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Abstract

Diffusion Transformers (DiTs) have recently replaced U-Net
backbones as the dominant architecture in state-of-the-art
text-to-image generative models, achieving remarkable visual
fidelity. However, their internal mechanisms remain largely
unexplored. In this work, we investigate the emergence of
high-norm activations within DiTs—tokens with unusually
large magnitudes that resemble the “outlier” tokens previ-
ously identified in Vision Transformers (ViTs). Through a
systematic analysis of four DiT architectures, we find that
only Flux-Schnell and PixArt-o exhibit such activations in
the image stream, primarily concentrated in the central trans-
former layers. Using linear probes and qualitative ablations,
we show that these activations encode global or semantic im-
age information, while their removal has negligible effect on
the generation process. We refer to these as sink registers, re-
flecting their passive, semantic role. Our findings highlight
an architectural divergence between ViTs and DiTs, and con-
tribute to a deeper interpretability of diffusion-based genera-
tive models.

Code —
https://github.com/AmnaJamalKhattak/Antonio-acwk

Datasets — https://huggingface.co/datasets/MikaTan2007/
DiffusionTransformersUseSinkRegisters-LinearProbe

Introduction

Diffusion Transformers (DiTs) (Peebles and Xie 2023) have
rapidly replaced U-Net—based diffusion models as the dom-
inant paradigm in high-quality image generation. Despite
their success, the internal mechanisms driving DiTs remain
poorly understood. In particular, we observe the emergence
of tokens with unusually high activation norms across lay-
ers. These artifacts are visually and statistically prominent
in models such as Flux (Labs 2024), as shown in Figure 1.
Interestingly, these tokens resemble the “outliers” identi-
fied in ViTs, which (Darcet et al. 2024) showed they store
and process global image information. Recent work (Darcet
et al. 2024; Jiang et al. 2025) has demonstrated that man-
aging such outliers through architectural interventions can
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substantially improve ViT stability and output consistency.
However, the function and implications of high-norm activa-
tions in DiTs, models optimized for generation rather than
discrimination, remain unclear.

While both DiTs and ViTs share the same underlying
transformer architecture (Vaswani et al. 2017), they differ
fundamentally in learning objectives and data flow. ViTs
process a single image in one forward pass to produce a class
prediction, whereas DiTs iteratively denoise a noisy input
over multiple diffusion steps to generate an image. Conse-
quently, we cannot directly infer the role of high-norm ac-
tivations in DiTs from their behavior in ViTs. These activa-
tions might facilitate the generative process, interfere with
it, or merely reflect architectural artifacts.

Understanding this phenomenon is essential for interpret-
ing how complex models represent and transform informa-
tion during image synthesis. In our work, we aim to inves-
tigate these activations as a window into the internal rea-
soning of diffusion-based generative models. By doing so,
we hope to contribute to move beyond “black-box” under-
standing toward uncovering interpretable, possibly human-
aligned mechanisms underlying image generation.

Specifically, we (1) systematically analyze the behavior,
and consistency of high-norm activations in DiTs; (2) test
their role with linear probe and ablations to reveal different
behaviors than registers in DiTs, finding that they do encode
semantic information, but can be can be removed without
affecting the image generation process.

We believe the phenomenon we study opens pathways to
understanding and re-engineering internal representations to
enable scientific insight and control in generative Al

Related Work

Registers (Darcet et al. 2024) first identified the emer-
gence of “high-norm” outlier tokens in large Vision Trans-
formers (ViTs), showing that a small fraction of patch
embeddings develop norms an order of magnitude larger
than the rest and disproportionately carry global image in-
formation. They propose adding learnable register tokens
during training to absorb this global context, which both
eliminates the outliers and significantly improves dense-



(a) Flux-Schnell

(b) PixArt-o

Figure 1: We plot the distribution of norm of latent activations across each layer in Flux-Schnell and PixArt-o.

prediction tasks like segmentation and object discovery
without harming classification accuracy. Building on this
mechanistic insight, (Jiang et al. 2025) demonstrate a test-
time intervention, without any retraining by detecting the
few “register neurons” that drive the outliers and redirecting
their activations into a single untrained token appended at
inference. This “post-hoc register” approach matches or ex-
ceeds the benefits of trained registers, offering a lightweight,
training-free path to cleaner attention maps and stronger in-
terpretability across classification, zero-shot segmentation,
and vision—language models.

Attention in Video Diffusion Transformers (Wen et al.
2025) extend the focus to Video Diffusion Transformers
(VDiTs), performing the first in-depth analysis of self-
attention in video diffusion backbones. They uncover three
consistent patterns: Structure (stable spatial-temporal mo-
tifs that enable zero-shot video editing via attention-map
transfer); Sparsity (most attention weights can be pruned
if critical layers are preserved, yielding about 70% spar-
sity with no perceptual loss); and Sinks (later-layer heads
that collapse queries into a single token and can be re-
moved without harming video quality). These findings pro-
vide practical guidance for controlling and optimizing atten-
tion in generative video models.

Massive Activation The phenomena of high-norm acti-
vations has also been observed in Large Language Mod-
els (LLMs) as shown in (Sun et al. 2024). Therefore, it is
worth noting that these are not unique only to computer vi-
sion transformers like DiTs and ViTs. Massive activations
refer to activations with a magnitude around 10,000 times
greater than the median. These activations in LLMs act as
indispensable bias terms, as shown when setting just a few
of these activations to zero caused catastrophic collapse in
model performance.

The paper also investigates massive activations in ViTs,
verifying their existence in many models, such as CLIP ViT-
L and DINOv2 ViT-L, but not all, like MAE. The paper does
not make a clear distinction between the definition of mas-
sive activations in LLMs versus ViTs. However, massive ac-
tivations in ViTs are described as activations with signifi-
cantly larger magnitudes than the median, and are very few

in number (less than 4 observed per model). Just like in
LLMs, setting massive activations to zero led to significant
drop in accuracy, while setting them to the median had neg-
ligible effect, therefore indicating that massive activations in
ViTs also act as fixed but crucial biases. Additionally, when
the same analysis is applied to ViTs with register tokens as
per the (Darcet et al. 2024) recommendation to improve in-
terpretability and downstream performance, massive activa-
tions did not appear in patch tokens as was the case in regular
ViTs, but rather, appeared almost exclusively within a fixed
register token, specifically register 3, therefore suggesting
that register tokens are effective at managing this outlier be-
havior.

Attention Sinks More recent work has explored com-
plementary interventions on related architectures. (Wang,
Zhang, and Salzmann 2024) diagnoses and corrects norm
anomalies in self-supervised DINOv2 models by adaptively
re-scaling defective patch embeddings, further improving
object localization and interpretability. (Xiao et al. 2024)
shows that certain Transformer heads in language models
similarly act as “attention sinks,” and that pruning or rerout-
ing these heads at inference can dramatically reduce latency
in streaming applications without sacrificing accuracy.

High-norms appear in central layers

We analyze four DiTs, namely Flux-Schnell (Labs 2024),
PixArt-o (Chen et al. 2024), Stable-Diffusion 3 (Peebles and
Xie 2023), and NVIDIA-SANA (Xie et al. 2024), and find
high-norm activations on the image latents only in the first
two. Note also that both Flux-Schnell and Stable-Diffusion
3 exhibit high-norm activations in the text-sequence stream,
but their analysis is left for future work.

Figure 1 illustrates distributions of norms of latents for
each layer activations of the DiTs. We observe how the two
amount of high-norm activations is different between mod-
els but they consistently appear in central transformer layers,
(18-39 for Flux-Schnell, 13-18 for PixArt-o).

Flux-Schnell We work with 4-steps generations with Flux
and consistently observe high-norm activations starting from
layer 18 until layer 39 for all time steps in the image stream,
as observed in Figure 1.



The positions of the outlier activations vary across
prompts and seeds as observed in Appendix 5.

To further investigate the origin of high-norm tokens, we
analyzed both the attention and MLP layers within the Sin-
gle and Dual blocks. As shown in Figure 2a, the norm val-
ues immediately following the attention layers do not exhibit
significant increases, indicating that attention does not pro-
duce high-norm activations. In contrast, Figure 2b demon-
strates that the MLP layers in Dual Blocks consistently gen-
erate high-norm activations, suggesting that these layers are
the primary contributors to extreme token norms in Dual
Blocks. Further examples are given in appendix.

Interestingly, this pattern does not hold for Single Blocks.
It does not produce high-norm activations after the MLP; in-
stead, high-norms emerge only after the Attention+Residual
operation as seen in 7. This discrepancy between Dual and
Single blocks can be attributed entirely to structural differ-
ences in the blocks, which dictate how extreme activations
propagate through the network. Furthermore, we observed
the emergence of Attention sinks in the blocks where Atten-
tion layers were responsible for the high-norm activations
i.e, Single blocks in Flux-Schnell as seen in 11 and not Dual
Blocks in 10.

PixArt-c We analyze 10-steps generations for this model,
observing that the artifacts appear consistently over all time
steps, prompts, and seeds. They first appear in layer 13
and persist in the image-stream until layer 20. Unlike Flux,
PixArt-o does not update a text-stream in its architecture, it
only conditions the generation on fixed textual embeddings.
Interestingly, according to Figure 1 there seem to be much
fewer high-norm activations present in PixArt-o compared
to Flux-Schnell.

Notably, in PixArt-o, we find a single high-norm activa-
tion which emerges consistently at the bottom right of the
image regardless of prompt or seed used. Furthermore, we
conducted attention and mlp analysis for all the blocks. As
shown in Figure 9, the norm values immediately following
the attention layers exhibit significant increases, indicating
that attention is responsible for producing high-norm activa-
tions in PixArt-o and not MLP.

Stable Diffusion 3 and Nvidia-SANA In SD3, high-norm
activations appear only in the text stream. For the text stream
of both the positive and negative prompts, high-norms are
seen throughout the layers, starting from the first all the
way to the last layer. One can observe that the high-norms
get much more intense starting the 31st layer. Conversely,
Nvidia-SANA works with fixed textual embeddings and
does not show any high-norm activation at all.

Diffusion Transformers use sink registers

To investigate the role of high-norm activations in Flux-
Schnell and PixArt-o we perform both quantitative and qual-
itative experiments. Specifically, following (Darcet et al.
2024) we train linear probes on high-norm activations to pre-
dict global image information and compare results with the
rest of activations, and following (Wen et al. 2025) we ab-
late high-norm activations during generation to check if the
whole image gets corrupted or semantically change.

High-norm thresholds

We identify High-norm activations in both Flux and PixArt-
o by computing the L2 norm of each output activation vec-
tor. For a vector h € RP (D = 3072 for Flux, 1152 for
PixArt) at a given layer. Assuming approximate indepen-
dence and Gaussianity of each vector component compo-
nents, then the norm follows a chi distribution with D de-
grees of freedom. For Flux, high-norm activations were se-
lected using layer-specific percentile thresholds. For middle
layers 97.7th percentile was used, while for the first and last
few layers 99.99th percentile was used. For PixArt-3, the
separation between normal and high-norm activations was
visually clear, so thresholds were manually set for each layer
rather than computed via percentiles, shown in Appendix 6.

Linear Probe

We select high-norm activations as all activations whose
norm exceeds the threshold computed for each specific time
step and layer. We conduct a linear probe experiment on
PixArt and Flux in order to determine whether high-norm
activations encode semantically rich information compared
to other activations. To do so, we generate 50 prompts us-
ing large language models for each CIFAR-10 (Krizhevsky
2009) class (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck) and generate an image on each prompt,
collecting model activations at all layers where high-norm
activations arise. Activations are then split into two distinct
datasets, one containing only high-norm activations and the
other containing the rest. For each dataset, we train lin-
ear probes to predict the CIFAR-10 class of generated im-
ages. The probe’s ability to accurately predict the class label
serves as a proxy for how much semantic information is pre-
served in an activation.

We run all experiments using 10-fold cross validation
and report average accuracy along with standard devia-
tion. We fit all linear probes as logistic regressions with 12-
regularization and perform subsample of “standard” norm
activations to make sure all datasets have equal size. We re-
port three sets of experiments:

1. Global probe: we compare accuracies between one lin-
ear probe trained on all high-norm activations, and one
trained on the rest of activations.

2. Layer-Wise Probes: for each layer individually, we con-
catenate activations across all timesteps and probe the
two sets of activations.

3. Temporal Probes: for each time step, we concatenate ac-
tivations across all layers and probe the two sets of acti-
vations.

Results For PixArt-o, activations are collected from layers
13-20 across for all timesteps, classes, and prompts, while
For Flux-Schnell, we collect all activations from layers 18-
39 in the same way. In total, we have 40, 000 latent activa-
tion maps for PixArt and 44, 000 for Flux, containing 4096
activations each (one for each latent image patch). For each
generation, we split activations according to norm thresholds
and compute average-pooling of all high-norm activations in



(a) After Attention

(b) After MLP

Figure 2: Comparison of norm values post Attention and post MLP for layer 18 in Flux.

a generation with all subsequent ones. This is repeated for
other activations.

Table 1 contains results for the global probe, while ap-
pendix reports layer-wise and temporal probe results. Since
the difference in accuracy is negligible (below 0.5% differ-
ence), we conclude that high-norm activations contain an
equal amount of semantic information about the image that
is being generated compared to other activations, and do
not play the “registers” role as reported in Vision Trans-
formers (Darcet et al. 2024). We baptize DiTs high-norm
activations as sink registers for this reason.

High-Norm Others
Model Mean Std Mean Std
Flux-Schnell 0.9993  0.0003  0.9999  0.0001
PixArt-o 0.9665 0.0017 0.9711 0.0028

Table 1: Comparison of mean probe accuracy between high-
norm and other activations across models.

Ablations

We visualize the effect of removing high-norm activations
during image generation by reporting qualitative ablations.
In practice, we select top-percentile activation values to
mask, sweeping the percentile in 0.5, 1%, 5%, 10%, 50%,
and 100%. As a reference intervention, we ablate randomly
chosen activations instead of high-norm ones matching their
numbers, as depicted in figures 3 and 4. We replace the se-
lected activations, either with vectors sampled by a standard
gaussian distribution, or with the average of activations for
the same layer. The replacement happens at the first layer
where the high-activation norms emerge (i.e. 18 for Flux-
Schnell, 13 for PixArt-o).

We conducted this experiment across seeds and prompts
as can be referenced from Table 6, and from Figure 3 we
also qualitatively conclude that ablating Flux’s high-norm
activations does not cause significant changes than ablating
random activations, thus confirming that they are not vital
for generation and representing high-level image semantics.
Figure 4, shows a different pattern for PixArt. Masking top
0.02% percentile of high-norm activations barely changes
the image while replacing random activations, which are un-
likely to be high-norms, completely degrades the generated
image. This suggests that high-norm latents’ role has neg-
ligible impact in the generation, while replacing ones with
lower norm (randomly) causes extremely sensitive degrada-
tion.

Conclusions and Limitations

In this work, we presented the first systematic investigation
of high-norm activations in Diffusion Transformers, com-
paring their behavior to the outlier tokens previously iden-
tified in Vision Transformers. Across four representative ar-
chitectures, we found that these activations appear consis-
tently in the middle layers of certain models (Flux-Schnell
and PixArt-o) but are absent or restricted to the text stream
in others (Stable Diffusion 3 and NVIDIA-SANA).

Through linear probes, we demonstrated that these high-
norm activations encode an equal amount of global or se-
mantic information about the generated image as compared
to other activations. Furthermore, qualitative ablations con-
firmed that masking or replacing these activations has neg-
ligible or no impact on the resulting images. We therefore
term these activations sink registers, reflecting their seman-
tic contribution and statistical prominence.

Our findings shed light on a subtle but important dif-
ference between discriminative and generative transformer-



Figure 3: Ablation performed on high-norm activations at layer 18 for Flux-Schnell generation.

Figure 4: Ablation performed on high-norm activations at layer 13 for PixArt-o generation.

based models: while ViTs leverage high-norm activations as
structural components for global information flow, DiTs ap-
pear to develop them as architectural by-products without
explicit functional purpose. Understanding such emergent
behaviors is crucial for building more interpretable, con-
trollable, and reliable generative systems—particularly as
diffusion-based architectures continue to scale.

Limitations and Future Work. Our analysis focuses pri-
marily on static activation statistics and perturbation-based
evaluations. We do not yet visualize how these high-norm
activations influence attention maps or specific neurons
within DiT layers. Future work should examine their causal
role within the attention mechanism, explore whether simi-
lar patterns emerge in text-conditioning streams, and assess



whether such artifacts impact generation stability or fairness
across prompts. More broadly, identifying and characteriz-
ing these emergent structures contributes to the long-term
goal of explainable and scientifically grounded Al, helping
bridge the gap between performance-driven generative mod-
eling and mechanistic understanding of large-scale neural
systems.
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Appendix
Layer-Wise Localization of High-Norm Activations

As seen in Figure 5, the position of high-norm activations
change with prompts and seeds. We tried with 3 different
prompts, across 3 different seeds: 0, 42, and 1234.

Attention and MLP Analysis

We further carried out Attention and MLP analysis for single
blocks in Flux-Schnell and PixArt-o. It can clearly be seen
in 7 and 9, the high-norm activations emerge after Attention
and before MLP for blocks in PixArt-o and Single blocks in
Flux-Schnell. Whereas for dual blocks in Flux-Schnell, they
do not emerge after Attention as seen in 8.

Attention Sink Analysis

We conducted an Attention Sink Analysis for both dual and
single blocks in Flux-Schnell. As illustrated in Figure 11, the
attention sink phenomenon emerges exclusively in the single
blocks, which exhibit high-norm activations in the attention
layers, in contrast to the dual blocks in Figure 10.

Linear Probe Results

Layer high- high- other other
norm norm Mean Std
Mean Std
13 0.6620 0.0878 0.7100 0.0531
14 0.6720 0.0840 0.7160 0.0747
15 0.6560 0.0880 0.6820 0.0642
16 0.6760 0.0618 0.6780 0.0887
17 0.6780 0.0610 0.6500 0.0835
18 0.6600 0.0780 0.6660 0.0633
19 0.6480 0.0676 0.6640 0.0496
20 0.6540 0.0732 0.6420 0.0555

Table 2: Probe performance across layers in PixArt-o

Ablation Results and Post-ablation Norms

Some example of experiment configurations with prompts
and seeds

As seen in Table 6, we have five configurations for both
Flux-Schnell and PixArt-o. The following figures show gen-
erations of each configuration.

We can also plot the layer-wise distributions after the re-
placements to verify whether replacements are actually con-
ducted and see the effect of changing the activations in the
layers after. We have plotted some samples of 0-50-100 pro-
gressions for certain configurations and modes.



(a) Prompt 1 Seed 0 (b) Prompt 1 Seed 42 (c) Prompt 1 Seed 1234

(d) Prompt 2 Seed 0 (e) Prompt 2 Seed 42 (f) Prompt 2 Seed 1234

(g) Prompt 3 Seed 0 (h) Prompt 3 Seed 42 (i) Prompt 3 Seed 1234

Figure 5: Flux-Schnell: Activations across Multiple Prompts and Multiple Seeds.



Figure 6: Histogram of activations per condition aggregated
across all 500 prompts in PixArt-o. Orange is high-norm

activations, blue is other activations

Diffusion Timestep High- High- Other Other
Norm Norm Mean Std
Mean Std
999 0.6720 0.0688 0.6700 0.0581
899 0.6800 0.0632 0.7060 0.0770
799 0.6800 0.0710 0.7120 0.0786
699 0.6560 0.0662 0.7040 0.0852
599 0.6420 0.0740 0.6940 0.0853
500 0.6180 0.0860 0.6800 0.0876
400 0.5960 0.0656 0.6680 0.0652
300 0.5820 0.0836 0.6480 0.0553
200 0.6020 0.0583 0.6220 0.0494
100 0.5720 0.0671 0.5980 0.0404

Table 3: Probe performance across diffusion timesteps in

PixArt-o

Layer High- High- Other Other
Norm Norm Mean Std
Mean Std
18 0.9990 0.0016 0.9994 0.0009
19 0.9996 0.0008 0.9994 0.0009
20 0.9996 0.0008 0.9994 0.0009
21 0.9996 0.0008 0.9994 0.0009
22 0.9998 0.0006 0.9996 0.0008
23 0.9996 0.0008 0.9996 0.0008
24 0.9992 0.0013 0.9996 0.0008
25 0.9994 0.0009 0.9996 0.0008
26 0.9994 0.0009 0.9998 0.0006
27 0.9996 0.0008 0.9998 0.0006
28 0.9994 0.0009 0.9998 0.0006
29 0.9996 0.0008 0.9998 0.0006
30 0.9994 0.0009 0.9996 0.0008
31 0.9994 0.0013 0.9998 0.0006
32 0.9996 0.0008 0.9992 0.0010
33 0.9994 0.0009 0.9998 0.0006
34 0.9996 0.0008 0.9996 0.0008
35 0.9994 0.0009 0.9998 0.0006
36 0.9986 0.0016 0.9998 0.0006
37 0.9986 0.0013 0.9996 0.0012
38 0.9978 0.0028 0.9998 0.0006
39 0.9980 0.0024 0.9998 0.0006

Table 4: Probe performance across layers in Flux-Schnell

Diffusion Timestep High- High- Other Other

Norm Norm Mean Std

Mean Std

-1 0.9940 0.0092 0.9980 0.0060
200 0.9680 0.0349 0.9720 0.0256
300 0.9820 0.0209 0.9680 0.0256
400 0.9840 0.0196 0.9720 0.0256
500 0.9820 0.0166 0.9780 0.0227
600 0.9900 0.0100 0.9780 0.0244
700 0.9860 0.0156 0.9800 0.0237
800 0.9840 0.0174 0.9820 0.0209
900 0.9960 0.0080 0.9880 0.0204
1000 0.9920 0.0098 0.9900 0.0134

Table 5: Probe performance across diffusion timesteps in
Flux-Schnell

Table 6: Experiment Configuration

# Prompt Seed
1 a cat holding hello world sign 0
2 a cat holding hello world sign 42
3 a cat holding hello world sign 100
4 an astronaut in the moon holding the USA flag 42
5 aprotestor in a city square holding a ’change’ sign =~ 42




After Attention: All Single Blocks
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Figure 7: Heatmap of activations of all Single blocks in Flux-Schnell. high-norm activations are observed right after Attention
layers.
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Figure 8: Heatmap of activations of all Dual blocks in Flux-Schnell. high-norm activations are NOT observed right after Atten-
tion layers.
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Figure 9: Attention v MLP in PixArt-o: high-norm activations are observed to emerge in the Attention layers, and not MLP.



Layer dual_block18 — Attention Matrix (per-head)
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Figure 10: In Flux-Schnell Layer 18 (Dual Block 18), no Sink behaviour observed.
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Layer single_blockl — Attention Matrix (per-head)
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Figure 11: In Flux-Schnell Layer 20 (Single Block 1), Attention sink behavior is clearly visible in these vertical lines that are

emerging in various Attention heads.
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Figure 12: Flux-Schnell Configuration 1 Figure 13: Flux-Schnell Configuration 3
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Figure 14: Flux-Schnell Configuration 4
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Figure 15: Flux-Schnell Configuration 5

Figure 16: PixArt-o Configuration 1



Figure 17: PixArt-o Configuration 3

Figure 18: PixArt-o Configuration 4

Figure 19: PixArt-o Configuration 5
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Figure 20: Flux-Schnell Configuration 2 Text Stream, in
which high-norm activations are replaced with the mean ac-
tivation values.
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Figure 21: Flux-Schnell Configuration 1 Image Stream, in
which random activations get replaced with random vectors.
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Figure 22: Flux-Schnell Configuration 5 Text Stream, in
which high-norm activations get replaced with random vec-
tors.



