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ABSTRACT

Vision-language models have achieved remarkable success in cross-modal under-
standing. Yet, these models remain limited to object-level or region-level ground-
ing, lacking the capability for pixel-precise keypoint comprehension through nat-
ural language. We introduce a novel framework for pixel level grounding. The
framework consists of two complementary components: a Point Descriptor that
generates rich, contextual descriptions of individual keypoints, and a Point Lo-
calizer that regresses precise pixel coordinates from these descriptions. Unlike
prior work that relies on templated prompts or keypoint names, our approach pro-
duces free-form, coarse-to-fine descriptions that situate keypoints within their vi-
sual context. Since there is no available dataset to train such a system, we in-
troduce LlamaPointInPart, a carefully curated dataset of 20K+ image-keypoint-
description triplets synthesized from multiple vision-language models, captur-
ing multi-scale information from scene-level context to visual features around
the keypoint. For cross-category generalization, we optimize the Point De-
scriptor on AP-10K via GRPO, using the frozen Point Localizer as a reward
model to produce descriptions that maximize localization accuracy. To evalu-
ate our results we establish a new evaluation protocol. Instead of comparing
the text description produced by our method to the ground truth, we use the
localizer to determine how close is the predicted point generated to the ground
truth point. Experiments demonstrate superior performance compared to base-
line models on LlamaPointInPart. The bidirectional nature of our framework
should enable future applications in both keypoint-guided image understanding
and language-guided precise localization. Our code and dataset are publicly avail-
able at|https://matanr.github.io/Talking_Points.

1 INTRODUCTION

A central challenge in multi-modal learning is bridging the gap between dense pixel-level vi-
sual features and semantic natural language. Although recent models have greatly improved
vision—language alignment, they predominantly reason at the image or object scale, leaving
fine-grained, pixel-level grounding largely unexplored. As illustrated in Figure[l] this task of pre-
cisely describing and localizing individual pixels proves remarkably challenging: while our method
doubles the performance of our baseline (OMG-LLaVA) and outperforms the state-of-the-art foun-
dation model ChatGPT-5, human annotations surprisingly perform worse than ChatGPT-5, under-
scoring the inherent difficulty of this new pixel-level grounding task.

The advent of Vision-Language Models (VLMs) such as LLaVA (Liu et al.| 2023a) has substan-
tially advanced cross-modal integration by treating visual patches and linguistic tokens uniformly
within a transformer. These VLMs excel at tasks like image captioning, visual dialogue, and
image-grounded question answering. Recent grounding works have extended these capabilities
bidirectionally. Models like SAM (Kirillov et al.l [2023)), Semantic-SAM (Li et al [2023a), and
Grounding-DINO (Liu et al.l [2023b)) accept spatial prompts (points, boxes) or language queries to
generate segmentation masks and bounding boxes. Conversely, recent VLMs enable both grounded
conversation and spatial output generation: DAM (Lian et al.} 2025)) produces rich descriptions from
visual prompts, Groundhog (Zhang et al.|[2024c) generates segmentations from textual descriptions,
while OMG-LLaVA (Zhang et al.,|2024b) unifies both directions, accepting visual prompts (bound-
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Figure 1: Talking Points: Describing and Localizing Pixels. Given an image and keypoint (left,
red star), we generate rich descriptions (top right) progressing from scene-level object localization,
through part identification, to position within part, and local visual features. We evaluate the descrip-
tions by localizing them back to pixels (green point in image). Our TalkingPoints (TP) achieves near
GT performance (bottom right), doubling our baseline (OMG-LLaVA) and outperforming ChatGPT-
5 and human annotations, which surprisingly perform worst, highlighting the challenge of pixel-level
grounding. Evaluation uses mPCK (mean Percentage of Correct Keypoints), measuring the fraction
of predictions within a normalized distance threshold of ground truth, averaged across fine and
coarse thresholds.

ing boxes, masks, points) for region-specific conversations and producing segmentation tokens that
decode into spatial outputs through specialized heads. Yet, despite this growing flexibility in bridg-
ing vision and language through spatial grounding, all these methods still operate on entire segments
or regions rather than reasoning over individual pixels.

Recent efforts such as KptLLM (Yang et al.} [2024b) and LocLLM (Wang et al., [2024a) attempt to
move beyond object-level prompts toward keypoint comprehension. However, both rely on rigid,

template-based textual descriptions tied to predefined anatomy or part labels, falling short of rich,
language-grounded localization.

To address these limitations, we introduce two complementary components: a Point Descriptor and
a Point Localizer. The Point Descriptor, given an image and a single pixel (Figure|[I] left), generates
richly expressive, free-form language that specifies the object’s placement within the scene, the
part’s location within that object, the keypoint’s position within that part, and salient visual cues
immediately surrounding the keypoint (Figure [I] top right). The Point Localizer then consumes
this description to regress the exact pixel coordinate, achieving higher localization accuracy than
models relying on templated or name-only prompts. This bidirectional capability, describing pixels
in natural language and localizing them back, enables precise pixel-level grounding that significantly
outperforms existing approaches.

We first train both components on a carefully curated dataset of 20K+ image-keypoint-description
triplets. Our construction pipeline combines part-level annotations with vision-language models
operating at different scales, one processing the full image for object-level context and another ana-
lyzing masked regions around keypoints for local detail. A large language model synthesizes these
complementary perspectives into rich, coherent descriptions that connect precise pixel locations with
their semantic context.

We report the results based on a Point Descriptor and a Point Localizer that were trained separately
on our curated dataset. Our descriptor-through-localizer evaluation measures description quality
through localization accuracy, providing a novel metric for pixel-level language grounding. Addi-
tionally, we explore reinforcement learning as a promising direction for extending our approach to
novel categories without ground-truth descriptions.

Our contributions are as follows: (1) We construct a dataset of over 20,000 image-keypoint-
description triplets with rich natural language capturing multi-scale spatial context; (2) We intro-
duce a Point Descriptor and a Point Localizer for language-to-pixel mapping; (3) We explore rein-
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forcement learning using GRPO as a promising direction for adapting the Point Descriptor to novel
categories without ground-truth descriptions; and (4) We propose a novel evaluation methodology
measuring descriptor quality through localization accuracy.

2 RELATED WORK

2.1 KEYPOINT DETECTION AND COMPREHENSION

Traditional keypoint detection methods focus on category-specific models for humans (Lin et al.,
2014; |Andriluka et all |2014), animals (Cao et al., |2019; [Yu et al., 2021)), or objects (Ge et al.,
2019), employing either regression-based (Li et al., 2021} [Toshev & Szegedy, |2014) or heatmap-
based (Xiao et al., 2018 |Xu et al. |2022b)) approaches. Recent work extends to category-agnostic
settings through few-shot keypoint detection (Xu et al.| |2022a};|Shi et al.| 2023)) using visual prompts.
Several methods, CLAMP (Zhang et al.| |2023), X-Pose (Yang et al., |2024a), and CapeX (Ru-
sanovsky et al.| 2025), use textual prompts or point explanations for category-agnostic pose esti-
mation. However, these approaches rely on predefined keypoint names and templates rather than
free-form descriptions.

The emergence of VLMs has enabled new approaches to keypoint understanding. LocLLM (Wang
et al.} [2024a)) pioneered LLM-based keypoint localization but is trained exclusively on human key-
points, where the model receives textual prompts describing body parts (e.g., “left shoulder,” “right
ankle”) and directly regresses pixel coordinates. While LocLLM incorporates some descriptive con-
text through instruction templates, these remain formulaic and category-specific, limited to human
anatomy. KptLLM (Yang et al., 2024b) introduces semantic keypoint comprehension across three
tasks: semantic understanding of keypoint names, visual prompt-based detection using support im-
ages, and textual prompt-based detection from part names. However, its textual descriptions are
generated through a fixed template that combines object category, part name, and keypoint name
(e.g., “the left eye of the cat”), lacking free-form, context-rich language that captures the visual
appearance or spatial context surrounding the keypoint.

Our work introduces bidirectional keypoint-language grounding: generating rich descriptions from
pixel locations and inversely localizing keypoints from these descriptions, enabling true pixel-level
language grounding through learned visual context rather than predefined templates.

2.2 VISION-LANGUAGE GROUNDING

Vision-language models have evolved from image-level understanding to sophisticated spatial
grounding capabilities. Early VLMs like LLaVA (Liu et al., [2023a), BLIP-2 (Li et al.,[2023b), and
Flamingo (Alayrac et al.l 2022)) excel at image captioning, visual dialogue, and question answering
by treating visual patches and linguistic tokens uniformly within transformers. Recent grounding
works have extended these capabilities bidirectionally.

Models like SAM (Kirillov et al., 2023), Semantic-SAM (Li et al.| 2023a)), and Grounding-
DINO (Liu et al., 2023b) accept spatial prompts (points, boxes) or language queries to generate
segmentation masks and bounding boxes. Conversely, recent VLMs enable both grounded conver-
sation and spatial output generation: Kosmos-2 (Peng et al.| 2023)) and Shikra (Chen et al., 2023)
innovate by incorporating spatial boxes as inputs and training with region-text pairs for region-
level comprehension. DAM (Lian et al. [2025) produces rich descriptions from visual prompts,
Groundhog (Zhang et al.l [2024c) generates segmentations from textual descriptions, while OMG-
LLaVA (Zhang et al.|, |2024b) unifies both directions, accepting visual prompts (bounding boxes,
masks, points) for region-specific conversations and producing segmentation tokens that decode
into visual outputs. Ferret (You et al., [2023) and GPT4Rol (Zhang et al., |2024a)) further advance
region-level visual comprehension through referring and grounding capabilities.

However, these approaches operate at object or segment scales rather than true keypoint-level com-
prehension. Our work adapts OMG-LLaVA’s architecture but fundamentally shifts from object-
centric to pixel-centric grounding through Gaussian attention masks, enabling description and local-
ization of individual keypoints rather than entire regions.
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2.3 REINFORCEMENT LEARNING FOR VISION-LANGUAGE MODELS

Recent advances in reinforcement learning for vision-language models have shifted from subjec-
tive human preferences (RLHF) toward spatially-grounded reward signals that provide verifiable,
automatic evaluation metrics. Several works establish closed-loop training between description
generation and localization. RL-VLM-F (Wang et al [2024b) uses vision-language foundation
models as reward signals based on semantic alignment between descriptions and visual observa-
tions. Spatial VLM (Chen et al., [2024) enables dense reward annotation through quantitative spatial
understanding, while SE-GUI (Du et al. implements GRPO with self-

evolutionary training, computing rewards based on coordinate prediction accuracy.

However, all existing work operates at object or region scales using bounding boxes or segmentation
masks as grounding primitives. Our approach uniquely employs pixel-level keypoint localization
accuracy as the reward signal, where the Point Descriptor is fine-tuned via GRPO with the Point
Localizer serving as reward model. This pixel-centric reward mechanism optimizes for exact co-
ordinate accuracy rather than regional overlap, establishing the first closed-loop training paradigm
between keypoint description and localization at the individual pixel level.

(a) Bicycle handlebar (b) Snake eye (c) Chair seat

(@) “The point is on the bicycle, which spans most of the horizontal and vertical axis in the image,
specifically on its handlebar, situated to the left and close to the top edge of the bike, and within the
handlebar; the keypoint is located slightly above and to the right of the center, in a region that features a
curved metal bar with a grip area.”

(b) “The point is located on the snake, which is positioned close to the left edge and slightly above the
vertical center of the image, and within this snake, it is situated on the head, specifically near the right
edge and below the vertical center of the head, in a region that features a dark, oval-shaped area with a
reflective surface, likely the pupil of the snake’s eye.”

(¢) “The point is located on the chair that is closest to the viewer and positioned on the left side of the
dining table, specifically on the chair’s seat, which is near the right edge and slightly above the center of
the seat, and in the region around the keypoint, there is a small, dark spot standing out against the lighter
background.”

Figure 2: LlamaPointInPart dataset examples demonstrating diverse objects and parts across three
source datasets: (a) PascalPart116, (b) PartlmageNet, (c) ADE20KPart234. Red circles indicate
keypoints with corresponding coarse-to-fine descriptions that progress from scene-level object lo-
calization, through part identification, to keypoint position within the part, and finally visual features
around the keypoint, enabling accurate language-guided keypoint localization.

3 METHOD

3.1 DATASET CONSTRUCTION

LlamaPointInPart Dataset We construct LlamaPointInPart, a high-quality dataset of 20K+
image-keypoint-description triplets, through a multi-stage pipeline leveraging complementary
vision-language models (Figure [3). Starting from PascalPart116, ADE20KPart234
2023), and PartlmageNet [2021), we extract images with part-level bounding box an-
notations. For each image, we compute SIFT features and select the highest-response
keypoint within annotated parts (excluding background). All keypoints in our dataset are semantic
by construction: every keypoint corresponds to a meaningful part of an object rather than arbitrary
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Figure 3: LlamaPointInPart dataset construction pipeline: We start with part-annotated datasets,
and select the highest-scoring SIFT keypoint within some part (red star). LLaVA generates fine-
grained local descriptions from cropped regions around keypoints, while OMG-LLaVA provides
object-centric context from full images. Llama3.3 synthesizes these multi-scale perspectives with

hierarchical spatial annotations into coherent, coarse-to-fine descriptions, forming our final image-
point-description triplets.

background location. Moreover, although SIFT is used to rank candidate points, the final keypoints
span both textured and smooth within-part regions, since selection is restricted to annotated semantic
parts rather than gradient-rich areas. We determine the keypoint’s relative position within its con-
taining part (e.g., “near top edge”), explicitly encoding spatial relationships and instance ordering
for disambiguation.

To ensure dataset diversity, we maintain equal proportions across the three source datasets when
sampling keypoints, resulting in balanced representation across 64 unique object categories and 297
unique part categories (with some semantic overlap, e.g., “biped” encompassing multiple animal
types). Appendix [A.T] (Figure [) visualizes this distribution, with the inner rings showing equal
sampling from each source dataset and the outer rings displaying the variety of objects and parts
covered. This balanced strategy ensures comprehensive coverage across diverse semantic categories,
from animals and vehicles to furniture and household objects.

To capture multi-scale context, we query two VLMs: (1) OMG-LLaVA (Zhang et al., 2024b) re-
ceives the image and keypoint to generate object-centric descriptions, and (2) LLaVA (Liu et al.,
processes a Gaussian-masked region centered at the keypoint to extract fine-grained local
features. This dual approach captures details beyond part annotations, for instance, identifying a
keypoint near a bird’s eye despite lacking explicit eye annotations. We synthesize these descriptions
via a quantized LLaMA3.3 (Dubey et al., [2024)) through a two-stage process (generation followed
by refinement) to produce coherent, coarse-to-fine keypoint descriptions. Our descriptions follow a
deliberate hierarchical progression: (1) object location within image, (2) part location within object,
(3) keypoint position within part, and (4) local visual features. While some descriptions in Fig-
ure [3] are abbreviated for space constraints, this coarse-to-fine structure is consistently maintained
throughout our dataset.

Our dataset encompasses diverse keypoint types: semantically salient features like the snake’s eye
pupil (Figure Zb), functional components such as the bicycle handlebar grip (Figure[Zh), and seem-
ingly ordinary surface points like the chair seat marking (Figure 2k). This diversity, ranging from
visually distinctive landmarks to unremarkable surface locations, ensures our models generalize
beyond prototypical keypoints to arbitrary pixel locations, a critical capability for true pixel-level
comprehension. We split LlamaPointInPart into 17K training and 4K test examples, maintaining
proportional representation across source datasets. We manually tested 5% of the test set samples,
and verified that more than 91% of the keypoints can be easily localized using the point descriptions.

AP-10K Adaptation To evaluate cross-category generalization capabilities, we leverage AP-

10K (Yu et al.} [2021), following the experimental split configuration of CLAMP (Zhang et al., 2023))
and KptLLM (Yang et al}[2024b). Specifically, we adopt their different order setting, where models

are trained on one super-category and tested on another to assess generalization to visually distinct
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Figure 4: Talking Point Architecture. The Point Descriptor (blue) generates textual descriptions
from image-keypoint pairs using Gaussian masks centered at keypoints using different type of token
features. See legend at top of figure. The Point Localizer (green) regresses keypoint coordinates
from image-description pairs through a special <SEG> token that encodes visual information. While
the localizer can be used standalone, it can also be applied to the generated descriptions (red dashed
arrow) to evaluate localization performance.

animal families. We evaluate bidirectionally: training on Bovidae (22.6K keypoint-image pairs)
and testing on Canidae (17K pairs), as well as training on Canidae and testing on Bovidag'| with
both categories annotated with up to 17 keypoints per instance. This setup provides a systematic
evaluation of our model’s ability to generalize keypoint understanding to unseen taxonomically and
visually distinct groups. Since AP-10K provides only keypoint annotations without descriptive con-
text, we utilize these pairs exclusively for reinforcement learning-based fine-tuning (Section [3.4),
where our Point Descriptor learns to generate descriptions that maximize localization accuracy.

3.2 POINT DESCRIPTOR

Our Point Descriptor adapts OMG-LLaVA’s object grounding architecture for pixel-level keypoint
description generation (blue part in Figure ). While OMG-LLaVA predicts segmentation masks to
describe entire objects, we replace these with fixed Gaussian attention masks centered at keypoints,
fundamentally shifting focus from object-level to pixel-level comprehension.

Given an image I and keypoint coordinates (z,y), we generate a Gaussian mask M centered at
the keypoint. The coordinates undergo two parallel transformations through OMG-Seg’s decoder:
learnable prompt embeddings generate initial semantic queries, while sinusoidal positional encoding
of (x,y) followed by linear projection provides spatial information. These initial representations
then interact with multi-scale visual features through 9 transformer decoder layers, with the Gaussian
mask controlling the attention pattern.

The Gaussian mask constrains the attention mechanism in each decoder layer by defining a boolean
attention mask for the cross-attention operation: queries can only attend to image features (keys and
values) within the Gaussian region around the keypoint. This differs fundamentally from OMG-
LLaVA, where predicted object masks allow attention across entire object boundaries. Our fixed
masks force the queries to gather information exclusively from the keypoint’s immediate neighbor-
hood.

'Bovidae includes antelope, argali sheep, bison, buffalo, cow, and sheep. Canidae includes arctic fox, dog,
fox, and wolf.
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As aresult, rather than encoding global object semantics, the queries now capture fine-grained infor-
mation at the specific keypoint; accordingly, we denote them as keypoint features. In OMG-LLaVA,
these representations were termed “object features” because they captured object-level information;
we rename them here to reflect the shift introduced by our masked-attention modification toward
keypoint-level focus. Similarly, the positional encodings, which serve as query positional embed-
dings throughout the attention operations, become region features that anchor spatial reasoning at
the keypoint location.

Crucially, while the Gaussian mask constrains attention within the OMG-Seg decoder, the full image
features are provided to the LLM alongside the keypoint and region features during description
generation (see Figure [). This ensures the model has access to complete visual context while
maintaining focus on the specific keypoint location.

This architectural modification proves essential. Without Gaussian masks (Table [3), performance
catastrophically drops: mPCK drops from 78.13 to 23.63, as the model loses the ability to connect
specific pixel locations with their descriptions. The refined keypoint and region features are then
projected to the language model’s embedding space for description generation. We optimize using
LoRA adapters (Hu et al.,[2022) while freezing the vision encoder, training with standard language
modeling loss on LlamaPointInPart descriptions.

3.3 POINT LOCALIZER

The Point Localizer inverts the description task: given image I and textual description D, it regresses
keypoint coordinates (green part in Figured). Following OMG-LLaVA'’s grounding formulation, we
structure inputs as: “<image>\nPlease segment regionl: [Description D]”, followed
by the response: “<p> keypoint </p> <SEG>.”, where the special token <SEG> encodes
visual information. The image is encoded via the vision encoder and projected to the language
space through a learned projection using OMG-Seg. These projected features combine with the
tokenized prompt and pass through the language model.

We perform a single forward pass and extract the hidden state corresponding to <SEG>, h € R%.
This representation passes through a text-to-vision projection layer, followed by a multi-layer per-
ceptron that maps to normalized coordinates (%, 9) € [0, 1]2.

Training minimizes the mean squared error between predicted and ground-truth coordinates:
£loc = MSE(ﬁapgt) (1)

where p = (&, §) and pg; represent predicted and ground-truth normalized coordinates respectively.
We jointly optimize LoRA adapters (Hu et al.l [2022)) on the language model, the vision-to-text
projection layer, and the coordinate regression head. As demonstrated in our ablations (Table[d), the
LoRA adaptation of the language model is crucial for effective keypoint understanding.

3.4 REINFORCEMENT LEARNING FOR MUTUAL ENHANCEMENT

To enable keypoint comprehension across diverse categories without annotated descriptions, we
employ reinforcement learning where the Point Localizer provides reward signals for optimizing the
Point Descriptor.

Given an image-keypoint pair (I, p), we sample G descriptions {01, 02, - - - , 0g } from the descriptor
policy 7y, where o; ~ mg(o|I,p). For each generated description, the frozen localizer predicts
coordinates p;. The reward function measures localization accuracy:

r; = —MSE(p;, p) 2)
We optimize the descriptor via modified Group Relative Policy Optimization (GRPO) (Shao et al.|
2024). For the sampled descriptions, we compute normalized group-relative advantages:
A - r; — mean(r)
std(r)

where r = {r1,79,...,7rc} and apply clipping for numerical stability. Following GRPO, we assign
each sequence’s advantage to all its tokens and normalize by sequence length. Unlike standard

3)
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GRPO, we do not employ importance sampling. The policy gradient objective becomes:

o]

G
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where |o;| denotes the length of description o; and o; ; represents the ¢-th token in the i-th descrip-
tion. This formulation ensures gradient updates are invariant to sequence length.

To prevent policy drift, we incorporate KL regularization against the reference policy 7¢. Following
the GRPO formulation, we compute the KL divergence using an unbiased estimator (Schulman,
2020) at the token level:

[o;]

1
D[ || mref] = m Z [exp(re) —re — 1] ®)
=1

where 1y = 10g Ter(0;.¢|0i, <, I, p) — log mg (05,405, <, I, p) is the log-ratio for token ¢. To prevent
gradient instability from extreme probability ratios, we apply conservative clamping to the log-ratio:
ry = clamp(ry, —5,5). This bounds the exponential term to a manageable range while preserving
the KL signal. The per-sequence KL divergence is computed by averaging over valid tokens, then
averaged across all samples in the batch. The complete training objective combines policy gradient
and KL regularization:

L = Lpolicy + Brr - Dxr (6)

We implement selective fine-tuning by optimizing LoRA adapters (Hu et al., [2022)) while updating
only the final two transformer blocks, preserving general linguistic capabilities while adapting high-
level representations for keypoint description.

This closed-loop paradigm creates mutual enhancement: the descriptor learns to generate descrip-
tions that maximize localization accuracy, effectively adapting its outputs to the localizer’s capa-
bilities. By optimizing descriptions for localizability, we improve the alignment between generated
descriptions and the localizer’s expected input distribution, enabling strong localization performance
on descriptor-generated text.

4 EXPERIMENTS

We quantify performance using the Percentage of Correct Keypoints (PCK) metric, where keypoint
coordinates are first normalized by image dimensions to [0, 1], then we compute the Euclidean dis-
tance between predicted and ground-truth points, counting a prediction as correct if this distance
falls below a threshold. We follow (Chen et al., [2025) and use mean PCK (mPCK) that is defined
as follows. We average PCK@0.1 and PCK@0.2 to capture both fine-grained accuracy (0.1) and
coarse regional localization (0.2) in a unified measure, with full breakdowns in Appendix This
descriptor-through-localizer evaluation extends existing semantic keypoint comprehension tasks by
measuring descriptor quality through localization accuracy, emphasizing both expressive language
and precise grounding.

4.1 SUPERVISED FINE-TUNING

Point Descriptor and Localizer Training. We initialize from OMG-LLaVA’s pretrained weights
and fine-tune the Point Descriptor on LlamaPointInPart’s training set for 10 epochs, using a batch
size of 8, and a learning rate of 27, optimizing only the language modeling 10ss Ly under the
same LoRA configuration as OMG-LLaVA (rank 512, effective scaling 0.5, dropout 0.05, no bias).
The Point Localizer trains for 15 epochs with learning rate 10~ and batch size 8. We optimize
LoRA adapters (same as above) on the language model, the vision-to-text projection layer, and the
coordinate regression MLP, while freezing all other parameterﬂ

2All training runs in this work were carried out on a single NVIDIA H100 (80 GB) GPU.
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Table 1: Performance comparison on
LlamaPointInPart test set. Our ap-
proach substantially outperforms the
OMG-LLaVA baseline, with the Point
Descriptor achieving near ground-truth
performance.

§

§
Method mPCK N
OMG-LLaVA (Zhang et al.,2024b) ~ 31.03 \
DAM (Lian et al.}[2025) 42.87 R
TP (Ours 78.13 B
GT Description 78.83

Figure 5: Qualitative keypoints visualization.

LlamaPointInPart Results. Table[I|presents localization accuracy on LlamaPointInPart’s test set,
evaluated using our Point Localizer. Our Point Localizer with ground-truth test descriptions achieves
78.83% mPCK. While with the OMG-LLaVA (Zhang et al., [2024b) and DAM
baselines, our Point Localizer achieves only 31.03% and 42.87% respectively. Using predicted
descriptions from our Point Descriptor maintains robust performance (78.13%), achieving x2.5
performance boost compared to our OMG-LLaVA baseline. This demonstrates that at the test time of
our Point Localizer, we can replace ground-truth descriptions with generated ones while maintaining
localization performance.

Extended Evaluation with Foundation Model and Human Annotations. We extended evalu-
ation to ChatGPT-5 and human descriptions on 100 test samples. As shown in Figure [T (bottom
right), our approach achieves ground-truth performance (78%), consistently maintaining a perfor-
mance boost of more than x2.5 compared to OMG-LLaVA’s baseline and surpassing both ChatGPT-
5 (62%) and surprisingly, human annotations (56%). Note that these evaluations use a fixed localizer
trained on the LlamaPointInPart dataset. The lower human performance may reflect differences in
description style from our training data rather than humans’ inability to accurately describe keypoint
locations. Figure [5|shows a qualitative example. Additional examples of generated descriptions and
localizations are presented in Appendix [A.2] Table 3]

4.2 LOCALIZATION-BASED REINFORCEMENT LEARNING

We evaluate our RL approach for generalizing to novel Table 2: Cross-super-category gener-
categories without ground-truth descriptions on the cross-  alization on AP-10K. RL adaptation
category generalization setup described in Section 3. If] shows promising improvements over

Table 2] reports performance before and after RL adap- zero-shot performance.

tation. Although absolute accuracy remains limited due

to the challenge of localizing keypoints with rich text on _ Test Set Method mPCK
a visually distinct dataset, RL fine-tuning yields consis- Canid TP (zero-shot) 29.85
tent improvements. Training on Bovidae and testing on amda®  TpiRL (on Bovidae)  29.96

Canidae shows modest gai.ns (~0.4%), while the reverse Bovidae TP (zero-shot) 28.56
setup demonstrates larger improvements (~6.3%). Over- V1 TP+RL (on Canidae) ~ 30.36
all, these results suggest that localization-based RL rep-

resents a promising direction for scaling keypoint under-
standing by exploiting abundant keypoint-image pairs without costly description annotations.

4.3 ABLATION STUDIES

Gaussian Mask Guidance. We investigate the importance of providing explicit Gaussian masks
around keypoints during Point Descriptor training. When relying solely on OMG-LLaVA’s standard

3Due to computational constraints, we conducted these RL experiments on a subset of the data. See Ap-
pendix@fer RL setup and computational considerations.
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Table 3: Impact of explicit Gaussian masks.  Table 4: Impact of language model adaptation.

Without visual guidance, the model fails to con-  Freezing the LLM and training only projection
nect keypoints with descriptions. layers severely degrades performance.
Configuration mPCK Configuration mPCK
w/o Gaussian mask ~ 23.63 w/o LLM adaptation ~ 47.60
Point Descriptor 78.13 Point Localizer 78.83

mechanism to predict object masks from input keypoints, without the Gaussian visual guidance, the
model completely fails to learn the connection between keypoints and their descriptions (Table [3).
This demonstrates that explicit visual marking is crucial for the model to establish spatial-semantic
correspondence. This setup also corresponds to fine-tuning the original OMG-LLaVA architecture
on LlamaPointInPart, since it retains OMG-LLaVA’s object-mask prediction mechanism without our
Gaussian modification. Despite being trained on the same data, this adapted OMG-LLaVA variant
achieves only 23.63 mPCK (compared to 78.13 mPCK when using the Gaussian mask), indicating
that the Gaussian-mask formulation is essential for pixel-level grounding.

Language Model Adaptation. Fine-tuning the language model proves essential for keypoint com-
prehension. Without LoRA adaptation, keeping the LLM frozen while training only projection lay-
ers and the regression head, performance drops substantially (Tabled). This confirms that keypoint-
specific language understanding requires adaptation of the language model’s representations.

5 DISCUSSION

Conclusions. We presented a framework for pixel-level keypoint comprehension through natural
language, introducing a Point Descriptor that generates rich contextual descriptions and a Point
Localizer that regresses precise coordinates. Our approach moves beyond templated prompts to
produce free-form, coarse-to-fine descriptions that capture multi-scale spatial context. Through
reinforcement learning using the frozen Point Localizer as a reward model, we optimize the Point
Descriptor to generate descriptions that maximize localization accuracy.

Our method achieves near ground-truth performance on our new LlamaPointInPart and significantly
outperforms baseline models, demonstrating the effectiveness of task-specific architectures for pixel-
level understanding. The reinforcement learning approach shows promising improvements when
generalizing across taxonomically distinct categories in AP-10K. Importantly, this RL approach is
particularly promising for scaling, as keypoint-image pairs are substantially easier to collect than
the complete image-keypoint-description triplets required for supervised training, opening a path
towards training on larger and more diverse datasets.

Limitations and Future Work. Our descriptions currently rely heavily on spatial context, requir-
ing the image to remain unchanged, which limits applicability to scenarios like stereo matching or
multi-view settings. The analysis revealed that human-annotated descriptions also exhibited similar
spatial dependencies, suggesting this may be an inherent characteristic of pixel-level localization
tasks where context is crucial to uniquely identify specific points. More challenging still is the task
of image correspondence: generating a description from a point in one image that can identify the
corresponding point in an entirely different image.

A practical limitation of our current evaluation is that it relies on a single Localizer trained on Llama-
PointInPart. As a result, the metric is most reliable for comparing methods that operate within
a similar descriptive style. The goal of this work is not to position this Localizer as a universal
evaluator, but to offer a consistent, reproducible protocol for the emerging task of pixel-level de-
scription—localization. Developing style-robust or human-trained localizers would further expand
the generality of the evaluation.

Future work should explore developing multi-view datasets and descriptions that emphasize seman-
tic and appearance-based features over spatial relationships. We hope that releasing our dataset and
framework will encourage the community to build upon this direction, ultimately driving progress
toward even finer-grained and more reliable localization capabilities in the future.
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A APPENDIX

A.1 ADDITIONAL DETAILS ON LLAMAPOINTINPART CONSTRUCTION

Figure [6] presents the compositional distribution of objects and parts, and Figure 2] provides repre-
sentative dataset examples.

Biped Hand
LlamaPointinPart Biped Foot

Car Tier

LlamaPointinPart

Corang,

(a) Object category distribution (b) Part category distribution

Figure 6: LlamaPointInPart dataset composition showing (a) 64 object categories and (b) 297 part
categories across our 20K+ keypoint-description pairs. Inner rings indicate source datasets (Pascal-
Part116, ADE20KPart234, PartImageNet), outer rings show sampled objects and parts.
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A.2 ADDITIONAL EXAMPLES

We provide further qualitative examples in Table [5] accompanied by keypoint descriptions from
different sources. Each example is shown in a separate column: the top row displays the image with
localizations from each source, distinguished by different markers, while the bottom rows present
the corresponding textual descriptions from each source.

Table 5: Keypoint Localization Descriptions Comparison.

Y GT Original ChatGPT-5 Human Y GT Original ChatGPT-5 Human
® GT Description ® TP (Ours) ® OMG-LLavA @® GT Description ® TP (Ours) ® OMG-LLavA

GT De- | The point is located on the cat that spans most | The point is located on the rightmost dog in

scription | of the image, specifically on its paw, which | the image, which is close to the right and bot-
is situated to the right and close to the top | tom edges of the picture, and it is positioned
edge of the cat, and within this paw, the point | on the dog’s nose, specifically slightly above
is slightly to the right and above the center, | and to the right of the center of the nose, with
in a region featuring a small, dark, circular | the region around the keypoint being a small,
area with a lighter center, possibly a pupil or | dark, and somewhat circular shape, likely the
a small opening. nose itself.

TP The point is located on the cat, which spans | The point is located on the dog that is posi-

(Ours) most of the horizontal and vertical axis of the | tioned closer to the right and bottom edges
image, specifically on the cat’s paw, which | of the image, and it is the second dog from
is near the right and top edge of the cat, and | the left, on its eye, which is situated slightly
within the paw, the point is slightly to the left | to the left and above the center of the dog’s
and above the center, in a region that features | head, and within the eye, the point is slightly
a small, dark, curved shape with a smooth | to the left and below the center, in a region
texture. that features a small, dark, circular area with

a lighter center, possibly a pupil.

ChatGPT- | The keypoint is located on the raised front | The keypoint is located on the smaller brown

5 paw of the cat, precisely at the outer edge | puppy lying in the snow, specifically at the
of the paw’s upper surface where the fur is | center of its head where the snout meets the
dark and contrasts with the bright light shin- | forehead, just above the nose. It sits directly
ing from the window behind. It sits just above | opposite the larger light-colored dog, which
the slightly curved claws that are silhouetted | is bending its head downward as if sniffing
against the background, directly opposite the | toward the smaller one. The keypoint is posi-
cat’s open mouth and extended tongue. The | tioned slightly right of the image’s center, on
paw is angled upward, and the keypoint lies | the puppy whose body is stretched out hori-
on the side facing the camera, slightly to the | zontally on the snow. Surrounding cues in-
right of the cat’s nose and whiskers, framed | clude the textured snow surface beneath both
by the surrounding purple feather boa that | dogs, the large blue metal gate in the back-
drapes across the cat’s chest and lower body. | ground, and the clear contrast between the
This placement marks a distinct point on the | smaller puppy’s reddish fur and the white
paw’s contour, highlighted by the sharp out- | snow. This placement highlights the midpoint
line against the sunlit backdrop. of the puppy’s face, precisely where its head

is directed toward the approaching dog.

Human The point is located on the hand of the cat | the point is located on the tip of the nose of
in the iamge, on the same horizontal line that | the right (and smaller) dog
crosses the middle of the cat’s nose, on the
middle part of the paw.

OMG- The window is clear. The dog is brown.

LLaVA
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A.3 REINFORCEMENT LEARNING SETUP AND CONSTRAINTS

Point Descriptor Reinforced Learning Fine-tuning. We set the group size G = 3, KL-penalty
coefficient Sg;. = 0.1, and a learning rate of 5 x 1075, Fine-tuning is conducted for 3 epochs with
batch size 10, reusing the same LoRA configuration. This stage explicitly optimizes the descriptor
towards producing localization-focused descriptions, complementing the language-only supervised
objective.

Scope and Computational Constraints. RL training requires generating multiple descriptions
per sample in every forward pass, which introduces substantial computational overhead. For this
reason, our RL experiments focus on a targeted cross-category setting rather than large-scale do-
main transfer. While Bovidae and Canidae share similar body plans, this setup isolates whether
the descriptor can improve using only (image, keypoint) pairs without ground-truth descriptions.
Despite the limited visual divergence, the consistent gains indicate that the pixel-level localization
reward is effective for adapting the descriptor beyond its supervised domain. This represents the
first application of localization accuracy as a reward for keypoint description, offering a scalable
direction for future work on broader category shifts.
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A.4 EVALUATIONS USING PCK@0.1 AND PCK@0.2
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Figure 7: PCK@0.1 and PCK@0.2 breakdown for the mPCK results presented in Fig.

Table 6: PCK@0.1 and PCK@0.2 breakdown for the mPCK results presented in Table

Method PCK@0.1 PCK@0.2
OMG-LLaVA 17.26 44.80
DAM 28.24 57.49
TP (Ours) 63.93 92.33
GT Description 65.60 92.05

Table 7: PCK@0.1 and PCK@0.2 breakdown for the mPCK results presented in Table

Test Set Method L
@0.1 @0.2
Canidac TP (zero-shot) 15.97 43.72
TP+RL (on Bovidae) 16.16 43.76
Bovidae TP (zero-shot) 1549 41.62

TP+RL (on Canidae) 16.63 44.09

Table 8: PCK@0.1 and PCK@0.2 breakdown  Table 9: PCK@0.1 and PCK@0.2 breakdown

for the mPCK results presented in Table for the mPCK results presented in Table E}
Configuration PCK@0.1 PCK@0.2 Configuration PCK@0.1 PCK@0.2
w/o Gaussian mask 11.54 35.72 w/o LLM adaptation 27.90 67.30
Point Descriptor 63.93 92.33 Point Localizer 65.60 92.05

A.5 COMPUTATIONAL ANALYSIS

Model Size: The Point Descriptor shares OMG-LLaVA’s architecture (7B LLM backbone). The
Point Localizer adds only a lightweight MLP head (512-128-2 parameters), representing negligible
overhead.

Training Time (single H100 80GB GPU): Point Descriptor fine-tuning: ~11 hours on LlamaPointIn-
Part (17K samples, 10 epochs); Point Localizer: ~64 hours (15 epochs); RL fine-tuning: ~22.5
hours on Bovidae subset (22.6K samples), ~16.8 hours on Canidae subset (17K samples).

Inference Time: Full pipeline achieves approximately 0.35 samples/second on Bovidae (~18 hours)
and 0.39 samples/second on Canidae (~12 hours).

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The text in this paper was refined with the help of LLMs to improve clarity and style. They helped
polish the writing.
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