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ABSTRACT

As misinformation proliferates across news platforms, the need to detect bias,
both overt and latent, becomes critical for trustworthy media analysis. Unlike
falsehoods, bias often persists in otherwise factually accurate reporting, requiring
more nuanced models to detect patterns in framing, source selection, and agenda
setting. Leveraging the advanced analytical capabilities of modern Large Lan-
guage Models (LLMs), we propose a novel approach that combines reasoning
mechanisms with bias detection frameworks to create more transparent and objec-
tive news content analysis. Our methodology employs a model consensus strategy
with multiple reasoning-capable LLMs (Claude 3.7, DeepSeek-R1, o3-mini, and
Gemini 2.5) to generate a curated dataset derived from the MN-DS news corpus.
This consensus-driven approach ensures robust bias identification across various
news categories while maintaining balanced representation. We then fine-tune the
Qwen3 4B model on this dataset using Parameter-Efficient Fine-Tuning (PEFT)
with Quantized Low-Rank Adaptation (QLoRA) techniques. Using a distance-
based coherence scoring algorithm, we demonstrate that smaller models can ef-
fectively acquire reasoning and bias detection capabilities when trained on high-
quality examples, as evidenced by a 6.3% increase in accuracy compared to the
baseline Qwen3 32B. Our findings support the ”Less-Is-More” hypothesis for rea-
soning (LIMO), suggesting that sophisticated bias analysis can emerge without re-
inforcement learning when models are exposed to well-structured demonstrations.
This work contributes to the advancement of ethical journalism by providing a
transparent, open-source framework for bias detection in news articles.

1 INTRODUCTION

The proliferation of digital news media has exponentially increased information consumption, high-
lighting the critical need for transparent and unbiased journalism. News articles inherently contain
various forms of bias that can significantly influence public opinion and decision-making (Spinde
et al., 2021). Despite the journalistic ideal of objectivity, complete neutrality remains elusive due to
the inherent subjectivity in language, framing, and topic selection (Hamborg et al., 2019).

The detection and mitigation of bias in news content serve several crucial functions: (1) enhancing
readers’ awareness of potential slants in reporting, (2) supporting journalists in producing more
balanced content, and (3) promoting a more informed democratic discourse by ensuring access to
less skewed information (Raza et al., 2022). However, existing approaches to bias detection often
rely on simplistic keyword analysis or require extensive labeled datasets that are costly to produce
and may themselves contain biases.

Our research leverages recent advancements in Large Language Models (LLMs), which have
demonstrated remarkable capabilities in text analysis and classification tasks through few-shot learn-
ing paradigms (Brown et al., 2020). Particularly promising are the enhanced reasoning abilities of
modern LLMs, enabling them to engage in step-by-step analytical processes before producing out-
puts (OpenAI et al., 2024; DeepSeek-AI et al., 2025).

We propose a novel approach that leverages the reasoning capabilities of LLMs for sophisticated
text analysis in the context of bias detection. Our methodology employs a three-stage process:
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First, we develop a comprehensive taxonomy of media bias by integrating classifications from All-
Sides (Mastrine et al., 2019), the multi-dimensional framework by Rodrigo-Ginés et al. (2024), and
other established sources (Spinde et al., 2021; Raza et al., 2022). This integrated taxonomy enables
standardized identification of 18 diverse bias types across news content (see Appendix A for the
complete taxonomy).

Second, we implement a model consensus strategy to generate a high-quality dataset. Starting with
the MN-DS multilabeled news dataset (Petukhova & Fachada, 2023), we extract a balanced subset of
1,220 articles across various categories and subcategories. Four reasoning-capable LLMs—Claude
3.7 (Anthropic Team, 2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), o3-mini (OpenAI, 2025),
and Gemini 2.5 (Google Team, 2025)—analyze these articles using identical prompts to identify
and classify biases at four distinct levels of granularity. This structured output is captured in JSON
format, allowing for systematic comparison and validation. We employ a distance-based consen-
sus mechanism with Claude 3.7 as our baseline, establishing a threshold that ensures only high-
agreement data points are included in our final dataset.

Third, we fine-tune the Qwen3 4B model (Yang et al., 2025) using Parameter-Efficient Fine-Tuning
(PEFT) techniques, specifically Low-Rank Adaptation (LoRA) (Han et al., 2024; Hu et al., 2021;
Dettmers et al., 2023). This approach enables us to efficiently transfer bias detection capabilities to a
smaller model while maintaining high performance. Our methodology builds on the ”Less-Is-More”
reasoning hypothesis proposed by Ye et al. (2025), which suggests that sophisticated reasoning
capabilities can emerge from minimal but well-structured demonstrations without reinforcement
learning, challenging the conventional approach of using reinforcement learning (RL) for enhancing
reasoning in LLMs.

Our model is fine-tuned to output the complete reasoning process, providing transparency into how
it arrives at bias classifications. By explicitly documenting each step of analysis, from identifying
linguistic patterns to evaluating framing choices, the model offers its users insight into the decision-
making process rather than merely presenting conclusions. This transparency serves multiple pur-
poses: It allows users to understand the specific elements that contribute to bias detection, enables
verification of the model’s reasoning, and provides educational value by demonstrating systematic
bias analysis. The explicit reasoning output also helps mitigate the ”black-box” problem that is
common in AI systems, fostering greater trust in the model’s assessments while encouraging users
to improve their own critical evaluation skills when consuming news media.

This research contributes to the fields of computational linguistics and automated media analysis
by demonstrating how reasoning capabilities can be effectively applied to the complex task of bias
detection, potentially transforming how we evaluate and consume news media. By creating a model
that provides structured and transparent analysis of bias in news articles, our goal is to enhance
journalistic integrity and readers’ critical awareness of media bias in an increasingly complex infor-
mation landscape.

2 METHODOLOGY

Our methodology comprises two main phases: dataset engineering with consensus-based validation
and model fine-tuning using Parameter-Efficient Fine-Tuning techniques, as illustrated in Figure 1.
This approach ensures high-quality training data while maintaining computational efficiency in the
model development process.

2.1 DATASET ENGINEERING AND CONSENSUS MECHANISM

We initiated our data collection process with 2,320 articles from the MN-DS multilabeled news
dataset (Petukhova & Fachada, 2023), obtained through two collection rounds: an initial batch of
1,500 articles followed by an additional 820 articles to reach our target dataset size. Our sampling
strategy prioritized balanced representation across news categories by grouping articles according
to their category and subcategory fields, then sampling proportionally from each group to maintain
categorical diversity. Articles were filtered to include only those with more than 400 words to ensure
sufficient content for bias analysis.
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Figure 1: <Redacted>methodology overview showing the two main phases: dataset engineering
with consensus-based validation and model fine-tuning using Parameter-Efficient Fine-Tuning tech-
niques.

Four reasoning-capable Large Language Models were employed to analyze each article: Claude 3.7
(Anthropic Team, 2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), o3-mini (OpenAI, 2025), and
Gemini 2.5 (Google Team, 2025). Each model received identical prompts to identify and classify 18
distinct bias types across four granularity levels: None (0), Low (1), Moderate (2), and High (3).

2.1.1 AGREEMENT SCORE CALCULATION

To ensure dataset quality, we implemented a distance-based agreement scoring mechanism. First,
we mapped qualitative bias levels to numerical values as shown in Table 1.

Table 1: Bias level mapping to numerical values

Bias Level Numerical Value
None 0
Low 1

Moderate 2
High 3

The agreement score A between two models i and j for a specific bias type is calculated using the
following formula:

A(i, j) =


1.0 if Li = Lj

0.75 if Li > 0, Lj > 0 and |Li − Lj | = 1

0.5 if Li > 0, Lj > 0 and |Li − Lj | = 2

0.0 if (Li = 0 and Lj ̸= 0) or (Li ̸= 0 and Lj = 0)

(1)

where Li and Lj represent the numerical bias levels assigned by models i and j respectively. This
relationship is also illustrated in the agreement matrix shown in Appendix B.

This scoring system assigns perfect agreement (1.00) for identical classifications, high agreement
(0.75) for adjacent bias levels within the bias spectrum, moderate agreement (0.50) for bias levels
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differing by two steps, and zero agreement (0.00) when one model detects no bias while another
detects any level of bias.

The overall agreement score for each article is computed by averaging all pairwise agreement scores
across models and bias types:

Soverall =
1

18

18∑
b=1

1

6

∑
all pairs

A(Mi,Mj)b (2)

where b represents each of the 18 bias types, the sum covers all six possible pairwise combinations
of the four models, and A(Mi,Mj)b is the agreement score between models i and j for bias type b.

2.1.2 DATASET SELECTION PROCESS

Our dataset selection procedure involved two sequential filtering steps:

Step 1 - Statistical Outlier Removal: We removed articles with agreement scores below -2 standard
deviations from the mean.

Step 2 - Bias Confirmation Requirement: We implemented a confirmation mechanism using
Claude 3.7 as our baseline model (selection rationale detailed in 3.1.1). For each bias type present
in an article, we required that at least one additional model must confirm the baseline model’s bias
classification to ensure reliability.

The confirmation rule was defined as:

• If Claude 3.7 classifies a bias as present (level > 0), at least one of the three remaining
models must also classify it as present

• If Claude 3.7 classifies a bias as absent (level = 0), at least one of the three remaining
models must also classify it as absent

• Articles where Claude 3.7’s classification cannot be confirmed by any other model for any
bias type are excluded from the final dataset

This baseline-confirmation approach ensures that bias detection is not based on single-model pre-
dictions, thereby reducing hallucinations and improving dataset reliability. The filtering process
resulted in a utilization rate of 1,220 out of 2,320 articles (52.6%), significantly improving dataset
quality by ensuring multi-model consensus on bias classifications.

2.1.3 FINAL DATASET COMPOSITION

The cleaned dataset was partitioned into 900 articles for training (73.8%), 100 for validation (8.2%),
and 220 for testing (18.0%).

2.2 MODEL FINE-TUNING

We fine-tuned the Qwen3 4B model (Yang et al., 2025) using Parameter-Efficient Fine-Tuning
(PEFT) techniques, specifically employing QLoRA (Quantized Low-Rank Adaptation) (Dettmers
et al., 2023). The training process utilized the 900-article training set, with the 100-article validation
set employed for checkpoint selection. Full hyperparameters are provided in Appendix C.

Evaluation Metrics: Model performance was evaluated based on agreement scores with Claude 3.7
and JSON output validity. JSON validity is crucial as our models are required to produce structured
outputs following a specific schema for bias classification. Invalid JSON outputs indicate parsing
failures that render the analysis unusable, making this a critical reliability metric alongside agree-
ment scores.

The fine-tuning process was designed to transfer the reasoning and bias detection capabilities
demonstrated by the larger models to the more computationally efficient Qwen3 4B architecture,
following the ”Less-Is-More” principle for reasoning (Ye et al., 2025). This approach enables the
model to generate transparent, step-by-step reasoning processes while maintaining high performance
in bias classification tasks.
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3 RESULTS

Our results are presented in two main parts: dataset engineering outcomes demonstrating the effec-
tiveness of our multi-model consensus approach, and fine-tuning results showing the performance
of the <Redacted>model.

3.1 DATASET ENGINEERING RESULTS

The dataset engineering phase involved comprehensive analysis of model agreement patterns and
validation of our consensus-based filtering approach. We present both the multi-model agreement
analysis and the effectiveness of our data selection procedures.

3.1.1 MULTI-MODEL AGREEMENT ANALYSIS

We conducted a comprehensive agreement analysis across all four reasoning-capable LLMs using
the complete dataset of 2,320 articles before applying our cleaning procedures. The pairwise agree-
ment scores between models are presented in Table 2.

Table 2: Pairwise agreement scores between LLM models. The highest scores are indicated in bold.

Model Pair Claude DeepSeek-R1 Gemini 2.5 o3-mini
Claude - 0.803 0.827 0.791

DeepSeek-R1 0.803 - 0.804 0.784
Gemini 2.5 0.827 0.804 - 0.808

o3-mini 0.791 0.784 0.808 -

The analysis reveals that Claude and Gemini 2.5 achieved the highest pairwise agreement score
of 0.827, indicating strong consensus in their bias assessments. The second highest agreement
was observed between Gemini 2.5 and o3-mini (0.808), further reinforcing Gemini 2.5’s position
as the most consistently aligned model across different reasoning approaches. To evaluate overall
model coherence, we calculated each model’s average agreement with all other models, as shown in
Table 3.

Table 3: Model coherence scores (average agreement with other models). Selected baseline model
is highlighted.

Model Coherence Score
Claude 3.7 0.807

DeepSeek-R1 0.797
Gemini 2.5 0.813

o3-mini 0.794

While Gemini 2.5 demonstrated the highest overall coherence score of 0.813, we selected Claude 3.7
as our baseline model for the consensus mechanism due to a critical requirement: our methodology
requires explicit reasoning text to train the Qwen3 4B model to generate transparent, step-by-step
bias analysis. At the time of our experiments, only Claude 3.7 and DeepSeek-R1 provided detailed
reasoning tokens through their API responses, while Gemini 2.5 and o3-mini did not expose their
internal reasoning processes. Claude 3.7’s strong coherence score of 0.807, combined with its essen-
tial reasoning outputs, made it the optimal choice for training the <Redacted>model to articulate
bias detection decisions with the transparency and interpretability that are core objectives of our
approach.

3.1.2 DATASET CLEANING EFFECTIVENESS

The two-step filtering process successfully reduced the dataset from 2,320 to 1,220 articles (52.6%
utilization rate) while significantly improving data quality. The statistical outlier removal (Step 1)
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eliminated articles with agreement scores below the -2 standard deviation threshold. The confir-
mation requirement (Step 2) removed articles where at least one bias type lacked multi-model con-
firmation, ensuring that all retained data points represent genuine consensus among the reasoning
models.

3.2 FINE-TUNING RESULTS

We evaluated our fine-tuned model, denoted Qwen3/4B <Redacted>, against baseline Qwen3
models across multiple dimensions. Table 4 presents a comprehensive comparison of model perfor-
mance on the test set of 220 articles.
Table 4: Comprehensive model performance comparison. The highest scores are indicated in bold.

Model Avg. Claude Invalid JSON Thinking Length Claude Thinking
Agreement (%) (words) Length (words)

Qwen3/4B
<Redacted> 0.8459 13 (5.91%) 8009 ± 1750 9344 ± 2575

Qwen3/4B 0.7505 49 (22.27%) 5478 ± 1247 9344 ± 2575
Qwen3/32B 0.8004 0 (0%) 5008 ± 1048 9344 ± 2575

To ensure fair comparison, we conducted an additional evaluation using only the 207 articles where
both models produced valid JSON outputs. Table 5 shows the head-to-head performance between
our fine-tuned model and the larger Qwen3/32B baseline.

Table 5: Direct comparison on articles with valid JSON outputs (207 out of 220 test articles). The
highest scores are indicated in bold.

Model Avg. Claude Agreement
Qwen3/4B <Redacted> 0.8459
Qwen3/32B 0.7961

This controlled comparison confirms that our fine-tuned 4B model consistently outperforms the 32B
baseline by 6.3% (0.8459 vs 0.7961), demonstrating that the ”Less-Is-More” principle combined
with high-quality reasoning examples can enable smaller models to achieve superior performance
compared to larger, non-specialized models.

3.3 BIAS PATTERN ANALYSIS

Figure 2 provides a detailed visualization of pairwise agreement patterns across all 18 bias cate-
gories, including our fine-tuned model. The radar chart reveals that models achieve consistently
high agreement across most bias types, with particularly strong consensus on demographic biases
(political, gender, ethnic/cultural) and structural biases (statement bias, opinion-as-fact). The chart
demonstrates that our Qwen3/4B <Redacted> model achieves agreement patterns very similar to
Claude across all bias categories, indicating successful knowledge transfer. Some variation is ob-
served in more subjective categories such as slant and source selection bias, reflecting the inherent
complexity of these bias types.

The comprehensive agreement analysis across bias categories is further illustrated in Figure 3,
which shows both pairwise and one-vs-others agreement statistics for all models including the fine-
tuned versions. The analysis reveals that demographic bias categories achieve the highest agree-
ment scores, with maximum pairwise agreement consistently above 0.95. More complex linguistic
biases show greater variability, reflecting their nuanced nature. The inclusion of our fine-tuned
model maintains the overall agreement patterns observed in the original dataset, with the Qwen3/4B
<Redacted> model contributing positively to the consensus.

To understand model behavior patterns, we analyzed the sensitivity of each model to different bias
categories, as shown in Figure 4. This analysis reveals distinct detection patterns: Claude and
Gemini 2.5 show higher sensitivity to political and opinion-based biases, while DeepSeek-R1 and
o3-mini demonstrate more conservative detection patterns. Our Qwen3/4B <Redacted> model
exhibits sensitivity patterns closely aligned with Claude, further confirming successful knowledge
transfer.
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Figure 2: Pairwise agreement across 18 bias categories for four reasoning LLMs. The radar chart
shows agreement scores (0–1) with lines for pairwise comparisons among Claude, DeepSeek-R1,
Gemini 2.5, and o3-mini, and demonstrates knowledge transfer to the fine-tuned Qwen3-4B.

Figure 3: Combined agreement statistics by Bias category for the original four LLMs showing
pairwise and one-vs-others agreement patterns.
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Figure 4: Model sensitivity to bias categories measured by detection frequency, including fine-tuned
Qwen model, revealing distinct patterns across models.

3.4 KEY ACHIEVEMENTS

The fine-tuning results validate several core aspects of our approach. Most notably, our model
achieved the highest agreement score (0.8459) with Claude among all tested models, indicating
successful knowledge transfer from the reasoning examples. The approach demonstrated remark-
able computational efficiency, showing that a 4B parameter model can outperform a 32B parameter
model through targeted fine-tuning—representing an 8x reduction in model size while maintaining
superior performance.

The model generates comprehensive reasoning outputs (8009 ± 1750 words) that approach the depth
and detail of Claude’s original reasoning, enabling transparency and interpretability. Additionally,
it achieved significantly improved output reliability with a low invalid JSON rate (5.91%) compared
to the baseline 4B model (22.27%), indicating enhanced structural consistency. The high agreement
with Claude confirms that the model successfully learned to replicate the reasoning patterns and bias
detection capabilities demonstrated in the training examples.

These results demonstrate that our consensus-based fine-tuning approach successfully creates a com-
pact, efficient model that maintains the analytical depth and transparency of larger reasoning models
while requiring significantly fewer computational resources.

4 CONCLUSION

This research demonstrates that the ”Less-Is-More” principle can be effectively applied to media
bias detection through a novel consensus-based fine-tuning approach. By combining multi-model
agreement validation with targeted knowledge distillation, we address the critical challenge of build-
ing transparent, efficient, and reliable bias detection systems.

4.1 KEY CONTRIBUTIONS AND IMPLICATIONS

Our study makes several significant contributions:

Consensus-based dataset construction: We introduced a generalizable framework for constructing
high-quality training data using multiple reasoning-capable LLMs. The framework defines a novel

8
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distance-based agreement scoring function with statistical filtering and baseline confirmation. This
approach is broadly applicable to tasks beyond media bias where multiple weak annotators produce
structured outputs.

Bias dataset and taxonomy: Applying this framework, we curated the first open-source dataset of
media bias annotations enriched with explicit reasoning traces across 18 bias types. The dataset,
comprising 1,220 articles with structured JSON labels, will be released publicly to encourage repro-
ducibility and further research.

Efficient reasoning transfer: We demonstrated that targeted fine-tuning of a 4B parameter model
(Qwen3/4B) using QLoRA achieves +6.3% accuracy over a 32B baseline while generating inter-
pretable reasoning outputs. This validates the ”Less-Is-More” hypothesis that smaller, specialized
models can outperform larger general-purpose systems when trained on carefully curated data.

Transparency and interpretability: By leveraging explicit reasoning outputs, our
<Redacted>model produces detailed analytical explanations that allow users to understand
and validate model decisions. This addresses critical needs for journalistic transparency and
reliability in production systems.

Robust dataset engineering: Through a two-step filtering process, we achieved a 52.6% utilization
rate with multi-model confirmation, ensuring consistency, diversity, and structured outputs suitable
for downstream automation.

Open-source release: To foster transparency and reproducibility, we will release the full codebase,
curated dataset, and fine-tuned model weights under an open license (assets will be made public
upon acceptance).

4.2 LIMITATIONS AND FUTURE WORK

While our results are promising, limitations remain. Our evaluation focused on English-language
news articles, leaving open questions about generalization across languages and cultural contexts.
The approach depends on API-based reasoning models, which may restrict reproducibility. Future
directions include exploring synthetic reasoning generation, extending to open-source reasoning-
capable models, and adapting the taxonomy to capture emerging bias types.

4.3 FINAL REMARKS

In summary, our work provides a foundation for consensus-driven dataset construction, efficient
reasoning transfer, and interpretable bias detection. The <Redacted>model highlights that smaller
models, when trained on consensus-validated data, can achieve state-of-the-art performance while
remaining computationally efficient. This methodology opens new opportunities for democratizing
access to trustworthy bias analysis tools and lays the groundwork for advancing interpretable and
scalable consensus-based learning across domains.
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A COMPREHENSIVE BIAS TYPE TAXONOMY

This appendix provides a complete reference of the 18 bias types used in our <Redacted>model.
The taxonomy integrates classifications from AllSides (Mastrine et al., 2019), Rodrigo-Ginés et al.
(2024), Raza et al. (2022), and other established sources (Spinde et al., 2021; Hamborg et al., 2019).
Each bias type is defined with examples and source attributions to ensure comprehensive coverage
of media bias manifestations in news content.

Table 6: Complete taxonomy of 18 bias types with definitions and exam-
ples

ID Bias Type Description
1 Political Favors or criticizes a specific political viewpoint.

Example: ”The radical left continues to sabotage the economy.”
2 Gender Reinforces stereotypes or prejudices based on gender.

Example: ”The female engineer surprisingly solved the problem.”
3 Cultural / Ethnicity Unfairly portrays or generalizes ethnic or cultural groups.

Example: ”Immigrants are taking away local jobs.”
4 Age Unfairly stereotypes or discriminates based on age.

Example: ”Older employees rarely adapt to new technology.”
5 Religion Unfairly stereotypes or discriminates based on religion.

Example: ”Muslim neighborhoods are often hotspots of radicalism.”
Continued on next page
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Table 6 – continued from previous page
ID Bias Type Description
6 Disability Portrays individuals with disabilities or mental health conditions in

a negative, stereotypical, or dehumanizing way. Often includes out-
dated, offensive language or implies that disability or mental illness
is shameful, dangerous, or abnormal.
Example: ”This facility is for retarded individuals.”

7 Statement Bias (la-
belling and word choice)

Also called presentation bias, refers to how articles choose to inform
about certain entities/concepts through loaded language or present-
ing one side as the only side. Labelling uses specific words to con-
vey particular opinions.
Example: Words like ”gender-affirming care” vs. ”sex reassignment
procedure” or ”racial justice protest” vs. ”riot” reveal different per-
spectives on the same events.

8 Unsubstantiated or Illog-
ical Claims

Occurs when journalists make claims without supporting evidence
or use flawed reasoning to reach unjustified conclusions. Includes
both unsubstantiated claims and logical fallacies.
Examples: ”The senator’s absence clearly shows he doesn’t care
about the crisis” (no source + unjustified inference); ”This political
change caused an increase in crime” (false cause fallacy).

9 Slant (Bias by Omission) Highlights or plays up one particular angle while ignoring other per-
spectives. Through cherry-picking information, slant prevents read-
ers from getting the full story and narrows understanding scope.

10 Source Selection Bias The tendency to choose sources that support the story rather than
sources that provide accurate accounts.
Example: Covering an environmental disaster by only interviewing
company representatives without giving voice to affected commu-
nity members or independent experts.

11 Omission of Source At-
tribution

Occurs when journalists don’t back up claims with sources, or
sources are diffuse or unspecific. Sometimes intentional to protect
source anonymity.
Examples: Phrases like ”according to a source,” ”critics say,” or
”experts believe.”

12 Spin Occurs when journalists try to create a ”memorable story” using
loaded or emotional language, exaggeration, or selective fact pre-
sentation to make content more interesting. Includes ”clickbait”
headlines and drama-focused stories.

13 Sensationalism Information is exaggerated to create emotional reactions, targeting
and provoking readers’ emotions. Often involves selective informa-
tion that supports certain views while omitting contradictory infor-
mation.
Example: ”Bloodbath at the debate stage last night!”

14 Negativity Bias Emphasizes bad or negative news, or frames events negatively. Fol-
lows the media adage ”If it bleeds, it leads.”
Example: ”The country is collapsing under the weight of failed lead-
ership.”

15 Subjective Adjectives Uses qualifying adjectives that characterize or attribute specific
properties to nouns, suggesting how readers should interpret issues
rather than presenting facts objectively.
Example: ”The disturbing trend in education continues” or ”The
politician made a serious allegation.”

16 Ad Hominem / Mud-
slinging

Makes unfair or insulting accusations to damage someone’s reputa-
tion, or attacks a person’s character instead of addressing their argu-
ments or ideas.
Example: ”He’s a clown with no experience or credibility.”

Continued on next page
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Table 6 – continued from previous page
ID Bias Type Description
17 Mind Reading Assumes knowledge of what another person thinks, interpreting in-

ternal thoughts or emotions of individuals who haven’t explicitly
expressed such thoughts or feelings.
Example: ”She clearly intended to undermine the election.”

18 Opinion-as-Fact Uses subjective language or statements under the guise of objective
reporting. Presents subjective statements as factual information in
supposedly objective news pieces.
Example: ”This policy is proof that the government doesn’t care
about citizens.”

This comprehensive taxonomy serves as the foundation for our multi-model consensus approach,
enabling systematic identification and classification of bias across diverse news content. Each bias
type is evaluated at four granularity levels (None, Low, Moderate, High) to provide nuanced analysis
of bias intensity and manifestation patterns in news articles.

B AGREEMENT SCORE MATRIX

Table 7: Agreement score matrix between bias level assessments

Model 1 \Model 2 None Low Moderate High
None 1.00 0.00 0.00 0.00
Low 0.00 1.00 0.75 0.50

Moderate 0.00 0.75 1.00 0.75
High 0.00 0.50 0.75 1.00

C FINE-TUNING HYPERPARAMETERS

We fine-tuned Qwen3 4B using QLoRA with the following settings: LoRA rank 32, LoRA α 64,
dropout 0.05, AdamW optimizer with learning rate 2e-4, batch size 64 with gradient accumulation
of 8, trained for 4 epochs. We applied weight decay 0.01 and a warmup ratio of 0.1.

D LARGE LANGUAGE MODEL (LLM) USAGE

In accordance with common disclosure practices for the use of large language models (LLMs) in
scientific writing, we report the following:

• Writing and polishing: LLMs were used to aid in improving clarity, grammar, and conciseness
of the manuscript text. All technical content, experimental design, and claims were authored and
verified by the authors.

• Retrieval and discovery: LLMs were used to assist in identifying related work and refining
literature searches. All references included in the paper were manually checked and validated by
the authors.

• No ideation or analysis: LLMs were not used to generate novel research ideas, design experi-
ments, or analyze results. All methodological and experimental contributions are original work
by the authors.

• Transparency: Where LLMs were employed (e.g., text editing and discovery of related work),
their contributions were limited to supportive tasks and do not constitute authorship.

14


	Introduction
	Methodology
	Dataset Engineering and Consensus Mechanism
	Agreement Score Calculation
	Dataset Selection Process
	Final Dataset Composition

	Model Fine-Tuning

	Results
	Dataset Engineering Results
	Multi-Model Agreement Analysis
	Dataset Cleaning Effectiveness

	Fine-Tuning Results
	Bias Pattern Analysis
	Key Achievements

	Conclusion
	Key Contributions and Implications
	Limitations and Future Work
	Final Remarks

	Comprehensive Bias Type Taxonomy
	Agreement score matrix
	Fine-Tuning Hyperparameters
	Large Language Model (LLM) Usage

