
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

CNN-based Baybayin Character Recognition on

Android System

Edric Castel C. Hao
Electronics and Computer Engineering

Department

De La Salle University

Manila, Philippines
edric_hao@dlsu.edu.ph

 Galvin Brice S. Lim
Electronics and Computer Engineering

Department

De La Salle University

Manila, Philippines
galvin_lim@dlsu.edu.ph

Dr. Melvin K. Cabatuan
Electronics and Computer Engineering

Department

De La Salle University

Manila, Philippines

melvin.cabatuan@dlsu.edu.ph

Dr. Edwin Sybingco
Electronics and Computer Engineering

Department

De La Salle University

Manila, Philippines

edwin.sybingco@dlsu.edu.ph

Dr. Ann Dulay
Electronics and Computer Engineering

Department

De La Salle University

Manila, Philippines

ann.dulay@dlsu.edu.ph

Abstract—Baybayin is an old Philippine script that has

become part of Filipino heritage. It was used by the indigenous

people during the pre-colonial times but was later replaced with

the Latin Alphabet during colonialization. Because of this, only

some tribes are using it nowadays. However, recently the

government has been reviving it as a way to connect to the past

and preserve indigenous culture. That is why this paper

proposed an improved CNN model for classifying the Philippine

Script Baybayin in order to help people to learn this old script.

The model was systemically developed through experimentation

and hyperparameter tuning with MobileNetV2 as the baseline.

Sample handwritten Baybayin characters were obtained from

Kaggle and Mendeley Data for training. It was evaluated that

the proposed model has training and validation accuracies of

97.04% and 96.02%, respectively, in contrast to the

MobileNetV2, which has slightly lower accuracies and larger

fluctuations in its validation accuracy. Aside from that, this

model only has total parameters of 892,255 and a size of

3575.944 kB. Lastly, through mobile deployment testing, it was

concluded that only the proposed model is working, as the

MobileNetV2 was not able to accurately detect the diacritics.

Keywords—Baybayin Character Recognition, CNN,

Hyperparameter Tuning, TensorFlow Lite, MobileNetV2,

Android

I. INTRODUCTION

 Baybayin is an old Philippine script that was being used

since the 16th century until the late 19th century, wherein it

was replaced with the Latin alphabet. However, recently, it

has been slowly being reintroduced by the Philippine

government by using this script in documents like passports.

As shown in Fig. 1, it contains 63 characters that include

slight modifications of characters with diacritics [1]. While it

has been promoted as a way to showcase the Filipino

heritage, as it holds their cultural identity, most people

nowadays do not actually know how to read such characters,

especially due to the differences can often be subtle, which

discourages people to use it. A slightly extra stroke or

diacritic would change the character. Hence, this paper aims

to address the issue by creating a character recognition model

that can distinguish between the letters and provide the user

with instant feedback on the Latin alphabet equivalent of the

letter and, at the same time, help them learn this script.

II. RELATED WORKS

Optical Character Recognition, short for OCR, is an AI
algorithm that allows a computer to automatically recognize
handwritten or printed writings and convert them into text data
for further processing [2]. The main principle behind it is
analogous to that of the human eyes recognizing some patterns
from writing and decoding them into their corresponding
character. From a computer perspective, this can be done by
acquiring training images first and then subjecting them into
preprocessing to remove noise and retain only the writing
itself. Afterward, the input images are then split into a set of
features that are of critical characteristics, such as horizontal,
vertical, and diagonal lines, as well as curves and dots. With
the extracted feature, these are then fed into a neural network
for training in order to recognize the characters[2]. While
there are already various OCRs for different languages
available on the internet, one is the Cloud Vision API
developed by Google, which includes popular languages like
English, Filipino, and Chinese; unfortunately, there is still no
official OCR for Baybayin that is developed [3]. However,
there is recent interest in Baybayin character recognition and
even word recognition.

One is the paper in [4], which essentially utilizes a
Convolutional Neural Network (CNN) composed of 32-, 64-,
and 128-channel 3x3 filter convolutional layers with a 2x2
max pooling layer after each convolutional layer and then two
fully connected dense layers. Here, 7000 handwritten
Baybayin characters, including all the 63 characters, were
used for training, and it was concluded that the optimal model
developed in the paper was able to achieve a 94% validation
accuracy. Moreover, it was recommended in the paper that a
mobile app must be developed wherein the users can write a
character and automatically get a classification result in order
to aid people in learning the Baybayin script and fully re-
introduce this old script which embedded the identity of the
Filipino to the public [4].

Fig. 1. Baybayin characters

A similar study was also done in [5], but this time, the
paper utilized the VGG16 model, and it was able to obtain a
higher training accuracy of 99.54% and testing accuracy of
98.84% using a 1080P camera to capture an image of the
character. However, the limitation of the model is that it is
only trained for 45 Baybayin characters only out of the 63
characters.

In another paper [6], the authors introduced two models,
namely the Feed-Forward Neural Network with Dropout
Method (FFNNDM), which is mainly composed of one (1),
four (4), and another one (1) dense layers for the input, hidden,
and output layers respectively, whereas the Convolutional
Neural Network with Dropout Method (CNNDM) is basically
made up of three (3) convolutional layers, followed by two (2)
dense hidden layer and another one (1) output layer. From
these two models, it was determined that the former model has
a higher accuracy of 92.4% compared to the later model which
only has an accuracy of 91.69%.

III. METHODOLOGY

A. Preparation of Datasets

In the development of the model, two Baybayin character
image datasets were utilized for the training in order to have
larger training samples. One is the Baybayin Handwritten
Images dataset with 9833 sample images in Kaggle [7], and
the other is the Handwritten Baybayin Symbols Dataset with
36000 sample images in Mendeley Data [8]. Both datasets
have an imbalanced number of samples for each unique
Baybayin character or class. Fig. 2 shows a sample of the
Baybayin datasets.

Particularly, it is noted that only the former dataset
includes Baybayin characters with diacritics; hence, have a
total of 63 classes, in contrast to the latter dataset, which only
involves the main character with a total of 17 classes, but it
has a larger number of samples for each class. Fig. 3 presents
the statistics of the overall dataset obtained, and it can be seen
that there is a severe imbalance in the data, which can be
detrimental to the training as the model will become more
biased toward the classes that cover the majority of the data
[9]. Hence, in order to resolve this problem, the classes with a

low number of samples were upsampled by generating
duplicate copies of the sample images. On the other hand, the
classes with large samples were downsampled by only using
some of the samples randomly. Following the typical 80:20
training and validation sample ratio, the authors decided to use
400 sample images for the training and 100 for the validation.
Moreover, for simplicity, only the ‘e’ and ‘o’ equivalent of the
characters were considered for labels of the main character
with dots above and below, respectively.

B. Preprocessing of Datasets and Data Augmentations

The Baybayin character recognition is essentially dealing
with the horizontal, vertical, and diagonal lines as well as
curves. The input image is converted to grayscale, as RGB
information is not of concern, and the grayscale pixel is also
inverted, similar to the MNIST, in order to have most of the
pixels be black, that is, a pixel value of 0. To ensure that the
training network will converge fast, the images are normalized
to a range of 0 to 255 with a float 32 data type.

Data Augmentation layers at the input of the model are
employed to cover the non-uniformity of size and position of
human handwriting. It would also cover slightly slanted or
lighter handwriting. Data Augmentation also increases the
training and validation datasets. Given this idea, a Random
Zoom layer with both height and width factor of -5% to 50%,
a Random Rotation layer of about ±30°, a Random
Transliteration layer with both height and width factor of -
10% to 10%, and a Random Contrast layer with a factor of 0.1
are added to the model. However, prior to this, in order to
ensure that the characters of the dataset samples would not be
clipped after data augmentation, the image is first converted
to a 23x23 size and is then padded to a 32x32 pixel image. Fig.
4 presents sample character images after data augmentations.
Lastly, the labels were then converted to one-hot encoding.

C. Modeling and Hyperparameter Tuning

The training and validation data for Baybayin character

recognition are both applied to MobileNetV2 and the

proposed model. Fig. 5 presents the MobileNetV2 model.

The implementation of the MobileNetV2 code is adapted

from [10]. The proposed model is presented in Fig. 6. With

the proposed based model, the hyperparameters of the model

were then optimized. This was done by foremost using the

Keras Tuner to tune the number of units and the dropout rate

of both dense layers as well as the type of optimizer and its

corresponding learning rate. This was done as the Keras

Tuner has a faster tuning algorithm, as it does not train each

model at once, but rather it trains a fraction of the total epochs

first and then decides on which model to further train. For the

optimizer, only the Adam and RMSprop were tried as both of

these are deemed to be superior, especially since they can

have a varying learning rate depending on the features. From

Fig. 2. Dataset samples.

Fig. 3. Statistics of the dataset samples for each unique Baybayin

character.

 Fig. 4. Training samples after data augmentations

the resulting tuned model, the optimal model was then

selected and further tuned with the Hparams dashboard. Here,

the type of optimizer and its learning rate was again tuned,

but this time together with the batch size. The top three (3)

models with the highest accuracy were then selected and

further evaluated.

D. Training and Evaluation

With the MobileNetV2 model and the three (3) candidate
models obtained from the Hyperparameter Tuning, these

models are compiled using Categorical Crossentropy loss
function and accuracy metric and then fully trained according
to the resulting optimal hyperparameters obtained for each
model with 50 epochs. The training vs. validation accuracy
and loss plots are obtained for initial evaluation. The
confusion matrix and the classifcation report of both the
MobileNetV2 and the final optimized model are further
evaluated, including their model size and number of
parameters.

E. Mobile Deployment

After designing and optimizing the model, both the
MobileNetV2 and the proposed model are deployed to an
Android system. In order to do this, the Tflite MNIST android
application developed by [11], as shown in Fig. 7, is adapted.
Sample inferences are obtained and the real performance of
the model is assessed.

IV. RESULTS AND DISCUSSION

A. Model Hyperparameter Tuning Results

Following the proposed systematic methodology in
developing a model and tuning its hyperparameters, namely
the number of units and the dropout rate of the two dense
layers as well as the optimizer and learning rate to be used, the
KerasTuner was utilized, Table I presents the top three (3)
model with the highest validation accuracy. Particularly, as
can be seen in the results, an increasing number of units for
the two dense layers, which is not the usual case for a CNN
model, coincidentally have a better performance. In addition
to that, an equal number of units for the two dense layers, that
is, having less trainable parameters in the overall model as
well, also results in a higher validation accuracy in contrast to
the usual model of having a narrowing network after the CNN
feature extraction. The rationale here is that with the high-
level features, it is a convention to reduce the number of
neurons by decreasing the units of each dense layer and
reaching the target number of outputs or classes.

In order to confirm the performance, both models were fully
trained with 50 epochs, as shown in Fig. 8 and Fig. 9. From
the figures, it can be seen that the model does not have
satisfactory training results. For the model with 256- and 512-
unit dense layers, the training accuracy reached 95.74%, its
validation accuracy is fluctuating over different batches of
images with an accuracy of as low as 61.90% and as high as
95.22%. The same performance can be seen in the model with
256- and 256-unit dense layers, but this time with lesser
fluctuations in the validation accuracy ranging from 89.83%
to 95.05%. Similarly, its training accuracy was also around
95.59%. Third model with 512- and 256-unit dense layers,
respectively, produces better performance with higher training
and validation accuracies as well as fewer fluctuations in the
validation accuracy.

Fig. 6. Proposed model.

Fig. 5. MobileNetV2 model [12].

Fig. 7. Character recognition application

TABLE I. HYPERPARAMETER TUNING RESULTS USING KERASTUNER

Hyperparameters
Model

Top 1 Top 2 Top 3

Units1 256 256 512

Dropout1 0.1 0.05 0.05

Units2 512 256 256

Dropout2 0.15 0.1 0.15

Optimizer RMSprop adam adam

Learning Rate 0.0001 0.001 0.001

Tuner/Epochs 30 30 30

Score 0.936349213 0.935079336 0.923968256

With the base model being developed, it was optimized
with the utilization of the Hparams dashboard. Specifically,
the type of optimizer and its corresponding learning rate was
again tuned together with the batch size in an attempt to reduce
the fluctuations in the validation accuracy and, at the same
time, increase the training and validation accuracy. It was
found out that the root cause of the fluctuations in the
validation accuracy is due to the dynamic of the datasets,
especially given that data augmentations were applied. Hence,
the batch size is varied in order to cover a larger percentage of
the overall datasets and minimize the mini-batch stochastic
gradient descent (SGD) from wandering aggressively.
Furthermore, adaptive optimizers, namely Adam and
RMSprop, were also tried as both of these can have a varying
learning rate with respect to the features Fig. 10 presents the
results of the hyperparameter tuning. Here, it was noted that
the Adam optimizer with a learning rate of 0.0001 and batch
size of 16 was able to achieve the highest accuracy, followed
by the Adam optimizer with a learning rate of 0.001 and batch
size of 64, and then the RMSprop optimizer with a learning
rate of 0.0001 and batch size of 16.

B. Training Results

With the three (3) candidate models obtained from the
hyperparameter tuning, the MobileNetV2 was utilized as a
reference for comparison. Fig. 11 presents the training vs.
validation accuracy and loss plots of the MobileNetV2. From
the figure, it can be seen that the model only was able to
achieve a training accuracy of 94.65% after 50 epochs of
training. Moreover, the validation accuracy also has a large
fluctuation ranging from as low as 76.21% to 92.11%,
considering the last ten (10) epochs. In fact, there is high
overfitting manifested in the model with around a 2.5%
difference between the training and validation accuracies.
This can be primarily attributed to the complexity of the
MobileNetV2 model itself, which has more than 2.3 million
parameters; hence, it requires long training. In addition to that,
this model is primarily used for large images with a typical
size of 224 x 224 and RGB color, in contrast to the image of
interest, which is only 32x32 and grayscale. Lastly,
MobileNetV2 is designed for image classification, which
extracts spatial, shape, and color features, whereas, for
character recognition, it primarily focuses on the lines and
curves of the writing as well as the presence of diacritics in the
case of Baybayin characters. Due to the large number of
parameters need by MobileNetV2, the proposed model has a
more simplified model with lesser parameters and direct
connection of layers, in order words, no skipping of layers in
between, as illustrated in Fig. 6.

Given that, the three candidate models were trained with
50 epochs as well, and the training results are presented in Fig.
12, Fig. 13, and Fig. 14. From the figures, it can be seen that
the first candidate model indeed achieves a higher accuracy
with 97.05% for the training and around 95% to 96.02% for
the validation but with an outlier accuracy of as low as 90.11%
in the last ten (10) epochs. On the contrary, the second
candidate model was only able to obtain a training accuracy
of 95.84% and validation accuracy ranging from 86.60% to
95.08% and slightly lower for the third candidate model with
94.02% and 82.90% to 94.84%, respectively. Nevertheless, all
these three (3) models exhibit lesser overfitting compared to

Fig. 9. Model with 256 and 256-unit dense layers, respectively.

Fig. 10. Hyperparameter tuning results with Hparams dashboard

Fig. 11. Training vs. validation accuracy and loss plots for the

MobileNetV2 model.

Fig. 8. Model with 256 and 512-unit dense layers, respectively.

the MobileNetV2. Therefore, the model using Adam
optimizer with a learning rate of 0.0001 and batch size of 16
was deemed as the optimal model for Baybayin character
recognition and was further analyzed and deployed to an
Android system, which will be discussed later.

 Moving on, Fig. 15 and Fig. 16 present the confusion
matrix of the MobileNetV2 and the chosen proposed model.
From these two figures, it can be clearly seen that the latter
model performed better compared to the former, as it was able
to recognize most of the characters correctly, as denoted by
the degree of blue shade in the diagonal line. Delving into it
further, it was determined that the proposed model has a
higher accuracy of 95.76%, whereas the MobileNetV2 only
has an accuracy of 87.65%. That is why it is deemed that the
proposed model outperforms MobileNetV2.

C. Mobile Deployment

Afterward, the MobileNetV2 and the proposed models
were then deployed to a mobile device, specifically to an
Android system. In order to do this, the models were foremost
converted to a tflite model—an optimized version of the
model for mobile applications. Table II summarizes the
specifications of these two models. Particularly, it can be seen
that the proposed model only has 892,255 parameters, which

is about one-third of the size of the MobileNetV2. Hence,
consequently, the model size is also reduced by one-third with
a size of 3575.944 kB. Nevertheless, while the model is
significantly smaller, it outperforms the MobileNetV2, as seen
in their training and validation accuracies.

With that, Fig. 17 present some sample inferences
obtained from the mobile deployment using both the proposed
model and MobileNetV2. As illustrated in the figure, the
proposed model indeed was able to successfully recognize the
Baybayin characters, particularly it was able to distinguish the
different equivalent characters with diacritics, like dots above
or below the main character as well as plus sign or cross below
the character. Moreover, as seen in the figure, even with
varying sizes of the writing as well as orientation and position,

Fig. 12. Training vs. validation accuracy and loss plots for the proposed

model.

Fig. 13. Training vs. validation accuracy and loss plots for the 2nd

candidate model

Fig. 14. Training vs. validation accuracy and loss plots for the 3rd candidate

model.

Fig. 15. Confusion matrix of the MobileNetV2 model.

Fig. 16. Confusion matrix of the proposed model.

TABLE II. MOBILENETV2 VS. PROPOSED MODEL SPECIFICATIONS

SUMMARY

Hyperparameters
Model

MobileNetV2 Proposed Model

Total Params 2,338,111 892,255

Training Accuracy 94.65% 97.04%

Validation Accuracy 92.11% 96.02%

Model Size 9178.852 kB 3575.944 kB

Inference Time 24~37 ms <30 ms

Mobile Deployment Prediction

(Diacritic Recognition)
NO YES

it still was able to accurately recognize the character. This is
mainly attributed to the data augmentation process integrated
into the model training. Furthermore, it can be observed that
the inference time of the model, including the application
itself, denoted by the Time Cost, was essentially less than 30
ms.

Though it may seem that the MobileNetV2 will have
comparable performance as it has a more complicated and
larger model and even has a satisfactory confusion matrix, it
can be seen in Fig. 17(b) that this was not able to produce
accurate inferences, particularly it fails to recognize characters
with diacritics. Moreover, it takes a longer inference time with
an average time of around 24 to 37 ms. Again, this can be
mainly attributed to the overcomplexity of the model for the
problem itself, which instead produces a detrimental
performance.

V. CONCLUSION

 The model for Baybayin character recognition system that
utilizes a simpler CNN model with a lesser number of
parameters and direct connection between each layer and then
undergoing a series of hyperparameter tuning, particularly the
number of units and dropout rate of the two dense layers as
well as the type of optimizer, learning rate, and the batch size
is successfully developed. The Baybayin character
recognition system has training and validation accuracies of
97.04% and 96.02%, respectively. Moreover, the proposed
model only has total parameters of 892,255 and a size of
3575.944 kB, hence, making it more suitable for mobile

deployment. With the reduction in the size of the model, the
inference time also significantly decreases, making the system
operate at a faster rate, especially given that a mobile system
has limited computing power. In comparison with
MobileNetV2, the proposed model exceeded the performance
of MobileNetV2 where the model recognizes diacritics better
and with better accuracy. For future studies, it is highly
recommended to optimize Baybayin word recognition system
with transliteration for mobile deployment in the hope that this
can be utilized for the tourists to translate the Baybayin
writings into artifacts during their museum tour as well as aid
the archeologists in decoding Baybayin writings.

ACKNOWLEDGMENT

The authors of this paper would like to extend their sincere
gratitude to their course professor, Dr. Melvin K. Cabatuan,
and their research advisers, Dr. Edwin Sybingco and Dr. Ann
Dulay, for imparting their knowledge on Deep Learning in
Mobile Computing and guiding them throughout the research.

REFERENCES

[1] “Learning Baybayin: A Writing System From the Philippines |

Baybayin, Filipino words, Meaningful word tattoos.”

https://www.pinterest.ph/pin/360499145173337709/ (accessed Jul.

08, 2022).
[2] “OCR Algorithm: Improve and Automate Business Processes –

InData Labs.” https://indatalabs.com/blog/ocr-automate-business-

processes (accessed Jul. 13, 2022).

[3] “OCR Language Support | Cloud Vision API | Google Cloud.”

https://cloud.google.com/vision/docs/languages (accessed Jul. 13,
2022).

[4] J. A. Nogra, C. L. S. Romana, and E. Maravillas, “Baybáyin

Character Recognition Using Convolutional Neural Network,”

International Journal of Machine Learning and Computing, vol. 10,

no. 2, pp. 265–270, Feb. 2020, doi: 10.18178/IJMLC.2020.10.2.930.

[5] “Recognition of Baybayin (Ancient Philippine Character)

Handwritten Letters Using VGG16 Deep Convolutional Neural

Network Model,” International Journal of Emerging Trends in

Engineering Research, vol. 8, no. 9, pp. 5233–5237, Sep. 2020, doi:

10.30534/IJETER/2020/55892020.

[6] M. J. A. Daday, “Recognition of Baybayin Symbols (Ancient Pre-

Colonial Philippine Writing System) using Image Processing,”

International Journal of Advanced Trends in Computer Science and

Engineering, vol. 9, no. 1, pp. 594–598, Feb. 2020, doi:

10.30534/IJATCSE/2020/83912020.

[7] “Baybayín (Baybayin) Handwritten Images | Kaggle.”

https://www.kaggle.com/datasets/jamesnogra/baybayn-baybayin-

handwritten-images (accessed Jul. 13, 2022).

[8] M. J. Daday, “Handwritten Baybayin Symbols Dataset,” vol. 1, 2020,

doi: 10.17632/J6CGCFYS77.1.

[9] “What is Imbalanced Data | Techniques to Handle Imbalanced Data.”

https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-

handle-imbalanced-data-for-a-classification-problem/ (accessed Jul.

13, 2022).

[10] “Creating MobileNetsV2 with TensorFlow from scratch | by Sumeet

Badgujar | Analytics Vidhya | Medium.”

https://medium.com/analytics-vidhya/creating-mobilenetsv2-with-

tensorflow-from-scratch-c85eb8605342 (accessed Jul. 13, 2022).

[11] “GitHub - nex3z/tflite-mnist-android: MNIST with TensorFlow Lite

on Android.” https://github.com/nex3z/tflite-mnist-android (accessed

Jul. 13, 2022).

[12] “MobileNetV2: Inverted Residuals and Linear Bottlenecks | by Paul-

Louis Pröve | Towards Data Science.”

https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-

linear-bottlenecks-8a4362f4ffd5 (accessed Jul. 13, 2022).

(a) (b)

Fig. 17. Sample inferences obtained from mobile deployment using: (a)

proposed model and (b) MobileNetV2.

