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ABSTRACT

Robust reinforcement learning (Robust RL) seeks to handle epistemic uncertainty
in environment dynamics, but existing approaches often rely on nested min–max
optimization, which is computationally expensive and yields overly conservative
policies. We propose Adaptive Rank Representation (AdaRL), a bi-level opti-
mization framework that improves robustness by aligning policy complexity with
the intrinsic dimension of the task. At the lower level, AdaRL performs policy
optimization under fixed-rank constraints with dynamics sampled from a Wasser-
stein ball around a centroid model. At the upper level, it adaptively adjusts the
rank to balance the bias–variance trade-off, projecting policy parameters onto a
low-rank manifold. This design avoids solving adversarial worst-case dynamics
while ensuring robustness without over-parameterization. Empirical results on
MuJoCo continuous control benchmarks demonstrate that AdaRL not only con-
sistently outperforms fixed-rank baselines (e.g., SAC) and state-of-the-art robust
RL methods (e.g., RNAC, Parseval), but also converges toward the intrinsic rank
of the underlying tasks. These results highlight that adaptive low-rank policy
representations provide an efficient and principled alternative for robust RL under
model uncertainty.

1 INTRODUCTION

The goal of a reinforcement learning (RL) agent is to learn a policy that maximizes its expected
discounted cumulative reward (Sutton et al., 1998). Recent advances have enabled RL agents
to master complex games and robotic control tasks in both simulation and the real world (Mnih
et al., 2015; Silver et al., 2017). However, policies that perform well in such controlled settings
often fail to transfer to practice, where transition dynamics are rarely fixed and may shift due to
modeling inaccuracies (Lanzani, 2025), external disturbances, or changing conditions (Pattanaik et al.,
2017). To address this gap, robust reinforcement learning (robust RL) (Zhou et al., 1996) formalizes
uncertainty by considering a set of possible transition kernels and casting policy optimization as
a minmax problem: the agent seeks a policy that maximizes expected return under the worst-case
dynamics. This formulation reduces the sensitivity of RL to model misspecification and aims to
produce policies that stay reliable when the environment differs from training.

Robust RL provide a principled framework to handle model uncertainty by optimizing for policies
that perform well under the worst-case transition models within a prescribed uncertainty set (Iyengar,
2005; Wiesemann et al., 2013). Classical solutions extend Bellman’s principle to robust settings
(Satia & Lave Jr, 1973), while more recent work has focused on robust policy learning via model-
based planning (Clavier et al., 2023) or online interaction with a nominal environment (Wang &
Zou, 2021). Despite these advances, robust RL faces severe scalability issues when applied to
continuous and high-dimensional domains. In particular, updating the robust value function via
the robust Bellman operator requires solving a nested inner-loop optimization at every step, i.e.,
identifying the worst-case transition, which becomes computationally prohibitive as the state and
action spaces grow or when the uncertainty set is large or unbounded (Wang & Zou, 2022). Moreover,
existing approaches often assume access to oracle solvers or rely on fixed uncertainty sets that
may yield overly conservative policies (Mannor et al., 2012; 2016; Xu & Mannor, 2012). Beyond
these computational bottlenecks, another key challenge lies in function approximation. Existing
analyzes are mostly restricted to the tabular setting, which cannot achieve parameterized neural
network approximations to the optimal solution of the robust Bellman equation. Our approach,
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Robust Reinforcement Learning AdaRL

Rank Adaptation

Policy Optimization 

Balance Bias-Variance
Tradeoff

Fixed Rank
Improve the Policy

Inner Problem (Worst-
case MDP)

Outer Problem (Policy
Optimization)

Intractable in
Continuous Control

Figure 1: Comparison between classical robust reinforcement learning and the proposed AdaRL
framework. Robust RL requires solving a nested min–max optimization, where the inner worst-case
MDP search becomes intractable in continuous control. In contrast, AdaRL replaces this inner
optimization with an adaptive low-rank mechanism and alternates between policy optimization and
rank adaptation to achieve a scalable and data-driven robustness under epistemic uncertainty.

in contrast, explicitly accommodates parameterization, thereby enabling robust generalization in
high-dimensional environments.

In this work, we introduce an alternative perspective to overcome the limitations of existing robust RL
approaches. Instead of directly tackling worst-case dynamics through nested min–max optimization,
we enhance robustness by controlling over-parameterization and improving the generalization of
fixed-rank policy and value models under perturbed transition dynamics. A key insight (Li et al.,
2018)) is that the effective complexity of a policy should match the intrinsic dimension of the task
under epistemic uncertainty—uncertainty in environment dynamics arising from limited data or partial
observability, which is prevalent in real-world domains such as robotics, control, environmental
policy, and economics (Nagami & Schwager, 2023; Zhou et al., 1996; Lemoine & Traeger, 2014;
Hansen & Sargent, 2008). Building on this idea, we propose a new algorithm that jointly learns both
the policy models and its rank, formulated as a bi-level optimization problem: the lower-level learns
a policy under low-rank constraints, while the upper-level adapts the rank to balance robustness and
expressiveness.

This perspective aligns with and extends prior work on exploiting low-rank structures in reinforcement
learning. In the model-based setting, algorithms for joint feature and policy learning have been
developed when the dynamics admit a low-rank decomposition (Agarwal et al., 2020; Bose et al.,
2024). In the model-free setting, Jiang et al. (2017) introduced the concept of Bellman rank to capture
the intrinsic complexity of value function approximation, and subsequent work (Modi et al., 2021;
2024; Yang et al., 2020) sought to encourage small Bellman rank during training. More recently,
Tiwari et al. (2025) showed that wide two-layer neural networks yield reachable states concentrated
on a low-dimensional manifold whose dimension scales with the action space. Overall, these works
show that low-rank structures can improve performance in standard RL settings. Yet, no existing
approach provides a practical algorithm for leveraging low-rank advantages under model uncertainty,
and it remains inherently difficult to determine a suitable rank for parameterizing policy models in
uncertain environments.

Our Contribution. We propose Adaptive Rank Representation for Reinforcement Learning
(AdaRL, Figure 1), an adaptive framework that integrates conservatism into the learning process in
MDPs with epistemic uncertainty. The algorithm alternates between standard policy optimization
under a fixed rank and an adaptive step that adjusts the rank to balance robustness and expressiveness.
Our main contributions are:

1. We provide a theoretical analysis of the bias–variance trade-off in entropy-regularized RL with
linear parameterization under epistemic uncertainty, showing that low-rank representations can
reduce variance in the presence of model uncertainty (Section 3, Theorem. 1).

2. We formulate policy rank selection as a bi-level optimization problem and present the AdaRL
algorithm, which adaptively adjusts policy rank for robust learning (Section 4).

3. We empirically evaluate AdaRL on standard MuJoCo continuous control benchmarks, demonstrat-
ing consistent improvements over robust baselines (e.g., RNAC Zhou et al. (2023), Parseval Chung
et al. (2024)) and non-robust methods such as SAC (Haarnoja et al., 2018) and Tiwari et al.
(2025) (see Section 5).
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2 PRELIMINARY AND RELATED WORKS

2.1 NOTATION

Discounted Markov Decision Process. A Markov decision process (MDP) is represented by the
tuple (S,A, P, ρ, r, γ) wherein S is the state spaceA is the action space (with both S ⊂ Rn,A ⊂ Rm

assumed compact), Ps,a ∈ ∆S , is the transition kernel for a ∈ A, s ∈ S. (where ∆S denotes the
space of probability measures with support S), ρ(·) is the initial state distribution, R : S ×A → R
is the the reward function γ ∈ [0, 1) is the discount factor. Given s ∈ S, a policy π is a map
π(·|s) : S → ∆A, where ∆A denotes the space of probability measures with support A.

Epistemic Uncertainty in State Dynamics. To model uncertainty in the environment dynamics, we
introduce an ambiguity set of possible transition kernels:

Ps,a := {Ps,a ∈ ∆S | W (P̂ ◦
s,a, Ps,a) ≤ ϵ},

where P̂ ◦
s,a is a reference transition kernel (e.g., a maximum likelihood estimator obtained from a

finite demonstration dataset), W (P̂ ◦
s,a, Ps,a) denotes the Wasserstein distance (Villani et al., 2008),

and ϵ > 0 is the uncertainty radius. We refer to P ◦
s,a as the centroid of the uncertainty set, representing

the true but unobserved transition kernel that governs the system dynamics. Throughout, we assume
that epistemic uncertainty is well captured by the Wasserstein ball (Mohajerin Esfahani & Kuhn,
2018), i.e., P ◦

s,a ∈ Ps,a for all (s, a) ∈ S ×A.

Singular Value Decomposition (SVD) Let θ ∈ Rd1×d2 . A thin singular value decomposition (SVD)
is given by θ = UΣV⊤, where U is a d1 × r matrix with orthogonal columns, that is, an element of
the Stiefel manifold (Chakraborty & Vemuri, 2019; Atiyah & Todd, 1960)

St(r, d1) = {U ∈ Rd1×r : UTU = I},
Σ is a r × r diagonal matrix with positive entries σ1 ≥ σ2 ≥ · · ·σr > 0 (referred to as singular
values) and V ∈ St(r, d2). The singular value decomposition exists for any matrix θ ∈ Rd1×d2 . We
refer to a truncated SVD whenever r < rank(θ).

2.2 ROBUST REINFORCEMENT LEARNING

In MDPs, the system dynamics P is usually assumed to be constant over time. However, in the real
world, it is subject to perturbations that can significantly impact performance in deployment (Zhang
et al., 2023; Moos et al., 2022). Robust MDPs provide a theoretical framework for taking this uncer-
tainty into account, taking P as not fixed but chosen adversarially from an uncertainty set P (Iyengar,
2005; Nilim & El Ghaoui, 2005), where P denotes a set of plausible transition models known as the
uncertainty set. The objective of robust RL is to find a policy that performs well under the worst-case
dynamics within this set. Formally, the robust objective JP,π is defined as:

Jrobust(π) = max
π

min
P∈P

EP,π

[∑
t≥0

γtR(st, at)
∣∣∣s0 ∼ ρ0] (1)

The optimal policy π∗
P is defined as the solution to the outer-loop problem, which maximizes

Jrobust(π) by accounting for the worst-case transition model at each time step. This leads to the
inner-loop problem of identifying the worst-case dynamics, for which several approaches have been
developed, including value iteration (Nilim & El Ghaoui, 2005; Iyengar, 2005; Wiesemann et al.,
2013; Grand-Clément & Kroer, 2021; Kumar et al., 2023a), policy iteration (Kumar et al., 2022;
Badrinath & Kalathil, 2021), and policy gradient methods (Li et al., 2022; Wang & Zou, 2022; Wang
et al., 2023; Kumar et al., 2023b). However, the problem remains NP-hard for general uncertainty sets,
and optimal policies may even be non-stationary (Wiesemann et al., 2013). Most existing methods
sidestep this difficulty by assuming that the inner-loop optimization can be solved efficiently—a
reasonable assumption in tabular settings with small uncertainty sets, where one can exhaustively
evaluate all transition kernels P ∈ P . Yet, when the uncertainty set is continuous, the inner-loop
problem becomes substantially more challenging and computationally expensive. To address this
challenge, Zhou et al. (2023); Gadot et al. (2024) propose the RNAC and EWoK algorithms, which
rely on sampling-based techniques to estimate value functions under worst-case dynamics. Although
theoretically sound, these methods require drawing multiple next states for each state-action pair,
leading to high sample complexity and considerable computational overhead.
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2.3 REINFORCEMENT LEARNING WITH LOW RANK STRUCTURE

Another direction of research to address this uncertainty is to take advantage of low-rank structures in
dynamics. In many stochastic control tasks, the transition dynamics admit a low-rank decomposition
over a finite set of state-action features (Rozada et al., 2024; 2021; Yang et al., 2019). For example,
Tiwari et al. (2025) show that under suitable assumptions, the set of attainable states lies on a low-
dimensional manifold. In fixed environments, the dimension of this manifold grows only linearly
with the size of the action space and is independent of the state-space dimension. Building on this
observation, they employ a (2da+1)-dimensional low-rank manifold and apply sparse reinforcement
learning methods to solve MuJoCo control tasks. More generally, low-rank structure can be imposed
either on the transition kernel or directly on the optimal action-value function Q∗, and empirical
evidence suggests that Q∗ and near-optimal Q-functions in common stochastic control tasks indeed
exhibit low-rank properties (Sam et al., 2023; Rozada et al., 2024; 2021; Yang et al., 2019).

Motivated by these findings, algorithms for joint feature and policy learning in model-based RL
have been developed (Agarwal et al., 2020; Bose et al., 2024), though they typically assume the
rank is known a priori. For model-free RL, Jiang et al. (2017) introduced the notion of Bellman
rank to quantify the intrinsic complexity of value function approximation. More recent approaches
exploit low-rank factorizations or representations to implicitly encourage small Bellman rank while
optimizing the policy or value function (Modi et al., 2021; 2024; Yang et al., 2020). However,
the theoretical guarantees in these works generally rely on fixed dynamics, and to date there is no
algorithm that simultaneously recovers the exact Bellman rank while learning the optimal policy
under uncertain or time-varying environments.

3 BIAS-VARIANCE TRADEOFF IN RL WITH EPISTEMIC UNCERTAINTY

As highlighted in the related work section, many control tasks naturally admit low-rank structures
in their transition dynamics, which has motivated a line of methods leveraging fixed-rank represen-
tations. However, when moving to the robust MDP setting, the presence of epistemic uncertainty
fundamentally changes the picture. On the one hand, adopting an excessively low rank may fail
to capture the variability introduced by uncertain dynamics, leading to biased estimates and brittle
policies. On the other hand, employing a large rank increases model expressiveness but also amplifies
variance, making the policy highly sensitive to perturbations and prone to over-parameterization. This
tension suggests that selecting an appropriate rank is crucial: the rank must be sufficiently rich to
encode uncertainty, yet controlled enough to mitigate overfitting. In this section, we formally analyze
this bias–variance tradeoff in reinforcement learning under epistemic uncertainty, beginning with
the model-free setting of entropy-regularized reinforcement learning (Haarnoja et al., 2018). The
objective function of entropy-regularized reinforcement learning is given by:

J(π) = Eπ

[ ∞∑
t=0

γt
(
R(st, at) + H(π(·|st))

)]
, (2)

For any given policy π, we define the corresponding (entropy regularized) Qπ function and V π

function as follows:

V π(s) = Eat∼π(·|st),st+1∼Pst,at

[∑
t≥0

γt
(
R(st, at) +H(π(·|st)

)∣∣∣s0 = s
]

(3)

Qπ(s, a) = Eat∼π(·|st),st+1∼Pst,at

[∑
t≥0

γt
(
R(st, at) +H(π(·|st)

)∣∣∣s0 = s, a0 = a
]

(4)

where we write st+1 ∼ Pst,at
to indicate that a transition kernel Pst,at

is uniformly randomly
sampled from the uncertainty set Pst,at

and st+1 ∼ Pst,at
and the entropy term is defined as

H(π(·|st)) := −
∑

a∈A π(a|st) log π(a|st). Let π∗ denote the optimal policy. We begin by re-
stating a well known characterization of the solution to the entropy regularized MDP. According to
Haarnoja et al. (2018), the optimal policy takes the following form:

π∗(a|s) = exp
(
Q∗(s, a)− V ∗(s)

)
(5)

where Q∗ is the unique fixed point of the soft Bellman operator

BQ(s, a) := R(s, a) + γEs′∼Ps,a

[
log

∑
a′∈A

expQ(s′, a′)
]

(6)
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and V ∗(s′) := log
∑

a′∈A expQ(s′, a′). We consider linear function approximations for Q(s, a)
and V (s) functions for the simplicity of analysis, i.e.:

Qθ(s, a) = ϕ(s, a)⊤θ and Vω(s) = ψ(s)⊤ω

where ϕ(s, a) and ψ(s) are feature mappings.

Assumption 1 We assume the training data in the form of triplets (s, a, s′) is generated as follows:
a ∼ πb(· | s) > 0 where πb is a behavioral policy and s′ ∼ Ps,a. We assume the induced Markov
chain is ergodic and the steady-state distribution of triplets (s, a, s′) is denoted by P . Similarly, we
denote by P◦ the steady-state distribution of (s, a, s′) when a ∼ πb(· | s), s′ ∼ P ◦

s,a.

Hence, in an off-policy setting, the optimal policy with linear function approximation can be described
as the solution to the following optimization problem:

min
ω

EP

[
∥ψ(s′)⊤ω − log

∑
a′∈A

expϕ(s′, a′)⊤θ∗(ω)∥2
]

(7)

s.t θ∗(ω) = argmin
θ

EP

[
∥R(s, a) + γψ(s′)⊤ω − ϕ(s, a)⊤θ∥2

]
(8)

where P denotes the steady-state distribution over (s, a, s′) induced by uniformly sampling transition
kernels from the Wasserstein ball and executing a fixed behavioral policy. For simplicity, we write
EP := E(s,a,s′,a′)∼P, πb

. The first-order (sufficient) conditions for lower-level optimality can then be
written as:

−EP
[
ϕ(s, a)(R(s, a) + γψ(s′)⊤ω − ϕ(s, a)⊤θ)

]
= 0 (9)

wherein we write EP as shorthand for E(s,a,s′)∈P . This system of equations can be re-written as
APθ = bP,ω where

AP := EP [ϕ(s, a)ϕ(s, a)
⊤] bP,ω := EP [ϕ(s, a)

(
R(s, a) + γψ(s′)⊤ω

)
]

Similarly for the ground-truth kernel P◦ we define the system:

AP◦ := EP◦ [ϕ(s, a)ϕ(s, a)⊤] bP◦,ω := EP◦ [ϕ(s, a)
(
R(s, a) + γψ(s′)⊤ω

)
]

Our analysis investigates the consequences of using high-rank parametrized policies when the
underlying ground-truth environment dynamics are of lower rank. Let (θ◦, ω◦) denote the solution of
the optimization problem defined by Eq. 7 and Eq. 8 when the expectations are taken with ground-truth
dynamics. Let (θP , ωP) denote the solution of the optimization problem defined by Eq. 7 and Eq. 8
when the expectations are taken with uniformly random sample from the Wasserstein ball centered at
the reference Markov kernel P̂ ◦ with radius ϵ. To formalize this setting, we characterize the low-rank
structure of the environment dynamics under a set of regularity conditions. In particular, we assume
bounded feature mappings, nonsingular covariance matrices, and a discrete Picard condition, which
are standard in reinforcement learning with linear function approximation.

Assumption 2 (2.1) ∥ϕ(s, a)∥ ≤ 1, ∀(s, a) ∈ S ×A.
(2.2) The feature covariance matrices with respect to ground truth dynamics are non-singular:

EP◦ [ϕ(s, a)ϕ(s, a)⊤] ≻ 0

(2.3) (Lipschitz) ∀(s, a) ∈ S ×A, it holds that:∥∥ϕ(s, a)⊤θ1 − ϕ(s, a)⊤θ2∥∥ ≤ L∥∥θ1 − θ2∥∥ (10a)

where L > 0. These are standard assumptions in reinforcement learning with linear function
approximation Tsitsiklis & Van Roy (1996); Munos (2003).

Assumption 3 (Discrete Picard Condition) The linear system AP◦θ = bP◦,ω◦ with r◦ :=

rank(AP◦) satisfies the discrete Picard condition, i.e. the SVD AP◦ = U◦ΣP◦V ◦⊤ is such that
there exists p > 1 with:

|u◦i
⊤bP◦,ω◦ | ≤ σp

P◦,i for i = 1, . . . , r◦,

|u◦⊤i bP◦,ω◦ | ≤ σp
P◦,r◦ for i = r◦ + 1, . . . , d.

5
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The discrete Picard condition (Hansen, 1990; Levin & Meltzer, 2017) states that the magnitude of
the inner product |u◦⊤i bP◦,ω◦ | shrinks faster that σp

i , accounting for the ill-condition in the system
dynamics. Here p > 1 describes the shrinking speed.

Building on these assumptions, we next examine the effect of approximating the system APθ = bP
using an r-truncated SVD decomposition ofAP , denotedAP,r. This result highlights the fundamental
bias–variance trade-off: choosing too small an r induces approximation bias, whereas choosing too
large an r amplifies estimation variance.

Theorem 1 Bias-Variance Trade-off of Rank-r Approximation: Assume the ground-truth dynamics
are given by P◦ and Assumptions 2 holds. Consider a truncated SVD AP,r = UΣP,rV

⊤ for
r ≤ rank(AP) and θr be the solution AP,rθ = bP,ωP . It holds that:

∥θr − θ◦∥2 ≤
1

σP,r
∥(bP,ωP − bP◦,ω◦)||2︸ ︷︷ ︸

variance

+ ∥
d∑

i=r+1

viv
T
i θ

◦∥2︸ ︷︷ ︸
bias

+2O(Lϵ) (11)

If in addition Assumption 3 holds then:

∥θr − θ◦∥2 ≤
1

σP,r
∥bP,ωP − bP◦,ω◦∥2︸ ︷︷ ︸

variance

+(d− r)σp−1
P◦,r + (d− r)r◦σp−1

P◦,1︸ ︷︷ ︸
bias

+2O(Lϵ) (12)

where r◦ := rank(AP◦), and ϵ > 0 denotes the radius of the Wasserstein ball (Mohajerin Esfahani
& Kuhn, 2018).

Remark The upper bound of the performance gap between the estimated parameter θr and the
optimal solution θ◦ in Theorem.1 can be decomposed into two components related to variance
and bias respectively. Thus for example, the choice of r > r◦ introduces higher variance since
σP,r < σP,r◦ . Conversely, the choice of r < r◦ introduces higher bias since

(d− r)σp−1
P◦,r + (d− r)r◦σp−1

P◦,1 > (d− r◦)σp−1
P◦,r◦ + (d− r◦)r◦σp−1

P◦,1

Discussion To confirm that bias-variance tradeoff also exists in settings with non-linear representation,
we perform a sanity check on a MuJoCo control task (Todorov et al., 2012). Specifically, we employ
a three-layer neural network and adopt a rank-control mechanism similar to (Hu et al., 2022; Xu et al.,
2019) (see details in Sec.4.2). Our experiments reveal a clear bias–variance tradeoff in nonlinear
control models, as illustrated in Figure 2: models with extremely low-rank representations exhibit
high bias, while high-rank models suffer from large approximation errors due to transition samples
drawn from uncertain dynamics.
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Figure 2: Performance of policy models under high model uncertainty in Walker2d-v3 (Left) and
Hopper-v3 (Right). Results indicate that extremely low-rank representations lead to high bias, while
overly high-rank models incur large approximation errors due to transition samples drawn from
uncertain dynamics.
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4 ADAPTIVE RANK REPRESENTATION REINFORCEMENT LEARNING

4.1 A BI-LEVEL OPTIMIZATION FORMULATION

The analysis in previous Section highlights that selecting the policy rank involves a delicate balance:
too small a rank induces bias, while too large a rank amplifies variance. This trade-off suggests the
need for an adaptive mechanism that can automatically adjust the rank during learning. Motivated by
this insight, we introduce a bi-level (Colson et al., 2007) optimization formulation, where the lower-
level problem identifies the optimal policy with uniformly sampled environment dynamics (from a
Wasserstein ball around a centroid model) under a fixed rank, and the upper-level problem searches
for the representation that optimizes a measure of fit to the lower-level model while regularizing by
rank. To begin with, We consider a parameterized policy πη, where η ∈ Rd1×d2 with d1, d2 > 0.
And we respectively denote by

Mr := {η ∈ Rd1×d2 | rank(η) = r} M≤r̄ := {η ∈ Rd1×d2 | rank(η) ≤ r̄}
the smooth manifold of matrices with rank r and the algebraic variety of matrices with rank less than
or equal to r̄ > 0.

Formulation: Towards developing an approach that simultaneously learns the policy and adaptively
adjusts its rank, we introduce the following bi-level formulation:

min
r

E(s,a)∼Pη∗∥ProjMr
(πη∗)(a|s)− πη∗(a|s)∥2 + λr (13)

s.t. η∗ := arg max
η∈M≤r̄

Eτ∼Pπη

[∑
t≥0

γt
(
R(st, at) +H(πη(·|st))

)]
(14)

where Pη∗ denotes the steady-state distribution obtained by uniformly sampling the transition kernel
from the Wasserstein ball and selecting actions according to the policy πη∗ , the operator ProjMr

(πη∗)
denotes the projection of the policy onto the low-rank manifoldMr, λ serves as a weight for rank
regularization r, where r denotes the rank variable, and r̄ represents its maximum allowable value.

Discussion The bi-level formulation in Eq. 13–Eq. 14 plays two complementary roles. The lower-level
problem Eq. 14 optimizes the policy parameters under a fixed rank constraint, aiming to maximize
the entropy-regularized return and thus capture the best achievable policy representation at that rank.
However, the optimal solution πη∗ of the lower-level problem may not align with the intrinsic task
complexity and can overfit by exploiting the full representation power. To address this, the upper-
level problem Eq. 13 explicitly searches for an appropriate rank that balances bias and variance, as
motivated in the previous section. It seeks the best low-dimensional representation (bounded by r̄ > 0)
of the state–action value associated with πη∗ , while controlling model capacity through the rank
regularization term. In this way, the upper-level problem enforces a bias–variance tradeoff, ensuring
that the learned representation achieves robustness without unnecessary over-parameterization.

4.2 ALGORITHM

We are now ready to design algorithms for the proposed formulation. Note that our formulation
has a hierarchical structure and falls into the class of bi-level optimization problems Hong et al.
(2023); Colson et al. (2007). In general, bi-level problems are challenging to solve; in our case, the
upper-level objective Eq. 13 depends explicitly on the optimal solution of the lower-level problem.
Furthermore, the rank regularizer C(·) is non-differentiable, which precludes the use of (stochastic)
first-order methods for the upper-level optimization. Fortunately, as we will show, a simple yet
effective adaptive greedy search algorithm can be employed to obtain an empirical solution to the
upper-level problem. At a high level, the proposed algorithm alternates between two steps: a Rank
Adaptation Step, which updates the rank r via a greedy search procedure, and a Policy Optimization
Step, which optimizes the parameters under the rank constraint η ∈M≤r. We now examine each
step in detail.

Rank Adaptation Step From the discussion in Section 3, we know that extremely low-rank models
are limited in their representation power and thus fail to capture sufficient information under model
uncertainty. In contrast, high-rank models tend to overfit, resulting in poor generalization. Hence,
it is crucial to carefully select an appropriate rank for policies in MDPs with uncertain dynamics.
Although Theorem 1 provides useful insights, in practice it is difficult to explicitly solve this tradeoff
and obtain the optimal rank. To address this, we adopt a greedy strategy: starting from a high-rank
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Algorithm 1: Adaptive Rank Representation (AdaRL)

Input: Initialize parameters: for state-action value ω0 and policy η0. Truncation threshold
β ∈ (0, 1), and truncate interval dt.
for k = 0, 1, . . . ,K − 1 do

Data Sampling: Sample trajectories τ1, . . . , τN from the current policy πk
η ,and add them to the

replay buffer: D ← D ∪ {τ1, . . . , τN}
Policy Evaluation: Compute Qk

ω(·, ·) with sampled data D.
Policy Improvement: πk+1

η (·|s) ∝ exp(Qk
ω(s, ·)),∀s ∈ S.

Rank Adaptation Step: if k % dt = 0, Search the suitable rank by Eq. 15 and project ηk into a
lower rank manifoldMr̂.

end for

model, we gradually reduce the rank until reaching a stable value that yields consistent performance
under model uncertainty. This procedure operationalizes the bias–variance tradeoff characterized in
Theorem 1 and forms the core of the Rank Adaptation Step in our algorithm.

Specifically, the upper-level problem Eq. 13 requires us to identify suitable representations for both
the policy and value models while keeping their ranks as low as possible. If no lower-rank model with
sufficient approximation quality can be found, we simply retain the previous rank, i.e., rnew = rold.
To do the greedy search, we consider using the following criterion to decide the new rank r̂. Note
there are many ways to decide the target rank; in the ablation study, we show that using this criterion
achieves a smooth truncation and makes the rank converge to the intrinsic rank of the environment.

r̂ = max{ℓ ∈ {1, 2, . . . , d} :
∑ℓ

i=1 σi∑d
i=1 σi

≤ β} (15)

To implement this efficiently, we adopt a low-rank factorization approach (Xu et al., 2019; Zhang
et al., 2015) that operates directly on the weight matrices of neural networks. Since the rank of a
neural network layer is inherently constrained by the number of hidden units, we follow the idea
of inserting an intermediate linear layer between consecutive layers, thereby controlling the rank
through the size of this hidden layer (see Figure 5 and Appendix A.5.1 for details). After obtaining
the optimized policy πk

η from several policy optimization steps, we refine this low-rank representation
by performing SVD.

Policy Optimization Step One can adopt the standard approaches, such as the well-known soft actor
critic (SAC) (Haarnoja et al., 2018) algorithm to obtain an approximate optimal policy that solves
Eq. 14. Notice that after reconstructing the neural network, the rank of parameter η is no larger than
r̂ due to the existence of the intermediate layer. In this way, the rank constraint is automatically
enforced during optimization without requiring explicit SVD at every update.

We summarize the proposed algorithm in Algorithm 1, corresponding to the rank adaptation step and
policy improvement step. We conclude this section with a brief remark on the advantages of AdaRL.

Low Computational Complexity Unlike previous methods (Gehring et al., 2015) that require
repeated SVD with complexity O(d3) per update, AdaRL uses a single rank adaptation step to
estimate a feasible rank. It operates on two timescales: the inner loop optimizes policies under a
low-rank constraint, while the outer loop infrequently adjusts the rank by projecting parameters onto
a lower-rank manifold. This design avoids costly worst-case value estimation and yields an efficient
training procedure.

Convergence Control dynamical systems governed by Newtonian mechanics naturally exhibit a
low-rank structure (Tiwari et al., 2025). Although deriving theoretical convergence guarantees is
nontrivial, our experiments empirically show that the solution of the upper-level problem converges
to a stable rank, thereby balancing model robustness with representational capacity.

5 EXPERIMENT

In this section, we present numerical evaluations of the proposed method AdaRL (Alg. 1) and compare
it against several robust RL baselines, including RNAC, Parseval regularization, fixed-rank SAC, and
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Figure 3: Training performance on MuJoCo tasks. The proposed AdaRL consistently outperforms
standard SAC baselines under model uncertainty. The red dashed vertical lines indicate the boundaries
between different iteration intervals.
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Figure 4: We plot the estimated rank from AdaRL throughout training. The intrinsic rank refers to
the value identified by Tiwari et al. (2025). Left: Walker2d. Right: Hopper.

the algorithm from Tiwari et al. (2025). Our experiments highlight the advantages of AdaRL in two
key aspects: (1) it achieves a favorable trade-off between the bias and variance induced by model
uncertainty, thereby enabling more robust policy learning; and (2) it identifies a suitable low-rank
manifold, within which constraining the policy model yields a representation that remains robust
under model uncertainty. More details are given in the Appendix A.5.1.

We focus on robotic control tasks with continuous action spaces, using four widely adopted
OpenAI Gym environments and their variants: Hopper-v3, Walker2d-v3, Ant-v3, and
Humanoid-v3. Following the setup in Luo et al. (2024), we introduce model uncertainty by
modifying the source dynamics for each task. In Hopper and Walker2d, this involves structural
changes such as adjusting torso and foot sizes, while in Ant and Humanoid we alter physical parame-
ters including gravity or add external forces such as wind with a specified velocity. During training,
the environment dynamics vary across episodes to simulate epistemic uncertainty.

The baselines considered in this scenario are: (1) SAC (Haarnoja et al., 2018) with a fixed-rank
parameterization; (2) RNAC-DS (Zhou et al., 2023), which employs double sampling within newly
defined uncertainty sets and uses function approximation to solve the robust Bellman equation; We
also evaluate the RNAC-IPM variant to ensure a more comprehensive and fair comparison. (3)
Parseval regularization (Chung et al., 2024), which enforces orthogonality in weight matrices to
preserve optimization properties and improve training stability in continual reinforcement learning;
and (4) the method of Tiwari et al. (2025), which incorporates a fully connected sparsification MLP
layer for reinforcement learning.

In Figure 3 and Table 1, we report numerical results comparing the proposed AdaRL algorithm with
several baselines. As shown in Figure 3, both AdaRL and standard SAC achieve similar performance
in the first iteration; however, once the model rank is adjusted, AdaRL consistently outperforms the
standard methods by mitigating the impact of model uncertainty. It is worth noting that immediately
after each rank adaptation step, the optimizer’s momentum is reset and the model must adjust to the
new parameterization, leading to a temporary performance drop before recovery. Further, in Table 1,
the results show that AdaRL consistently outperforms the baselines by a significant margin in most
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scenarios. As discussed in Section 2.2, robust RL algorithms typically perform policy improvement
based on worst-case value functions, which enhances robustness but often yields overly conservative
policies and incurs high approximation errors in continuous control environments (Mannor et al.,
2012; 2016; Xu & Mannor, 2012). For regularization-based approaches, Parseval regularization can
partially mitigate value-function overfitting, but it remains less effective than the low-rank constraint
imposed in AdaRL. To fairly assess policy generalization, all evaluations are conducted under the
fixed nominal dynamics P◦, enabling us to examine whether the learned policies remain effective
and robust in the presence of model uncertainty. In Appendix A.5.4, we further demonstrate the
robustness of the trained policy in different perturbed dynamics.

Task AdaRL (proposed) RNAC-DS RNAC-IPM Parseval Alg. in Tiwari et al. (2025)
Hopper 2109.8 ± 322.90 1542.36 ± 62.73 1666.33 ± 495.82 1410.64 ± 456.52 1850.09 ± 234.98
Walker 3991.90 ± 567.00 1906.68 ± 620.90 2725.42 ± 570.29 2368.26 ± 1346.67 3280.55 ± 179.42

Ant 3067.13 ± 111.55 1021.97 ± 230.71 1827.77 ± 237.64 2063.18 ± 381.27 2719.95 ± 225.11
Humanoid 5428.72 ± 50.10 2351.42 ± 443.12 3321.49 ± 342.31 458.35 ± 76.41 5255.03 ± 757.45

Table 1: MuJoCo Results. The performance of the benchmark algorithms. Bolded numbers indicate the best
results among AdaRL, RNAC-DS, RNAC-IPM, Parseval regularization, and the algorithm in Tiwari et al. (2025)
for each task.

In Figure 4, we report an additional experiment showing that the rank estimated by the AdaRL
algorithm in Eq. 13 gradually converges to the intrinsic rank identified by Tiwari et al. (2025), given
an appropriate choice of β in Alg. 1 (set to 0.98 in our experiments). This result demonstrates that
AdaRL can effectively search for a suitable rank for environment with model uncertainty.

6 CONCLUSION

In this paper, we propose a novel framework for reinforcement learning under epistemic uncertainty
by integrating the low-rank structure into policy representation. We begin by establishing a theoretical
bias-variance trade-off that arises when applying low-rank approximations with uncertain dynamics.
Motivated by this insight, we formulate a bi-level optimization problem and develop the Adaptive
Low-Rank Representation algorithm, which dynamically adjusts the policy’s representational rank
to balance generalization and robustness. Our extensive experiments on MuJoCo benchmarks
demonstrate that AdaRL consistently outperforms both fixed-rank RL methods and state-of-the-art
robust RL algorithms.
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A APPENDIX

A.1 LLM USAGE

In this work, LLM were used solely for polishing the writing. No part of the technical content,
experimental design, or analysis relied on LLMs. The responsibility for the correctness and originality
of the ideas, methods, and results remains entirely with the authors.

A.2 PROOF OF THEOREM 1

For the ease of notation, we denote the gap between the sampled system dynamics with uncertainty
AP and the reference system AP◦ as ϵA := AP◦ − AP . Recall that AP,r denotes the low-rank
manifold projection of AP using truncated SVD. Let A†

P◦ and A†
P,r respectively denote the pseudo-

inverses. To ease notation we write bP◦ := bP◦,ω◦ and bP := bP,ωP . With θ◦ = A†
P◦bP◦ and
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θr = A†
P,rbP , the difference can then be written as:

θr − θ◦ = A†
P,rbP − θ

◦

= A†
P,r(bP − bP◦) +A†

P,rAP◦θ◦ − θ◦

= A†
P,r(bP − bP◦) +A†

P,rAPθ
◦ +A†

P,rϵAθ
◦ − θ◦

= A†
P,r(bP − bP◦) +

r∑
i=1

viv
T
i θ

◦ −
d∑

i=1

viv
T
i θ

◦ +A†
P,rϵAθ

◦

= A†
P,r(bP − bP◦)−

d∑
i=r+1

viv
T
i θ

◦ +A†
P,rϵAθ

◦

where the fourth equation above follows from the fact that:

A†
P,rAP = V Σ−1

P,rU
⊤UΣPV

⊤ =

r∑
i=1

viv
T
i and

d∑
i=1

viv
T
i = I.

Since the feature functions ψ, ϕ are Lipschitz with constant L > 0, and that the uncertainty in
environment dynamics are bounded from the underlying reference system with Wasserstein distance
W (P̂◦

s,a, Ps,a) ≤ ϵ, all the components of matrix AP , say for example EP [ψ(s
′)ψ(s′)⊤], can be

upper bounded as follows,

sup
P∈BW (P̂◦,ϵ)

∥∥EP [ψ(s
′)ψ(s′)⊤]− EP̂◦ [ψ(s

′)ψ(s′)⊤]
∥∥ = O(Lϵ)

where BW (P̂◦, ϵ) is the Wassertein ball with radius ϵ > 0. Assume P◦ ∈ BW (P̂◦, ϵ), hence by
triangle inequality: ∥∥EP [ψ(s

′)ψ(s′)⊤]− EP◦ [ψ(s′)ψ(s′)⊤]
∥∥ ≤ 2O(Lϵ)

It follows that:

∥θr − θ◦∥2 ≤ ∥A†
P,r(bP − bP◦)∥2 + ∥

d∑
i=r+1

viv
T
i θ

◦∥2 + 2O(Lϵ)

≤ 1

σP,r
∥(bP − bP◦)||2 + ∥

d∑
i=r+1

viv
T
i θ

◦∥2 + 2O(Lϵ)

For the second term, we use θ◦ = V ◦Σ−1
P◦U◦−1bP◦,ω to get:∥∥∥∥∥

d∑
i=r+1

viv
⊤
i θ

◦

∥∥∥∥∥
2

=

∥∥∥∥∥∥
d∑

i=r+1

vi

r◦∑
j=1

v⊤i v
◦
jσ

−1
P◦,ju

◦⊤
j bP◦

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
d∑

i=r+1

r◦∑
j=1

v⊤i v
◦
jσ

−1
P◦,ju

◦⊤
j bP◦

∥∥∥∥∥∥
2

=

d∑
i=r+1

∥∥∥∥∥∥v⊤i v◦i σ−1
P◦,iu

◦⊤
i bP◦ +

r◦∑
j ̸=i

v⊤i v
◦
jσ

−1
P◦,ju

◦⊤
j bP◦

∥∥∥∥∥∥
2

≤
d∑

i=r+1

∥v⊤i ∥2∥v◦i ∥2σ
p−1
P◦,i +

d∑
i=r+1

r◦∑
j ̸=i

∥v⊤i v◦jσ−1
P◦,ju

◦⊤
j bP◦∥2

≤ (d− r)σp−1
P◦,r +

d∑
i=r+1

r◦∑
j ̸=i

∥v⊤i v◦j ∥2σ
p−1
P◦,j

≤ (d− r)σp−1
P◦,r + (d− r)r◦σp−1

P◦,1
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It follows that:

∥θr − θ◦∥2 ≤
1

σP,r
∥bP − bP◦∥2 + (d− r)σp−1

P◦,r + (d− r)r◦σp−1
P◦,1 + 2O(Lϵ) (16)

A.3 BIAS-VARIANCE IN DEEP RL: THE NEURAL TANGENT KERNEL (NTK) REGIME

In what follows we consider bias-variance decomposition when the neural network is arbitrarily wide
(i.e., large number of neurons per layer). In this regime, the network’s predictions evolve in a way
that can be analytically characterized by the Neural Tangent Kernel (NTK) (Jacot et al., 2018).

A.3.1 THE NEURAL TANGENT KERNEL NTK REGIME

Assume Qθ(s, a) is represented with a sufficiently wide neural network (NTK regime). In this case:

Qθ(s, a) ≈ Qθ̄(s, a) +∇Qθ̄(s, a)
⊤(θ − θ̄),

for initialization θ̄. Let

δ(s, a, s′; θ) := Qθ(s, a)−R(s, a)− γVθ(s′)
denote the Bellman error where Vθ(s) = log

(∑
a′ expQθ(s, a

′)
)
. Using the linear approximation

we obtain:
δ(s, a, s′; θ) ≈ δ(s, a, s′; θ̄) + Ψ(s, a, s′)⊤(θ − θ̄),

where
Ψ(s, a, s′) := ∇Qθ̄(s, a)− γ

∑
a′

πθ̄(a
′|s′)∇Qθ̄(s

′, a′),

and πθ̄ is the softmax policy induced by Qθ̄. Hence, we minimize the approximated Bellman error:

min
θ

E(s,a,s′)∼P◦

[(
Ψ(s, a, s′)⊤(θ − θ̄) + δ(s, a, s′; θ̄)

)2]
.

where P◦ be the true joint distribution of (s, a, s′). The first order condition can be written as

AP◦(θ − θ̄) = bP◦

where

AP◦ := E(s,a,s′)∼P◦
[
Ψ(s, a, s′)Ψ(s, a, s′)⊤

]
bP◦ := −E(s,a,s′)∼P◦

[
Ψ(s, a, s′) δ(s, a, s′; θ̄)

]
The minimum-norm solution is

θ◦ − θ̄ = A†
P◦bP◦ (17)

where A†
P◦ is the pseudo-inverse.

A.3.2 WASSERSTEIN AMBIGUITY AND PERTURBED BELLMAN–NTK OPERATOR

Let P̂ be an estimated transition model and consider a Wasserstein ball

B(P̂, ε) := {P :W1(P, P̂) ≤ ε},
withP◦ ∈ B(P̂, ε). LetP be drawn (uniformly randomly) from B(P̂, ε). Bellman error minimization
is written as:

min
θ

E(s,a,s′)∼P

[(
Ψ(s, a, s′)⊤(θ − θ̄) + δ(s, a, s′; θ̄)

)2]
.

The first order condition can be written as

AP(θ − θ̄) = bP (18)

where the perturbed Bellman–NTK operator and right-hand side are defined as:

AP := E(s,a,s′)∼P
[
Ψ(s, a, s′)Ψ(s, a, s′)⊤

]
, bP := −E(s,a,s′)∼P

[
Ψ(s, a, s′) δ̄(s, a, s′)

]
,

Consider a truncated singular value decomposition:

AP,r = UΣP,rV
⊤, ΣP,r = diag(σP,1, . . . , σP,r, 0, . . . , 0),

with singular values σP,1 ≥ · · · ≥ σP,r > 0. The truncated solution to equation 18 is:

θr − θ̄ = A†
P,rbP (19)
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A.3.3 BIAS-VARIANCE DECOMPOSITION WITH RANK-r BELLMAN–NTK ESTIMATOR

Let ϵA := AP◦ −AP and d := Rank(AP). It follows that:

θr − θ◦ = A†
P,rbP − θ

◦

= A†
P,r(bP − bP◦) +A†

P,rAP◦θ◦ − θ◦

= A†
P,r(bP − bP◦) +A†

P,rAPθ
◦ +A†

P,rϵAθ
◦ − θ◦

= A†
P,r(bP − bP◦) +

r∑
i=1

viv
T
i θ

◦ −
d∑

i=1

viv
T
i θ

◦ +A†
P,rϵAθ

◦

= A†
P,r(bP − bP◦)−

d∑
i=r+1

viv
T
i θ

◦ +A†
P,rϵAθ

◦ (20)

where the fourth equation above follows from the fact that:

A†
P,rAP = V Σ−1

P,rU
⊤UΣPV

⊤ =

r∑
i=1

viv
T
i and

d∑
i=1

viv
T
i = I.

Since AP is Lipschitz (with constant L > 0) in P ∈ BW (P̂, ϵ) we have
∥ϵA∥2 = ∥AP −AP◦∥2 ≤ ∥AP −AP̂∥2 + ∥AP̂ −AP◦∥2 ≤ 2Lε

for some L > 0. It follows from equation 20 that:

∥θr − θ◦∥2 ≤ ∥A†
P,r(bP − bP◦)∥2 +

∥∥∥ d∑
i=r+1

viv
T
i θ

◦
∥∥∥
2
+ ∥A†

P,rϵAθ
◦∥2.

Using

∥A†
P,r∥2 ≤

1

σP,r
, ∥ϵA∥2 ≤ 2Lε,

we get the bound

∥θr − θ◦∥2 ≤
1

σP,r
∥bP − bP◦∥2 +

∥∥∥ d∑
i=r+1

viv
T
i θ

◦
∥∥∥
2
+

2Lε

σP,r
∥θ◦∥2

Since bP is Lipschitz in P with constant Lb, then
∥bP − bP◦∥2 ≤ 2Lbε,

because P,P◦ ∈ B(P̂, ε). The upper bound can be expressed as:

∥θr − θ◦∥2 ≤
2ε(Lb + L∥θ◦∥2)

σP,r︸ ︷︷ ︸
variance

+ ∥
d∑

i=r+1

viv
⊤
i θ

◦∥2︸ ︷︷ ︸
bias

(21)

The rank-r truncation suppresses high-variance, low-signal directions of the Bellman–NTK operator,
improving stability under epistemic uncertainty in dynamics, while introducing bias due to discarded
spectral components. This reveals an explicit bias–variance tradeoff governed by the singular value
spectrum of AP

A.4 HEURISTIC ARGUMENT FOR CONVERGENCE OF ADARL

This section provides a geometric interpretation of the proposed adaptive-rank bi-level method, and
gives a heuristic argument for the stability and convergence behavior observed empirically. While a
full global convergence theorem is beyond the scope of the present work—given the combination
of deep function approximation, bi-level structure, and rank adaptation—the algorithm exhibits a
well-organized structure that allows for a clear explanation of why the rank stabilizes and why the
method behaves like a conventional actor–critic algorithm thereafter (Tian et al., 2023; Dong et al.,
2022; Fu et al., 2020).
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Low-Rank Parameter Space as a Determinantal Variety Let θ ∈ Rd1×d2 denote the matrix of
policy parameters. For a fixed maximal rank r̄, define the determinantal variety

M≤r̄ := {θ ∈ Rd1×d2 : rank(θ) ≤ r̄},

which is a closed, semi-algebraic subset of Rd1×d2 stratified by smooth manifolds

Mr := {θ : rank(θ) = r}, r = 0, 1, . . . , r̄.

The singular locus ofM≤r̄ consists of lower-rank strata, but this does not affect the argument below.
Algorithm 1 ensures that all iterates θk lie in M≤r̄, so parameter updates occur inside a single
algebraic variety.

Monotone and Finite Rank Adaptation The Rank Adaptation Step in Algorithm 1 employs the
truncation rule

r̂ = max
{
ℓ ∈ {1, . . . , d} :

∑ℓ
i=1 σi∑d
i=1 σi

≤ β
}
,

computed from the singular values σ1 ≥ σ2 ≥ · · · of the current parameter matrix. Starting from a
high-rank model, the algorithm only decreases the rank when the resulting approximation preserves
sufficient representation power. Thus the sequence of ranks satisfies

rk+1 ≤ rk, rk ∈ {1, . . . , r̄}.

Since this sequence only takes values in a finite set and is monotonically nonincreasing, it can perform
only finitely many strict decreases. Therefore there exists a finite iteration K and a rank r̂ such that

rk = r̂ for all k ≥ K.

Beyond iteration K, all iterates lie in the fixed-rank manifoldMr̂.

Reduction to Standard Policy Optimization Once the rank has stabilized, Algorithm 1 reduces to
entropy-regularized actor–critic training on the smooth manifoldMr̂, implemented via a low-rank
bottleneck layer. Thus the bi-level procedure collapses to a standard single-level policy-gradient
method with a fixed structured parameterization and thus converges.

This behavior matches the empirical observations in Section 5: the rank changes only a small number
of times, after which the robust return and policy iterates stabilize.

Summary Although a formal global convergence theorem is not provided, the algorithm exhibits
the following structured behavior:

• All iterates remain in the determinantal varietyM≤r̄.
• The rank adaptation mechanism is monotone and thus stabilizes after finitely many updates.
• After stabilization at rank r̂, the method reduces to standard entropy-regularized policy

optimization on the smooth manifoldMr̂.

This geometric viewpoint explains why AdaRL converges to a stable rank and why subsequent
training behaves like conventional actor–critic learning with a fixed low-rank representation.

A.5 ADDITIONAL RESULT

A.5.1 BASIC SETTINGS

In all experiments, we evaluate the performance of benchmark algorithms on the Hopper-v3,
Walker2d-v3, Humanoid-v3, and Ant-v3 environments from OpenAI Gym. To ensure a
fair comparison, we use the open-source implementation1 of SAC as the base RL algorithm for all
methods, and for RNAC we adopt its original PPO-based trainer without modification. We use Adam
as the optimizer in SAC, where both the policy and Q-networks are implemented as two-layer MLPs
with hidden sizes (64, 64) and ReLU activation functions. The learning rate for both networks is

1https://github.com/openai/spinningup
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fixed at 3 × 10−3. For our proposed algorithm, we set the truncation interval dt to 0.7 × 106 for
Walker2d and 106 for Hopper, Humanoid, and Ant, meaning the model is truncated every dt policy
optimization steps. This choice ensures that rank adaptation occurs much less frequently than policy
updates.

To impose a rank constraint on a weight matrix W , we first factorize it as W = W1W2 and apply
singular value decomposition (SVD) to the product W1W2 = UΣV ⊤. We then reparameterize as

W1 = U[:,:r̂]

√
Σ[:r̂], W2 =

√
Σ[:r̂]V[:r̂,:],

where r̂ ≤ r is the target rank. This projects W onto a lower-rank manifold, thereby enforcing the
constraint. As shown in Figure 5, inserting an intermediate linear layer (yellow, within the red region)
provides an explicit implementation of this rank reduction.

....

SVD Approximiation

Figure 5: To impose the low-rank constraint, we insert an intermediate linear layer (without activation
functions or bias) between the original two layers. This layer acts as a bottleneck that enforces a
low-rank factorization of the weight matrix via SVD approximation.

Additionally, to avoid loss of momentum after optimizer resets, we apply a standard cosine decay
schedule with warm-up, as in (Lialin et al., 2023; Touvron et al., 2023). Specifically, upon each reset,
we set the learning rate to zero, gradually warm it up to the target value over 2000 steps, and then
resume following the cosine schedule.

We present the practical implementation of our proposed algorithm in Alg. 1. At each iteration, we
warm-start both the policy network and Q-network in SAC using the trained neural networks from the
previous iteration, and then run SAC in the corresponding MuJoCo environment to continue training.

For the robust RL baselines, we use their official open-source implementations. The implemen-
tation of RNAC is available at https://github.com/tliu1997/RNAC. To modify the
dynamics kernel, we follow the setting in OMPO Luo et al. (2024), using their codebase at
https://github.com/Roythuly/OMPO. For Parseval regularization, we use the implemen-
tation provided at https://github.com/wechu/parseval_reg. In MuJoCo experiments
with Parseval regularization, we adopt the same setup, tuning the regularization coefficient from
{0.001, 0.0001, 0.00001} and selecting the best-performing value. We also follow the original im-
plementation by setting s = 2 in the Parseval constraint ∥WW⊤ − sI∥F . For Tiwari et al. (2025),
we follow their default configuration with a sparsification layer and set the hidden layer size to 1024
neurons, consistent with their original setting.

A.5.2 MODEL UNCERTAINTY SETTING

Following the setup in Luo et al. (2024), we simulate model uncertainty by introducing continuously
varying environment parameters during training. This design encourages policies to generalize across
dynamic variations rather than overfitting to a fixed set of dynamics. The specific parameter schedules
for each environment are as follows:

• Hopper: The torso and foot lengths vary with the episode index i as

Ltorso(i) = 0.4 + 0.2 · sin(0.2i), Lfoot(i) = 0.39 + 0.2 · sin(0.2i).

• Walker2d: The torso and foot lengths follow a similar pattern with

Ltorso(i) = 0.2 + 0.1 · sin(0.3i), Lfoot(i) = 0.1 + 0.05 · sin(0.3i).
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Figure 6: Visualization of uncertain dynamics in the Hopper-v3 task, where the torso and foot lengths
vary across episodes.

• Ant: Gravity g and wind speed W change across episodes according to

g(i) = 14.715 + 4.905 · sin(0.5i), W (i) = 1 + 0.2 · sin(0.5i).

• Humanoid: The same variation as Ant is applied, but the wind effect is amplified due to the
humanoid’s larger mass and drag:

g(i) = 14.715 + 4.905 · sin(0.5i), W (i) = 1 + 0.5 · sin(0.5i).

A.5.3 RANK CONVERGENCE OF THE ALTERNATIVE ALGORITHM

In this subsection, we conduct an ablation study to examine alternative strategies for selecting the
cut-off rank of the SVD beyond Eq. 15. As reviewed by Falini (2022), numerous criteria have been
proposed for truncated SVD. Here, we consider a simple hard-thresholding approach based on the
ratio between singular values. Specifically, we define the cut-off rank as

r̂ = min
{
ℓ ∈ {1, 2, . . . , d}

∣∣ σℓ
σ1
≤ β

}
. (22)

Figure 7 illustrates a fundamental limitation of this criterion. After the initial iteration, the rank
selection process stagnates because the rule in Eq. 22 depends only on the largest singular value. As
a result, it ignores the broader spectral structure of the parameters and fails to adapt dynamically
to spectral variations during training. Therefore, we continue to use Eq. 15 as our primary rule for
selecting the cut-off rank.
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(b) Hopper

Figure 7: Comparison of Rank Selection by hard-thresholding method.

A.5.4 POLICY PERFORMANCE UNDER VARYING DYNAMICS

In this subsection, we present additional experimental results under perturbations of physical hyper-
parameters (e.g., torso length, foot length) in the Hopper-v3 and Walker2d-v3 environments.
As shown in Figure 8, the proposed AdaRL algorithm exhibits superior robustness and outperforms
the strongest baseline (Tiwari et al., 2025) in the majority of cases.
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Figure 8: Policy performance under perturbations of physical hyperparameters in Walker2d-v3
and Hopper-v3. Each curve reports the mean performance with shaded regions indicating the
standard deviation across seeds. Red pentagram markers (⋆) denote the worst-case performance
under each perturbation setting. Subfigures (a) and (c) correspond to varying torso length with fixed
foot length, while (b) and (d) show results for varying foot length with fixed torso length. The
proposed AdaRL algorithm consistently outperforms the strongest baseline (Tiwari et al., 2025) in
most perturbed settings, demonstrating improved robustness.

A.5.5 ABLATION STUDY OF ADARL

In this section, we report ablations clarifying where the rank constraints are applied. We evaluate three
variants of AdaRL: (i) actor-only, where only the policy network is re-factorized; (ii) critic-only,
where only the value network is re-factorized; and (iii) both, which corresponds to the full AdaRL
method. For each variant, we apply the factorization described in Figure. 5 to the first two layers
while keeping all other components identical.

The results in Table 2 show that applying rank adaptation to either the actor alone or both the actor
and critic yields substantial robustness improvements across uncertainty levels and environments. In
contrast, the critic-only variant consistently provides limited gains and is often the weakest among the
three. This pattern suggests that controlling the expressiveness of the policy network is the primary
driver of robustness, while jointly adapting both components offers the most reliable and stable
performance. Overall, the ablations demonstrate that AdaRL benefits notably from rank adaptation
on the actor side, with the actor–critic configuration delivering the strongest results.

A.5.6 VALIDATING WITH A TOY EXAMPLE IN A WASSERSTEIN BALL

In this section, we provide a numerical CartPole example to verify the theorem. Following the
corrected dynamics in Florian (2007), the CartPole system can be written as

ẋ
ẍ

θ̇

θ̈

 =


0 1 0 0
0 0 − mg

(m+M)( 4
3−

m
m+M )

0

0 0 0 1
0 0 g

l( 4
3−

m
m+M )

0


xẋθ
θ̇

+


0

1
m+M + m

(m+M)2( 4
3−

m
m+M )

0
− 1

l(m+M)( 4
3−

m
m+M )

u, (23)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2: Performance of the AdaRLvariants across environments and uncertainty levels. Each entry
reports the average return over 5 random seeds. Rows highlighted in light blue denote the method
achieving the highest performance at Iteration 5.

Methods Iteration 1 (0.7e6 Step) Iteration 3 (2.1e6 Step) Iteration 5 (3.5e6 Step)

Hopper-v3 with Low Uncertainty (torso len ∈ [0.31, 0.49], foot len ∈ [0.305, 0.485])

ALR (Actor Only) 1308.14± 275.42 2120.85± 115.20 2264.38± 80.59

ALR (Critic Only) 1181.78± 197.83 1910.93± 484.25 2076.15± 476.52

ALR (Actor–Critic Both) 848.50± 346.82 2205.95± 148.13 2259.59± 40.51

Hopper-v3 with High Uncertainty (torso len ∈ [0.25, 0.55], foot len ∈ [0.245, 0.545])

ALR (Actor Only) 890.83± 724.68 1614.52± 501.20 1813.32± 223.40

ALR (Critic Only) 976.27± 598.22 1778.76± 28.67 1804.34± 255.27

ALR (Actor–Critic Both) 608.77± 351.49 1981.51± 214.14 2245.84± 56.32

Walker2d-v3 with Low Uncertainty (torso len ∈ [0.1, 0.3], foot len ∈ [0.05, 0.15])

ALR (Actor Only) 1780.43± 579.17 3242.00± 247.36 3356.54± 157.38

ALR (Critic Only) 1481.17± 692.37 3658.15± 454.64 3699.68± 569.28

ALR (Actor–Critic Both) 2171.12± 96.99 4095.72± 83.21 4692.13± 370.46

Walker2d-v3 with High Uncertainty (torso len ∈ [0.06, 0.34], foot len ∈ [0.03, 0.17])

ALR (Actor Only) 1476.82± 957.33 3644.88± 198.58 3686.93± 160.31

ALR (Critic Only) 1253.01± 805.23 3433.09± 189.79 3490.55± 365.96

ALR (Actor–Critic Both) 1796.41± 859.72 3146.30± 447.84 3348.37± 270.98

where x denotes the horizontal position of the cart, ẋ its velocity, θ the pole angle (measured from the
upright position), and θ̇ the angular velocity. The parameters m and M are the pole and cart masses,
respectively, l is the pole length (0.5 in the default setting), g is the gravitational acceleration, and
u ∈ {0, 1} represents the control input (horizontal force) applied to the cart.

To inject robustness and model uncertainty into this system, we assume that the pole length l varies
across episodes. Let l0 denote the nominal length used to define the reference dynamics. During
training, we randomly sample l from the interval

l ∈ [0.95 l0, 1.05 l0].

For a fixed pole length l, the CartPole dynamics in equation 23 can be written compactly as

ṡ = A(l) s+B(l)u, s = [x, ẋ, θ, θ̇]⊤, u ∈ {0, 1},

where A(l) and B(l) are obtained directly from the matrices in equation 23.

Let l0 be the nominal length and denote by

s+0 = A(l0)s+B(l0)u, s+(l) = A(l)s+B(l)u

the next states under l0 and l, respectively. Since the system is deterministic, the transition kernels
are Dirac measures

P̂ ◦
s,a = δs+0

, Ps,a(l) = δs+(l).

For a Wasserstein distance with Euclidean ground cost, we then have

W
(
P̂ ◦
s,a, Ps,a(l)

)
=

∥∥s+0 − s+(l)∥∥2 =
∥∥(A(l0)−A(l))s+ (B(l0)−B(l))u

∥∥
2
.

Assume the state is bounded, ∥s∥ ≤ ∥s∥max, and recall that u ∈ {0, 1}, hence |u| ≤ 1. Using
operator norms, we obtain

W
(
P̂ ◦
s,a, Ps,a(l)

)
≤ ∥A(l0)−A(l)∥ ∥s∥max + ∥B(l0)−B(l)∥.
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Figure 9: Performance of different-rank policy models under CartPole dynamics uncertainty.

The entries of A(l) and B(l) depend on l only through rational functions such as 1
l and 1

l(m+M) .
On the compact interval l ∈ [0.95 l0, 1.05 l0] these functions are Lipschitz, so there exist constants
KA,KB > 0 such that

∥A(l0)−A(l)∥ ≤ KA|l − l0|, ∥B(l0)−B(l)∥ ≤ KB |l − l0|.

Hence, for any (s, a) and any l ∈ [0.95 l0, 1.05 l0],

W
(
P̂ ◦
s,a, Ps,a(l)

)
≤

(
KA∥s∥max +KB

)
|l − l0| ≤ 0.05 l0

(
KA∥s∥max +KB

)
.

Therefore, by choosing
εs,a := 0.05 l0

(
KA∥s∥max +KB

)
,

(or a global ε using the supremum over (s, a)), the perturbed dynamics with l ∈ [0.95 l0, 1.05 l0]
indeed satisfy

Ps,a(l) ∈
{
Ps,a ∈ ∆S

∣∣∣W (
P̂ ◦
s,a, Ps,a

)
≤ εs,a

}
,

i.e., they lie inside a Wasserstein ball around the nominal transition kernel.

Numerical Results Following the setup in Section 4.2, we conduct a numerical experiment to examine
whether the model rank affects the performance of this linear control system. We perform a sanity
check using models of different ranks (4, 8, 16, 32, 64). As shown in Figure 9, although the nominal
CartPole dynamics suggest an optimal rank of 4 (Equation 23), introducing model uncertainty requires
greater capacity, and the model with rank = 8 achieves the best performance—closely aligning with
our theoretical prediction.
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