

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADARL: ADAPTIVE LOW-RANK STRUCTURES FOR RO- BUST POLICY LEARNING UNDER UNCERTAINTY

Anonymous authors

Paper under double-blind review

ABSTRACT

Robust reinforcement learning (Robust RL) seeks to handle epistemic uncertainty in environment dynamics, but existing approaches often rely on nested min–max optimization, which is computationally expensive and yields overly conservative policies. We propose **Adaptive Rank Representation (AdaRL)**, a bi-level optimization framework that improves robustness by aligning policy complexity with the intrinsic dimension of the task. At the lower level, AdaRL performs policy optimization under fixed-rank constraints with dynamics sampled from a Wasserstein ball around a centroid model. At the upper level, it adaptively adjusts the rank to balance the bias–variance trade-off, projecting policy parameters onto a low-rank manifold. This design avoids solving adversarial worst-case dynamics while ensuring robustness without over-parameterization. Empirical results on MuJoCo continuous control benchmarks demonstrate that AdaRL not only consistently outperforms fixed-rank baselines (e.g., SAC) and state-of-the-art robust RL methods (e.g., RNAC, Parseval), but also converges toward the intrinsic rank of the underlying tasks. These results highlight that adaptive low-rank policy representations provide an efficient and principled alternative for robust RL under model uncertainty.

1 INTRODUCTION

The goal of a reinforcement learning (RL) agent is to learn a policy that maximizes its expected discounted cumulative reward (Sutton et al., 1998). Recent advances have enabled RL agents to master complex games and robotic control tasks in both simulation and the real world (Mnih et al., 2015; Silver et al., 2017). However, policies that perform well in such controlled settings often fail to transfer to practice, where transition dynamics are rarely fixed and may shift due to modeling inaccuracies (Lanzani, 2025), external disturbances, or changing conditions (Pattanaik et al., 2017). To address this gap, robust reinforcement learning (robust RL) (Zhou et al., 1996) formalizes uncertainty by considering a set of possible transition kernels and casting policy optimization as a minmax problem: the agent seeks a policy that maximizes expected return under the worst-case dynamics. This formulation reduces the sensitivity of RL to model misspecification and aims to produce policies that stay reliable when the environment differs from training.

Robust RL provide a principled framework to handle model uncertainty by optimizing for policies that perform well under the worst-case transition models within a prescribed uncertainty set (Iyengar, 2005; Wiesemann et al., 2013). Classical solutions extend Bellman’s principle to robust settings (Satia & Lave Jr, 1973), while more recent work has focused on robust policy learning via model-based planning (Clavier et al., 2023) or online interaction with a nominal environment (Wang & Zou, 2021). Despite these advances, robust RL faces severe scalability issues when applied to continuous and high-dimensional domains. In particular, updating the robust value function via the robust Bellman operator requires solving a nested inner-loop optimization at every step, i.e., identifying the worst-case transition, which becomes computationally prohibitive as the state and action spaces grow or when the uncertainty set is large or unbounded (Wang & Zou, 2022). Moreover, existing approaches often assume access to oracle solvers or rely on fixed uncertainty sets that may yield overly conservative policies (Mannor et al., 2012; 2016; Xu & Mannor, 2012). Beyond these computational bottlenecks, another key challenge lies in function approximation. Existing analyzes are mostly restricted to the tabular setting, which cannot achieve parameterized neural network approximations to the optimal solution of the robust Bellman equation. Our approach,

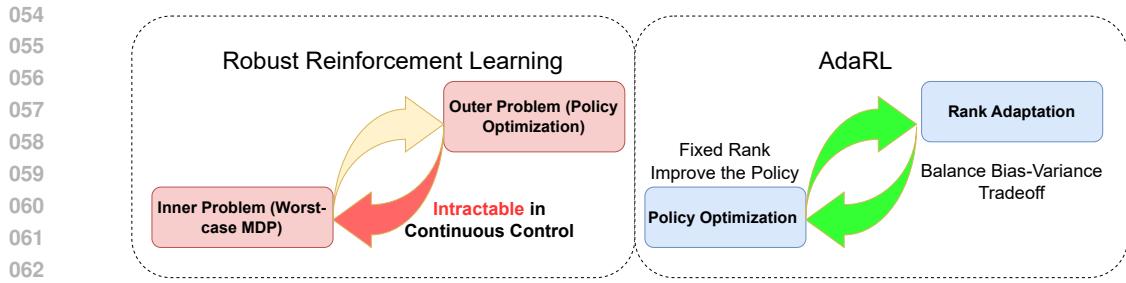


Figure 1: Comparison between classical robust reinforcement learning and the proposed AdaRL framework. Robust RL requires solving a nested min–max optimization, where the inner worst-case MDP search becomes intractable in continuous control. In contrast, AdaRL replaces this inner optimization with an adaptive low-rank mechanism and alternates between policy optimization and rank adaptation to achieve a scalable and data-driven robustness under epistemic uncertainty.

in contrast, explicitly accommodates parameterization, thereby enabling robust generalization in high-dimensional environments.

In this work, we introduce an alternative perspective to overcome the limitations of existing robust RL approaches. Instead of directly tackling worst-case dynamics through nested min–max optimization, we enhance robustness by controlling over-parameterization and improving the generalization of fixed-rank policy and value models under perturbed transition dynamics. A key insight (Li et al., 2018) is that the effective complexity of a policy should *match* the intrinsic dimension of the task under epistemic uncertainty—uncertainty in environment dynamics arising from limited data or partial observability, which is prevalent in real-world domains such as robotics, control, environmental policy, and economics (Nagami & Schwager, 2023; Zhou et al., 1996; Lemoine & Traeger, 2014; Hansen & Sargent, 2008). Building on this idea, we propose a new algorithm that jointly learns both the policy models and its rank, formulated as a bi-level optimization problem: the lower-level learns a policy under low-rank constraints, while the upper-level adapts the rank to balance robustness and expressiveness.

This perspective aligns with and extends prior work on exploiting low-rank structures in reinforcement learning. In the *model-based* setting, algorithms for joint feature and policy learning have been developed when the dynamics admit a low-rank decomposition (Agarwal et al., 2020; Bose et al., 2024). In the *model-free* setting, Jiang et al. (2017) introduced the concept of *Bellman rank* to capture the intrinsic complexity of value function approximation, and subsequent work (Modi et al., 2021; 2024; Yang et al., 2020) sought to encourage small Bellman rank during training. More recently, Tiwari et al. (2025) showed that wide two-layer neural networks yield reachable states concentrated on a low-dimensional manifold whose dimension scales with the action space. Overall, these works show that low-rank structures can improve performance in *standard RL settings*. Yet, no existing approach provides a practical algorithm for leveraging low-rank advantages under *model uncertainty*, and it remains inherently difficult to determine a suitable rank for parameterizing policy models in uncertain environments.

Our Contribution. We propose **Adaptive Rank Representation for Reinforcement Learning** (AdaRL, Figure 1), an adaptive framework that integrates conservatism into the learning process in MDPs with epistemic uncertainty. The algorithm alternates between standard policy optimization under a fixed rank and an adaptive step that adjusts the rank to balance robustness and expressiveness. Our main contributions are:

1. We provide a theoretical analysis of the bias–variance trade-off in entropy-regularized RL with linear parameterization under epistemic uncertainty, showing that low-rank representations can reduce variance in the presence of model uncertainty (Section 3, Theorem. 1).
2. We formulate policy rank selection as a bi-level optimization problem and present the AdaRL algorithm, which adaptively adjusts policy rank for robust learning (Section 4).
3. We empirically evaluate AdaRL on standard MuJoCo continuous control benchmarks, demonstrating consistent improvements over robust baselines (e.g., RNAC Zhou et al. (2023), Parseval Chung et al. (2024)) and non-robust methods such as SAC (Haarnoja et al., 2018) and Tiwari et al. (2025) (see Section 5).

108
109

2 PRELIMINARY AND RELATED WORKS

110

2.1 NOTATION

111
112
Discounted Markov Decision Process. A Markov decision process (MDP) is represented by the
113 tuple $(\mathcal{S}, \mathcal{A}, P, \rho, r, \gamma)$ wherein \mathcal{S} is the state space \mathcal{A} is the action space (with both $\mathcal{S} \subset \mathbb{R}^n$, $\mathcal{A} \subset \mathbb{R}^m$
114 assumed compact), $P_{s,a} \in \Delta_{\mathcal{S}}$, is the transition kernel for $a \in \mathcal{A}, s \in \mathcal{S}$. (where $\Delta_{\mathcal{S}}$ denotes the
115 space of probability measures with support \mathcal{S}), $\rho(\cdot)$ is the initial state distribution, $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
116 is the the reward function $\gamma \in [0, 1]$ is the discount factor. Given $s \in \mathcal{S}$, a policy π is a map
117 $\pi(\cdot|s) : \mathcal{S} \rightarrow \Delta_{\mathcal{A}}$, where $\Delta_{\mathcal{A}}$ denotes the space of probability measures with support \mathcal{A} .118
119
Epistemic Uncertainty in State Dynamics. To model uncertainty in the environment dynamics, we
introduce an ambiguity set of possible transition kernels:

120
121
$$\mathcal{P}_{s,a} := \{P_{s,a} \in \Delta_{\mathcal{S}} \mid W(\hat{P}_{s,a}^{\circ}, P_{s,a}) \leq \epsilon\},$$

122
123
where $\hat{P}_{s,a}^{\circ}$ is a reference transition kernel (e.g., a maximum likelihood estimator obtained from a
124 finite demonstration dataset), $W(\hat{P}_{s,a}^{\circ}, P_{s,a})$ denotes the Wasserstein distance (Villani et al., 2008),
125 and $\epsilon > 0$ is the uncertainty radius. We refer to $P_{s,a}^{\circ}$ as the centroid of the uncertainty set, representing
126 the true but unobserved transition kernel that governs the system dynamics. Throughout, we assume
127 that epistemic uncertainty is well captured by the Wasserstein ball (Mohajerin Esfahani & Kuhn,
2018), i.e., $P_{s,a}^{\circ} \in \mathcal{P}_{s,a}$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$.128
129
Singular Value Decomposition (SVD) Let $\theta \in \mathbb{R}^{d_1 \times d_2}$. A *thin* singular value decomposition (SVD)
130 is given by $\theta = \mathbf{U}\Sigma\mathbf{V}^T$, where \mathbf{U} is a $d_1 \times r$ matrix with orthogonal columns, that is, an element of
the Stiefel manifold (Chakraborty & Vemuri, 2019; Atiyah & Todd, 1960)

131
132
$$\text{St}(r, d_1) = \{\mathbf{U} \in \mathbb{R}^{d_1 \times r} : \mathbf{U}^T \mathbf{U} = \mathbf{I}\},$$

133
134
 Σ is a $r \times r$ diagonal matrix with positive entries $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$ (referred to as singular
135 values) and $\mathbf{V} \in \text{St}(r, d_2)$. The singular value decomposition exists for any matrix $\theta \in \mathbb{R}^{d_1 \times d_2}$. We
refer to a *truncated* SVD whenever $r < \text{rank}(\theta)$.136
137

2.2 ROBUST REINFORCEMENT LEARNING

138
139
In MDPs, the system dynamics P is usually assumed to be constant over time. However, in the real
140 world, it is subject to perturbations that can significantly impact performance in deployment (Zhang
141 et al., 2023; Moos et al., 2022). Robust MDPs provide a theoretical framework for taking this uncer-
142 tainty into account, taking P as not fixed but chosen adversarially from an uncertainty set \mathcal{P} (Iyengar,
143 2005; Nilim & El Ghaoui, 2005), where \mathcal{P} denotes a set of plausible transition models known as the
144 uncertainty set. The objective of robust RL is to find a policy that performs well under the worst-case
dynamics within this set. Formally, the robust objective $\mathcal{J}_{\mathcal{P}, \pi}$ is defined as:

145
146
$$\mathcal{J}_{\text{robust}}(\pi) = \max_{\pi} \min_{P \in \mathcal{P}} \mathbb{E}_{P, \pi} \left[\sum_{t \geq 0} \gamma^t R(s_t, a_t) \mid s_0 \sim \rho_0 \right] \quad (1)$$

147
148
The optimal policy $\pi_{\mathcal{P}}^*$ is defined as the solution to the *outer-loop* problem, which maximizes
149 $\mathcal{J}_{\text{robust}}(\pi)$ by accounting for the worst-case transition model at each time step. This leads to the
150 *inner-loop* problem of identifying the worst-case dynamics, for which several approaches have been
151 developed, including value iteration (Nilim & El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al.,
152 2013; Grand-Clément & Kroer, 2021; Kumar et al., 2023a), policy iteration (Kumar et al., 2022;
153 Badrinath & Kalathil, 2021), and policy gradient methods (Li et al., 2022; Wang & Zou, 2022; Wang
154 et al., 2023; Kumar et al., 2023b). However, the problem remains NP-hard for general uncertainty sets,
155 and optimal policies may even be non-stationary (Wiesemann et al., 2013). Most existing methods
156 sidestep this difficulty by assuming that the inner-loop optimization can be solved efficiently—a
157 reasonable assumption in tabular settings with small uncertainty sets, where one can exhaustively
158 evaluate all transition kernels $P \in \mathcal{P}$. Yet, when the uncertainty set is continuous, the inner-loop
159 problem becomes substantially more challenging and computationally expensive. To address this
160 challenge, Zhou et al. (2023); Gadot et al. (2024) propose the RNAC and EWoK algorithms, which
161 rely on sampling-based techniques to estimate value functions under worst-case dynamics. Although
leading to high sample complexity and considerable computational overhead.

162 2.3 REINFORCEMENT LEARNING WITH LOW RANK STRUCTURE
163

164 Another direction of research to address this uncertainty is to take advantage of *low-rank structures in*
165 *dynamics*. In many stochastic control tasks, the transition dynamics admit a low-rank decomposition
166 over a finite set of state-action features (Rozada et al., 2024; 2021; Yang et al., 2019). For example,
167 Tiwari et al. (2025) show that under suitable assumptions, the set of attainable states lies on a low-
168 dimensional manifold. In fixed environments, the dimension of this manifold grows only linearly
169 with the size of the action space and is independent of the state-space dimension. Building on this
170 observation, they employ a $(2d_a + 1)$ -dimensional low-rank manifold and apply sparse reinforcement
171 learning methods to solve MuJoCo control tasks. More generally, low-rank structure can be imposed
172 either on the transition kernel or directly on the optimal action-value function Q^* , and empirical
173 evidence suggests that Q^* and near-optimal Q-functions in common stochastic control tasks indeed
174 exhibit low-rank properties (Sam et al., 2023; Rozada et al., 2024; 2021; Yang et al., 2019).

175 Motivated by these findings, algorithms for joint feature and policy learning in *model-based* RL
176 have been developed (Agarwal et al., 2020; Bose et al., 2024), though they typically assume the
177 rank is known a priori. For *model-free* RL, Jiang et al. (2017) introduced the notion of *Bellman*
178 *rank* to quantify the intrinsic complexity of value function approximation. More recent approaches
179 exploit low-rank factorizations or representations to implicitly encourage small Bellman rank while
180 optimizing the policy or value function (Modi et al., 2021; 2024; Yang et al., 2020). However,
181 the theoretical guarantees in these works generally rely on fixed dynamics, and to date there is no
182 algorithm that simultaneously recovers the exact Bellman rank while learning the optimal policy
183 under uncertain or time-varying environments.

184 3 BIAS-VARIANCE TRADEOFF IN RL WITH EPISTEMIC UNCERTAINTY
185

186 As highlighted in the related work section, many control tasks naturally admit low-rank structures
187 in their transition dynamics, which has motivated a line of methods leveraging fixed-rank represen-
188 tations. However, when moving to the robust MDP setting, the presence of epistemic uncertainty
189 fundamentally changes the picture. On the one hand, adopting an excessively low rank may fail
190 to capture the variability introduced by uncertain dynamics, leading to biased estimates and brittle
191 policies. On the other hand, employing a large rank increases model expressiveness but also amplifies
192 variance, making the policy highly sensitive to perturbations and prone to over-parameterization. This
193 tension suggests that selecting an appropriate rank is crucial: the rank must be sufficiently rich to
194 encode uncertainty, yet controlled enough to mitigate overfitting. In this section, we formally analyze
195 this bias–variance tradeoff in reinforcement learning under epistemic uncertainty, beginning with
196 the model-free setting of entropy-regularized reinforcement learning (Haarnoja et al., 2018). The
197 objective function of entropy-regularized reinforcement learning is given by:

$$198 J(\pi) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t (R(s_t, a_t) + \mathcal{H}(\pi(\cdot|s_t))) \right], \quad (2)$$

200 For any given policy π , we define the corresponding (entropy regularized) Q^π function and V^π
201 function as follows:

$$202 V^\pi(s) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim \mathcal{P}_{s_t, a_t}} \left[\sum_{t \geq 0} \gamma^t (R(s_t, a_t) + \mathcal{H}(\pi(\cdot|s_t))) \middle| s_0 = s \right] \quad (3)$$

$$205 Q^\pi(s, a) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim \mathcal{P}_{s_t, a_t}} \left[\sum_{t \geq 0} \gamma^t (R(s_t, a_t) + \mathcal{H}(\pi(\cdot|s_t))) \middle| s_0 = s, a_0 = a \right] \quad (4)$$

207 where we write $s_{t+1} \sim \mathcal{P}_{s_t, a_t}$ to indicate that a transition kernel P_{s_t, a_t} is uniformly randomly
208 sampled from the uncertainty set \mathcal{P}_{s_t, a_t} and $s_{t+1} \sim P_{s_t, a_t}$ and the entropy term is defined as
209 $\mathcal{H}(\pi(\cdot|s_t)) := -\sum_{a \in \mathcal{A}} \pi(a|s_t) \log \pi(a|s_t)$. Let π^* denote the optimal policy. We begin by re-
210 stating a well known characterization of the solution to the entropy regularized MDP. According to
211 Haarnoja et al. (2018), the optimal policy takes the following form:

$$212 \pi^*(a|s) = \exp(Q^*(s, a) - V^*(s)) \quad (5)$$

213 where Q^* is the unique fixed point of the *soft Bellman* operator

$$214 \mathcal{B}Q(s, a) := R(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{P}_{s, a}} \left[\log \sum_{a' \in \mathcal{A}} \exp Q(s', a') \right] \quad (6)$$

216 and $V^*(s') := \log \sum_{a' \in \mathcal{A}} \exp Q(s', a')$. We consider linear function approximations for $Q(s, a)$
 217 and $V(s)$ functions for the simplicity of analysis, i.e.:
 218

$$219 \quad Q_\theta(s, a) = \phi(s, a)^\top \theta \quad \text{and} \quad V_\omega(s) = \psi(s)^\top \omega$$

220 where $\phi(s, a)$ and $\psi(s)$ are feature mappings.
 221

222 **Assumption 1** *We assume the training data in the form of triplets (s, a, s') is generated as follows:*
 223 *$a \sim \pi_b(\cdot | s) > 0$ where π_b is a behavioral policy and $s' \sim \mathcal{P}_{s,a}$. We assume the induced Markov*
 224 *chain is ergodic and the steady-state distribution of triplets (s, a, s') is denoted by \mathcal{P} . Similarly, we*
 225 *denote by \mathcal{P}° the steady-state distribution of (s, a, s') when $a \sim \pi_b(\cdot | s), s' \sim \mathcal{P}_{s,a}^\circ$.*

226 Hence, in an off-policy setting, the optimal policy with linear function approximation can be described
 227 as the solution to the following optimization problem:
 228

$$229 \quad \min_{\omega} \mathbb{E}_{\mathcal{P}} \left[\left\| \psi(s')^\top \omega - \log \sum_{a' \in \mathcal{A}} \exp \phi(s', a')^\top \theta^*(\omega) \right\|^2 \right] \quad (7)$$

$$231 \quad \text{s.t.} \quad \theta^*(\omega) = \arg \min_{\theta} \mathbb{E}_{\mathcal{P}} \left[\left\| R(s, a) + \gamma \psi(s')^\top \omega - \phi(s, a)^\top \theta \right\|^2 \right] \quad (8)$$

233 where \mathcal{P} denotes the steady-state distribution over (s, a, s') induced by uniformly sampling transition
 234 kernels from the Wasserstein ball and executing a fixed behavioral policy. **For simplicity, we write**
 235 $\mathbb{E}_{\mathcal{P}} := \mathbb{E}_{(s, a, s') \sim \mathcal{P}, \pi_b}$. The first-order (sufficient) conditions for lower-level optimality can then be
 236 written as:
 237

$$239 \quad -\mathbb{E}_{\mathcal{P}} [\phi(s, a)(R(s, a) + \gamma \psi(s')^\top \omega - \phi(s, a)^\top \theta)] = 0 \quad (9)$$

240 wherein we write $\mathbb{E}_{\mathcal{P}}$ as shorthand for $\mathbb{E}_{(s, a, s') \in \mathcal{P}}$. This system of equations can be re-written as
 241 $A_{\mathcal{P}}\theta = b_{\mathcal{P}, \omega}$ where

$$242 \quad A_{\mathcal{P}} := \mathbb{E}_{\mathcal{P}} [\phi(s, a)\phi(s, a)^\top] \quad b_{\mathcal{P}, \omega} := \mathbb{E}_{\mathcal{P}} [\phi(s, a)(R(s, a) + \gamma \psi(s')^\top \omega)]$$

244 Similarly for the ground-truth kernel \mathcal{P}° we define the system:

$$245 \quad A_{\mathcal{P}^\circ} := \mathbb{E}_{\mathcal{P}^\circ} [\phi(s, a)\phi(s, a)^\top] \quad b_{\mathcal{P}^\circ, \omega} := \mathbb{E}_{\mathcal{P}^\circ} [\phi(s, a)(R(s, a) + \gamma \psi(s')^\top \omega)]$$

247 Our analysis investigates the consequences of using high-rank parametrized policies when the
 248 underlying ground-truth environment dynamics are of lower rank. Let $(\theta^\circ, \omega^\circ)$ denote the solution of
 249 the optimization problem defined by Eq. 7 and Eq. 8 when the expectations are taken with ground-truth
 250 dynamics. Let $(\theta_{\mathcal{P}}, \omega_{\mathcal{P}})$ denote the solution of the optimization problem defined by Eq. 7 and Eq. 8
 251 when the expectations are taken with uniformly random sample from the Wasserstein ball centered at
 252 the reference Markov kernel $\hat{\mathcal{P}}^\circ$ with radius ϵ . To formalize this setting, we characterize the low-rank
 253 structure of the environment dynamics under a set of regularity conditions. In particular, we assume
 254 bounded feature mappings, nonsingular covariance matrices, and a discrete Picard condition, which
 255 are standard in reinforcement learning with linear function approximation.
 256

256 **Assumption 2 (2.1)** $\|\phi(s, a)\| \leq 1, \forall (s, a) \in \mathcal{S} \times \mathcal{A}$.

257 (2.2) *The feature covariance matrices with respect to ground truth dynamics are non-singular:*

$$259 \quad \mathbb{E}_{\mathcal{P}^\circ} [\phi(s, a)\phi(s, a)^\top] \succ 0$$

260 (2.3) *(Lipschitz) $\forall (s, a) \in \mathcal{S} \times \mathcal{A}$, it holds that:*

$$261 \quad \|\phi(s, a)^\top \theta_1 - \phi(s, a)^\top \theta_2\| \leq L \|\theta_1 - \theta_2\| \quad (10a)$$

262 where $L > 0$. These are standard assumptions in reinforcement learning with linear function
 263 approximation Tsitsiklis & Van Roy (1996); Munos (2003).
 264

265 **Assumption 3 (Discrete Picard Condition)** *The linear system $A_{\mathcal{P}^\circ}\theta = b_{\mathcal{P}^\circ, \omega^\circ}$ with $r^\circ :=$
 266 $\text{rank}(A_{\mathcal{P}^\circ})$ satisfies the discrete Picard condition, i.e. the SVD $A_{\mathcal{P}^\circ} = U^\circ \Sigma_{\mathcal{P}^\circ} V^{\circ\top}$ is such that
 267 there exists $p > 1$ with:*

$$268 \quad |u_i^{\circ\top} b_{\mathcal{P}^\circ, \omega^\circ}| \leq \sigma_{\mathcal{P}^\circ, i}^p \quad \text{for } i = 1, \dots, r^\circ,$$

$$269 \quad |u_i^{\circ\top} b_{\mathcal{P}^\circ, \omega^\circ}| \leq \sigma_{\mathcal{P}^\circ, r^\circ}^p \quad \text{for } i = r^\circ + 1, \dots, d.$$

270 The discrete Picard condition (Hansen, 1990; Levin & Meltzer, 2017) states that the magnitude of
 271 the inner product $|u_i^{\circ \top} b_{\mathcal{P}^{\circ}, \omega^{\circ}}|$ shrinks faster than σ_i^p , accounting for the ill-condition in the system
 272 dynamics. Here $p > 1$ describes the shrinking speed.
 273

274 Building on these assumptions, we next examine the effect of approximating the system $A_{\mathcal{P}}\theta = b_{\mathcal{P}}$
 275 using an r -truncated SVD decomposition of $A_{\mathcal{P}}$, denoted $A_{\mathcal{P},r}$. This result highlights the fundamental
 276 bias-variance trade-off: choosing too small an r induces approximation bias, whereas choosing too
 277 large an r amplifies estimation variance.
 278

279 **Theorem 1 Bias-Variance Trade-off of Rank- r Approximation:** Assume the ground-truth dynamics
 280 are given by \mathcal{P}° and Assumption 2 holds. Consider a truncated SVD $A_{\mathcal{P},r} = U\Sigma_{\mathcal{P},r}V^{\top}$ for
 281 $r \leq \text{rank}(A_{\mathcal{P}})$ and θ_r be the solution $A_{\mathcal{P},r}\theta = b_{\mathcal{P}, \omega_{\mathcal{P}}}$. It holds that:
 282

$$\|\theta_r - \theta^{\circ}\|_2 \leq \underbrace{\frac{1}{\sigma_{\mathcal{P},r}}\|(b_{\mathcal{P}, \omega_{\mathcal{P}}} - b_{\mathcal{P}^{\circ}, \omega^{\circ}})\|_2}_{\text{variance}} + \underbrace{\left\|\sum_{i=r+1}^d v_i v_i^T \theta^{\circ}\right\|_2}_{\text{bias}} + 2\mathcal{O}(L\epsilon) \quad (11)$$

287 *If in addition Assumption 3 holds then:*

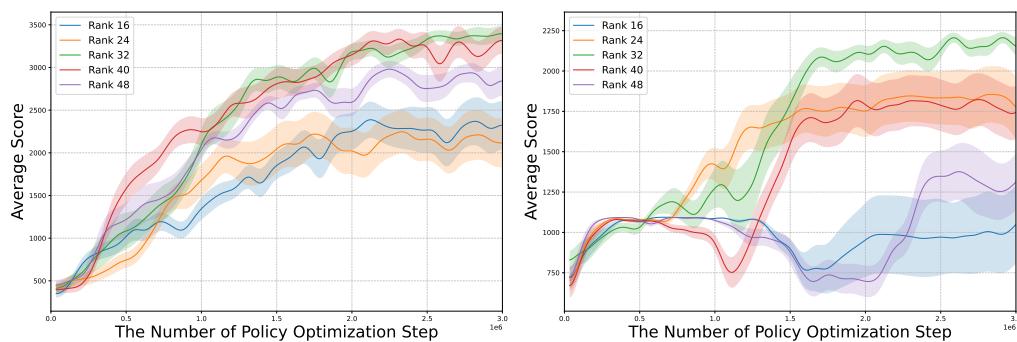
$$\|\theta_r - \theta^{\circ}\|_2 \leq \underbrace{\frac{1}{\sigma_{\mathcal{P},r}}\|b_{\mathcal{P}, \omega_{\mathcal{P}}} - b_{\mathcal{P}^{\circ}, \omega^{\circ}}\|_2}_{\text{variance}} + \underbrace{(d-r)\sigma_{\mathcal{P}^{\circ},r}^{p-1} + (d-r)r^{\circ}\sigma_{\mathcal{P}^{\circ},1}^{p-1}}_{\text{bias}} + 2\mathcal{O}(L\epsilon) \quad (12)$$

293 where $r^{\circ} := \text{rank}(A_{\mathcal{P}^{\circ}})$, and $\epsilon > 0$ denotes the radius of the Wasserstein ball (Mohajerin Esfahani
 294 & Kuhn, 2018).
 295

296 **Remark** The upper bound of the performance gap between the estimated parameter θ_r and the
 297 optimal solution θ° in Theorem.1 can be decomposed into two components related to variance
 298 and bias respectively. Thus for example, the choice of $r > r^{\circ}$ introduces *higher* variance since
 299 $\sigma_{\mathcal{P},r} < \sigma_{\mathcal{P},r^{\circ}}$. Conversely, the choice of $r < r^{\circ}$ introduces *higher* bias since

$$(d-r)\sigma_{\mathcal{P}^{\circ},r}^{p-1} + (d-r)r^{\circ}\sigma_{\mathcal{P}^{\circ},1}^{p-1} > (d-r^{\circ})\sigma_{\mathcal{P}^{\circ},r^{\circ}}^{p-1} + (d-r^{\circ})r^{\circ}\sigma_{\mathcal{P}^{\circ},1}^{p-1}$$

302 **Discussion** To confirm that bias-variance tradeoff also exists in settings with non-linear representation,
 303 we perform a sanity check on a MuJoCo control task (Todorov et al., 2012). Specifically, we employ
 304 a three-layer neural network and adopt a rank-control mechanism similar to (Hu et al., 2022; Xu et al.,
 305 2019) (see details in Sec.4.2). Our experiments reveal a clear bias-variance tradeoff in nonlinear
 306 control models, as illustrated in Figure 2: models with extremely low-rank representations exhibit
 307 high bias, while high-rank models suffer from large approximation errors due to transition samples
 308 drawn from uncertain dynamics.
 309



322 Figure 2: Performance of policy models under high model uncertainty in Walker2d-v3 (**Left**) and
 323 Hopper-v3 (**Right**). Results indicate that extremely low-rank representations lead to high bias, while
 324 overly high-rank models incur large approximation errors due to transition samples drawn from
 325 uncertain dynamics.
 326

324

4 ADAPTIVE RANK REPRESENTATION REINFORCEMENT LEARNING

325

4.1 A BI-LEVEL OPTIMIZATION FORMULATION

326 The analysis in previous Section highlights that selecting the policy rank involves a delicate balance:
 327 too small a rank induces bias, while too large a rank amplifies variance. This trade-off suggests the
 328 need for an adaptive mechanism that can automatically adjust the rank during learning. Motivated by
 329 this insight, we introduce a bi-level (Colson et al., 2007) optimization formulation, where the lower-
 330 level problem identifies the optimal policy with uniformly sampled environment dynamics (from a
 331 Wasserstein ball around a centroid model) under a fixed rank, and the upper-level problem searches
 332 for the representation that optimizes a measure of fit to the lower-level model while regularizing by
 333 rank. To begin with, We consider a parameterized policy π_η , where $\eta \in \mathbb{R}^{d_1 \times d_2}$ with $d_1, d_2 > 0$.
 334 And we respectively denote by

$$335 \mathcal{M}_r := \{\eta \in \mathbb{R}^{d_1 \times d_2} \mid \text{rank}(\eta) = r\} \quad \mathcal{M}_{\leq \bar{r}} := \{\eta \in \mathbb{R}^{d_1 \times d_2} \mid \text{rank}(\eta) \leq \bar{r}\}$$

336 the smooth manifold of matrices with rank r and the algebraic variety of matrices with rank less than
 337 or equal to $\bar{r} > 0$.

338 **Formulation:** Towards developing an approach that simultaneously learns the policy and adaptively
 339 adjusts its rank, we introduce the following bi-level formulation:

$$340 \min_r \mathbb{E}_{(s,a) \sim \mathcal{P}_{\eta^*}} \|\text{Proj}_{\mathcal{M}_r}(\pi_{\eta^*})(a|s) - \pi_{\eta^*}(a|s)\|_2 + \lambda r \quad (13)$$

$$341 \text{s.t. } \eta^* := \arg \max_{\eta \in \mathcal{M}_{\leq \bar{r}}} \mathbb{E}_{\tau \sim \mathcal{P}_{\pi_\eta}} \left[\sum_{t \geq 0} \gamma^t (R(s_t, a_t) + \mathcal{H}(\pi_\eta(\cdot|s_t))) \right] \quad (14)$$

342 where \mathcal{P}_{η^*} denotes the steady-state distribution obtained by uniformly sampling the transition kernel
 343 from the Wasserstein ball and selecting actions according to the policy π_{η^*} , the operator $\text{Proj}_{\mathcal{M}_r}(\pi_{\eta^*})$
 344 denotes the projection of the policy onto the low-rank manifold \mathcal{M}_r , λ serves as a weight for rank
 345 regularization r , **where r denotes the rank variable, and \bar{r} represents its maximum allowable value.**

346 **Discussion** The bi-level formulation in Eq. 13–Eq. 14 plays two complementary roles. The *lower-level*
 347 problem Eq. 14 optimizes the policy parameters under a fixed rank constraint, aiming to maximize
 348 the entropy-regularized return and thus capture the best achievable policy representation at that rank.
 349 However, the optimal solution π_{η^*} of the lower-level problem may not align with the intrinsic task
 350 complexity and can overfit by exploiting the full representation power. To address this, the *upper-level*
 351 problem Eq. 13 explicitly searches for an appropriate rank that balances bias and variance, as
 352 motivated in the previous section. It seeks the best low-dimensional representation (bounded by $\bar{r} > 0$)
 353 of the state–action value associated with π_{η^*} , while controlling model capacity through the rank
 354 regularization term. In this way, the upper-level problem enforces a bias–variance tradeoff, ensuring
 355 that the learned representation achieves robustness without unnecessary over-parameterization.

361

4.2 ALGORITHM

362 We are now ready to design algorithms for the proposed formulation. Note that our formulation
 363 has a hierarchical structure and falls into the class of bi-level optimization problems Hong et al.
 364 (2023); Colson et al. (2007). In general, bi-level problems are challenging to solve; in our case, the
 365 upper-level objective Eq. 13 depends explicitly on the optimal solution of the lower-level problem.
 366 Furthermore, the rank regularizer $C(\cdot)$ is non-differentiable, which precludes the use of (stochastic)
 367 first-order methods for the upper-level optimization. Fortunately, as we will show, a simple yet
 368 effective adaptive greedy search algorithm can be employed to obtain an empirical solution to the
 369 upper-level problem. At a high level, the proposed algorithm alternates between two steps: a **Rank**
 370 **Adaptation Step**, which updates the rank r via a greedy search procedure, and a **Policy Optimization**
 371 Step, which optimizes the parameters under the rank constraint $\eta \in \mathcal{M}_{\leq r}$. We now examine each
 372 step in detail.

373 **Rank Adaptation Step** From the discussion in Section 3, we know that extremely low-rank models
 374 are limited in their representation power and thus fail to capture sufficient information under model
 375 uncertainty. In contrast, high-rank models tend to overfit, resulting in poor generalization. Hence,
 376 it is crucial to carefully select an appropriate rank for policies in MDPs with uncertain dynamics.
 377 Although Theorem 1 provides useful insights, in practice it is difficult to explicitly solve this tradeoff
 378 and obtain the optimal rank. To address this, we adopt a greedy strategy: starting from a high-rank

378

Algorithm 1: Adaptive Rank Representation (AdaRL)

379

Input: Initialize parameters: for state-action value ω^0 and policy η^0 . Truncation threshold $\beta \in (0, 1)$, and truncate interval d_t .

for $k = 0, 1, \dots, K - 1$ **do**

Data Sampling: Sample trajectories τ_1, \dots, τ_N from the current policy π_η^k , and add them to the replay buffer: $D \leftarrow D \cup \{\tau_1, \dots, \tau_N\}$

Policy Evaluation: Compute $Q_\omega^k(\cdot, \cdot)$ with sampled data D .

Policy Improvement: $\pi_\eta^{k+1}(\cdot|s) \propto \exp(Q_\omega^k(s, \cdot))$, $\forall s \in \mathcal{S}$.

Rank Adaptation Step: if $k \% d_t = 0$, Search the suitable rank by Eq. 15 and project η_k into a lower rank manifold $\mathcal{M}_{\hat{r}}$.

end for

380

381

382

391 model, we gradually reduce the rank until reaching a stable value that yields consistent performance
392 under model uncertainty. This procedure operationalizes the bias–variance tradeoff characterized in
393 Theorem 1 and forms the core of the **Rank Adaptation Step** in our algorithm.

394

395 Specifically, the upper-level problem Eq. 13 requires us to identify suitable representations for both
396 the policy and value models while keeping their ranks as low as possible. If no lower-rank model with
397 sufficient approximation quality can be found, we simply retain the previous rank, i.e., $r_{\text{new}} = r_{\text{old}}$.
398 To do the greedy search, we consider using the following criterion to decide the new rank \hat{r} . Note
399 there are many ways to decide the target rank; in the ablation study, we show that using this criterion
400 achieves a smooth truncation and makes the rank converge to the intrinsic rank of the environment.

401

$$\hat{r} = \max\{\ell \in \{1, 2, \dots, d\} : \frac{\sum_{i=1}^{\ell} \sigma_i}{\sum_{i=1}^d \sigma_i} \leq \beta\} \quad (15)$$

402

403

404 To implement this efficiently, we adopt a low-rank factorization approach (Xu et al., 2019; Zhang
405 et al., 2015) that operates directly on the weight matrices of neural networks. Since the rank of a
406 neural network layer is inherently constrained by the number of hidden units, we follow the idea
407 of inserting an intermediate linear layer between consecutive layers, thereby controlling the rank
408 through the size of this hidden layer (see Figure 5 and Appendix A.5.1 for details). After obtaining
409 the optimized policy π_η^k from several policy optimization steps, we refine this low-rank representation
410 by performing SVD.

411

412 **Policy Optimization Step** One can adopt the standard approaches, such as the well-known soft actor
413 critic (SAC) (Haarnoja et al., 2018) algorithm to obtain an approximate optimal policy that solves
414 Eq. 14. Notice that after reconstructing the neural network, the rank of parameter η is no larger than
415 \hat{r} due to the existence of the intermediate layer. In this way, the rank constraint is automatically
416 enforced during optimization without requiring explicit SVD at every update.

417

418 We summarize the proposed algorithm in Algorithm 1, corresponding to the rank adaptation step and
419 policy improvement step. We conclude this section with a brief remark on the advantages of AdaRL.

420

421 **Low Computational Complexity** Unlike previous methods (Gehring et al., 2015) that require
422 repeated SVD with complexity $\mathcal{O}(d^3)$ per update, AdaRL uses a single rank adaptation step to
423 estimate a feasible rank. It operates on two timescales: the inner loop optimizes policies under a
424 low-rank constraint, while the outer loop infrequently adjusts the rank by projecting parameters onto
425 a lower-rank manifold. This design avoids costly worst-case value estimation and yields an efficient
426 training procedure.

427

428 **Convergence** Control dynamical systems governed by Newtonian mechanics naturally exhibit a
429 low-rank structure (Tiwari et al., 2025). Although deriving theoretical convergence guarantees is
430 nontrivial, our experiments empirically show that the solution of the upper-level problem converges
431 to a stable rank, thereby balancing model robustness with representational capacity.

432

433

5 EXPERIMENT

434

435 In this section, we present numerical evaluations of the proposed method AdaRL (Alg. 1) and compare
436 it against several robust RL baselines, including RNAC, Parseval regularization, fixed-rank SAC, and

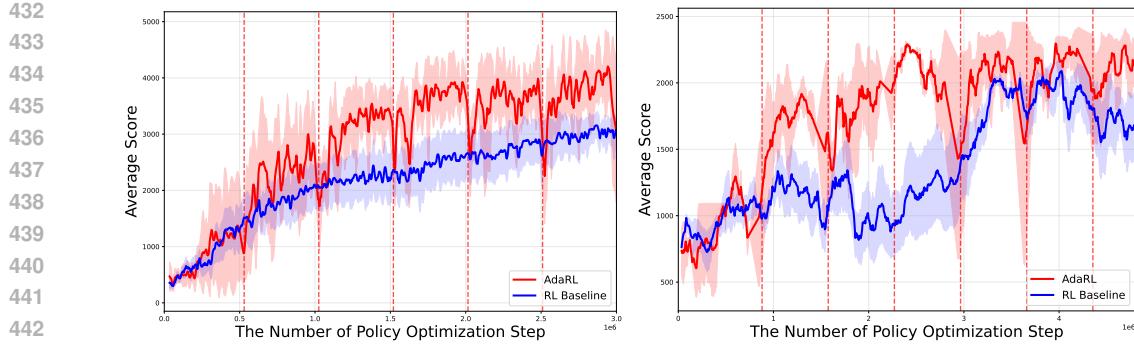


Figure 3: Training performance on MuJoCo tasks. The proposed AdaRL consistently outperforms standard SAC baselines under model uncertainty. The red dashed vertical lines indicate the boundaries between different iteration intervals.

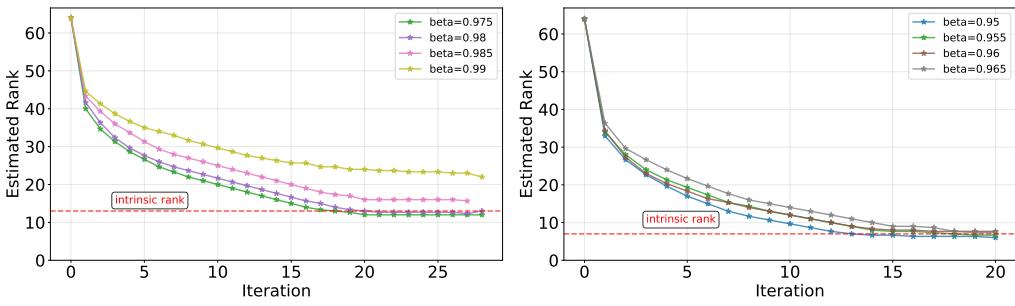


Figure 4: We plot the estimated rank from AdaRL throughout training. The intrinsic rank refers to the value identified by Tiwari et al. (2025). **Left:** Walker2d. **Right:** Hopper.

the algorithm from Tiwari et al. (2025). Our experiments highlight the advantages of AdaRL in two key aspects: (1) it achieves a favorable trade-off between the bias and variance induced by model uncertainty, thereby enabling more robust policy learning; and (2) it identifies a suitable low-rank manifold, within which constraining the policy model yields a representation that remains robust under model uncertainty. More details are given in the Appendix A.5.1.

We focus on robotic control tasks with continuous action spaces, using four widely adopted OpenAI Gym environments and their variants: Hopper-v3, Walker2d-v3, Ant-v3, and Humanoid-v3. Following the setup in Luo et al. (2024), we introduce model uncertainty by modifying the source dynamics for each task. In Hopper and Walker2d, this involves structural changes such as adjusting torso and foot sizes, while in Ant and Humanoid we alter physical parameters including gravity or add external forces such as wind with a specified velocity. During training, the environment dynamics vary across episodes to simulate epistemic uncertainty.

The baselines considered in this scenario are: (1) SAC (Haarnoja et al., 2018) with a fixed-rank parameterization; (2) RNAC-DS (Zhou et al., 2023), which employs double sampling within newly defined uncertainty sets and uses function approximation to solve the robust Bellman equation; **We also evaluate the RNAC-IPM variant to ensure a more comprehensive and fair comparison.** (3) Parseval regularization (Chung et al., 2024), which enforces orthogonality in weight matrices to preserve optimization properties and improve training stability in continual reinforcement learning; and (4) the method of Tiwari et al. (2025), which incorporates a fully connected sparsification MLP layer for reinforcement learning.

In Figure 3 and Table 1, we report numerical results comparing the proposed AdaRL algorithm with several baselines. As shown in Figure 3, both AdaRL and standard SAC achieve similar performance in the first iteration; however, once the model rank is adjusted, AdaRL consistently outperforms the standard methods by mitigating the impact of model uncertainty. It is worth noting that immediately after each rank adaptation step, the optimizer’s momentum is reset and the model must adjust to the new parameterization, leading to a temporary performance drop before recovery. Further, in Table 1, the results show that AdaRL consistently outperforms the baselines by a significant margin in most

486 scenarios. As discussed in Section 2.2, robust RL algorithms typically perform policy improvement
 487 based on worst-case value functions, which enhances robustness but often yields overly conservative
 488 policies and incurs high approximation errors in continuous control environments (Mannor et al.,
 489 2012; 2016; Xu & Mannor, 2012). For regularization-based approaches, Parseval regularization can
 490 partially mitigate value-function overfitting, but it remains less effective than the low-rank constraint
 491 imposed in AdaRL. To fairly assess policy generalization, all evaluations are conducted under the
 492 fixed nominal dynamics \mathcal{P}° , enabling us to examine whether the learned policies remain effective
 493 and robust in the presence of model uncertainty. In Appendix A.5.4, we further demonstrate the
 494 robustness of the trained policy in different perturbed dynamics.

Task	AdaRL (proposed)	RNAC-DS	RNAC-IPM	Parseval	Alg. in Tiwari et al. (2025)
Hopper	2109.8 ± 322.90	1542.36 ± 62.73	1666.33 ± 495.82	1410.64 ± 456.52	1850.09 ± 234.98
Walker	3991.90 ± 567.00	1906.68 ± 620.90	2725.42 ± 570.29	2368.26 ± 1346.67	3280.55 ± 179.42
Ant	3067.13 ± 111.55	1021.97 ± 230.71	1827.77 ± 237.64	2063.18 ± 381.27	2719.95 ± 225.11
Humanoid	5428.72 ± 50.10	2351.42 ± 443.12	3321.49 ± 342.31	458.35 ± 76.41	5255.03 ± 757.45

495
 496 Table 1: **MuJoCo Results.** The performance of the benchmark algorithms. Bolded numbers indicate the best
 497 results among AdaRL, RNAC-DS, RNAC-IPM, Parseval regularization, and the algorithm in Tiwari et al. (2025)
 498 for each task.
 499

500 In Figure 4, we report an additional experiment showing that the rank estimated by the AdaRL
 501 algorithm in Eq. 13 gradually converges to the intrinsic rank identified by Tiwari et al. (2025), given
 502 an appropriate choice of β in Alg. 1 (set to 0.98 in our experiments). This result demonstrates that
 503 AdaRL can effectively search for a suitable rank for environment with model uncertainty.
 504

505 6 CONCLUSION

506 In this paper, we propose a novel framework for reinforcement learning under epistemic uncertainty
 507 by integrating the low-rank structure into policy representation. We begin by establishing a theoretical
 508 bias-variance trade-off that arises when applying low-rank approximations with uncertain dynamics.
 509 Motivated by this insight, we formulate a bi-level optimization problem and develop the Adaptive
 510 Low-Rank Representation algorithm, which dynamically adjusts the policy’s representational rank
 511 to balance generalization and robustness. Our extensive experiments on MuJoCo benchmarks
 512 demonstrate that AdaRL consistently outperforms both fixed-rank RL methods and state-of-the-art
 513 robust RL algorithms.
 514

515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
543 and representation learning of low rank mdps. *Advances in neural information processing systems*,
544 33:20095–20107, 2020.

545 MF Atiyah and JA Todd. On complex stiefel manifolds. In *Mathematical Proceedings of the
546 Cambridge Philosophical Society*, volume 56, pp. 342–353. Cambridge University Press, 1960.

547 Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares
548 policy iteration with provable performance guarantees. In *International Conference on Machine
549 Learning*, pp. 511–520. PMLR, 2021.

550 Avinandan Bose, Simon Shaolei Du, and Maryam Fazel. Offline multi-task transfer rl with represen-
551 tational penalization, 2024. URL <https://arxiv.org/abs/2402.12570>.

552 Rudrasis Chakraborty and Baba C Vemuri. Statistics on the stiefel manifold: Theory and applications.
553 2019.

554 Wesley Chung, Lynn Cherif, Doina Precup, and David Meger. Parseval regularization for continual
555 reinforcement learning. *Advances in Neural Information Processing Systems*, 37:127937–127967,
556 2024.

557 Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
558 robust reinforcement learning. *arXiv preprint arXiv:2302.05372*, 2023.

559 Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. *Annals of
560 operations research*, 153(1):235–256, 2007.

561 Jing Dong, Li Shen, Yinggan Xu, and Baoxiang Wang. Provably efficient convergence of primal-dual
562 actor-critic with nonlinear function approximation. *arXiv preprint arXiv:2202.13863*, 2022.

563 Antonella Falini. A review on the selection criteria for the truncated svd in data science applications.
564 *Journal of Computational Mathematics and Data Science*, 5:100064, 2022.

565 Razvan V Florian. Correct equations for the dynamics of the cart-pole system. *Center for Cognitive
566 and Neural Studies (Coneural), Romania*, 63, 2007.

567 Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
568 optimal policy. *arXiv preprint arXiv:2008.00483*, 2020.

569 Uri Gadot, Kaixin Wang, Navdeep Kumar, Kfir Yehuda Levy, and Shie Mannor. Bring your own (non-
570 robust) algorithm to solve robust mdps by estimating the worst kernel. In *Forty-first International
571 Conference on Machine Learning*, 2024.

572 Clement Gehring, Yangchen Pan, and Martha White. Incremental truncated lstd. *arXiv preprint
573 arXiv:1511.08495*, 2015.

574 Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In
575 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 12086–12094, 2021.

576 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
577 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
578 on machine learning*, pp. 1861–1870. Pmlr, 2018.

579 Lars Peter Hansen and Thomas J. Sargent. *Robustness*. Princeton University Press, Princeton, NJ,
580 2008. ISBN 9780691132150.

581 Per Christian Hansen. The discrete picard condition for discrete ill-posed problems. *BIT Numerical
582 Mathematics*, 30(4):658–672, 1990.

583 Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
584 framework for bilevel optimization: Complexity analysis and application to actor-critic. *SIAM
585 Journal on Optimization*, 33(1):147–180, 2023.

594 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

596

597 Garud N Iyengar. Robust dynamic programming. *Mathematics of Operations Research*, 30(2):
 598 257–280, 2005.

599 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 600 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

601

602 Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Con-
 603 textual decision processes with low bellman rank are pac-learnable. In *Proceedings of the 34th*
 604 *International Conference on Machine Learning (ICML)*, volume 70 of *Proceedings of Machine*
 605 *Learning Research*, pp. 1704–1713. PMLR, 2017.

606 Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
 607 markov decision processes via regularization. *arXiv preprint arXiv:2205.14327*, 2022.

608 Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. An efficient solution to s-rectangular
 609 robust markov decision processes. *arXiv preprint arXiv:2301.13642*, 2023a.

610

611 Navdeep Kumar, Ilnura Usmanova, Kfir Yehuda Levy, and Shie Mannor. Towards faster global
 612 convergence of robust policy gradient methods. In *Sixteenth European Workshop on Reinforcement*
 613 *Learning*, 2023b.

614 Giacomo Lanzani. Dynamic concern for misspecification. *Econometrica*, 93(4):1333–1370, 2025.

615

616 Derek Lemoine and Christian P. Traeger. Watch your step: Optimal policy in a tipping climate.
 617 *American Economic Journal: Economic Policy*, 6(1):137–166, 2014.

618 Eitan Levin and Alexander Y Meltzer. Estimation of the regularization parameter in linear discrete
 619 ill-posed problems using the picard parameter. *SIAM Journal on Scientific Computing*, 39(6):
 620 A2741–A2762, 2017.

621

622 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 623 of objective landscapes. *arXiv preprint arXiv:1804.08838*, 2018. Published: ICLR 2018 Workshop
 624 / International Conference on Learning Representations.

625 Yan Li, Guanghui Lan, and Tuo Zhao. First-order policy optimization for robust markov decision
 626 process. *arXiv preprint arXiv:2209.10579*, 2022.

627 Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
 628 training through low-rank updates. *arXiv preprint arXiv:2307.05695*, 2023.

629

630 Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Ombo: A unified
 631 framework for rl under policy and dynamics shifts. *arXiv preprint arXiv:2405.19080*, 2024.

632

633 Shie Mannor, Ofir Mebel, and Huan Xu. Lightning does not strike twice: Robust mdps with coupled
 634 uncertainty. In *Proceedings of the 29th International Conference on Machine Learning (ICML)*,
 635 pp. 385–392, 2012. URL <https://arxiv.org/abs/1206.4643>.

636

637 Shie Mannor, Ofir Mebel, and Huan Xu. Robust mdps with k-rectangular uncertainty. *Mathematics*
 638 of *Operations Research*, 41(4):1484–1509, 2016. doi: 10.1287/moor.2016.0786. URL <https://pubsonline.informs.org/doi/10.1287/moor.2016.0786>.

639

640 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 641 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 642 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

643

644 Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
 645 representation learning and exploration in low-rank mdps. *Journal of Machine Learning Research*,
 25(6):1–76, 2024.

646

647 Ishaan Modi, Adrien Bembom, John Schulman, Sergey Levine, and Pieter Abbeel. Model-based rein-
 648 forcement learning via structural constraint on value functions. In *Advances in Neural Information*
 649 *Processing Systems*, 2021. URL <https://arxiv.org/abs/2110.08708>.

648 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
 649 using the wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical*
 650 *Programming*, 171(1):115–166, 2018.

651

652 Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
 653 reinforcement learning: A review of foundations and recent advances. *Machine Learning and*
 654 *Knowledge Extraction*, 4(1):276–315, 2022.

655 Rémi Munos. Error bounds for approximate policy iteration. In *Proceedings of the Twentieth*
 656 *International Conference on International Conference on Machine Learning*, pp. 560–567, 2003.

657

658 Keiko Nagami and Mac Schwager. Epistemic uncertainty in state estimation and belief space
 659 planning with learning-based perception systems. In *First Workshop on Out-of-Distribution*
 660 *Generalization in Robotics at CoRL 2023*, 2023. URL <https://openreview.net/forum?id=CPZaaSwXg>.

661

662 Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
 663 transition matrices. *Operations Research*, 53(5):780–798, 2005.

664

665 Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
 666 deep reinforcement learning with adversarial attacks. *arXiv preprint arXiv:1712.03632*, 2017.

667

668 Sergio Rozada, Victor Tenorio, and Antonio G Marques. Low-rank state-action value-function
 669 approximation. In *2021 29th European Signal Processing Conference (EUSIPCO)*, pp. 1471–1475.
 670 IEEE, 2021.

671

672 Sergio Rozada, Santiago Paternain, and Antonio G Marques. Tensor and matrix low-rank value-
 673 function approximation in reinforcement learning. *IEEE Transactions on Signal Processing*,
 674 2024.

675

676 Tyler Sam, Yudong Chen, and Christina Lee Yu. Overcoming the long horizon barrier for sample-
 677 efficient reinforcement learning with latent low-rank structure. *Proceedings of the ACM on*
 678 *Measurement and Analysis of Computing Systems*, 7(2):1–60, 2023.

679

680 Jay K Satia and Roy E Lave Jr. Markovian decision processes with uncertain transition probabilities.
 681 *Operations Research*, 21(3):728–740, 1973.

682

683 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 684 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
 685 human knowledge. *nature*, 550(7676):354–359, 2017.

686

687 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 688 press Cambridge, 1998.

689

690 Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
 691 neural networks. *Advances in neural information processing systems*, 36:9279–9321, 2023.

692

693 Saket Tiwari, Omer Gottesman, and George Konidaris. Geometry of neural reinforcement learning in
 694 continuous state and action spaces. In *The Second Conference on Parsimony and Learning (Recent*
 695 *Spotlight Track)*, 2025.

696

697 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 698 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033.
 699 IEEE, 2012.

700

701 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 702 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 703 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

704

705 John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-difference learning with function
 706 approximation. *Advances in neural information processing systems*, 9, 1996.

707

708 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

702 Qiuhan Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
 703 convergence guarantee. In *International Conference on Machine Learning*, pp. 35763–35797.
 704 PMLR, 2023.

705 Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. *Advances
 706 in Neural Information Processing Systems*, 34:7193–7206, 2021.

708 Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In *Interna-
 709 tional conference on machine learning*, pp. 23484–23526. PMLR, 2022.

711 Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. *Mathe-
 712 matics of Operations Research*, 38(1):153–183, 2013.

714 Huan Xu and Shie Mannor. Distributionally robust markov decision processes. *Mathematics
 715 of Operations Research*, 37(2):288–300, 2012. doi: 10.1287/moor.1120.0540. URL <https://doi.org/10.1287/moor.1120.0540>.

717 Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Wenrui Dai, Yingyong Qi, Yiran Chen,
 718 Weiyao Lin, and Hongkai Xiong. Trained rank pruning for efficient deep neural networks. In *2019
 719 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
 720 (EMC2-NIPS)*, pp. 14–17. IEEE, 2019.

722 Yuzhe Yang, Guo Zhang, Zhi Xu, and Dina Katabi. Harnessing structures for value-based planning
 723 and reinforcement learning. *arXiv preprint arXiv:1909.12255*, 2019.

725 Zichuan Yang, George Tucker, Tom Zahavy, Mohammad Ghavamzadeh, and Ofir Nachum. Represen-
 726 tation learning for reinforcement learning via bellman error minimization. In *International Confer-
 727 ence on Machine Learning (ICML)*, 2020. URL <https://arxiv.org/abs/2001.07301>.

728 Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
 729 networks for classification and detection. *IEEE transactions on pattern analysis and machine
 730 intelligence*, 38(10):1943–1955, 2015.

732 Yuan Zhang, Jianhong Wang, and Joschka Boedecker. Robust reinforcement learning in continuous
 733 control tasks with uncertainty set regularization. In *Conference on Robot Learning*, pp. 1400–1424.
 734 PMLR, 2023.

736 Kemin Zhou, John C. Doyle, and Keith Glover. *Robust and Optimal Control*. Prentice Hall, 1996.

738 Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic
 739 for robust reinforcement learning with function approximation. *Advances in neural information
 740 processing systems*, 36:97–133, 2023.

741 A APPENDIX

744 A.1 LLM USAGE

746 In this work, LLM were used solely for polishing the writing. No part of the technical content,
 747 experimental design, or analysis relied on LLMs. The responsibility for the correctness and originality
 748 of the ideas, methods, and results remains entirely with the authors.

750 A.2 PROOF OF THEOREM 1

752 For the ease of notation, we denote the gap between the sampled system dynamics with uncertainty
 753 $A_{\mathcal{P}}$ and the reference system $A_{\mathcal{P}^0}$ as $\epsilon_A := A_{\mathcal{P}^0} - A_{\mathcal{P}}$. Recall that $A_{\mathcal{P},r}^\dagger$ denotes the low-rank
 754 manifold projection of $A_{\mathcal{P}}$ using truncated SVD. Let $A_{\mathcal{P}^0}^\dagger$ and $A_{\mathcal{P},r}^\dagger$ respectively denote the pseudo-
 755 inverses. To ease notation we write $b_{\mathcal{P}^0} := b_{\mathcal{P}^0, \omega^0}$ and $b_{\mathcal{P}} := b_{\mathcal{P}, \omega_{\mathcal{P}}}$. With $\theta^0 = A_{\mathcal{P}^0}^\dagger b_{\mathcal{P}^0}$ and

756 $\theta_r = A_{\mathcal{P},r}^\dagger b_{\mathcal{P}}$, the difference can then be written as:
 757

$$\begin{aligned}
 758 \quad \theta_r - \theta^\circ &= A_{\mathcal{P},r}^\dagger b_{\mathcal{P}} - \theta^\circ \\
 759 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + A_{\mathcal{P},r}^\dagger A_{\mathcal{P}^\circ} \theta^\circ - \theta^\circ \\
 760 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + A_{\mathcal{P},r}^\dagger A_{\mathcal{P}} \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ - \theta^\circ \\
 761 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + \sum_{i=1}^r v_i v_i^T \theta^\circ - \sum_{i=1}^d v_i v_i^T \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ \\
 762 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) - \sum_{i=r+1}^d v_i v_i^T \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ \\
 763 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) - \sum_{i=r+1}^d v_i v_i^T \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ
 \end{aligned}$$

764 where the fourth equation above follows from the fact that:
 765

$$766 \quad A_{\mathcal{P},r}^\dagger A_{\mathcal{P}} = V \Sigma_{\mathcal{P},r}^{-1} U^\top U \Sigma_{\mathcal{P}} V^\top = \sum_{i=1}^r v_i v_i^T \quad \text{and} \quad \sum_{i=1}^d v_i v_i^T = I.$$

767 Since the feature functions ψ, ϕ are Lipschitz with constant $L > 0$, and that the uncertainty in
 768 environment dynamics are bounded from the underlying reference system with Wasserstein distance
 769 $W(\hat{\mathcal{P}}_{s,a}^\circ, P_{s,a}) \leq \epsilon$, all the components of matrix $A_{\mathcal{P}}$, say for example $\mathbb{E}_{\mathcal{P}}[\psi(s')\psi(s')^\top]$, can be
 770 upper bounded as follows,
 771

$$772 \quad \sup_{\mathcal{P} \in \mathcal{B}_W(\hat{\mathcal{P}}^\circ, \epsilon)} \|\mathbb{E}_{\mathcal{P}}[\psi(s')\psi(s')^\top] - \mathbb{E}_{\hat{\mathcal{P}}^\circ}[\psi(s')\psi(s')^\top]\| = \mathcal{O}(L\epsilon)$$

773 where $\mathcal{B}_W(\hat{\mathcal{P}}^\circ, \epsilon)$ is the Wasserstein ball with radius $\epsilon > 0$. Assume $\mathcal{P}^\circ \in \mathcal{B}_W(\hat{\mathcal{P}}^\circ, \epsilon)$, hence by
 774 triangle inequality:
 775

$$776 \quad \|\mathbb{E}_{\mathcal{P}}[\psi(s')\psi(s')^\top] - \mathbb{E}_{\mathcal{P}^\circ}[\psi(s')\psi(s')^\top]\| \leq 2\mathcal{O}(L\epsilon)$$

777 It follows that:
 778

$$\begin{aligned}
 779 \quad \|\theta_r - \theta^\circ\|_2 &\leq \|A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ})\|_2 + \|\sum_{i=r+1}^d v_i v_i^T \theta^\circ\|_2 + 2\mathcal{O}(L\epsilon) \\
 780 &\leq \frac{1}{\sigma_{\mathcal{P},r}} \|(b_{\mathcal{P}} - b_{\mathcal{P}^\circ})\|_2 + \|\sum_{i=r+1}^d v_i v_i^T \theta^\circ\|_2 + 2\mathcal{O}(L\epsilon)
 \end{aligned}$$

781 For the second term, we use $\theta^\circ = V^\circ \Sigma_{\mathcal{P}^\circ}^{-1} U^{\circ-1} b_{\mathcal{P}^\circ, \omega}$ to get:
 782

$$\begin{aligned}
 783 \quad \left\| \sum_{i=r+1}^d v_i v_i^T \theta^\circ \right\|_2 &= \left\| \sum_{i=r+1}^d v_i \sum_{j=1}^{r^\circ} v_i^\top v_j^\circ \sigma_{\mathcal{P}^\circ, j}^{-1} u_j^{\circ\top} b_{\mathcal{P}^\circ} \right\|_2 \\
 784 &\leq \left\| \sum_{i=r+1}^d \sum_{j=1}^{r^\circ} v_i^\top v_j^\circ \sigma_{\mathcal{P}^\circ, j}^{-1} u_j^{\circ\top} b_{\mathcal{P}^\circ} \right\|_2 \\
 785 &= \sum_{i=r+1}^d \left\| v_i^\top v_i^\circ \sigma_{\mathcal{P}^\circ, i}^{-1} u_i^{\circ\top} b_{\mathcal{P}^\circ} + \sum_{j \neq i}^{r^\circ} v_i^\top v_j^\circ \sigma_{\mathcal{P}^\circ, j}^{-1} u_j^{\circ\top} b_{\mathcal{P}^\circ} \right\|_2 \\
 786 &\leq \sum_{i=r+1}^d \|v_i^\top\|_2 \|v_i^\circ\|_2 \sigma_{\mathcal{P}^\circ, i}^{p-1} + \sum_{i=r+1}^d \sum_{j \neq i}^{r^\circ} \|v_i^\top v_j^\circ\|_2 \sigma_{\mathcal{P}^\circ, j}^{p-1} \|u_j^{\circ\top} b_{\mathcal{P}^\circ}\|_2 \\
 787 &\leq (d-r) \sigma_{\mathcal{P}^\circ, r}^{p-1} + \sum_{i=r+1}^d \sum_{j \neq i}^{r^\circ} \|v_i^\top v_j^\circ\|_2 \sigma_{\mathcal{P}^\circ, j}^{p-1} \\
 788 &\leq (d-r) \sigma_{\mathcal{P}^\circ, r}^{p-1} + (d-r) r^\circ \sigma_{\mathcal{P}^\circ, 1}^{p-1}
 \end{aligned}$$

810 It follows that:

811
$$\|\theta_r - \theta^\circ\|_2 \leq \frac{1}{\sigma_{\mathcal{P},r}} \|b_{\mathcal{P}} - b_{\mathcal{P}^\circ}\|_2 + (d-r)\sigma_{\mathcal{P}^\circ,r}^{p-1} + (d-r)r^\circ\sigma_{\mathcal{P}^\circ,1}^{p-1} + 2\mathcal{O}(L\epsilon) \quad (16)$$

815 **A.3 BIAS-VARIANCE IN DEEP RL: THE NEURAL TANGENT KERNEL (NTK) REGIME**

816 In what follows we consider bias-variance decomposition when the neural network is arbitrarily wide
 817 (i.e., large number of neurons per layer). In this regime, the network's predictions evolve in a way
 818 that can be analytically characterized by the Neural Tangent Kernel (NTK) (Jacot et al., 2018).

820 **A.3.1 THE NEURAL TANGENT KERNEL NTK REGIME**

821 Assume $Q_\theta(s, a)$ is represented with a sufficiently wide neural network (NTK regime). In this case:

822
$$Q_\theta(s, a) \approx Q_{\bar{\theta}}(s, a) + \nabla Q_{\bar{\theta}}(s, a)^\top (\theta - \bar{\theta}),$$

823 for initialization $\bar{\theta}$. Let

824
$$\delta(s, a, s'; \theta) := Q_\theta(s, a) - R(s, a) - \gamma V_\theta(s')$$

825 denote the Bellman error where $V_\theta(s) = \log \left(\sum_{a'} \exp Q_\theta(s, a') \right)$. Using the linear approximation
 826 we obtain:

827
$$\delta(s, a, s'; \theta) \approx \delta(s, a, s'; \bar{\theta}) + \Psi(s, a, s')^\top (\theta - \bar{\theta}),$$

828 where

829
$$\Psi(s, a, s') := \nabla Q_{\bar{\theta}}(s, a) - \gamma \sum_{a'} \pi_{\bar{\theta}}(a'|s') \nabla Q_{\bar{\theta}}(s', a'),$$

830 and $\pi_{\bar{\theta}}$ is the softmax policy induced by $Q_{\bar{\theta}}$. Hence, we minimize the approximated Bellman error:

831
$$\min_{\theta} \mathbb{E}_{(s, a, s') \sim \mathcal{P}^\circ} \left[(\Psi(s, a, s')^\top (\theta - \bar{\theta}) + \delta(s, a, s'; \bar{\theta}))^2 \right].$$

832 where \mathcal{P}° be the true joint distribution of (s, a, s') . The first order condition can be written as

833
$$A_{\mathcal{P}^\circ}(\theta - \bar{\theta}) = b_{\mathcal{P}^\circ}$$

834 where

835
$$A_{\mathcal{P}^\circ} := \mathbb{E}_{(s, a, s') \sim \mathcal{P}^\circ} [\Psi(s, a, s') \Psi(s, a, s')^\top] \quad b_{\mathcal{P}^\circ} := -\mathbb{E}_{(s, a, s') \sim \mathcal{P}^\circ} [\Psi(s, a, s') \delta(s, a, s'; \bar{\theta})]$$

836 The minimum-norm solution is

837
$$\theta^\circ - \bar{\theta} = A_{\mathcal{P}^\circ}^\dagger b_{\mathcal{P}^\circ} \quad (17)$$

838 where $A_{\mathcal{P}^\circ}^\dagger$ is the pseudo-inverse.

839 **A.3.2 WASSERSTEIN AMBIGUITY AND PERTURBED BELLMAN-NTK OPERATOR**

840 Let $\hat{\mathcal{P}}$ be an estimated transition model and consider a Wasserstein ball

841
$$\mathcal{B}(\hat{\mathcal{P}}, \varepsilon) := \{\mathcal{P} : W_1(\mathcal{P}, \hat{\mathcal{P}}) \leq \varepsilon\},$$

842 with $\mathcal{P}^\circ \in \mathcal{B}(\hat{\mathcal{P}}, \varepsilon)$. Let \mathcal{P} be drawn (uniformly randomly) from $\mathcal{B}(\hat{\mathcal{P}}, \varepsilon)$. Bellman error minimization
 843 is written as:

844
$$\min_{\theta} \mathbb{E}_{(s, a, s') \sim \mathcal{P}} \left[(\Psi(s, a, s')^\top (\theta - \bar{\theta}) + \delta(s, a, s'; \bar{\theta}))^2 \right].$$

845 The first order condition can be written as

846
$$A_{\mathcal{P}}(\theta - \bar{\theta}) = b_{\mathcal{P}} \quad (18)$$

847 where the perturbed Bellman-NTK operator and right-hand side are defined as:

848
$$A_{\mathcal{P}} := \mathbb{E}_{(s, a, s') \sim \mathcal{P}} [\Psi(s, a, s') \Psi(s, a, s')^\top], \quad b_{\mathcal{P}} := -\mathbb{E}_{(s, a, s') \sim \mathcal{P}} [\Psi(s, a, s') \delta(s, a, s')],$$

849 Consider a truncated singular value decomposition:

850
$$A_{\mathcal{P},r} = U \Sigma_{\mathcal{P},r} V^\top, \quad \Sigma_{\mathcal{P},r} = \text{diag}(\sigma_{\mathcal{P},1}, \dots, \sigma_{\mathcal{P},r}, 0, \dots, 0),$$

851 with singular values $\sigma_{\mathcal{P},1} \geq \dots \geq \sigma_{\mathcal{P},r} > 0$. The truncated solution to equation 18 is:

852
$$\theta_r - \bar{\theta} = A_{\mathcal{P},r}^\dagger b_{\mathcal{P}} \quad (19)$$

864 A.3.3 BIAS-VARIANCE DECOMPOSITION WITH RANK- r BELLMAN-NTK ESTIMATOR
865866 Let $\epsilon_A := A_{\mathcal{P}^\circ} - A_{\mathcal{P}}$ and $d := \text{Rank}(A_{\mathcal{P}})$. It follows that:

$$\begin{aligned}
867 \quad \theta_r - \theta^\circ &= A_{\mathcal{P},r}^\dagger b_{\mathcal{P}} - \theta^\circ \\
868 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + A_{\mathcal{P},r}^\dagger A_{\mathcal{P}^\circ} \theta^\circ - \theta^\circ \\
869 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + A_{\mathcal{P},r}^\dagger A_{\mathcal{P}} \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ - \theta^\circ \\
870 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) + \sum_{i=1}^r v_i v_i^T \theta^\circ - \sum_{i=1}^d v_i v_i^T \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ \\
871 &= A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ}) - \sum_{i=r+1}^d v_i v_i^T \theta^\circ + A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ \tag{20}
\end{aligned}$$

872 where the fourth equation above follows from the fact that:

$$873 \quad A_{\mathcal{P},r}^\dagger A_{\mathcal{P}} = V \Sigma_{\mathcal{P},r}^{-1} U^\top U \Sigma_{\mathcal{P}} V^\top = \sum_{i=1}^r v_i v_i^T \quad \text{and} \quad \sum_{i=1}^d v_i v_i^T = I.$$

874 Since $A_{\mathcal{P}}$ is Lipschitz (with constant $L > 0$) in $\mathcal{P} \in \mathcal{B}_W(\hat{\mathcal{P}}, \epsilon)$ we have

$$875 \quad \|\epsilon_A\|_2 = \|A_{\mathcal{P}} - A_{\mathcal{P}^\circ}\|_2 \leq \|A_{\mathcal{P}} - A_{\hat{\mathcal{P}}}\|_2 + \|A_{\hat{\mathcal{P}}} - A_{\mathcal{P}^\circ}\|_2 \leq 2L\epsilon$$

876 for some $L > 0$. It follows from equation 20 that:

$$877 \quad \|\theta_r - \theta^\circ\|_2 \leq \|A_{\mathcal{P},r}^\dagger (b_{\mathcal{P}} - b_{\mathcal{P}^\circ})\|_2 + \left\| \sum_{i=r+1}^d v_i v_i^T \theta^\circ \right\|_2 + \|A_{\mathcal{P},r}^\dagger \epsilon_A \theta^\circ\|_2.$$

878 Using

$$879 \quad \|A_{\mathcal{P},r}^\dagger\|_2 \leq \frac{1}{\sigma_{\mathcal{P},r}}, \quad \|\epsilon_A\|_2 \leq 2L\epsilon,$$

880 we get the bound

$$881 \quad \|\theta_r - \theta^\circ\|_2 \leq \frac{1}{\sigma_{\mathcal{P},r}} \|b_{\mathcal{P}} - b_{\mathcal{P}^\circ}\|_2 + \left\| \sum_{i=r+1}^d v_i v_i^T \theta^\circ \right\|_2 + \frac{2L\epsilon}{\sigma_{\mathcal{P},r}} \|\theta^\circ\|_2$$

882 Since $b_{\mathcal{P}}$ is Lipschitz in \mathcal{P} with constant L_b , then

$$883 \quad \|b_{\mathcal{P}} - b_{\mathcal{P}^\circ}\|_2 \leq 2L_b\epsilon,$$

884 because $\mathcal{P}, \mathcal{P}^\circ \in \mathcal{B}(\hat{\mathcal{P}}, \epsilon)$. The upper bound can be expressed as:

$$885 \quad \|\theta_r - \theta^\circ\|_2 \leq \underbrace{\frac{2\epsilon(L_b + L\|\theta^\circ\|_2)}{\sigma_{\mathcal{P},r}}}_{\text{variance}} + \underbrace{\left\| \sum_{i=r+1}^d v_i v_i^T \theta^\circ \right\|_2}_{\text{bias}} \tag{21}$$

886 The rank- r truncation suppresses high-variance, low-signal directions of the Bellman-NTK operator,
887 improving stability under epistemic uncertainty in dynamics, while introducing bias due to discarded
888 spectral components. This reveals an explicit bias-variance tradeoff governed by the singular value
889 spectrum of $A_{\mathcal{P}}$

900 A.4 HEURISTIC ARGUMENT FOR CONVERGENCE OF ADARL

901 This section provides a geometric interpretation of the proposed adaptive-rank bi-level method, and
902 gives a heuristic argument for the stability and convergence behavior observed empirically. While a
903 full global convergence theorem is beyond the scope of the present work—given the combination
904 of deep function approximation, bi-level structure, and rank adaptation—the algorithm exhibits a
905 well-organized structure that allows for a clear explanation of why the rank stabilizes and why the
906 method behaves like a conventional actor-critic algorithm thereafter (Tian et al., 2023; Dong et al.,
907 2022; Fu et al., 2020).

918 **Low-Rank Parameter Space as a Determinantal Variety** Let $\theta \in \mathbb{R}^{d_1 \times d_2}$ denote the matrix of
 919 policy parameters. For a fixed maximal rank \bar{r} , define the determinantal variety
 920

$$921 \quad \mathcal{M}_{\leq \bar{r}} := \{\theta \in \mathbb{R}^{d_1 \times d_2} : \text{rank}(\theta) \leq \bar{r}\},$$

922 which is a closed, semi-algebraic subset of $\mathbb{R}^{d_1 \times d_2}$ stratified by smooth manifolds
 923

$$924 \quad \mathcal{M}_r := \{\theta : \text{rank}(\theta) = r\}, \quad r = 0, 1, \dots, \bar{r}.$$

925 The singular locus of $\mathcal{M}_{\leq \bar{r}}$ consists of lower-rank strata, but this does not affect the argument below.
 926 Algorithm 1 ensures that *all iterates* θ^k lie in $\mathcal{M}_{\leq \bar{r}}$, so parameter updates occur inside a single
 927 algebraic variety.
 928

929 **Monotone and Finite Rank Adaptation** The Rank Adaptation Step in Algorithm 1 employs the
 930 truncation rule

$$931 \quad \hat{r} = \max \left\{ \ell \in \{1, \dots, d\} : \frac{\sum_{i=1}^{\ell} \sigma_i}{\sum_{i=1}^d \sigma_i} \leq \beta \right\},$$

934 computed from the singular values $\sigma_1 \geq \sigma_2 \geq \dots$ of the current parameter matrix. Starting from a
 935 high-rank model, the algorithm only *decreases* the rank when the resulting approximation preserves
 936 sufficient representation power. Thus the sequence of ranks satisfies

$$937 \quad r_{k+1} \leq r_k, \quad r_k \in \{1, \dots, \bar{r}\}.$$

938 Since this sequence only takes values in a finite set and is monotonically nonincreasing, it can perform
 939 *only finitely many* strict decreases. Therefore there exists a finite iteration K and a rank \hat{r} such that
 940

$$941 \quad r_k = \hat{r} \quad \text{for all } k \geq K.$$

942 Beyond iteration K , all iterates lie in the fixed-rank manifold $\mathcal{M}_{\hat{r}}$.
 943

944 **Reduction to Standard Policy Optimization** Once the rank has stabilized, Algorithm 1 reduces to
 945 entropy-regularized actor-critic training on the smooth manifold $\mathcal{M}_{\hat{r}}$, implemented via a low-rank
 946 bottleneck layer. Thus the bi-level procedure collapses to a standard single-level policy-gradient
 947 method with a fixed structured parameterization and thus converges.

948 This behavior matches the empirical observations in Section 5: the rank changes only a small number
 949 of times, after which the robust return and policy iterates stabilize.
 950

951 **Summary** Although a formal global convergence theorem is not provided, the algorithm exhibits
 952 the following structured behavior:
 953

- 954 • All iterates remain in the determinantal variety $\mathcal{M}_{\leq \bar{r}}$.
- 955 • The rank adaptation mechanism is monotone and thus stabilizes after finitely many updates.
- 956 • After stabilization at rank \hat{r} , the method reduces to standard entropy-regularized policy
 957 optimization on the smooth manifold $\mathcal{M}_{\hat{r}}$.

958 This geometric viewpoint explains why AdaRL converges to a stable rank and why subsequent
 959 training behaves like conventional actor-critic learning with a fixed low-rank representation.
 960

962 A.5 ADDITIONAL RESULT

964 A.5.1 BASIC SETTINGS

965 In all experiments, we evaluate the performance of benchmark algorithms on the Hopper-v3,
 966 Walker2d-v3, Humanoid-v3, and Ant-v3 environments from OpenAI Gym. To ensure a
 967 fair comparison, we use the open-source implementation¹ of SAC as the base RL algorithm for all
 968 methods, and for RNAC we adopt its original PPO-based trainer without modification. We use Adam
 969 as the optimizer in SAC, where both the policy and Q-networks are implemented as two-layer MLPs
 970 with hidden sizes (64, 64) and ReLU activation functions. The learning rate for both networks is
 971

¹<https://github.com/openai/spinningup>

fixed at 3×10^{-3} . For our proposed algorithm, we set the truncation interval d_t to 0.7×10^6 for Walker2d and 10^6 for Hopper, Humanoid, and Ant, meaning the model is truncated every d_t policy optimization steps. This choice ensures that rank adaptation occurs much less frequently than policy updates.

To impose a rank constraint on a weight matrix W , we first factorize it as $W = W_1 W_2$ and apply singular value decomposition (SVD) to the product $W_1 W_2 = U \Sigma V^\top$. We then reparameterize as

$$W_1 = U_{[:, : \hat{r}]} \sqrt{\Sigma_{[:, \hat{r}]}} , \quad W_2 = \sqrt{\Sigma_{[:, \hat{r}]}} V_{[:, \hat{r}, :]},$$

where $\hat{r} \leq r$ is the target rank. This projects W onto a lower-rank manifold, thereby enforcing the constraint. As shown in Figure 5, inserting an intermediate linear layer (yellow, within the red region) provides an explicit implementation of this rank reduction.

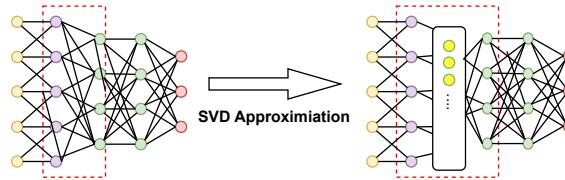


Figure 5: To impose the low-rank constraint, we insert an intermediate linear layer (without activation functions or bias) between the original two layers. This layer acts as a bottleneck that enforces a low-rank factorization of the weight matrix via SVD approximation.

Additionally, to avoid loss of momentum after optimizer resets, we apply a standard cosine decay schedule with warm-up, as in (Lialin et al., 2023; Touvron et al., 2023). Specifically, upon each reset, we set the learning rate to zero, gradually warm it up to the target value over 2000 steps, and then resume following the cosine schedule.

We present the practical implementation of our proposed algorithm in Alg. 1. At each iteration, we warm-start both the policy network and Q-network in SAC using the trained neural networks from the previous iteration, and then run SAC in the corresponding MuJoCo environment to continue training.

For the robust RL baselines, we use their official open-source implementations. The implementation of RNAC is available at <https://github.com/tliu1997/RNAC>. To modify the dynamics kernel, we follow the setting in OMPO Luo et al. (2024), using their codebase at <https://github.com/Roythuly/OMPO>. For Parseval regularization, we use the implementation provided at https://github.com/wechu/parseval_reg. In MuJoCo experiments with Parseval regularization, we adopt the same setup, tuning the regularization coefficient from $\{0.001, 0.0001, 0.00001\}$ and selecting the best-performing value. We also follow the original implementation by setting $s = 2$ in the Parseval constraint $\|WW^\top - sI\|_F$. For Tiwari et al. (2025), we follow their default configuration with a sparsification layer and set the hidden layer size to 1024 neurons, consistent with their original setting.

A.5.2 MODEL UNCERTAINTY SETTING

Following the setup in Luo et al. (2024), we simulate model uncertainty by introducing continuously varying environment parameters during training. This design encourages policies to generalize across dynamic variations rather than overfitting to a fixed set of dynamics. The specific parameter schedules for each environment are as follows:

- **Hopper:** The torso and foot lengths vary with the episode index i as

$$L_{\text{torso}}(i) = 0.4 + 0.2 \cdot \sin(0.2i), \quad L_{\text{foot}}(i) = 0.39 + 0.2 \cdot \sin(0.2i).$$

- **Walker2d:** The torso and foot lengths follow a similar pattern with

$$L_{\text{torso}}(i) = 0.2 + 0.1 \cdot \sin(0.3i), \quad L_{\text{foot}}(i) = 0.1 + 0.05 \cdot \sin(0.3i).$$

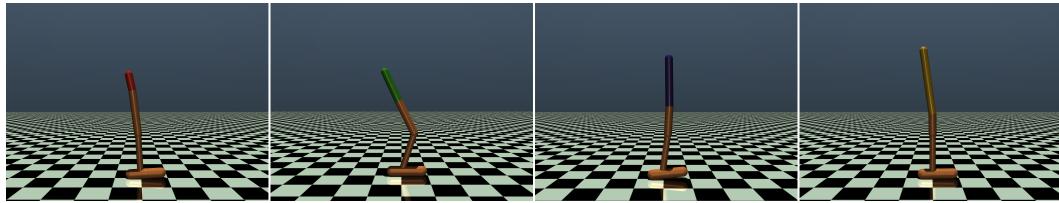


Figure 6: Visualization of uncertain dynamics in the Hopper-v3 task, where the torso and foot lengths vary across episodes.

- **Ant:** Gravity g and wind speed W change across episodes according to
$$g(i) = 14.715 + 4.905 \cdot \sin(0.5i), \quad W(i) = 1 + 0.2 \cdot \sin(0.5i).$$
- **Humanoid:** The same variation as Ant is applied, but the wind effect is amplified due to the humanoid’s larger mass and drag:
$$g(i) = 14.715 + 4.905 \cdot \sin(0.5i), \quad W(i) = 1 + 0.5 \cdot \sin(0.5i).$$

A.5.3 RANK CONVERGENCE OF THE ALTERNATIVE ALGORITHM

In this subsection, we conduct an ablation study to examine alternative strategies for selecting the cut-off rank of the SVD beyond Eq. 15. As reviewed by Falini (2022), numerous criteria have been proposed for truncated SVD. Here, we consider a simple hard-thresholding approach based on the ratio between singular values. Specifically, we define the cut-off rank as

$$\hat{r} = \min \left\{ \ell \in \{1, 2, \dots, d\} \mid \frac{\sigma_\ell}{\sigma_1} \leq \beta \right\}. \quad (22)$$

Figure 7 illustrates a fundamental limitation of this criterion. After the initial iteration, the rank selection process stagnates because the rule in Eq. 22 depends only on the largest singular value. As a result, it ignores the broader spectral structure of the parameters and fails to adapt dynamically to spectral variations during training. Therefore, we continue to use Eq. 15 as our primary rule for selecting the cut-off rank.

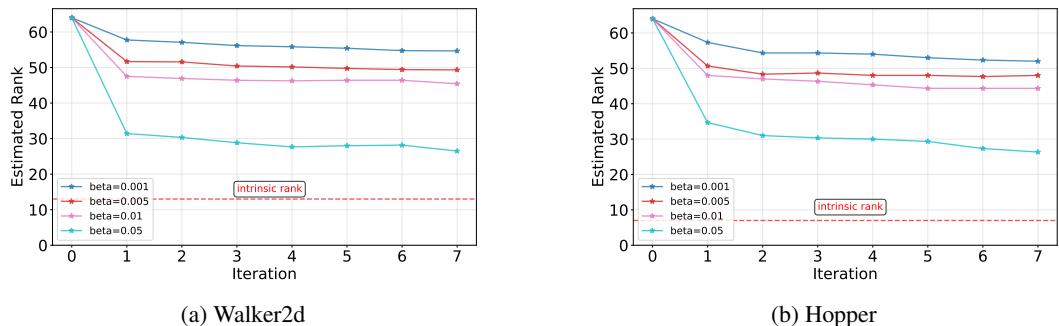


Figure 7: Comparison of Rank Selection by hard-thresholding method.

A.5.4 POLICY PERFORMANCE UNDER VARYING DYNAMICS

In this subsection, we present additional experimental results under perturbations of physical hyperparameters (e.g., torso length, foot length) in the Hopper-v3 and Walker2d-v3 environments. As shown in Figure 8, the proposed AdaRL algorithm exhibits superior robustness and outperforms the strongest baseline (Tiwari et al., 2025) in the majority of cases.

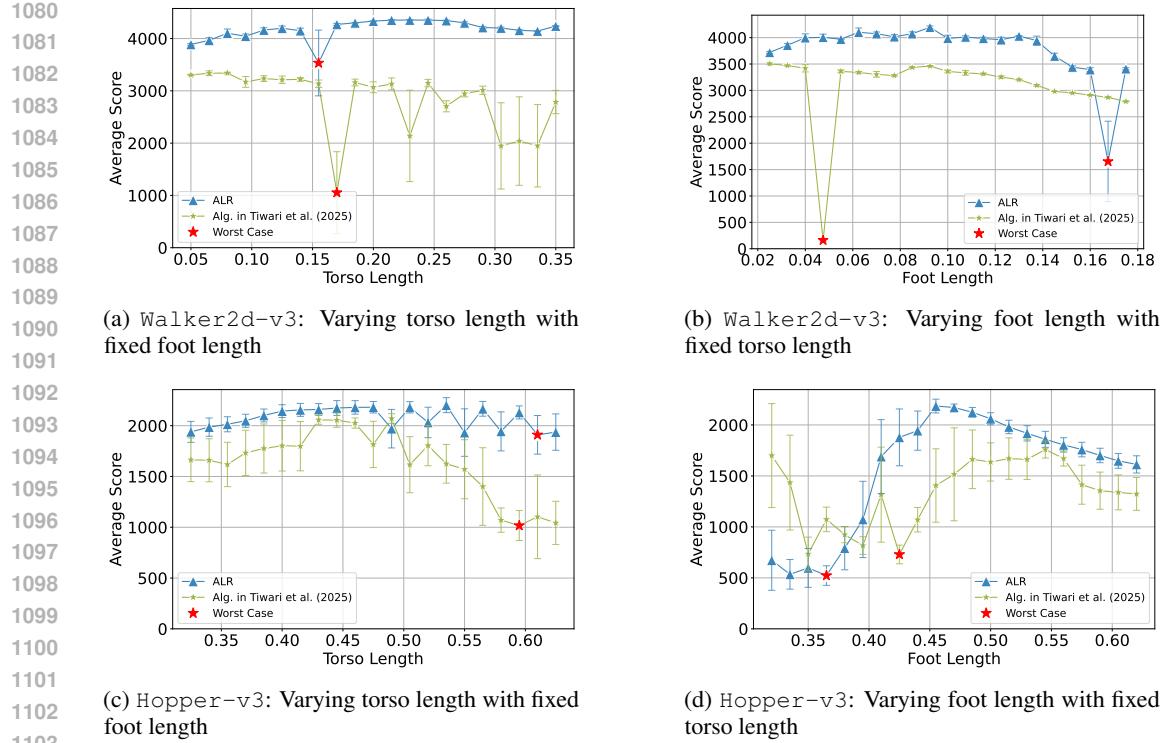


Figure 8: Policy performance under perturbations of physical hyperparameters in Walker2d-v3 and Hopper-v3. Each curve reports the mean performance with shaded regions indicating the standard deviation across seeds. Red pentagram markers (\star) denote the worst-case performance under each perturbation setting. Subfigures (a) and (c) correspond to varying torso length with fixed foot length, while (b) and (d) show results for varying foot length with fixed torso length. The proposed AdaRL algorithm consistently outperforms the strongest baseline (Tiwari et al., 2025) in most perturbed settings, demonstrating improved robustness.

A.5.5 ABLATION STUDY OF ADARL

In this section, we report ablations clarifying where the rank constraints are applied. We evaluate three variants of AdaRL: (i) **actor-only**, where only the policy network is re-factorized; (ii) **critic-only**, where only the value network is re-factorized; and (iii) **both**, which corresponds to the full AdaRL method. For each variant, we apply the factorization described in Figure 5 to the first two layers while keeping all other components identical.

The results in Table 2 show that applying rank adaptation to either the actor alone or both the actor and critic yields substantial robustness improvements across uncertainty levels and environments. In contrast, the critic-only variant consistently provides limited gains and is often the weakest among the three. This pattern suggests that controlling the expressiveness of the policy network is the primary driver of robustness, while jointly adapting both components offers the most reliable and stable performance. Overall, the ablations demonstrate that AdaRL benefits notably from rank adaptation on the actor side, with the actor-critic configuration delivering the strongest results.

A.5.6 VALIDATING WITH A TOY EXAMPLE IN A WASSERSTEIN BALL

In this section, we provide a numerical CartPole example to verify the theorem. Following the corrected dynamics in Florian (2007), the CartPole system can be written as

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{mg}{(m+M)(\frac{4}{3} - \frac{m}{m+M})} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g}{l(\frac{4}{3} - \frac{m}{m+M})} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m+M} + \frac{m}{(m+M)^2(\frac{4}{3} - \frac{m}{m+M})} \\ 0 \\ -\frac{1}{l(m+M)(\frac{4}{3} - \frac{m}{m+M})} \end{bmatrix} u, \quad (23)$$

1134
 1135 Table 2: Performance of the AdaRL variants across environments and uncertainty levels. Each entry
 1136 reports the average return over 5 random seeds. Rows highlighted in light blue denote the method
 1137 achieving the highest performance at Iteration 5.

1138 Methods	1139 Iteration 1 (0.7e6 Step)	1140 Iteration 3 (2.1e6 Step)	1141 Iteration 5 (3.5e6 Step)
Hopper-v3 with Low Uncertainty ($\text{torso_len} \in [0.31, 0.49]$, $\text{foot_len} \in [0.305, 0.485]$)			
1142 ALR (Actor Only)	1308.14 \pm 275.42	2120.85 \pm 115.20	2264.38 \pm 80.59
1143 ALR (Critic Only)	1181.78 \pm 197.83	1910.93 \pm 484.25	2076.15 \pm 476.52
1144 ALR (Actor–Critic Both)	848.50 \pm 346.82	2205.95 \pm 148.13	2259.59 \pm 40.51
Hopper-v3 with High Uncertainty ($\text{torso_len} \in [0.25, 0.55]$, $\text{foot_len} \in [0.245, 0.545]$)			
1146 ALR (Actor Only)	890.83 \pm 724.68	1614.52 \pm 501.20	1813.32 \pm 223.40
1147 ALR (Critic Only)	976.27 \pm 598.22	1778.76 \pm 28.67	1804.34 \pm 255.27
1148 ALR (Actor–Critic Both)	608.77 \pm 351.49	1981.51 \pm 214.14	2245.84 \pm 56.32
Walker2d-v3 with Low Uncertainty ($\text{torso_len} \in [0.1, 0.3]$, $\text{foot_len} \in [0.05, 0.15]$)			
1151 ALR (Actor Only)	1780.43 \pm 579.17	3242.00 \pm 247.36	3356.54 \pm 157.38
1152 ALR (Critic Only)	1481.17 \pm 692.37	3658.15 \pm 454.64	3699.68 \pm 569.28
1153 ALR (Actor–Critic Both)	2171.12 \pm 96.99	4095.72 \pm 83.21	4692.13 \pm 370.46
Walker2d-v3 with High Uncertainty ($\text{torso_len} \in [0.06, 0.34]$, $\text{foot_len} \in [0.03, 0.17]$)			
1156 ALR (Actor Only)	1476.82 \pm 957.33	3644.88 \pm 198.58	3686.93 \pm 160.31
1157 ALR (Critic Only)	1253.01 \pm 805.23	3433.09 \pm 189.79	3490.55 \pm 365.96
1158 ALR (Actor–Critic Both)	1796.41 \pm 859.72	3146.30 \pm 447.84	3348.37 \pm 270.98

1159
 1160 where x denotes the horizontal position of the cart, \dot{x} its velocity, θ the pole angle (measured from the
 1161 upright position), and $\dot{\theta}$ the angular velocity. The parameters m and M are the pole and cart masses,
 1162 respectively, l is the pole length (0.5 in the default setting), g is the gravitational acceleration, and
 1163 $u \in \{0, 1\}$ represents the control input (horizontal force) applied to the cart.

1164 To inject robustness and model uncertainty into this system, we assume that the pole length l varies
 1165 across episodes. Let l_0 denote the nominal length used to define the reference dynamics. During
 1166 training, we randomly sample l from the interval

$$1168 \quad l \in [0.95 l_0, 1.05 l_0].$$

1170 For a fixed pole length l , the CartPole dynamics in equation 23 can be written compactly as

$$1171 \quad \dot{s} = A(l)s + B(l)u, \quad s = [x, \dot{x}, \theta, \dot{\theta}]^\top, \quad u \in \{0, 1\},$$

1173 where $A(l)$ and $B(l)$ are obtained directly from the matrices in equation 23.

1174 Let l_0 be the nominal length and denote by

$$1176 \quad s_0^+ = A(l_0)s + B(l_0)u, \quad s^+(l) = A(l)s + B(l)u$$

1178 the next states under l_0 and l , respectively. Since the system is deterministic, the transition kernels
 1179 are Dirac measures

$$1180 \quad \hat{P}_{s,a}^o = \delta_{s_0^+}, \quad P_{s,a}(l) = \delta_{s^+(l)}.$$

1181 For a Wasserstein distance with Euclidean ground cost, we then have

$$1183 \quad W(\hat{P}_{s,a}^o, P_{s,a}(l)) = \|s_0^+ - s^+(l)\|_2 = \|(A(l_0) - A(l))s + (B(l_0) - B(l))u\|_2.$$

1185 Assume the state is bounded, $\|s\| \leq \|s\|_{\max}$, and recall that $u \in \{0, 1\}$, hence $|u| \leq 1$. Using
 1186 operator norms, we obtain

$$1187 \quad W(\hat{P}_{s,a}^o, P_{s,a}(l)) \leq \|A(l_0) - A(l)\| \|s\|_{\max} + \|B(l_0) - B(l)\|.$$

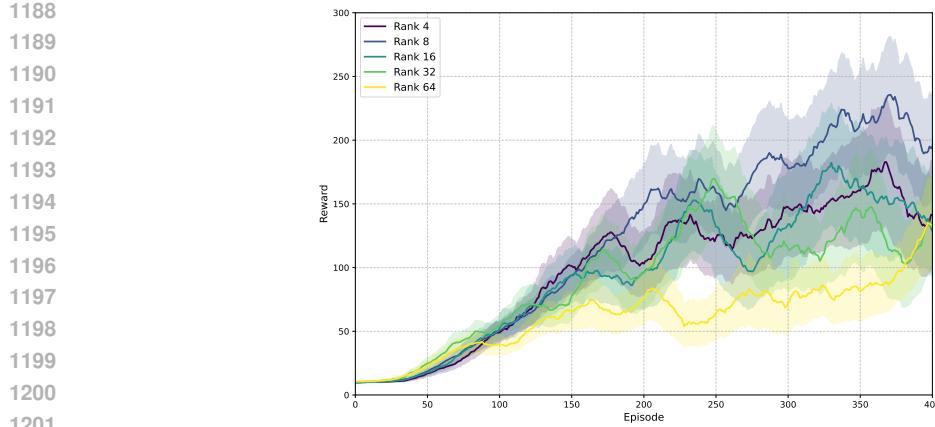


Figure 9: Performance of different-rank policy models under CartPole dynamics uncertainty.

The entries of $A(l)$ and $B(l)$ depend on l only through rational functions such as $\frac{1}{l}$ and $\frac{1}{l(m+M)}$. On the compact interval $l \in [0.95 l_0, 1.05 l_0]$ these functions are Lipschitz, so there exist constants $K_A, K_B > 0$ such that

$$\|A(l_0) - A(l)\| \leq K_A |l - l_0|, \quad \|B(l_0) - B(l)\| \leq K_B |l - l_0|.$$

Hence, for any (s, a) and any $l \in [0.95 l_0, 1.05 l_0]$,

$$W(\hat{P}_{s,a}^{\circ}, P_{s,a}(l)) \leq (K_A \|s\|_{\max} + K_B) |l - l_0| \leq 0.05 l_0 (K_A \|s\|_{\max} + K_B).$$

Therefore, by choosing

$$\varepsilon_{s,a} := 0.05 l_0 (K_A \|s\|_{\max} + K_B),$$

(or a global ε using the supremum over (s, a)), the perturbed dynamics with $l \in [0.95 l_0, 1.05 l_0]$ indeed satisfy

$$P_{s,a}(l) \in \left\{ P_{s,a} \in \Delta_{\mathcal{S}} \mid W(\hat{P}_{s,a}^{\circ}, P_{s,a}) \leq \varepsilon_{s,a} \right\},$$

i.e., they lie inside a Wasserstein ball around the nominal transition kernel.

Numerical Results Following the setup in Section 4.2, we conduct a numerical experiment to examine whether the model rank affects the performance of this linear control system. We perform a sanity check using models of different ranks (4, 8, 16, 32, 64). As shown in Figure 9, although the nominal CartPole dynamics suggest an optimal rank of 4 (Equation 23), introducing model uncertainty requires greater capacity, and the model with rank = 8 achieves the best performance—closely aligning with our theoretical prediction.