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Abstract—Baybayin is an old Philippine script that has 

become part of Filipino heritage. It was used by the indigenous 

people during the pre-colonial times but was later replaced with 

the Latin Alphabet during colonialization. Because of this, only 

some tribes are using it nowadays. However,  recently the 

government has been reviving it as a way to connect to the past 

and preserve indigenous culture. That is why this paper 

proposed an improved CNN model for classifying the Philippine 

Script Baybayin in order to help people to learn this old script. 

The model was systemically developed through experimentation 

and hyperparameter tuning with MobileNetV2 as the baseline. 

Sample handwritten Baybayin characters were obtained from 

Kaggle and Mendeley Data for training. It was evaluated that 

the proposed model has training and validation accuracies of 

97.04% and 96.02%, respectively, in contrast to the 

MobileNetV2, which has slightly lower accuracies and larger 

fluctuations in its validation accuracy. Aside from that, this 

model only has total parameters of 892,255 and a size of 

3575.944 kB. Lastly, through mobile deployment testing, it was 

concluded that only the proposed model is working, as the 

MobileNetV2 was not able to accurately detect the diacritics. 

Keywords—Baybayin Character Recognition, CNN,  

Hyperparameter Tuning, TensorFlow Lite, MobileNetV2, 

Android 

I. INTRODUCTION 

 Baybayin is an old Philippine script that was being used 

since the 16th century until the late 19th century, wherein it 

was replaced with the Latin alphabet. However, recently, it 

has been slowly being reintroduced by the Philippine 

government by using this script in documents like passports. 

As shown in Fig. 1, it contains 63 characters that include 

slight modifications of characters with diacritics [1]. While it 

has been promoted as a way to showcase the Filipino 

heritage, as it holds their cultural identity, most people 

nowadays do not actually know how to read such characters, 

especially due to the differences can often be subtle, which 

discourages people to use it. A slightly extra stroke or 

diacritic would change the character. Hence, this paper aims 

to address the issue by creating a character recognition model 

that can distinguish between the letters and provide the user 

with instant feedback on the Latin alphabet equivalent of the 

letter and, at the same time, help them learn this script.  

II. RELATED WORKS 

Optical Character Recognition, short for OCR, is an AI 
algorithm that allows a computer to automatically recognize 
handwritten or printed writings and convert them into text data 
for further processing [2]. The main principle behind it is 
analogous to that of the human eyes recognizing some patterns 
from writing and decoding them into their corresponding 
character. From a computer perspective, this can be done by 
acquiring training images first and then subjecting them into 
preprocessing to remove noise and retain only the writing 
itself. Afterward, the input images are then split into a set of 
features that are of critical characteristics, such as horizontal, 
vertical, and diagonal lines, as well as curves and dots. With 
the extracted feature, these are then fed into a neural network 
for training in order to recognize the characters[2]. While 
there are already various OCRs for different languages 
available on the internet, one is the Cloud Vision API 
developed by Google, which includes popular languages like 
English, Filipino, and Chinese; unfortunately, there is still no 
official OCR for Baybayin that is developed [3]. However, 
there is recent interest in Baybayin character recognition and 
even word recognition.  

One is the paper in [4], which essentially utilizes a 
Convolutional Neural Network (CNN) composed of 32-, 64-, 
and 128-channel 3x3 filter convolutional layers with a 2x2 
max pooling layer after each convolutional layer and then two 
fully connected dense layers. Here, 7000 handwritten 
Baybayin characters, including all the 63 characters, were 
used for training, and it was concluded that the optimal model 
developed in the paper was able to achieve a 94% validation 
accuracy. Moreover, it was recommended in the paper that a 
mobile app must be developed wherein the users can write a 
character and automatically get a classification result in order 
to aid people in learning the Baybayin script and fully re-
introduce this old script which embedded the identity of the 
Filipino to the public [4].  

 

Fig. 1.  Baybayin characters  

 



A similar study was also done in [5], but this time, the 
paper utilized the VGG16 model, and it was able to obtain a 
higher training accuracy of 99.54% and testing accuracy of 
98.84% using a 1080P camera to capture an image of the 
character. However, the limitation of the model is that it is 
only trained for 45 Baybayin characters only out of the 63 
characters. 

In another paper [6], the authors introduced two models, 
namely the Feed-Forward Neural Network with Dropout 
Method (FFNNDM), which is mainly composed of one (1), 
four (4), and another one (1) dense layers for the input, hidden, 
and output layers respectively, whereas the Convolutional 
Neural Network with Dropout Method (CNNDM) is basically 
made up of three (3) convolutional layers, followed by two (2) 
dense hidden layer and another one (1) output layer. From 
these two models, it was determined that the former model has 
a higher accuracy of 92.4% compared to the later model which 
only has an accuracy of 91.69%. 

III. METHODOLOGY 

A. Preparation of Datasets 

In the development of the model, two Baybayin character 
image datasets were utilized for the training in order to have 
larger training samples. One is the Baybayin Handwritten 
Images dataset with 9833 sample images in Kaggle [7], and 
the other is the Handwritten Baybayin Symbols Dataset with 
36000 sample images in Mendeley Data [8]. Both datasets 
have an imbalanced number of samples for each unique 
Baybayin character or class. Fig. 2 shows a sample of the 
Baybayin datasets. 

Particularly, it is noted that only the former dataset 
includes Baybayin characters with diacritics; hence, have a 
total of 63 classes, in contrast to the latter dataset, which only 
involves the main character with a total of 17 classes, but it 
has a larger number of samples for each class. Fig. 3 presents 
the statistics of the overall dataset obtained, and it can be seen 
that there is a severe imbalance in the data, which can be 
detrimental to the training as the model will become more 
biased toward the classes that cover the majority of the data 
[9]. Hence, in order to resolve this problem, the classes with a 

low number of samples were upsampled by generating 
duplicate copies of the sample images. On the other hand, the 
classes with large samples were downsampled by only using 
some of the samples randomly. Following the typical 80:20 
training and validation sample ratio, the authors decided to use 
400 sample images for the training and 100 for the validation. 
Moreover, for simplicity, only the ‘e’ and ‘o’ equivalent of the 
characters were considered for labels of the main character 
with dots above and below, respectively. 

B. Preprocessing of Datasets and Data Augmentations 

The Baybayin character recognition is essentially dealing 
with the horizontal, vertical, and diagonal lines as well as 
curves. The input image is converted to grayscale, as RGB 
information is not of concern, and the grayscale pixel is also 
inverted, similar to the MNIST, in order to have most of the 
pixels be black, that is, a pixel value of 0. To ensure that the 
training network will converge fast, the images are normalized 
to a range of 0 to 255 with a float 32 data type. 

Data Augmentation layers at the input of the model are 
employed to cover the non-uniformity of size and position of 
human handwriting. It would also cover slightly slanted or 
lighter handwriting. Data Augmentation also increases the 
training and validation datasets. Given this idea, a Random 
Zoom layer with both height and width factor of -5% to 50%, 
a Random Rotation layer of about ±30°, a Random 
Transliteration layer with both height and width factor of -
10% to 10%, and a Random Contrast layer with a factor of 0.1 
are added to the model. However, prior to this, in order to 
ensure that the characters of the dataset samples would not be 
clipped after data augmentation, the image is first converted 
to a 23x23 size and is then padded to a 32x32 pixel image. Fig. 
4 presents sample character images after data augmentations. 
Lastly, the labels were then converted to one-hot encoding. 

C. Modeling and Hyperparameter Tuning 

The training and validation data for Baybayin character 

recognition are both applied to MobileNetV2 and the 

proposed model. Fig. 5 presents the MobileNetV2 model. 

The implementation of the MobileNetV2 code is adapted 

from [10]. The proposed model is presented in Fig. 6. With 

the proposed based model, the hyperparameters of the model 

were then optimized. This was done by foremost using the 

Keras Tuner to tune the number of units and the dropout rate 

of both dense layers as well as the type of optimizer and its 

corresponding learning rate. This was done as the Keras 

Tuner has a faster tuning algorithm, as it does not train each 

model at once, but rather it trains a fraction of the total epochs 

first and then decides on which model to further train. For the 

optimizer, only the Adam and RMSprop were tried as both of 

these are deemed to be superior, especially since they can 

have a varying learning rate depending on the features. From 

 

Fig. 2.  Dataset samples. 

 

Fig. 3.  Statistics of the dataset samples for each unique Baybayin 

character. 

 

 

 Fig. 4.  Training samples after data augmentations 

 



the resulting tuned model, the optimal model was then 

selected and further tuned with the Hparams dashboard. Here, 

the type of optimizer and its learning rate was again tuned, 

but this time together with the batch size. The top three (3) 

models with the highest accuracy were then selected and 

further evaluated. 

D. Training and Evaluation 

With the MobileNetV2 model and the three (3) candidate 
models obtained from the Hyperparameter Tuning, these 

models are compiled using Categorical Crossentropy loss 
function and accuracy metric and then fully trained according 
to the resulting optimal hyperparameters obtained for each 
model with 50 epochs. The training vs. validation accuracy 
and loss plots are obtained for initial evaluation. The 
confusion matrix and the classifcation report of both the 
MobileNetV2 and the final optimized model are further 
evaluated, including their model size and number of 
parameters. 

E. Mobile Deployment 

After designing and optimizing the model, both the 
MobileNetV2 and the proposed model are deployed to an 
Android system. In order to do this, the Tflite MNIST android 
application developed by [11], as shown in Fig. 7, is adapted. 
Sample inferences are obtained and the real performance of 
the model is assessed. 

IV. RESULTS AND DISCUSSION 

A. Model Hyperparameter Tuning Results 

Following the proposed systematic methodology in 
developing a model and tuning its hyperparameters, namely 
the number of units and the dropout rate of the two dense 
layers as well as the optimizer and learning rate to be used, the 
KerasTuner was utilized, Table I presents the top three (3) 
model with the highest validation accuracy. Particularly, as 
can be seen in the results, an increasing number of units for 
the two dense layers, which is not the usual case for a CNN 
model, coincidentally have a better performance. In addition 
to that, an equal number of units for the two dense layers, that 
is, having less trainable parameters in the overall model as 
well, also results in a higher validation accuracy in contrast to 
the usual model of having a narrowing network after the CNN 
feature extraction. The rationale here is that with the high-
level features, it is a convention to reduce the number of 
neurons by decreasing the units of each dense layer and 
reaching the target number of outputs or classes. 

In order to confirm the performance, both models were fully 
trained with 50 epochs, as shown in Fig. 8 and Fig. 9. From 
the figures, it can be seen that the model does not have 
satisfactory training results. For the model with 256- and 512-
unit dense layers, the training accuracy reached 95.74%, its 
validation accuracy is fluctuating over different batches of 
images with an accuracy of as low as 61.90% and as high as 
95.22%. The same performance can be seen in the model with 
256- and 256-unit dense layers, but this time with lesser 
fluctuations in the validation accuracy ranging from 89.83% 
to 95.05%. Similarly, its training accuracy was also around 
95.59%. Third model with 512- and 256-unit dense layers, 
respectively, produces better performance with higher training 
and validation accuracies as well as fewer fluctuations in the 
validation accuracy.  

 

Fig. 6.  Proposed model. 

 

 

Fig. 5.  MobileNetV2 model [12]. 

 

 

Fig. 7.  Character recognition application 

 



TABLE I.  HYPERPARAMETER TUNING RESULTS USING KERASTUNER 

Hyperparameters 
Model 

Top 1 Top 2 Top 3 

Units1 256 256 512 

Dropout1 0.1 0.05 0.05 

Units2 512 256 256 

Dropout2 0.15 0.1 0.15 

Optimizer RMSprop adam adam 

Learning Rate 0.0001 0.001 0.001 

Tuner/Epochs 30 30 30 

Score 0.936349213 0.935079336 0.923968256 

With the base model being developed, it was optimized 
with the utilization of the Hparams dashboard. Specifically, 
the type of optimizer and its corresponding learning rate was 
again tuned together with the batch size in an attempt to reduce 
the fluctuations in the validation accuracy and, at the same 
time, increase the training and validation accuracy. It was 
found out that the root cause of the fluctuations in the 
validation accuracy is due to the dynamic of the datasets, 
especially given that data augmentations were applied. Hence, 
the batch size is varied in order to cover a larger percentage of 
the overall datasets and minimize the mini-batch stochastic 
gradient descent (SGD) from wandering aggressively. 
Furthermore, adaptive optimizers, namely Adam and 
RMSprop, were also tried as both of these can have a varying 
learning rate with respect to the features Fig. 10 presents the 
results of the hyperparameter tuning. Here, it was noted that 
the Adam optimizer with a learning rate of 0.0001 and batch 
size of 16 was able to achieve the highest accuracy, followed 
by the Adam optimizer with a learning rate of 0.001 and batch 
size of 64, and then the RMSprop optimizer with a learning 
rate of 0.0001 and batch size of 16. 

B. Training Results 

With the three (3) candidate models obtained from the 
hyperparameter tuning, the MobileNetV2 was utilized as a 
reference for comparison. Fig. 11 presents the training vs. 
validation accuracy and loss plots of the MobileNetV2. From 
the figure, it can be seen that the model only was able to 
achieve a training accuracy of 94.65% after 50 epochs of 
training. Moreover, the validation accuracy also has a large 
fluctuation ranging from as low as 76.21% to 92.11%, 
considering the last ten (10) epochs. In fact, there is high 
overfitting manifested in the model with around a 2.5% 
difference between the training and validation accuracies. 
This can be primarily attributed to the complexity of the 
MobileNetV2 model itself, which has more than 2.3 million 
parameters; hence, it requires long training. In addition to that, 
this model is primarily used for large images with a typical 
size of 224 x 224 and RGB color, in contrast to the image of 
interest, which is only 32x32 and grayscale. Lastly, 
MobileNetV2 is designed for image classification, which 
extracts spatial, shape, and color features, whereas, for 
character recognition, it primarily focuses on the lines and 
curves of the writing as well as the presence of diacritics in the 
case of Baybayin characters. Due to the large number of 
parameters need by MobileNetV2, the proposed model has a 
more simplified model with lesser parameters and direct 
connection of layers, in order words, no skipping of layers in 
between, as illustrated in Fig. 6. 

Given that, the three candidate models were trained with 
50 epochs as well, and the training results are presented in Fig. 
12, Fig. 13, and Fig. 14. From the figures, it can be seen that 
the first candidate model indeed achieves a higher accuracy 
with 97.05% for the training and around 95% to 96.02% for 
the validation but with an outlier accuracy of as low as 90.11% 
in the last ten (10) epochs. On the contrary, the second 
candidate model was only able to obtain a training accuracy 
of 95.84% and validation accuracy ranging from 86.60% to 
95.08% and slightly lower for the third candidate model with 
94.02% and 82.90% to 94.84%, respectively. Nevertheless, all 
these three (3) models exhibit lesser overfitting compared to 

 

Fig. 9.  Model with 256 and 256-unit dense layers, respectively. 

 

 

Fig. 10.  Hyperparameter tuning results with Hparams dashboard  

 

 

Fig. 11.  Training vs. validation accuracy and loss plots for the 

MobileNetV2 model. 

 

 

Fig. 8.  Model with 256 and 512-unit dense layers, respectively. 

 



the MobileNetV2. Therefore, the model using Adam 
optimizer with a learning rate of 0.0001 and batch size of 16 
was deemed as the optimal model for Baybayin character 
recognition and was further analyzed and deployed to an 
Android system, which will be discussed later.  

 Moving on, Fig. 15 and Fig. 16 present the confusion 
matrix of the MobileNetV2 and the chosen proposed model. 
From these two figures, it can be clearly seen that the latter 
model performed better compared to the former, as it was able 
to recognize most of the characters correctly, as denoted by 
the degree of blue shade in the diagonal line. Delving into it 
further, it was determined that the proposed model has a 
higher accuracy of 95.76%, whereas the MobileNetV2 only 
has an accuracy of 87.65%. That is why it is deemed that the 
proposed model outperforms MobileNetV2.  

C. Mobile Deployment 

Afterward, the MobileNetV2 and the proposed models 
were then deployed to a mobile device, specifically to an 
Android system. In order to do this, the models were foremost 
converted to a tflite model—an optimized version of the 
model for mobile applications. Table II summarizes the 
specifications of these two models. Particularly, it can be seen 
that the proposed model only has 892,255 parameters, which 

is about one-third of the size of the MobileNetV2. Hence, 
consequently, the model size is also reduced by one-third with 
a size of 3575.944 kB. Nevertheless, while the model is 
significantly smaller, it outperforms the MobileNetV2, as seen 
in their training and validation accuracies.  

With that, Fig. 17 present some sample inferences 
obtained from the mobile deployment using both the proposed 
model and MobileNetV2. As illustrated in the figure, the 
proposed model indeed was able to successfully recognize the 
Baybayin characters, particularly it was able to distinguish the 
different equivalent characters with diacritics, like dots above 
or below the main character as well as plus sign or cross below 
the character. Moreover, as seen in the figure, even with 
varying sizes of the writing as well as orientation and position, 

 

Fig. 12.  Training vs. validation accuracy and loss plots for the proposed 

model. 

 

Fig. 13.  Training vs. validation accuracy and loss plots for the 2nd 

candidate model 

 

Fig. 14.  Training vs. validation accuracy and loss plots for the 3rd candidate 

model. 

 

 

 

 

 

 

Fig. 15.  Confusion matrix of the MobileNetV2 model. 

 

Fig. 16.  Confusion matrix of the proposed model. 

 



TABLE II.  MOBILENETV2 VS. PROPOSED MODEL SPECIFICATIONS 

SUMMARY 

Hyperparameters 
Model 

MobileNetV2 Proposed Model 

Total Params 2,338,111 892,255 

Training Accuracy 94.65% 97.04% 

Validation Accuracy 92.11% 96.02% 

Model Size 9178.852 kB 3575.944 kB 

Inference Time 24~37 ms <30 ms 

Mobile Deployment Prediction 

(Diacritic Recognition) 
NO YES 

it still was able to accurately recognize the character. This is 
mainly attributed to the data augmentation process integrated 
into the model training. Furthermore, it can be observed that 
the inference time of the model, including the application 
itself, denoted by the Time Cost, was essentially less than 30 
ms.  

Though it may seem that the MobileNetV2 will have 
comparable performance as it has a more complicated and 
larger model and even has a satisfactory confusion matrix, it 
can be seen in Fig. 17(b) that this was not able to produce 
accurate inferences, particularly it fails to recognize characters 
with diacritics. Moreover, it takes a longer inference time with 
an average time of around 24 to 37 ms. Again, this can be 
mainly attributed to the overcomplexity of the model for the 
problem itself, which instead produces a detrimental 
performance.  

V. CONCLUSION 

 The model for Baybayin character recognition system that 
utilizes a simpler CNN model with a lesser number of 
parameters and direct connection between each layer and then 
undergoing a series of hyperparameter tuning, particularly the 
number of units and dropout rate of the two dense layers as 
well as the type of optimizer, learning rate, and the batch size 
is successfully developed. The Baybayin character 
recognition  system  has  training  and validation accuracies of 
97.04% and 96.02%, respectively. Moreover, the proposed 
model only has total parameters of 892,255 and a size of 
3575.944 kB, hence, making it more suitable for mobile 

deployment. With the reduction in the size of the model, the 
inference time also significantly decreases, making the system 
operate at a faster rate, especially given that a mobile system 
has limited computing power. In comparison with 
MobileNetV2, the proposed model exceeded the performance 
of MobileNetV2 where the model recognizes diacritics better 
and with better accuracy. For future studies, it is highly 
recommended to optimize Baybayin word recognition system 
with transliteration for mobile deployment in the hope that this 
can be utilized for the tourists to translate the Baybayin 
writings into artifacts during their museum tour as well as aid 
the archeologists in decoding Baybayin writings.  
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(a)        (b) 

Fig. 17.  Sample inferences obtained from mobile deployment using: (a) 

proposed model and (b) MobileNetV2. 

 


