance
are expressed in the local coordinates of the object’s bounding box. At time t, these Gaussians are
transformed into world coordinates using the assigned object pose. To handle errors in the pose
estimates, we add trainable offset parameters. On top of that, each object has an estimated velocity
(based on pose differences) and an additional learnable velocity correction term.

3.1 CAMERA RENDERING

Given a camera with a known pose, we combine the set of Gaussians at the specific capture time t and
use projection, tiling, and sorting strategies from SplatAD. However, we modify their rasterization
and decoding strategy to render an image I.

Projection. First, each Gaussian’s mean and covariance are converted from world coordinates into
camera coordinates: µC = WC

W µ,ΣC = WC
W Σ(WC

W )T , where WC
W is the camera pose with respect to

the world frame. µC is then projected to image space as µ I ∈ R2 using the camera intrinsic matrix
K, µ I = KµC. To transform the covariance, we use the top two rows of the projection’s Jacobian,
so ΣI = JIΣC(JI)

T ∈ R2×2. Gaussians that do not appear inside the camera’s view (frustum) are
removed. To do this efficiently, the extent of each Gaussian is approximated by a square axis-aligned
bounding box (AABB) covering 99% of its confidence.

Tiling and sorting. The image is split into 16×16 pixel tiles, and every Gaussian is assigned to
each tile it overlaps – even if that means duplicating some of them. This ensures that, when rendering,
each pixel only processes a limited subset of the total Gaussians. Finally, the Gaussians are sorted by
the z-depth of their transformed mean µC in the camera view.

Rolling shutter. Most cameras use a rolling shutter, capturing images one row at a time. In AV
applications, the camera may move during exposure and cause distortions. Accurately modeling
effects of rolling shutter is important, especially when the camera moves quickly, because each ray
corresponds to a different camera position over time. Instead of projecting every Gaussian to all
possible camera poses during exposure - which would be computationally expensive - an efficient
approach is to approximate the motion directly in the 2D image space as initially proposed by Seiskari
et al. Seiskari et al. (2024) and later also adapted in NeuRAD (Tonderski et al., 2024) and SplatAD.
Here, each Gaussian’s velocity relative to the camera is used to adjust its projected mean position
within the pixel grid based on the capture time for each pixel row, accommodating both static and
dynamic scene elements.

For implementation, the pixel velocity for each Gaussian combines the camera’s motion and any
object dynamics, then this velocity is mapped to image space. When culling Gaussians or checking
their overlap with image tiles, their extent is increased to account for their travel during the shutter
duration. A rectangular axis-aligned bounding box (AABB) is used, which is enlarged proportionally
to the pixel velocity and the rolling shutter time, plus a learnable time offset to correct for differences
in sensor timing. This adjustment helps accurately model the area a Gaussian affects during exposure,
particularly improving results for narrow or axis-aligned motions, while keeping computational costs
reasonable. For in-depth implementation details, the reader is encouraged to refer to SplatAD since
we essentially borrow its rolling shutter modeling steps.

Rasterization. We now present our main contribution. For each tile and for each Gaussian within
the tile, the RGB color c is computed using a small multi-layered perceptron (MLP) decoder shared
across all Gaussians in the scene. The feature vectors corresponding to the Gaussian frgb and f, the
corresponding ray directions d ∈ R3, and a camera-specific learned embedding e is provided as input
to the MLP decoder, i.e., c = MLP(frgb, f,d,e). The final step is α–blending the RGB values to create
an RGB color map in parallel for each tile (and pixel within the tile). For each pixel with coordinates
p = [pu, pv]

T , the time difference between the pixel’s capture time and the image’s (of height H
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and width W ) middle row is computed using tpix = (pv/H −0.5) · trs, where trs is the rolling shutter
duration – the time duration between the last row and first row of the image. C consisting of RGB
values at every pixel is computed using:

C(p) =
Ntile

∑
i

ciαi(p)
i−1

∏
j=1

(1−α j(p)), (1)

αi(p) =

√
|ΣI

i |
|ΣI

i + sI|
oi exp

(
−1

2
∆

T
i (p)(ΣI

i + sI)−1
∆i(p)

)
, (2)

∆i(p) = p− (µ I
i +vI

i tpix), (3)

where Ntile is the sequence of depth sorted Gaussians within a tile, ∆i(p) is the l1 distance between
the pixel location and Gaussian i’s mean µ I

i compensated by the rolling shutter – vI
i is the pixel

velocity, and s = 0.3 adopted from Mip-splatting (Yu et al., 2024b) and SplatAD. The RGB color
map for the image I ∈ RH×W×3 is obtained by concatenating the tile-wise color maps.

Note that the rasterization process in AstroSplat is in contrast with SplatAD. SplatAD performs
rasterization directly on frgb and f to generate feature maps. To capture view-dependent effects, these
feature maps are then passed through a small CNN decoder along with d ∈ RH×W×3, and e to render
the image. A major limitation of such a strategy is that the decoder is optimized on the single scene
that is trained on. This makes the decoder unsuitable for rendering assets such as vehicles which
are essentially a set of 3D Gaussians, trained within a different scene limiting efficient asset transfer.
To simulate diverse scenarios at scale, AstroSplat performs the decoding before rasterization, hence
optimizing the decoder on every 3D Gaussian instead of the rendered scene enabling high fidelity
asset transfer between scenes.

3.2 LIDAR RENDERING

Lidar sensors capture spatial information by measuring the distance to different objects in the world to
create a discrete set of 3D points (also known as a point cloud) and estimating the material properties
of the objects by capturing the amount of light they reflect. Our lidar rendering follows a similar
strategy as that of camera rendering. Following SplatAD, we use a non-equidistant tiling strategy.
However, similar to the camera rendering we modify the rasterization stage.

Projection. Similar to camera rendering, the 3D Gaussians are first transformed from world
coordinates to lidar coordinates µL = [x,y,z]T and ΣL, µL =W L

W µ,ΣL =W L
W Σ(W L

W )T . Next µL and
ΣL are converted from lidar coordinates to spherical coordinates (azimuth φ , elevation ω , and range
r) to match the standard lidar data capture format. The mean µS is computed as µS =

[
r,φ ,ω

]
=[√

x2 + y2 + z2,arctan2(y,x),arcsin(z/r)
]
, and similar to the projection of ΣC to image space, the

covariance ΣS is obtained using ΣS = JSΣL(JS)
T ∈ R3×3, where the Jacobian JS is given by

JS =


∂ r
∂x

∂ r
∂y

∂ r
∂ z

∂φ

∂x
∂φ

∂y
∂φ

∂ z
∂ω

∂x
∂ω

∂y
∂ω

∂ z

=


x
r

y
r

z
r

− y
x2+y2

x
x2+y2 0

− xz
r2
√

x2+y2
− yz

r2
√

x2+y2

√
x2+y2

r2

 .

Tiling and sorting. Lidar sensors often have uneven vertical (elevation) spacing to improve resolu-
tion in specific regions of interest (Hess et al., 2025). Hence, in the tiling process, tiles are designed
with a fixed count of diodes vertically and a fixed resolution horizontally (azimuth). Such a strategy
avoids the inefficiency of uniform tile sizes by not over-allocating computation where lidar data is
sparse. Once assigned to tiles, Gaussians are then sorted by their range r.

Rolling shutter. Rolling shutter effects for lidar are approximated directly in the spherical coor-
dinate space to simplify computation. The velocity vS of each Gaussian is projected into spherical
coordinates. Then the first two elements of this velocity are used to enlarge the AABB around each
Gaussian by an amount proportional to the rolling shutter period. This adjustment allows for more
accurate culling and intersection tests, ensuring that only Gaussians within the sensor’s view, and
with enough influence, are considered.
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Figure 3: Overview of asset transfer using AstroSplat for camera rendering. An asset extracted from a
scene and the RGB values corresponding to it are computed. Similarly RGB values corresponding to
a target scene in which the asset will be inserted are computed. The Gaussians and the corresponding
colors are then concatenated and α–blended together to achieve asset insertion. The asset transfer
pipeline is similar for lidar rendering.

Rasterization. For each 3D Gaussian, to model the corresponding intensity and ray drop probability
(both scalars), f, d, and e are passed to a small MLP, i.e.,

[
intensity,ray_drop

]
= MLP(f,d,e). Then

each lidar point within a tile is modeled by α–blending the intensities and ray drop probabilities
separately following Equations 1, 2, and 3. Following SplatAD and Mip-Splatting (Yu et al., 2024b),
s is set such that it corresponds to the geometric mean of the lidar’s vertical and horizontal beam
divergence. The expected range of a point is obtained by α–blending the rolling shutter compensated
ranges, i.e., ri,rs = ri +∆S

r , where ∆S
r is the distance the lidar and tl is the time duration of the between

the capture of the current lidar point and the middle of the lidar scan. Following SplatAD, we use the
expected range for training but the median range during inference. The median range corresponds to
the rolling shutter compensated range of the first Gaussian that satisfies ∏

i
j=1(1−α j)< 0.5.

3.3 OPTIMIZATION

We jointly optimize all model components using the loss function proposed in SplatAD. The loss
function L is defined as:

L = λrL1 +(1−λr)LSSIM +λdepthLdepth +λlosLlos +λintenLinten +λraydropLBCE +λMCMCLMCMC,

where L1 and LSSIM are l1 are photometric losses the rendered images. Ldepth and Linten represent
l2 losses on the expected lidar range and intensity. Llos is a line-of-sight loss that penalizes opacity
before the ground truth lidar range. LBCE is a binary cross-entropy loss on the predicted ray drop
probability. LMCMC is the regularization term for opacity and scale from Kheradmand et al. (2024).

3.4 IMPLEMENTATION AND COMPUTE

For implementation of AstroSplat, we built on top NeuRAD’s and SplatAD’s official code-
bases, https://github.com/georghess/neurad-studio and https://github.
com/carlinds/splatad respectively. For compute, we used A100 80GB GPUs on which
training a scene composed of 100 frames took approximately 45 mins. The total number of GPU-
hours used for the reported results and ablation studies was approximately 90 hours.

3.5 ASSET TRANSFER

Once we have trained assets, i.e., the set of trained 3D Gaussians, feature vectors, and decoders,
AstroSplat facilitates precise and efficient asset transfer across scenes. The Gaussians encode position,
geometry, and opacity, the feature vectors encode color and intensity, while the decoders encode
view-dependent effects due to changes in lighting in the scene.

As shown in Figure 3, the corresponding Gaussians for the asset(s) from a source scene and the
target scene are first projected, followed by tiling and sorting along with rolling shutter compensation.
The decoders are then used to decode the view-dependent colors and intensities. The color maps
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corresponding to the assets and target scene are then concatenated followed by rasterization which
performs α–blending.

4 EMPIRICAL STUDY

The goals of our reported empirical study are fourfold: (G1) analyze the advantage of learned non-
linear decoders over spherical harmonics (SH), (G2) compare AstroSplat against prior work in terms
of simulating multi-camera images, (G3) compare AstroSplat against prior work in terms of rendering
360◦ lidar point clouds, and (G4) evaluate, both qualitatively and quantitatively, the effectiveness of
AstroSplat in performing asset transfer across scenes.

Figure 4: Cumulative ex-
plained variance ratio over
principal components (per
channel) for Pandaset scene
“001” (Degree 3 SH).

Datasets. Our experiments use two public AV datasets: Pan-
daSet (Xiao et al., 2021) and Argoverse2 (Wilson et al., 2023),
which vary in lidar and camera configurations, as well as image
resolutions. All six PandaSet cameras are used; with Argoverse2,
seven ring cameras, excluding black-and-white stereo pairs. Fol-
lowing SplatAD (Hess et al., 2025) and NeuRAD (Tonderski et al.,
2024), we evaluate ten challenging sequences per dataset, spanning
illumination, dynamic objects, and motion speeds. We use their
protocols: full-resolution images and a frame splitting approach for
NVS, training on alternate frames and validating on the rest.

Baselines. We benchmark AstroSplat versus popular NeRF and
3DGS methods for AVs: UniSim (Yang et al., 2023), NeuRAD (Ton-
derski et al., 2024), PVG (Chen et al., 2023), Street Gaussians (Yan

et al., 2023), OmniRe (Chen et al., 2024b), and SplatAD. We report the quantitative evaluation metrics
for all the baselines as presented in SplatAD. Results also include SplatAD with spherical harmonics
(SplatAD-SH), which captures view dependency using SHs instead of feature vectors and CNN/MLP
decoders. Unlike SplatAD and AstroSplat, which model lidar attributes and view-dependent appear-
ance with shared features, SplatAD-SH provides a degree-0 band for view-independent modeling.

(G1) Feature representations+MLP decoder vs SHs. Prior work uses spheri-
cal harmonics (SH) for view-dependent appearance, enabling asset transfer between
scenes (Yan et al., 2023; Chen et al., 2024b; Khan et al., 2025; Ljungbergh et al., 2025).

Figure 5: Cumulative Explained
variance ratio over principal com-
ponents (across channels) for Pan-
daset scene “001” (Degree 3 SH).

While SH offers fast inference, it is memory-intensive—optimal
SH models require about 3× more parameters than feature splat-
ting (Hess et al., 2025) or AstroSplat. We hypothesize, however,
that the SH coefficient space in AV datasets is much lower rank
than SH band counts suggest, implying more efficient, realistic
alternatives may exist.

To explore this, we perform PCA on SH coefficients from
10 SplatAD-SH models trained on Pandaset validation scenes.
We analyze (a) intra-channel correlations (within a channel’s
SH coefficients) and (b) inter-channel correlations (across red,
green, blue, lidar intensity, ray drop probabilities).

For (a), we apply PCA per channel. Figure 4 shows for scene
"001" that, using 16 SH coefficients (degree 3), RGB channels
need just 10 components to explain 95% of variance–suggesting
intra-channel compressibility.

For (b), PCA on all channel coefficients combined reveals even greater redundancy: as Figure 5
illustrates, 40 components explain 95% and only 19 explain 80% of the variance across 66 SH
coefficients.

Together, these experiments suggest that SH coefficients exhibit redundancy and are not optimized
for memory consumption. Particularly, the presence of shared information between channels makes
our setting a good fit for approaches based on learned per-Gaussian feature representations and a
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Table 2: NVS metrics (averaged) for camera and lidar rendering on two datasets. The best performing
models on each metric are highlighted; first and second .

Method PSNR ↑ SSIM ↑ LPIPS ↓ Depth ↓ Intensity ↓ Drop acc. ↑ CD ↓
PandaSet

UniSim 23.12 0.682 0.360 0.08 0.086 – 10.3
NeuRAD 25.80 0.753 0.250 0.01 0.063 96.2 1.9
PVG 24.01 0.712 0.452 38.74 – – 125.2
Street-GS 24.73 0.745 0.314 6.18 – – 37.3
OmniRE 24.71 0.745 0.315 2.88 – – 29.8
SplatAD 26.76 0.815 0.193 0.01 0.059 96.7 1.6
SplatAD-SH 24.93 0.778 0.270 0.02 0.085 96.3 1.9
AstroSplat (ours) 25.51 0.805 0.240 0.01 0.065 96.5 1.6

Argoverse2
UniSim 22.35 0.655 0.458 0.18 0.081 – 29.2
NeuRAD 26.18 0.721 0.310 0.02 0.058 92.2 2.6
PVG 24.47 0.712 0.510 – – – –
Street-GS 25.52 0.754 0.374 – – – –
OmniRE 25.61 0.753 0.375 – – – –
SplatAD 28.42 0.826 0.270 0.02 0.052 92.6 2.8
SplatAD-SH 25.81 0.790 0.343 0.07 0.070 93.6 4.2
AstroSplat (ours) 25.71 0.800 0.320 0.05 0.055 93.3 3.7

shallow MLP that specify multimodal view-dependent appearance in line with SplatAD and Meyer
et al. (2025).

Table 1: Inference and resource usage met-
rics during asset transfer from Pandaset scene
“002” to “001”. The best performing mod-
els on each metric are highlighted; first and
second . AstroSplat has the lowest memory

footprint and model size.

SplatAD-SH AstroSplat

Camera metrics
camera_render_time (ms) ↓ 36.39 53.80
camera_gpu_mem (GB) ↓ 13.14 10.27

Lidar metrics
lidar_render_time (ms) ↓ 228.1 230.7
lidar_gpu_mem (GB) ↓ 15.98 14.62

model_size (GB) 5.4 1.3

(G2 & G3) Camera and lidar rendering quality.
Table 2 presents standard NVS metrics: peak signal to
noise ratio (PSNR), structural similarity index metric
(SSIM), and learned perceptual image patch similar-
ity (LPIPS) for camera renderings on hold-out vali-
dation ego camera poses. AstroSplat is competitive
with SplatAD and rest of the considered baselines.
This is expected since AstroSplat is not incentivized
explicity to outperform SplatAD in NVS metrics. We
suspect the CNN decoder in SplatAD to be more ef-
fective in capturing texture information as compared
to the MLP decoder used in AstroSplat resulting in
better NVS metrics.

Table 2 also presents NVS metrics: median squared
depth error (Depth), RMSE intensity error (Intensity),
ray drop accuracy (Drop acc.), and chamfer distance
normalized by the number of ground truth points
(CD) for lidar renderings on hold-out validation ego lidar poses. AstroSplat is competitive with
SplatAD and rest of the considered baselines. Hyperparameter details to reproduce the reported
results for SplatAD-SH and AstroSplat have been provided in Appendix A. Appendix C contains an
analysis of the sensitivity of AstroSplat to various design choices along with ablation studies.

(G4) Asset transfer. We examine the effectiveness of AstroSplat in transferring assets across scenes.
For comparison, we analyze how SplatAD fares in this task. In Figure 6, we demonstrate asset transfer
by selecting assets from a (source) scene in Pandaset and inserting them into a different (target) scene
from Pandaset, qualitatively. SplatAD struggles to render color in the camera renderings faithfully
post asset transfer. This is expected as the learned RGB feature representations (frgb) corresponding to
the scenes are scene-specific that possibly have vastly different scene distributions. Quantitatively, the
average Fréchet inception distance (FID) scores for the camera renderings after asset transfer across
all the frames in selected target scene for SplatAD and AstroSplat is 62.99 and 0.0033 (AstroSplat is
∼104× better) respectively. The lidar metric Figure 6 contains lidar renderings after asset transfer
using SplatAD and AstroSplat. Point cloud realism metrics like Chamfer distance and earth mover
distance don’t correctly capture the asset transfer task, thus with only qualitative analysis, we observe
that SplatAD fails to model the lidar point cloud faithfully in the presence of occlusions caused by
the inserted assets while AstroSplat models them more accurately.
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Figure 6: Asset insertion to achieve traffic densification. Multiple assets (black SUV and white car
marked in red) are extracted from Pandaset scene “002” (source scene) and inserted into Pandaset
scene “001” (target scene). (Top row) Multicamera renderings for a frame from the target scene.
(Middle row) Asset insertion with source and target scenes trained using SplatAD. (Bottom row)
Asset insertion with source and target scenes trained using AstroSplat. Unlike SplatAD, AstroSplat
enables high fidelity asset transfer.

(a) Target scene (b) SplatAD (c) AstroSplat

Figure 7: Lidar renderings showing asset insertion from source to target scene. (a) Lidar rendering for
target scene. (b) SplatAD fails to model occlusions with high fidelity removing points corresponding
to the road surface (marked in red). (c) AstroSplat models occlusions accurately (marked in green).

Finally, we report the inference and resource usage metrics for asset transfer from Pandaset scene
“002” to “001” using SplatAD-SH and AstroSplat in Table 1. AstroSplat has the lowest memory
footprint overall. SplatAD performs decoding on concatenated features during asset transfer to
perform rasterization as opposed to the color (and intensity) maps in AstroSplat, hence utilizing
higher memory.

5 CONCLUSION

We presented AstroSplat, a 3D Gaussian splatting method designed to perform realistic asset transfer
for both camera and lidar data across scenes. It addressed a key limitation of SplatAD, a state-of-
the-art 3DGS-based method for autonomous vehicles (AVs), of being unsuitable for asset transfer
across multiple scenes due to optimizing its feature representations and decoder per scene. AstroSplat
optimized the feature representations and decoder per Gaussian instead, enabling high-fidelity transfer
of assets. AstroSplat was tested on 2 public datasets for autonomous vehicles (AVs); Pandaset and
Argoverse2. We first analyzed the advantage of learning feature representations and a shared decoder
over spherical harmonics (SHs) to capture view-dependent color effects in Pandaset. We observed
that many SHs coefficients are highly redundant motivating the use of a shallow MLP instead, as
incorporated in AstroSplat. We then showed that the rendering quality of AstroSplat for both camera
and lidar data is competitive with SplatAD and a host of related prior methods. In the asset transfer
task, AstroSplat outperformed SplatAD in the order of 104× on standard image quality metrics for the
generated camera images. For lidar data, qualitatively we observe AstroSplat to be better at modeling
occlusions compared to SplatAD. AstroSplat facilitates easier generation, testing, and evaluation of
complex, out-of-distribution scenarios in simulation, helping to safely and efficiently advance AV
systems. Future work will explore modeling non-rigid assets such as pedestrians and developing
better lighting models to enable asset transfer across a wider variety of scenes with high-fidelity.
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A TRAINING DETAILS

To maintain consistency and fair comparison with SplatAD (Hess et al., 2025), we use the same
hyperparameters. Our MLP decoder consists of 2 hidden layers with 32 units in each layer.
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B LLM USAGE

During the development of this paper, Large Language Models (LLMs) were used as an aid for
refining the writing and generating scripts for plots. All fundamental research concepts, code
architecture, and the overarching framework were created independently by us. LLMs were not
involved in generating or shaping the core research ideas.

C SENSITIVITY ANALYSIS AND ABLATION STUDY

Table 3: NVS metrics averaged over 10 scenes from Pandaset.

Component PSNR ↑ SSIM ↑ LPIPS ↓ Depth ↓ Intensity ↓ Drop acc. ↑ CD ↓
Best Model 25.51 0.805 0.240 0.01 0.065 96.5 1.6

positional_emb_size=10 24.95 0.784 0.259 0.02 0.073 96.5 2.2
appearance_emb=False 24.83 0.774 0.269 0.08 0.073 96.4 2.3
mlp_hidden_units=[32] 24.80 0.775 0.270 0.03 0.074 96.5 2.3
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